# Package 'MAST'

April 14, 2017

Type Package

Title Model-based Analysis of Single Cell Transcriptomics

Version 1.0.5

Date 2016-11-04

**Author** Andrew McDavid <Andrew\_McDavid@urmc.rochester.edu>, Greg Finak <gfinak@fredhutch.org>, Masanao Yajima <myajima@fredhutch.org>

Maintainer Andrew McDavid <Andrew\_McDavid@urmc.rochester.edu>

VignetteBuilder knitr

**Imports** Biobase, BiocGenerics, S4Vectors, data.table, ggplot2, plyr, stringr, abind, methods, parallel, reshape2, stats, stats4, graphics, utils

**Depends** SummarizedExperiment, R(>=3.3)

**Suggests** knitr, rmarkdown, testthat, lme4(>= 1.0), roxygen2(> 4.0.0), numDeriv, car, gdata, lattice, GGally, GSEABase, NMF, TxDb.Hsapiens.UCSC.hg19.knownGene, rsvd, limma, RColorBrewer

**Description** Methods and models for handling zero-inflated single cell assay data.

**License** GPL(>= 2)

Collate 'AllGenerics.R' 'AllClasses.R' 'Fluidigm-methods.R' 'GSEA-by-boot.R' 'Hypothesis.R' 'LmWrapper.R' 'MultidimensionalScaling.R' 'RNASeqAssay-methods.R' 'Readers.R' 'SingleCellAssay-methods.R' 'UtilityFunctions.R' 'ZlmFit-bootstrap.R' 'ZlmFit-logFC.R' 'ZlmFit.R' 'bayesglm.R' 'convertMASTClassic.R' 'ebayes-helpers.R' 'filterEval.R' 'helper-methods.R' 'lmWrapper-bayesglm.R' 'lmWrapper-glm.R' 'lmWrapper-glmer.R' 'lmWrapper-glmer.R' 'stat\_ell.R' 'thresholdSCRNA.R' 'zeroinf.R' 'zlmHooks.R'

RoxygenNote 5.0.1

LazyData true

**biocViews** GeneExpression, DifferentialExpression, GeneSetEnrichment, RNASeq, Transcriptomics, SingleCell

BugReports https://github.com/RGLab/MAST/issues

URL https://github.com/RGLab/MAST/

NeedsCompilation no

# R topics documented:

| MAST-package                               | . 3  |
|--------------------------------------------|------|
| applyFlat                                  | . 4  |
| BayesGLMlike-class                         | . 4  |
| bootVcov1                                  | . 5  |
| calcZ                                      | . 5  |
| eData                                      |      |
| colData<-,SingleCellAssay,DataFrame-method |      |
| collectResiduals                           |      |
| computeEtFromCt                            | . 10 |
| condmean                                   |      |
| condSd                                     | . 11 |
| convertMASTClassicToSingleCellAssay        | . 11 |
| defaultPrior                               | . 12 |
| dof                                        | . 12 |
| Drop                                       | . 13 |
| ebayes                                     | . 13 |
| expavg                                     | . 14 |
| fData                                      | . 15 |
| featureData                                | . 15 |
| filter                                     | . 15 |
| filterLowExpressedGenes                    | . 17 |
| fit                                        |      |
| freq                                       | . 18 |
| FromFlatDF                                 |      |
| FromMatrix                                 | . 19 |
| getConcordance                             |      |
| getwellKey                                 | . 21 |
| GLMlike-class                              |      |
| gseaAfterBoot                              | . 23 |
| GSEATests-class                            |      |
| hushWarning                                | . 24 |
| Hypothesis                                 | . 25 |
| impute                                     |      |
| influence.bayesglm                         |      |
| invlogit                                   |      |
| LMERlike-class                             | . 27 |
| LMlike-class                               |      |
| logFC                                      |      |
| logmean                                    | . 31 |
| LRT                                        | . 32 |
| lrTest                                     | . 33 |
| lrTest,ZlmFit,character-method             |      |
| maits                                      | . 34 |
| melt.SingleCellAssay                       |      |
| model.matrix                               |      |
| model.matrix<                              |      |
| myBiplot                                   |      |
| numexp                                     |      |
| pbootVcov1                                 |      |
| plot.thresholdSCRNACountMatrix             | . 37 |

MAST-package 3

|       | plotlrt                                |
|-------|----------------------------------------|
|       | plotSCAConcordance                     |
|       | predict.ZlmFit                         |
|       | primerAverage                          |
|       | print.summaryZlmFit                    |
|       | read.fluidigm                          |
|       | removeResponse                         |
|       | rstandard.bayesglm                     |
|       | se.coef                                |
|       | show,LMlike-method                     |
|       | split,SingleCellAssay,character-method |
|       | stat_ell                               |
|       | subset,SingleCellAssay-method          |
|       | summarize                              |
|       | summary,GSEATests-method               |
|       | summary,ZlmFit-method                  |
|       | summary.thresholdSCRNACountMatrix      |
|       | thresholdSCRNACountMatrix              |
|       | vbeta                                  |
|       | vbetaFA                                |
|       | waldTest                               |
|       | waldTest,ZlmFit,matrix-method          |
|       | xform                                  |
|       | zlm                                    |
|       | zlm.SingleCellAssay                    |
|       | ZlmFit-class                           |
| Index | 59                                     |
|       |                                        |
|       |                                        |

# Description

MAST-package

Methods for analysing single cell assay data using hurdle models.

### **Details**

This packages provides data structures and functions for statistical analysis of single-cell assay data such as Fluidigm single cell gene expression assays.

MAST: Model-based Analysis of Single- cell Transcriptomics

### References

Finak, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biology (2015).

4 BayesGLMlike-class

Apply a vectorized binary operation recycling over last dimension

### **Description**

When x is an array of order K, and y is an array of order K-1, whose dimensions otherwise agree, apply FUN by recycling y as necessary over dimension K of x.

#### Usage

```
applyFlat(x, y, FUN = "-")
```

### **Arguments**

```
x array, order K
y array, order K-1
```

FUN vectorized binary operation

#### Value

```
array, order K equal to FUN(x,y)
```

### **Examples**

```
##Dumb example, could be done with scale(...,scale=FALSE)
x0 = matrix(1:10, nrow=2)
y0 = rowMeans(x0)
dim(y0) = c(1, 2)
x1 = MAST:::applyFlat(x0,y0)
stopifnot(rowMeans(x1)==0)
```

BayesGLMlike-class

Wrapper for bayesian GLM

### Description

Wrapper for bayesian GLM

#### **Slots**

prior numeric optional 3d array used to specify prior for coefficients useContinuousBayes logical should bayesglm be used to fit the continuous component as well?

bootVcov1 5

bootVcov1

Bootstrap a zlmfit

#### **Description**

Sample cells with replacement to find bootstrapped distribution of coefficients

#### Usage

```
bootVcov1(zlmfit, R = 99)
```

#### **Arguments**

zlmfit class ZlmFit

R number of bootstrap replicates

#### Value

array of bootstrapped coefficients

### **Examples**

```
data(vbetaFA)
zlmVbeta <- zlm.SingleCellAssay(~ Stim.Condition, subset(vbetaFA, ncells==1)[1:5,])
#Only run 3 boot straps, which you wouldn't ever want to do in practice...
bootVcov1(zlmVbeta, R=3)</pre>
```

calcZ

Get Z or T statistics and P values after running gseaAfterBoot

#### **Description**

The Z or T statistics may be reported by component (discrete/continuous) when combined='no' or combined by Fisher's or Stouffer's method (combined='fisher' or combined='stouffer'. Fisher's method uses the product of the p-values, while Stouffer's method uses the sum of the Z/T scores. The "Z" score returned by Fisher is the normal quantile that would yield the observed Fisher P-value, whose sign is derived from the sign of the maximum component Z score. The "Z" score returned by Stouffer when testType='normal' is the sum of the Z scores, over sqrt(2). When testType='t' it is a weighted combination of the Z scores, with weights correponding to the degrees of freedom in each of the t statistics. A t-approximation to this sum of t-variables is derived by matching moments. It seems to be fairly accurate in practice.

```
calcZ(gseaObj, testType = "t", combined = "none")
```

6 cData

#### **Arguments**

gseaObj output from gseaAfterBoot

testType either 'normal' or 't'. The 't' test adjusts for excess kurtosis due to the finite

number of bootstrap replicates used to estimate the variance of the statistics.

This will result in more conservative inference.

combined character one of 'none', 'fisher' or 'stouffer'

#### Value

3D array with dimensions set (modules) comp ('cont'inuous or 'disc'rete) and metric ('Z' stat and two sided 'P' value that P(z>|Z|)) if combined='no', otherwise just a matrix.

#### See Also

gseaAfterBoot

### **Examples**

```
## See the examples in gseaAfterBoot
example(gseaAfterBoot)
```

cData

Deprecated cell/feature data accessors/mutators

### **Description**

These functions are now all deprecated and will be removed in a future release.

```
cData(sc)
cData(sc) <- value

## S4 method for signature 'SingleCellAssay'
cData(sc)

## S4 replacement method for signature 'SingleCellAssay'
cData(sc) <- value

## S4 method for signature 'SingleCellAssay, SingleCellAssay'
combine(x, y, ...)

## S4 method for signature 'SingleCellAssay, ANY'
combine(x, y, ...)</pre>
```

### **Arguments**

| SC    | An object with cellData |
|-------|-------------------------|
| value | replacement value       |
| х     | SingleCellAssay         |
| У     | SingleCellAssay         |
|       | SingleCellAssay         |

#### **Details**

```
cData(sc): Return the cellData data.frame.

cData(sc)<-value: Replace the cellData with value, which can be either an AnnotatedDataFrame or data.frame. The replacement is checked that it has mandatory fields defined by its class.

combine(x, y, ...): Concatenate two experiments along rows/columns
```

#### Value

DataFrame or modifies the SingleCellAssay object in place

### **Replacement Functions**

You should transition to use the following replacements:

```
cData colData

fData mcols

exprs assay

combine cbind2 or rbind2
```

### See Also

exprs

# **Examples**

```
data(vbetaFA)
stopifnot(all.equal(hushWarning(cData(vbetaFA), 'deprecated'),colData(vbetaFA)))
stopifnot(all.equal(hushWarning(fData(vbetaFA), 'deprecated'), mcols(vbetaFA)))
stopifnot(all.equal(hushWarning(exprs(vbetaFA), 'deprecated'), t(assay(vbetaFA))))
```

### Description

Replace colData with a DataFrame. Checks to make sure that row.names(value) match colnames $\{x\}$ , in contrast to the parent method Checks for a wellKey column, as well.

8 collectResiduals

#### Usage

```
## S4 replacement method for signature 'SingleCellAssay,DataFrame' colData(x) \leftarrow value
```

### **Arguments**

x SingleCellAssay

value DataFrame

#### Value

modified SingleCellAssay

collectResiduals

Residual hooks and collection methods

### **Description**

After each gene is fit, a hook function can optionally be run and the output saved. This allows extended computations to be done using the fitted model, without keeping it in memory. Here this is used to calculate various residuals, though in some cases they can be done using only the information contained in the ZlmFit-class.

### Usage

```
collectResiduals(x, sca, newLayerName = "Residuals")
discrete_residuals_hook(x)
continuous_residuals_hook(x)
combined_residuals_hook(x)
deviance_residuals_hook(x)
fitted_phat(x)
partialScore(x, effectRegex)
```

### **Arguments**

x ZlmFit-class

sca SingleCellAssay object to which the residuals should be added

newLayerName character name of the assay layer

effectRegex a regular expression naming columns of the design corresponding to  $Z_0$ . Gen-

erally these should be the treatment effects of interest.

# Value

copy of sca with new layer

collectResiduals 9

#### **Functions**

discrete\_residuals\_hook: Hook to get the discrete residuals, ie, difference between expected probability of expression and observed

- continuous\_residuals\_hook: Hook to get the continuous residuals, ie, residuals for conditionally positive observations. If an observation is zero, it's residual is defined to be zero as well.
- combined\_residuals\_hook: Hook to get the combined residuals, ie, Y-E(U)\*E(V)
- deviance\_residuals\_hook: Standardized deviance residuals hook. Computes the sum of the standardized deviance residuals for the discrete and continuous models (scaled to have unit variance). If the observation is zero then only the discrete component is used.
- fitted\_phat: Hook to return p\_hat, the predicted probability of expression.
- partialScore: Compute  $Y_i E(V_i|X_i, Z_0)E(U|X_i, Z_0)$ , where  $Z_0$  is a treatment effect (being left in) and  $X_i$  is a nuisance effect (being regressed out).

#### Total residual types

Each component of the model contributes several flavors of residual, which can be combined in various fashions. The discrete residual can be on the response scale (thus subtracting the predicted probability of expression from the 0/1 expression value). Or it can be a deviance residual, revealing something about the log-likelihood.

#### Partial residuals

It's also possible to consider partial residuals, in which the contribution of a particular covariate is added back into the model.

#### See Also

zlm.SingleCellAssay

#### **Examples**

```
data(vbetaFA)
svbeta <- subset(vbetaFA, ncells==1)</pre>
svbeta <- svbeta[freq(svbeta)>.4,]
window <- function(x1) lapply(assays(x1), function(x2) x2[1:3, 1:6])</pre>
#total residuals of the response
z1 <- zlm.SingleCellAssay(~ Stim.Condition, svbeta, hook=discrete_residuals_hook)
window(collectResiduals(z1, svbeta))
z2 <- zlm.SingleCellAssay(~ Stim.Condition, svbeta, hook=continuous_residuals_hook)</pre>
window(collectResiduals(z2, svbeta))
z3 <- zlm.SingleCellAssay(~ Stim.Condition, svbeta, hook=combined_residuals_hook)
window(collectResiduals(z3, svbeta))
#total deviance residuals
z4 <- zlm.SingleCellAssay(~ Stim.Condition, svbeta, hook=deviance_residuals_hook)
window(collectResiduals(z4, svbeta))
#partial residuals
colData(svbeta)$ngeneson <- colMeans(assay(svbeta)>0)
z5 <- zlm.SingleCellAssay(~ Stim.Condition + ngeneson, svbeta)</pre>
partialScore(z5, 'Stim.Condition')
```

10 condmean

 ${\tt computeEtFromCt}$ 

Compute the Et from the Ct

### **Description**

Computes the Et value from the Ct value in an existing data frame and returns a new data frame with the Et column appended

### Usage

```
computeEtFromCt(df, column = "Ct", Cmax = 40)
```

# Arguments

df a data.frame

column The name of the Ct column. A character. 'Ct' by default.

Cmax the maximum number of cycles performed. 40 by default.

### Value

A copy of df with the 'Et' column appended

### Author(s)

Greg Finak

### **Examples**

```
data(vbeta)
vbeta <- computeEtFromCt(vbeta)</pre>
```

condmean

Report the mean et value for each gene

### Description

NAs are always removed

### Usage

condmean(sc)

### Arguments

sc

SingleCellAssay

# Value

vector of means

condSd 11

#### **Examples**

data(vbetaFA)
condmean(vbetaFA)

condSd

Report standard deviation of et, for positive et for each gene

#### **Description**

NAs are always removed

#### Usage

condSd(sc)

### **Arguments**

sc

SingleCellAssay

#### Value

vector of standard deviations

convertMASTClassicToSingleCellAssay

Convert a MASTClassic SingleCellAssay

### **Description**

Convert a SingleCellAssay object created with the MASTClassic package to an object recognized by the new MAST package

### Usage

```
convertMASTClassicToSingleCellAssay(object = NULL)
```

#### **Arguments**

object

of class SingleCellAssay created by MASTClassic

### **Details**

The function will extract the relevant information from the attributes of the old object and construct a new SingleCellAssay that is recognized by MAST. This function checks that the object is a MASTClassic SingleCellAssay object. It will stop if it is not a SingleCellAssay, return a converted SingleCellAssay if object was created by MASTClassic, and return the original object if the object is already compatible.

#### Value

A MAST SingleCellAssay object.

12 dof

#### Note

Type checking for old object is not performed.

### **Examples**

```
data(vbetaFA)
convertMASTClassicToSingleCellAssay(vbetaFA)
```

defaultPrior

Initialize a prior to be used a prior for BayeGLMlike/BayesGLMlike2

### Description

Initialize a prior to be used a prior for BayeGLMlike/BayesGLMlike2

### Usage

```
defaultPrior(names)
```

#### **Arguments**

names

character vector of coefficients. The '(Intercept)' will be ignored.

#### Value

3d array, with leading dimension giving the prior 'loc'ation, 'scale' and degrees of freedom (df), second dimension giving the component ('C'ontinuous or 'D'iscrete) and trailing dimension giving the coefficient to which the prior applies. The location is initialized to be 0, the scale to 2, and degrees of freedom of 1, following the default of bayesglm.

### **Examples**

```
dp <- defaultPrior('Stim.ConditionUnstim')
## Not run:
data(vbetaFA)
zlmVbeta <- zlm.SingleCellAssay(~ Stim.Condition, vbeta.sc, method='bayesglm', coefPrior=dp)
## End(Not run)</pre>
```

dof

Degrees of freedom of Zero inflated model

### **Description**

Degrees of freedom of Zero inflated model

```
dof(object)
```

Drop 13

### **Arguments**

object

LMlike or subclass

#### Value

vector giving the model degrees of freedom for continuous and discrete

Drop

Drop specified dimension from an array

### **Description**

Like drop(x) but only dropping specified dimensions. There is no testing that the specified dimensions are actually singletons.

#### Usage

```
Drop(x, d)
```

#### **Arguments**

x array of at least d dimensions

d dimension(s) to drop

### Value

array x

# **Examples**

```
x = array(1:4, dim=c(1, 2, 1, 2))
dx = MAST:::Drop(x, 1)
stopifnot(all(dim(dx)==c(2,1,2)))
```

ebayes

Estimate hyperparameters for hierarchical variance model for continuous component

### **Description**

ebayesControl is a named list with (optional) components 'method' (one of 'MOM' or 'MLE') and 'model' (one of 'H0' or 'H1') method MOM uses a method-of-moments estimator, while MLE using the marginal likelihood. H0 model estimates the precisions using the intercept alone in each gene, while H1 fits the full model specified by formula

```
ebayes(sca, ebayesControl, Formula, truncate = Inf)
```

14 expavg

### **Arguments**

sca SingleCellAssay

ebayesControl list with (optional) components 'method', 'model'. See details.

Formula a formula (using variables in colData(sca) used when model='H1'.

truncate Genes with sample precisions exceeding this value are discarded when estimat-

ing the hyper parameters

#### Value

numeric of length two, giving the hyperparameters in terms of a variance (v) and prior observations (df), inside a structure, with component hess, giving the Fisher Information of the hyperparameters.

expavg

Exponential average

### **Description**

Puts log transformed values onto natural scale and takes mean of vector. Calculates mean(2<sup>x</sup> - 1)

### Usage

expavg(x)

#### **Arguments**

Χ

numeric

# Value

numeric

### **Examples**

```
x <- 1:10
logmean(expavg(x))</pre>
```

fData 15

fData fData

### Description

Accessor for featureData data.frame

### Arguments

object

An object with featureData

### **Details**

Returns the featureData data.frame.

### Value

data.frame

featureData

 $Accessor for {\it featureData} \ {\tt AnnotatedDataFrame}$ 

# Description

Returns the featureData.

# Arguments

object

An object with featureData

### Value

 ${\tt AnnotatedDataFrame}$ 

filter

 $Filter\ a\ Single Cell Assay$ 

# Description

Remove, or flag wells that are outliers in discrete or continuous space.

```
filter(sc, groups = NULL, filt_control = NULL, apply_filter = TRUE)
burdenOfFiltering(sc, groups, byGroup = FALSE, filt_control = NULL)
```

16 filter

#### **Arguments**

sc The SingleCellAssay object
groups An optional character naming the grouping variable
filt\_control The list with configuration parameters for the filter.

apply\_filter logical should the filter be applied, or should a matrix of booleans giving if a

well would be subject to a filtering criteria be returned?

byGroup in the case of burdenOfFiltering should the filter be stratified by groups, or

only the plotting.

#### **Details**

The function filters wells that don't pass filtering criteria described in filt\_control. filt\_control is a list with named elements nOutlier (minimum nmber of outlier cells for a cell to be filtered [default = 2] sigmaContinuous (the z-score outlier threshold for the continuous part of the signal) [default = 7] and sigmaProportion (the z-score outlier threshold for the discrete part of the signal) [default = 7].

If groups is provided, the filtering is calculated within each level of the group, then combined again as output.

#### Value

A filtered result

#### **Functions**

• burdenOfFiltering: plot the proportions of wells are filtered due to different criteria

### Author(s)

Andrew McDavid

#### See Also

burdenOfFiltering

# **Examples**

```
data(vbetaFA)
## Split by 'ncells', apply to each component, then recombine
vbeta.filtered <- filter(vbetaFA, groups='ncells')
## Returned as boolean matrix
was.filtered <- filter(vbetaFA, apply_filter=FALSE)
## Wells filtered for being discrete outliers
head(subset(was.filtered, pctout))
burdenOfFiltering(vbetaFA, groups='ncells', byGroup=TRUE)
burdenOfFiltering(vbetaFA, groups='ncells')</pre>
```

```
filterLowExpressedGenes
```

Filter low-expressing genes

### **Description**

Filter out genes that have less than some percent threshold expression across all libraries

### Usage

```
filterLowExpressedGenes(assay, threshold = 0.1)
```

#### **Arguments**

assay a SingleCellAssay object

threshold a numeric between 0, and 1, specifying the threshold frequency below which

genes will be filtered out

#### Value

```
SingleCellAssay
```

### **Examples**

```
data(vbetaFA)
filterLowExpressedGenes(vbetaFA)
```

fit

fit a zero-inflated regression

#### **Description**

Given a design and formula, fit the zero inflated regression, storing the fits in slots fitC and fitD

#### Usage

```
fit(object, response, ...)
## S4 method for signature 'LMERlike,missing'
fit(object, response, silent = TRUE, ...)
```

### Arguments

object inheriting from LMlike

response a vector, same length as the design, or if missing then use the current response

... currently ignored

silent mute some warnings emitted from the underlying modeling functions

# Value

LMlike or subclass

18 FromFlatDF

freq

Report the proportion of expression for each gene

### Description

NAs can be optionally removed

### Usage

```
freq(sc, na.rm = TRUE)
```

### **Arguments**

sc SingleCellAssay

na.rm should NAs be removed, or carried through?

#### Value

vector of proportions

### **Examples**

```
data(vbetaFA)
freq(vbetaFA)
```

FromFlatDF

Construct a SingleCellAssay (or derived subclass) from a 'flat' (melted) data.frame/data.table

### Description

SingleCellAssay are a generic container for such data and are simple wrappers around SummarizedExperiment objects. Subclasses exist that embue the container with additional attributes, eg FluidigmAssay.

```
FromFlatDF(dataframe, idvars, primerid, measurement, id = numeric(0),
  cellvars = NULL, featurevars = NULL, phenovars = NULL,
  class = "SingleCellAssay", ...)
FluidigmAssay(...)
```

FromMatrix 19

#### **Arguments**

| dataframe   | A 'flattened' data.frame or data.table containing columns giving cell and feature identifiers and a measurement column  |
|-------------|-------------------------------------------------------------------------------------------------------------------------|
| idvars      | character vector naming columns that uniquely identify a cell                                                           |
| primerid    | character vector of length $\boldsymbol{1}$ that names the column that identifies what feature (i.e. gene) was measured |
| measurement | character vector of length 1 that names the column containing the measurement                                           |
| id          | An identifier (eg, experiment name) for the resulting object                                                            |
| cellvars    | Character vector naming columns containing additional cellular metadata                                                 |
| featurevars | Character vector naming columns containing additional feature metadata                                                  |
| phenovars   | Character vector naming columns containing additional phenotype metadata                                                |
| class       | character providing desired subclass to construct.                                                                      |
|             | additional arguments are ignored                                                                                        |

#### Value

SingleCellAssay, or derived, object

### **Examples**

```
data(vbeta)
colnames(vbeta)
vbeta <- computeEtFromCt(vbeta)
vbeta.fa <- FromFlatDF(vbeta, idvars=c("Subject.ID", "Chip.Number", "Well"),
primerid='Gene', measurement='Et', ncells='Number.of.Cells',
geneid="Gene",cellvars=c('Number.of.Cells', 'Population'),
phenovars=c('Stim.Condition','Time'), id='vbeta all', class='FluidigmAssay')
show(vbeta.fa)
nrow(vbeta.fa)
nrow(vbeta.fa)
head(mcols(vbeta.fa)$primerid)
table(colData(vbeta.fa)$Subject.ID)
vbeta.sub <- subset(vbeta.fa, Subject.ID=='Sub01')
show(vbeta.sub)</pre>
```

FromMatrix

Construct a SingleCellAssay from a matrix or array of expression

### **Description**

If the gene expression measurements are already in a rectangular form, then this function allows an easy way to construct a SingleCellAssay object while still doing some sanity checking of inputs.

```
FromMatrix(exprsArray, cData, fData, class = "SingleCellAssay")
```

20 getConcordance

#### **Arguments**

exprsArray matrix or array, columns are cells, rows are genes

cData cellData an object that can be coerced to a DataFrame, ie, data.frame, Anno-

tatedDataFrame. Must have as many rows as ncol(exprsArray)

fData featureData an object that can be coerced to a DataFrame, ie, data.frame, Anno-

tatedDataFrame. Must have as many rows as nrow(exprsArray).

class desired subclass of object. Default SingleCellAssay.

#### Value

an object of class class

### **Examples**

```
ncells <- 10
ngenes <- 5
fData <- data.frame(primerid=LETTERS[1:ngenes])
cData <- data.frame(wellKey=seq_len(ncells))
mat <- matrix(rnorm(ncells*ngenes), nrow=ngenes)
sca <- FromMatrix(mat, cData, fData)
stopifnot(inherits(sca, 'SingleCellAssay'))
stopifnot(inherits(sca, 'SummarizedExperiment0'))
##If there are mandatory keywords expected by a class, you'll have to manually set them yourself
cData$ncells <- 1
fd <- FromMatrix(mat, cData, fData)
stopifnot(inherits(fd, 'SingleCellAssay'))</pre>
```

getConcordance

getConcordance

#### **Description**

Get the concordance between two

## Usage

```
getConcordance(singleCellRef, singleCellcomp, groups = NULL,
  fun.natural = expavg, fun.cycle = logmean)
getwss(concord, nexp)
getss(concord)
getrc(concord)
```

# Arguments

```
singleCellRef "reference" SingleCellAssay
singleCellcomp "comparison" SingleCellAssay
groups character vector giving variable(s) on which the comparison is conditioned
```

getwellKey 21

fun. natural function to transform the SingleCellAssays to a mRNA proportional level

fun.cycle inverse function of fun.natural

concord data.frame returned by getConcordance

nexp number of expressed cells per row in concord

#### Details

Return the concordance between two assays (i.e. single cell and hundred cell) The "average" of singleCellRef (after adjusting for the number of cells) and singleCellComp are taken per gene, per groups. A data.frame with one row per gene-groups is returned with some additional columns.

#### Value

concordance between two assays

#### **Functions**

• getwss: getrc the sum of squares, weighted by nexp

• getss: return the sum of squares

• getrc: Return Lin's (1989) concordance correlation coefficient

#### Author(s)

Andrew McDavid

### See Also

plotSCAConcordance

### **Examples**

```
data(vbetaFA)
sca1 <- subset(vbetaFA, ncells==1)
sca100 <- subset(vbetaFA, ncells==100)
concord <- getConcordance(sca1, sca100)
getss(concord)
getrc(concord)</pre>
```

getwellKey

Accessor for wellKey

#### **Description**

This returns the wellKey, which is a unique identifier generated by idvars in the mapping

```
getwellKey(sc)
```

22 GLMlike-class

### **Arguments**

sc

An object with a wellKey

### Value

integer giving the unique id generated

### **Examples**

```
data(vbetaFA)
getwellKey(vbetaFA)
colData(vbetaFA)$wellKey
```

GLMlike-class

Wrapper for regular glm/lm

### Description

Wrapper for regular glm/lm

### Usage

```
## S4 method for signature 'GLMlike'
vcov(object, which, ...)
```

### Arguments

object GLMlike

which character, one of 'C', 'D'.

... ignored

### Value

covariance matrix

# Methods (by generic)

• vcov: return the variance/covariance of component which

# **Slots**

weightFun function to map expression values to probabilities of expression. Currently unused.

gseaAfterBoot 23

| gseaAfterBoot | Gene set analysis for hurdle model |  |
|---------------|------------------------------------|--|
|               |                                    |  |

#### **Description**

Modules defined in sets are tested for average differences in expression from the "average" gene. By using bootstraps, the between-gene covariance of terms in the hurdle model is found, and is used to adjust for coexpression between genes. We drop genes if the coefficient we are testing was not estimible in original model fit in zFit or in any of the bootstrap replicates (evidenced an NA in the bootstrap array). This might yield overly conservative inference. Since bootstrapping is a randomized procedure, the degrees of freedom of a module (and its variance parameters) might differ from run-to-run. You might try setting var\_estimate='modelbased' to relax this requirement by assuming independence between genes and then using the asymptotic covariance estimates, which are deterministic, but may result in overly-generous inference.

### Usage

```
gseaAfterBoot(zFit, boots, sets, hypothesis, control = list(n_randomize = Inf,
  var_estimate = "bootall"))
```

#### **Arguments**

zFit object of class ZlmFit boots bootstraps of zFit sets list of indices of genes

hypothesis a Hypothesis to test. Currently only one degree CoefficientHypothesis are

supported.

control list of control parameters. See details.

### Value

Object of class  $\mathsf{GSEATests}$ , containing slots  $\mathsf{tests}$ ,  $\mathsf{4D}$  array and  $\mathsf{bootR}$ , the number of boostrap replicates.

#### control

control is a list with elements:

- n\_randomize, giving the number of genes to sample to approximate the non-module average expression. Set to Inf to turn off the approximation (the default).
- var\_estimate, giving the method used to estimate the variance of the modules. bootall uses
  the bootstrapped covariance matrices. bootdiag uses only the diagonal of the bootstrapped
  covariance matrix (so assuming independence across genes). modelbased assumes independence across genes and uses the variance estimated from the model.

#### **Return Value**

A 4D array is returned, with dimensions "set" (each module), "comp" ('disc'rete or 'cont'inuous), "metric" ('stat' gives the average of the coefficient, 'var' gives the variance of that average, 'dof' gives the number of genes that were actually tested in the set), "group" ('test' for the genes in test-set, "null" for all genes outside the test-set).

24 hush Warning

#### See Also

```
calcZ summary,GSEATests-method
```

### **Examples**

```
data(vbetaFA)
vb1 = subset(vbetaFA, ncells==1)
vb1 = vb1[,freq(vb1)>.1][1:15,]
zf = zlm.SingleCellAssay(~Stim.Condition, vb1)
boots = bootVcov1(zf, 5)
sets=list(A=1:5, B=3:10, C=15, D=1:5)
gsea=gseaAfterBoot(zf, boots, sets, CoefficientHypothesis('Stim.ConditionUnstim'))
calcZ(gsea)
summary(gsea)
```

GSEATests-class

An S4 class for Gene Set Enrichment output

### **Description**

This holds output from a call to gseaAfterBoot. It primarily provides a summary method.

#### **Slots**

tests array: gene sets X discrete, continuous X stat, variance, degrees of freedom, avg correlation X test, null

bootR number of bootstrap replicates

### See Also

```
\label{eq:calcZ} $$\operatorname{summary}, GSEATests-method$
```

hushWarning

Selectively muffle warnings based on output

### **Description**

Selectively muffle warnings based on output

```
hushWarning(expr, regexp)
```

Hypothesis 25

#### **Arguments**

expr an expression

regexp a regexp to be matched (with str\_detect)

#### Value

the result of expr

#### **Examples**

```
hushWarning(warning('Beware the rabbit'), 'rabbit')
hushWarning(warning('Beware the rabbit'), 'hedgehog')
```

Hypothesis

Describe a linear model hypothesis to be tested

### Description

A Hypothesis can be any linear combination of coefficients, compared to zero. Specify it as a character vector that can be parsed to yield the desired equalities ala makeContrasts. A CoefficientHypothesis is a hypothesis for which terms are singly or jointly tested to be zero (generally the case in a t-test or F-test), by dropping coefficients from the model.

### Usage

```
Hypothesis(hypothesis, terms)
```

### **Arguments**

hypothesis a character vector specifying a hypothesis, following makeContrasts, or a char-

acter vector naming coefficients to be dropped.

terms an optional character vector giving the terms (column names from the model.matrix)

out of which the contrasts will be contrasted. If missing then most functions will

attempt to fill this in for you at run time.

#### Value

a Hypothesis with a "transformed" component

#### See Also

zlm.SingleCellAssay waldTest lrTest

### **Examples**

```
\label{eq:hamilton} $h \leftarrow Hypothesis('Stim.ConditionUnstim', c('(Intercept)', 'Stim.ConditionUnstim'))$ $h@contrastMatrix$
```

26 influence.bayesglm

impute

impute missing continuous expression for plotting

### **Description**

If there are no positive observations for a contrast, it is generally not estimible. However, for the purposes of testing we can replace it with the least favorable value with respect to the contrasts that are defined.

### Usage

```
impute(object, groupby)
```

#### **Arguments**

object Output of predict

groupby Variables (column names in predict) to group by for imputation (facets of the

plot)

### Value

data.table

### **Examples**

```
##See stat_ell
example(stat_ell)
```

influence.bayesglm

Influence bayesglm object

### Description

The influence function

# Usage

```
## S3 method for class 'bayesglm'
influence(model, do.coef = TRUE, ...)
```

### **Arguments**

model bayesglm

do.coef see influence.glm

... ignored

#### Value

see influence.glm

invlogit 27

invlogit

Inverse of logistic transformation

### Description

Inverse of logistic transformation

### Usage

```
invlogit(x)
```

### **Arguments**

Χ

numeric

#### Value

numeric

### **Examples**

```
x <- 1:5
invlogit(log(x/(1-x)))</pre>
```

LMERlike-class

Wrapper for lmer/glmer

### Description

A horrendous hack is employed in order to do arbitrary likelihood ratio tests: the model matrix is built, the names possibly mangled, then fed in as a symbolic formula to glmer/lmer. This is necessary because there is no (easy) way to specify an arbitrary fixed-effect model matrix in glmer.

```
## S4 method for signature 'LMERlike'
update(object, formula., design, ...)
## S4 method for signature 'LMERlike'
vcov(object, which, ...)
## S4 method for signature 'LMERlike'
coef(object, which, singular = TRUE, ...)
## S4 method for signature 'LMERlike'
logLik(object)
```

28 LMlike-class

#### **Arguments**

| object   | LMERlike                                                                     |
|----------|------------------------------------------------------------------------------|
| formula. | formula                                                                      |
| design   | something coercible to a data.frame                                          |
|          | In the case of vcov, ignored. In the case of update, passed to model.matrix. |
| which    | character, one of 'C', 'D'.                                                  |
|          |                                                                              |

#### Value

see the section "Methods (by generic)"

### Methods (by generic)

singular

- update: update the formula or design matrix
- vcov: return the variance/covariance of component which
- coef: return the coefficients. The horrendous hack is attempted to be undone.

logical. Should NA coefficients be returned?

• logLik: return the log-likelihood

#### **Slots**

pseudoMM part of this horrendous hack.

strictConvergence logical return results even when the optimizer or \*Imer complains about convergence

optimMsg character record warnings from lme. NA\_character\_ means no warnings.

LMlike-class Linear Model-like Class

## Description

Wrapper around modeling function to make them behave enough alike that Wald tests and Likelihood ratio are easy to do. To implement a new type of zero-inflated model, extend this class. Depending on how different the method is, you will definitely need to override the fit method, and possibly the model.matrix, model.matrix<-, update, coef, vcov, and logLik methods.

```
## S4 method for signature 'LMlike'
summary(object)

## S4 method for signature 'LMlike'
update(object, formula., design, ...)

## S4 method for signature 'LMlike, Coefficient Hypothesis'
waldTest(object, hypothesis)

## S4 method for signature 'LMlike, matrix'
```

LMlike-class 29

```
waldTest(object, hypothesis)

## S4 method for signature 'LMlike, character'
lrTest(object, hypothesis)

## S4 method for signature 'LMlike, CoefficientHypothesis'
lrTest(object, hypothesis)

## S4 method for signature 'LMlike, Hypothesis'
lrTest(object, hypothesis)

## S4 method for signature 'LMlike, matrix'
lrTest(object, hypothesis)

## S4 method for signature 'GLMlike'
logLik(object)
```

#### **Arguments**

object LMlike formula. formula

design something coercible to a data.frame

... passed to model.matrix

hypothesis one of a CoefficientHypothesis, Hypothesis or contrast matrix.

### Value

see section "Methods (by generic)"

### Methods (by generic)

- summary: Print a summary of the coefficients in each component.
- update: update the formula or design from which the model.matrix is constructed
- waldTest: Wald test dropping single term specified by CoefficientHypothesis hypothesis
- waldTest: Wald test of contrast specified by contrast matrix hypothesis
- 1rTest: Likelihood ratio test dropping entire term specified by character hypothesis naming a term in the symbolic formula.
- lrTest: Likelihood ratio test dropping single term specified by CoefficientHypothesis hypothesis
- 1rTest: Likelihood ratio test dropping single term specified by Hypothesis hypothesis
- · 1rTest: Likelihood ratio test dropping single term specified by contrast matrix hypothesis
- logLik: return the log-likelihood of a fitted model

#### Slots

design a data frame from which variables are taken for the right hand side of the regression

fitC The continuous fit

fitD The discrete fit

response The left hand side of the regression

 $\log FC$ 

**fitted** A logical with components "C" and "D", TRUE if the respective component has converged **formula** A formula for the regression

**fitArgsC** 

**fitArgsD** Both lists giving arguments that will be passed to the fitter (such as convergence criteria or case weights)

#### See Also

coef

**IrTest** 

waldTest

vcov

logLik

logFC

Calculate log-fold changes from hurdle model components

#### **Description**

Using the delta method, estimate the log-fold change from a state given by a vector contrast0 and the state(s) given by contrast1.

### Usage

```
logFC(zlmfit, contrast0, contrast1)
getLogFC(zlmfit, contrast0, contrast1)
```

#### **Arguments**

zlmfit ZlmFit output

contrast0 vector of coefficients giving baseline contrast, or a Hypothesis. If missing, then

the '(Intercept)' is used as baseline.

contrast1 matrix of coefficients giving comparison contrasts, or a Hypothesis. If missing,

then all non-(Intercept) coefficients are compared.

#### **Details**

The log-fold change is defined as follows. For each gene, let u(x) be the expected value of the continuous component, given a covariate x and the estimated coefficients coefC, ie, u(x) = crossprod(x, coefC). Likewise, Let  $v(x) = 1/(1+\exp(-\text{crossprod(coefD, x)}))$  be the expected value of the discrete component. The log fold change from contrast0 to contrast1 is defined as

```
u(contrast1)v(contrast1) - u(contrast0)v(contrast0).
```

Note that for this to be a log-fold change, then the regression for u must have been fit on the log scale. This is returned in the matrix logFC. An approximation of the variance of logFC (applying the delta method to formula defined above) is provided in varLogFC.

logmean 31

#### Value

list of matrices 'logFC' and 'varLogFC', giving the log-fold-changes for each contrast (columns) and genes (rows) and the estimated sampling variance thereof

#### **Functions**

• getLogFC: Return results as a perhaps friendlier data.table

#### See Also

Hypothesis

### **Examples**

```
data(vbetaFA)
zz \leftarrow zlm.SingleCellAssay( \sim Stim.Condition+Population, vbetaFA[1:5,])
##log-fold changes in terms of intercept (which is Stim(SEB) and CD154+VbetaResponsive)
lfcStim <- logFC(zz)</pre>
##If we want to compare against unstim, we can try the following
coefnames <- colnames(coef(zz, 'D'))</pre>
contrast0 <- setNames(rep(0, length(coefnames)), coefnames)</pre>
contrast0[c('(Intercept)', 'Stim.ConditionUnstim')] <- 1</pre>
contrast1 <- diag(length(coefnames))</pre>
rownames(contrast1)<-colnames(contrast1)<-coefnames</pre>
contrast1['(Intercept)',]<-1</pre>
lfcUnstim <- logFC(zz, contrast0, contrast1)</pre>
##log-fold change with itself is 0 \,
stopifnot(all(lfcUnstim$logFC[,2]==0))
##inverse of log-fold change with Stim as reference
stopifnot(all(lfcStim$logFC[,1]==(-lfcUnstim$logFC[,1])))
##As a data.table:
getLogFC(zz)
```

logmean

Log mean

### **Description**

Takes mean of natural scaled values and then logrithm Approximately the inverse operation of expavg Calculates log2(mean(x) + 1)

# Usage

logmean(x)

#### **Arguments**

Χ

numeric

### Value

numeric

32 LRT

#### **Examples**

```
x <- 1:10
expavg(logmean(x))</pre>
```

LRT

Likelihood Ratio Tests for SingleCellAssays

#### **Description**

Tests for a change in ET binomial proportion or mean of positive ET Likelihood Ratio Test for SingleCellAssay objects

# Usage

```
LRT(sca, comparison, ...)
## S4 method for signature 'SingleCellAssay, character'
LRT(sca, comparison, referent = NULL,
   groups = NULL, returnall = FALSE)
```

#### **Arguments**

sca A SingleCellAssay class object

comparison A character specifying the factor for comparison

... ignored

referent A character specifying the reference level of comparison.

groups A optional character specifying a variable on which to stratify the test. For

each level of groups, there will be a separate likelihood ratio test.

returnall A logical specifying if additional rows should be returned with information

about the different components of the test.

#### **Details**

Combined Likelihood ratio test (binomial and normal) for SingleCellAssay and derived objects. This function is deprecated, please use lrTest instead.

#### Value

```
data.frame
```

### See Also

```
zlm. Single Cell Assay, Zlm Fit\\
```

# **Examples**

```
data(vbetaFA)
LRT(vbetaFA, 'Stim.Condition', 'Unstim')
```

IrTest 33

lrTest

Run a likelihood-ratio test

### **Description**

Compares the change in likelihood between the current model and one subject to contrasts tested in hypothesis. hypothesis can be one of a character giving complete factors or terms to be dropped from the model, CoefficientHypothesis giving names of coefficients to be dropped, Hypothesis giving contrasts using the symbolically, or a contrast matrix, with one row for each coefficient in the full model, and one column for each contrast being tested.

#### Usage

```
lrTest(object, hypothesis)
```

# Arguments

object LMlike or subclass

hypothesis the hypothesis to be tested. See details.

### Value

array giving test statistics

### See Also

fit

waldTest

Hypothesis

CoefficientHypothesis

### **Examples**

```
#see ZlmFit-class for examples
example('ZlmFit-class')
```

```
lrTest,ZlmFit,character-method
```

Likelihood ratio test

### Description

A 3D array with first dimension being the genes, next dimension giving information about the test (the degrees of freedom, Chisq statistic, and P value), and final dimension being the value of these quantities on the discrete, continuous and hurdle (combined) levels.

```
## S4 method for signature 'ZlmFit,character'
lrTest(object, hypothesis)
```

### **Arguments**

object ZlmFit hypothesis See Details

#### Value

3D array

maits

MAITs data set, RNASeq

### **Description**

MAITs data set, RNASeq

#### **Format**

a list containing an expression matrix (expressionmat), cell cdat and feature fdat.

### See Also

FromMatrix

melt.SingleCellAssay Melt a rectangular array

### **Description**

Return a molten (flat) representation of a rectangular array

# Usage

```
## S3 method for class 'SingleCellAssay'
melt(data, ..., na.rm = FALSE,
  value.name = "value")
```

### **Arguments**

data A rectangular array, with attributes attached to its rows and columns

na.rm ignored

value.name name of 'values' column containing the measurement

# Value

A data. frame typically, with the cartesian product of the row and column attributes and the values from the rectangular array

### **Examples**

```
data(vbetaFA)
as(vbetaFA[1:10,], 'data.table')
```

model.matrix 35

model.matrix

Model matrix accessor

### Description

Model matrix accessor

## Usage

```
model.matrix(object, ...)
## S4 method for signature 'LMlike'
model.matrix(object, ...)
```

# Arguments

object LMlike or subclass
... ignored

### Value

model.matrix if present

### Methods (by class)

• LMlike: return the model.matrix

model.matrix<-</pre>

Replace model matrix

# Description

Replace model matrix

### Usage

```
model.matrix(object) <- value</pre>
```

# Arguments

object LMlike or subclass

value matrix

# Value

modify object

36 numexp

myBiplot

Makes a nice BiPlot

### **Description**

Creates a custom BiPlot for visualizing the results of PCA

### Usage

```
myBiplot(pc, colorfactor, scaling = 100, nudge = 1.2, N = 10, dims = 1:2, ...)
```

### **Arguments**

pc output of prcomp

colorfactor a factor the same length as nrow(pc\$x) to color the points

scaling integer to scale the vectors showing loadings

nudge numeric to offset labels for loadings

N number of variables with longest dim[1] or dim[2] projections to display

dims numeric vector of length 2 indicating which PCs to plot

... passed to plot

#### Value

printed plot

numexp

Report number of expressing cells per gene

### Description

NAs are removed

### Usage

numexp(sc)

# **Arguments**

sc SingleCellAssay

#### Value

numeric vector

pbootVcov1 37

|--|

## **Description**

Sample cells with replacement to find bootstrapped distribution of coefficients

## Usage

```
pbootVcov1(cl, zlmfit, R = 99)
```

## **Arguments**

cl a cluster object created by makeCluster

zlmfit class ZlmFit

R number of bootstrap replicates

#### Value

array of bootstrapped coefficients

```
\verb|plot.thresholdSCRNACountMatrix| \\
```

Plot cutpoints and densities for thresholding

# Description

Plot cutpoints and densities for thresholding

## Usage

```
## S3 method for class 'thresholdSCRNACountMatrix'
plot(x, ask = FALSE, wait.time = 0,
   type = "bin", indices = NULL, ...)
```

# Arguments

| x         | output of thresholdSCRNACountMatrix                                                                                                                                                                                                                                       |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ask       | if TRUE then will prompt before displaying each plot                                                                                                                                                                                                                      |
| wait.time | pause (in seconds) between each plot                                                                                                                                                                                                                                      |
| type      | one or more of the following: 'bin' (plot the genes by the binning used for thresholding), or 'gene' (plot thresholding by gene – see next argument)                                                                                                                      |
| indices   | if type is equal to 'gene', and is a integer of length 1, then a random sample of indices genes is taken. If it is NULL, then 10 genes are sampled. If it is a integer vector of length > 1, then it is interpreted as giving a list of indices of genes to be displayed. |

... further arguments passed to plot

38 plotlrt

#### Value

displays plots

# **Examples**

```
## See thresholdSCRNACountMatrix
example(thresholdSCRNACountMatrix)
```

plotlrt

Plot a likelihood ratio test object

# Description

Constructs a forest-like plot of signed log10 p-values, possibly adjusted for multiple comparisons adjust can be one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".

## Usage

```
plotlrt(lr, adjust = "fdr", thres = 0.1, trunc = 1e-06, groups = NULL)
```

lrtest. Plots done separately for each group.

# Arguments

| lr     | output from lrtest, with returnall=FALSE                                    |
|--------|-----------------------------------------------------------------------------|
| adjust | character, passed along to p.adjust, see below                              |
| thres  | numeric genes with adjusted pvalues above this value are not depicted       |
| trunc  | numeric p values below this value are truncated at this value               |
| groups | character grouping value. If provided, must match groups argument passed to |

# Value

Constructs a dotplot

# Author(s)

andrew

plotSCAConcordance 39

plotSCAConcordance Concordance plots of filtered single vs n-cell assays

#### **Description**

Plot the average expression value of two subsets of the data. Generally these might be 1 cell and multiple-cell replicates, in which case if the mcols column ncells is set then the averages will be adjusted accordingly. But it could be any grouping.

#### Usage

```
plotSCAConcordance(SCellAssay, NCellAssay, filterCriteria = list(nOutlier = 2,
    sigmaContinuous = 9, sigmaProportion = 9), groups = NULL, ...)
```

## **Arguments**

SCellAssay is a FluidigmAssay for the 1-cell per well assay NCellAssay is a FluidigmAssay for the n-cell per well assay

filterCriteria is a list of filtering criteria to apply to the SCellAssay and NCellAssay

groups is a character vector naming the group within which to perform filtering. NULL

by default.

... passed to getConcordance

#### Value

printed plot

#### See Also

getConcordance

#### **Examples**

```
data(vbetaFA)
sca1 <- subset(vbetaFA, ncells==1)
sca100 <- subset(vbetaFA, ncells==100)
plotSCAConcordance(sca1, sca100)</pre>
```

predict.ZlmFit

Return predictions from a ZlmFit object.

## **Description**

Return predictions from a ZlmFit object.

# Usage

```
## S3 method for class 'ZlmFit'
predict(object, newdata = NULL, modelmatrix = NULL, ...)
```

40 primerAverage

## **Arguments**

object A ZlmFit

newdata The data to predict from. Currently ignored, will use the data in the object.

modelmatrix The model matrix specifying the linear combination of coefficients.

... ignored

## Value

Predictions and standard errors.

## **Examples**

```
##See stat_ell
example(stat_ell)
```

primerAverage

Average within duplicated genes/primers

# Description

.

## Usage

```
primerAverage(fd, geneGroups, fun.natural = expavg, fun.cycle = logshift)
```

## **Arguments**

fd SingleCellAssay or subclass

geneGroups character naming a column in the featureData that keys the duplicates

fun.natural transformation to be used to collapse the duplicate expression values

fun.cycle transformation to be used after collapsing

## Value

collapsed version of fd.

print.summaryZlmFit 41

```
print.summaryZlmFit Print summary of a ZlmFit
```

# Description

Shows the top 'n' genes by z score on 'by'

## Usage

```
## S3 method for class 'summaryZlmFit'
print(x, n = 2, by = "logFC", ...)
```

## Arguments

```
x output from summary(ZlmFit)

n number of genes to show

by one of 'C', 'D' or 'logFC' for continuous, discrete and log fold change z-scores
```

for each contrast

ignored

#### Value

prints a pretty table and invisibly returns a data. table representing the table.

## See Also

summary, ZlmFit-method

read.fluidigm read.fluidigm

## **Description**

Reads a fluidigm raw data file (or set of files)

# Usage

```
read.fluidigm(files = NULL, metadata = NULL, header.size = 2, skip = 8,
  cycle.threshold = 40, metadataColClasses = NULL, meta.key = NULL,
  idvars = NULL, splitby = NULL, unique.well.id = "Chamber.ID",
  raw = TRUE, assay = NULL, geneid = "Assay.Name", sample = NULL,
  well = "Well", measurement = "X40.Ct", measurement.processed = "Ct",
  ncells = "SampleRConc")
```

42 read.fluidigm

#### **Arguments**

files A character vector of files to read.

metadata A character path and filename of a CSV file containing additional metadata

about the samples

header.size A numeric indicating the number of lines in the header (default 2)

skip numeric how many lines to skip before reading (default 8)

cycle.threshold

The maximum number of PCR cycles performed (default 40) numeric

metadataColClasses

Optional character vector giving the column classes of the metadata file. See

read.table.

meta.key Optional character vector that identifies the key column between the metadata

and the fluidigm data

idvars Optional character vector that defines the set of columns uniquely identifying

a well (unique cell, gene, and condition).

splitby Optional character that defines the column / variable used to split the resulting

data into a list of SingleCellAssay, such that unique levels of splitby each fall into their own SingleCellAssay. Ususally the experimental unit subjected to

different treatments.

unique.well.id The column that uniquely identifies a sample well in the data. Default is "Cham-

ber.ID".

raw logical flag indicating this is raw data coming off the instrument. Thus we

make some assumptions about the column names that are present.

assay character name of a column that uniquely identifies an Assay (i.e. gene). De-

fault is NULL

geneid character names of the column that identifies a gene. Default is "Assay.Name"

sample character name of a column that uniquely identifies a sample

well character name of a column that uniquely identifies a well. Default "Well".

measurement character name of the column that holds the measurement. Default "X40.Ct".

measurement.processed

character one of "Ct", "40-Ct", or "et". If not "Ct", the measurement will be

transformed.

ncells The column with the number of cells in this well.

#### **Details**

This function reads a raw Fluidigm data file or set of files and constructs a SingleCellAssay (or FluigidmAssay) object.

## Value

list of SingleCellAssay holding the data.

#### Author(s)

Greg Finak

removeResponse 43

removeResponse

Remove the left hand side (response) from a formula

## **Description**

The order of terms will be rearrange to suit R's liking for hierarchy but otherwise the function should be idempotent for

## Usage

```
removeResponse(Formula, warn = TRUE)
```

# **Arguments**

Formula formula

warn Issue a warning if a response variable is found?

## Value

formula

## Author(s)

Andrew

rstandard.bayesglm

rstandard for bayesglm objects.

# Description

rstandard bayesglm object S3 method

## Usage

```
## S3 method for class 'bayesglm'
rstandard(model, infl = influence(model, do.coef = FALSE),
  type = c("deviance", "pearson"), ...)
```

# Arguments

```
model bayesglm
infl see rstandard
type see rstandard
... ignored
```

## Value

numeric residuals

show,LMlike-method

se.coef

Return coefficient standard errors

## Description

Given a fitted model, return the standard errors of the coefficient

#### Usage

```
se.coef(object, ...)
```

## **Arguments**

object a model implementing vcov ... passed to methods

# Value

vector or matrix

# See Also

ZlmFit-class

# **Examples**

```
#see ZlmFit-class for examples
example('ZlmFit-class')
```

show, LMlike-method

show

## Description

Display info

## Usage

```
## S4 method for signature 'LMlike'
show(object)
## S4 method for signature 'ZlmFit'
show(object)
```

# **Arguments**

object an object of some type

## **Details**

Prints information on a LMlike object

## Value

side effect of printing to console

# Methods (by class)

• ZlmFit: print info on ZlmFit

```
{\it split}, {\it Single Cell Assay}, {\it character-method} \\ {\it Split into list}
```

# Description

Splits a SingleCellAssay into a list by a factor (or something coercible into a factor) or a character giving a column of colData(x)

# Usage

```
## S4 method for signature 'SingleCellAssay,character'
split(x, f, drop = FALSE, ...)
```

# Arguments

```
    x SingleCellAssay
    f length-1 character, or atomic of length ncol(x)
    drop unused factor levels
    ignored
```

# Value

List

# **Examples**

```
data(vbetaFA)
split(vbetaFA, 'ncells')
fa <- as.factor(colData(vbetaFA)$ncells)
split(vbetaFA, fa)</pre>
```

46 stat\_ell

| stat_ell | Plot confidence ellipse in 2D |  |
|----------|-------------------------------|--|
| _        | J I                           |  |

# Description

The focus of the ellipse will be the point (x, y) and semi-major axes aligned with the coordinate axes and scaled by xse, yse and the level.

# Usage

```
stat_ell(mapping = NULL, data = NULL, geom = "polygon",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, fill = NA, level = 0.95, lty = 2,
invert = FALSE, alpha = 1, ...)
```

# Arguments

| - 8         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mapping     | Set of aesthetic mappings created by aes or aes If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.                                                                                                                                                                                                                                                        |
| data        | The data to be displayed in this layer. There are three options: If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot. A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify for which variables will be created. A function will be called with a single argument, the plot data. The return value must be a data.frame., and will be used as the layer data. |
| geom        | The geometric object to use display the data                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| position    | Position adjustment, either as a string, or the result of a call to a position adjustment function.                                                                                                                                                                                                                                                                                                                                                                                  |
| na.rm       | If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values.                                                                                                                                                                                                                                                                                                                                                                              |
| show.legend | logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.                                                                                                                                                                                                                                                                                                                       |
| inherit.aes | If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders.                                                                                                                                                                                                                                        |
| fill        | A color or aesthetic mapping to fill color. Defaults to NA for empty ellipses.                                                                                                                                                                                                                                                                                                                                                                                                       |
| level       | The confidence level at which to draw an ellipse (default is level=0.95).                                                                                                                                                                                                                                                                                                                                                                                                            |
| lty         | The linetype to use. Can map to a variable. Defaults to 2 (dashed line)                                                                                                                                                                                                                                                                                                                                                                                                              |
| invert      | vector of length 1 that should either be "x", "y", or TRUE. Specifies whether to plot the estimates from the discrete component on the inverse logit scale. invert specifies which axis to invert.                                                                                                                                                                                                                                                                                   |
| alpha       | transparency                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| •••         | other arguments passed on to layer. These are often aesthetics, used to set an aesthetic to a fixed value, like color = "red" or size = 3. They may also be                                                                                                                                                                                                                                                                                                                          |

parameters to the paired geom/stat.

#### Value

```
ggplot layer
```

#### **Examples**

```
data(vbetaFA)
library(ggplot2)
zlmCond <- zlm(~Stim.Condition, vbetaFA[1:10,])
MM <- model.matrix(~Stim.Condition,unique(colData(vbetaFA)[,c("Stim.Condition"),drop=FALSE]))
predicted <- predict(zlmCond,modelmatrix=MM)
plt <- ggplot(predicted)+aes(x=invlogit(muD),y=muC,xse=seD,yse=seC,col=sample)+
    facet_wrap(~primerid,scales="free_y")+theme_linedraw()+
    geom_point(size=0.5)+scale_x_continuous("Proportion expression")+
    scale_y_continuous("Estimated Mean")+
    stat_ell(aes(x=muD,y=muC),level=0.95, invert='x')
## plot with inverse logit transformed x-axis
print(plt)
# doesn't do anything in this case because there are no inestimable coefficients
predictI <- impute(predicted, groupby='primerid')</pre>
```

```
subset, \verb|SingleCellAssay-method| \\ Subset\ a\ \verb|SingleCellAssay|\ by\ cells\ (columns)
```

## **Description**

Evaluates the expression in . . . in the context of colData(x) and returns a subsetted version of x

# Usage

```
## S4 method for signature 'SingleCellAssay'
subset(x, ...)
```

# Arguments

```
x SingleCellAssay ... expression
```

#### Value

```
SingleCellAssay
```

## **Examples**

```
data(vbetaFA)
subset(vbetaFA, ncells==1)
```

summarize

Return programmatically useful summary of a fit

## **Description**

Return programmatically useful summary of a fit

# Usage

```
summarize(object, ...)
```

## **Arguments**

```
object LMlike or subclass
... other arguments
```

#### Value

list of parameters characterizing fit

```
summary, GSEATests-method
```

Summarize gene set enrichment tests

# Description

```
Returns a data. table with one row per gene set. This data. table contains columns:
```

```
set name of gene set
```

cond\_Z Z statistic for continuous component

cont\_P wald P value

cont\_effect difference in continuous regression coefficients between null and test sets (ie, the numerator of the Z-statistic.)

disc\_Z Z statistic for discrete

disc P wald P value

disc\_effect difference in discrete regression coefficients between null and test sets.

combined\_Z combined discrete and continuous Z statistic using Stouffer's method

combined\_P combined P value

combined\_adj FDR adjusted combined P value

## Usage

```
## S4 method for signature 'GSEATests'
summary(object, ...)
```

#### **Arguments**

```
object A GSEATests object ... passed to calcZ
```

#### Value

data.table

#### See Also

gseaAfterBoot

## **Examples**

```
## See the examples in gseaAfterBoot
example(gseaAfterBoot)
```

summary, ZlmFit-method Summarize model features from a ZlmFit object

# Description

Returns a data. table with a special print method that shows the top 2 most significant genes by contrast. This data. table contains columns:

primerid the gene

**component** C=continuous, D=discrete, logFC=log fold change, S=combined using Stouffer's method, H=combined using hurdle method

**contrast** the coefficient/contrast of interest

ci.hi upper bound of confidence interval

ci.lo lower bound of confidence interval

coef point estimate

z z score (coefficient divided by standard error of coefficient)

**Pr(>Chisq)** likelihood ratio test p-value (only if doLRT=TRUE)

Some of these columns will contain NAs if they are not applicable for a particular component or contrast.

## Usage

```
## S4 method for signature 'ZlmFit'
summary(object, logFC = TRUE, doLRT = FALSE,
  level = 0.95, ...)
```

#### **Arguments**

| ob | ject | A ZlmFit object                                                                                         |
|----|------|---------------------------------------------------------------------------------------------------------|
| lo | gFC  | If TRUE, calculate log-fold changes, or output from a call to getLogFC.                                 |
| do | LRT  | if TRUE, calculate lrTests on each coefficient, or a character vector of such coefficients to consider. |
| le | vel  | what level of confidence coefficient to return. Defaults to 95 percent.                                 |
|    |      | ignored                                                                                                 |

#### Value

```
data.table
```

#### See Also

print.summaryZlmFit

# **Examples**

```
data(vbetaFA)
z <- zlm(~Stim.Condition, vbetaFA[1:5,])
zs <- summary(z)
names(zs)
print(zs)
##Select `datatable` copmonent to get normal print method
zs$datatable</pre>
```

```
summary.thresholdSCRNACountMatrix
```

Summarize the effect of thresholding

## **Description**

Returns the proportion of (putative) expression, the variance of expressed cells, and -log10 shapirowilk tests for normality on the expressed cells

# Usage

```
## S3 method for class 'thresholdSCRNACountMatrix'
summary(object, ...)
## S3 method for class 'summaryThresholdSCRNA'
print(x, ...)
```

# Arguments

```
    object a thresholdSCRNACountMatrix
    ... currently ignored
    x a summaryThresholdSCRNA object, ie output from summary.thresholdSCRNACountMatrix
```

## Value

a list of statistics on the original data, and thresholded data

## Methods (by generic)

• print: prints five-number distillation of the statistics and invisibly returns the table used to generate the summary

thresholdSCRNACountMatrix

Threshold a count matrix using an adaptive threshold.

## **Description**

An adaptive threshold is calculated from the conditional mean of expression, based on 10 bins of the genes with similar expression levels. Thresholds are chosen by estimating cutpoints in the bimodal density estimates of the binned data.

# Usage

```
thresholdSCRNACountMatrix(data_all, conditions = NULL, cutbins = NULL,
  nbins = 10, bin_by = "median", qt = 0.975, min_per_bin = 50,
  absolute_min = 0, data_log = TRUE, adj = 1)
```

#### **Arguments**

| data_all     | matrix of (possibly log-transformed) counts or TPM. Rows are genes and columns are cells.               |
|--------------|---------------------------------------------------------------------------------------------------------|
| conditions   | Bins are be determined per gene and per condition. Typically contrasts of interest should be specified. |
| cutbins      | vector of cut points.                                                                                   |
| nbins        | integer number of bins when cutbins is not specified.                                                   |
| bin_by       | character "median", "proportion", "mean"                                                                |
| qt           | when bin_by is "quantile", what quantile should be used to form the bins                                |
| min_per_bin  | minimum number of genes within a bin                                                                    |
| absolute_min | numeric giving a hard threshold below which everything is assumed to be noise                           |
| data_log     | is data_all log+1 transformed? If so, it will be returned on the (log+1)-scale as well.                 |
| adj          | bandwith adjustment, passed to density                                                                  |

## Value

list of thresholded counts (on natural scale), thresholds, bins, densities estimated on each bin, and the original data

# **Examples**

```
data(maits,package='MAST', envir = environment())
sca <- FromMatrix(t(maits$expressionmat[,1:1000]), maits$cdat, maits$fdat[1:1000,])
tt <- thresholdSCRNACountMatrix(assay(sca))
tt <- thresholdSCRNACountMatrix(2^assay(sca)-1, data_log=FALSE)
opar <- par()
on.exit(par(opar))
par(mfrow=c(4,2))
plot(tt)</pre>
```

52 waldTest

vbeta

Vbeta Data Set

## **Description**

Vbeta Data Set

#### **Format**

a data frame with 11 columns. Column Ct contains the cycle threshold, with NA denoting that the threshold was never crossed. So it is inversely proportional to the log2 mRNA, and should be negated (and NAs set to zero) if it is used as a expression measurement for a FluidigmAssay.

vbetaFA

Vbeta Data Set, FluidigmAssay

## **Description**

Vbeta Data Set, FluidigmAssay

#### **Format**

a FluidigmAssay of the vbeta data set.

# See Also

vbeta, FromFlatDF

waldTest

Run a Wald test

# Description

Run a Wald tests on discrete and continuous components hypothesis can be one of a character giving complete factors or terms to be dropped from the model, CoefficientHypothesis giving names of coefficients to be dropped, Hypothesis giving contrasts using the symbolically, or a contrast matrix, with one row for each coefficient in the full model, and one column for each contrast being tested.

#### **Usage**

```
waldTest(object, hypothesis)
```

#### **Arguments**

object LMlike or subclass

hypothesis the hypothesis to be tested. See details.

## Value

array giving test statistics

## See Also

fit

**IrTest** 

lht

## **Examples**

```
#see ZlmFit-class for examples
example('ZlmFit-class')
```

```
\label{eq:waldTest,ZlmFit,matrix-method} Wald\ test
```

# Description

A 3D array with first dimension being the genes, next dimension giving information about the test (the degrees of freedom, Chisq statistic, and P value), and final dimension being the value of these quantities on the discrete, continuous and hurdle (combined) levels.

# Usage

```
## S4 method for signature 'ZlmFit,matrix'
waldTest(object, hypothesis)
```

# **Arguments**

object ZlmFit

hypothesis See Details

#### Value

3D array

54 zlm

| xform | Make matrix of continuous expression values, orthogonal to discrete |
|-------|---------------------------------------------------------------------|
|       | 1                                                                   |

# Description

This centers each column of mat around the mean of its non-zero values.

## Usage

```
xform(mat, scale = FALSE)
```

# Arguments

matrix (such as produced by exprs)

scale should the columns also be scaled to have unit variance

## Value

matrix

| zlm Convenience function for running a zero-inflated regression |  |
|-----------------------------------------------------------------|--|
|-----------------------------------------------------------------|--|

# Description

Fits a hurdle model on zero-inflated continuous data in which the zero process is modeled as a logistic regression and (conditional on the tresponse being >0), the continuous process is Gaussian, ie, a linear regression.

# Usage

```
zlm(formula, data, method = "bayesglm", silent = TRUE, ...)
```

# **Arguments**

| formula | model formula                                                                       |
|---------|-------------------------------------------------------------------------------------|
| data    | a data.frame, list, environment or SingleCellAssay in which formula is evaluated    |
| method  | one of 'glm', 'glmer' or 'bayesglm'. See MAST:::methodDict for other possibilities. |
| silent  | if TRUE suppress common errors from fitting continuous part                         |
|         | passed to fit, and eventually to the linear model fitting function                  |

## Value

list with "disc"rete part and "cont"inuous part

#### See Also

GLMlike, LMERlike, BayesGLMlike

zlm.SingleCellAssay 55

#### **Examples**

```
 \begin{array}{l} {\rm data < - \; data.frame(x=rnorm(500), \; z=rbinom(500, \; 1, \; .3))} \\ {\rm logit.y} < - \; with({\rm data, \; x*2 + \; z*2}); \; mu.y < - \; with({\rm data, \; 10+10*x+10*z \; + \; rnorm(500)}) \\ {\rm y} < - \; (runif(500) < exp(logit.y) / (1+exp(logit.y)))*1 } \\ {\rm y[y>0]} < - \; mu.y[y>0] \\ {\rm data$y} < - \; y \\ {\rm fit} < - \; zlm(y \; \sim \; x+z, \; data) \\ {\rm summary.glm(fit$disc)} \\ {\rm summary.glm(fit$cont)} \\ \end{array}
```

zlm.SingleCellAssay

Zero-inflated regression for SingleCellAssay

## **Description**

For each gene in sca, fits the hurdle model in formula (linear for et>0), logistic for et==0 vs et>0. Return an object of class ZlmFit containing slots giving the coefficients, variance-covariance matrices, etc. After each gene, optionally run the function on the fit named by 'hook'

# Usage

```
zlm.SingleCellAssay(formula, sca, method = "bayesglm", silent = TRUE,
ebayes = TRUE, ebayesControl = NULL, force = FALSE, hook = NULL,
parallel = TRUE, LMlike, onlyCoef = FALSE, ...)
```

## **Arguments**

| formula       | a formula with the measurement variable on the LHS and predictors present in colData on the RHS                                         |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| sca           | SingleCellAssay object                                                                                                                  |
| method        | character vector, either 'glm', 'glmer' or 'bayesglm'                                                                                   |
| silent        | Silence common problems with fitting some genes                                                                                         |
| ebayes        | if TRUE, regularize variance using empirical bayes method                                                                               |
| ebayesControl | list with parameters for empirical bayes procedure. See ebayes.                                                                         |
| force         | Should we continue testing genes even after many errors have occurred?                                                                  |
| hook          | a function called on the fit after each gene.                                                                                           |
| parallel      | If TRUE and option(mc.cores)>1 then multiple cores will be used in fitting.                                                             |
| LMlike        | if provided, then the model defined in this object will be used, rather than following the formulas. This is intended for internal use. |
| onlyCoef      | If TRUE then only an array of model coefficients will be returned (probably only useful for bootstrapping).                             |
| •••           | arguments passed to the S4 model object upon construction. For example, fitArgsC and fitArgsD, or coefPrior.                            |

#### Value

a object of class ZlmFit with methods to extract coefficients, etc.

56 ZImFit-class

#### **Empirical Bayes variance regularization**

The empirical bayes regularization of the gene variance assumes that the precision (1/variance) is drawn from a gamma distribution with unknown parameters. These parameters are estimated by considering the distribution of sample variances over all genes. The procedure used for this is determined from ebayesControl, a named list with components 'method' (one of 'MOM' or 'MLE') and 'model' (one of 'H0' or 'H1') method MOM uses a method-of-moments estimator, while MLE using the marginal likelihood. H0 model estimates the precisions using the intercept alone in each gene, while H1 fits the full model specified by formula

#### See Also

ebayes, glmlike-class, ZlmFit-class, BayesGLMlike-class

#### **Examples**

```
data(vbetaFA)
zlmVbeta <- zlm.SingleCellAssay(~ Stim.Condition, subset(vbetaFA, ncells==1)[1:10,])
slotNames(zlmVbeta)
#A matrix of coefficients
coef(zlmVbeta, 'D')['CCL2',]
#An array of covariance matrices
vcov(zlmVbeta, 'D')[,,'CCL2']
waldTest(zlmVbeta, CoefficientHypothesis('Stim.ConditionUnstim'))</pre>
```

ZlmFit-class

An S4 class to hold the output of a call to zlm

#### **Description**

This holds output from a call to zlm.SingleCellAssay. Many methods are defined to operate on it. See below.

#### Usage

```
## S4 method for signature 'ZlmFit,CoefficientHypothesis'
lrTest(object, hypothesis)

## S4 method for signature 'ZlmFit,Hypothesis'
lrTest(object, hypothesis)

## S4 method for signature 'ZlmFit,matrix'
lrTest(object, hypothesis)

## S4 method for signature 'ZlmFit,CoefficientHypothesis'
waldTest(object, hypothesis)

## S4 method for signature 'ZlmFit,Hypothesis'
waldTest(object, hypothesis)

## S4 method for signature 'ZlmFit,Hypothesis'
waldTest(object, hypothesis)

## S4 method for signature 'ZlmFit'
coef(object, which, ...)
```

ZImFit-class 57

```
## S4 method for signature 'ZlmFit'
vcov(object, which, ...)
## S4 method for signature 'ZlmFit'
se.coef(object, which, ...)
```

#### **Arguments**

object ZlmFit

hypothesis or CoefficientHypothesis or a matrix giving such contrasts.

which character vector, one of "C" (continuous) or "D" (discrete) specifying which

component should be returned

... ignored

#### Value

```
see "Methods (by generic)"
```

## Methods (by generic)

- 1rTest: Returns an array with likelihood-ratio tests on contrasts defined using CoefficientHypothesis().
- 1rTest: Returns an array with likelihood-ratio tests specified by Hypothesis, which is a Hypothesis.
- 1rTest: Returns an array with likelihood-ratio tests specified by Hypothesis, which is a
  contrast matrix.
- waldTest: Returns an array with Wald Tests on contrasts defined using CoefficientHypothesis().
- waldTest: Returns an array with Wald Tests on contrasts defined in Hypothesis()
- coef: Returns the matrix of coefficients for component which.
- vcov: Returns an array of variance/covariance matrices for component which.
- se.coef: Returns a matrix of standard error estimates for coefficients on component which.

## **Slots**

```
coefC matrix of continuous coefficients

coefD matrix of discrete coefficients

vcovC array of variance/covariance matrices for coefficients

vcovD array of variance/covariance matrices for coefficients

LMlike the LmWrapper object used

sca the SingleCellAssay object used

deviance matrix of deviances

loglik matrix of loglikelihoods

df.null matrix of null (intercept only) degrees of freedom

df.resid matrix of residual DOF

dispersion matrix of dispersions (after shrinkage)

dispersionNoShrink matrix of dispersion (before shrinkage)

priorDOF shrinkage weight in terms of number of psuedo-obs
```

58 ZImFit-class

```
priorVar shrinkage target
converged output that may optionally be set by the underlying modeling function
hookOut a list of length ngenes containing output from a hook function, if zlm was called with one
```

#### See Also

zlm.SingleCellAssay summary,ZlmFit-method

## **Examples**

```
data(vbetaFA)
zlmVbeta <- zlm.SingleCellAssay(~ Stim.Condition+Population, subset(vbetaFA, ncells==1)[1:10,])</pre>
#Coefficients and standard errors
coef(zlmVbeta, 'D')
coef(zlmVbeta, 'C')
se.coef(zlmVbeta, 'C')
#Test for a Population effect by dropping the whole term (a 5 degree of freedom test)
lrTest(zlmVbeta, 'Population')
#Test only if the VbetaResponsive cells differ from the baseline group
lr Test (z lm V beta, \ Coefficient Hypothesis ('Population V beta Responsive')) \\
# Test if there is a difference between CD154+/Unresponsive and CD154-/Unresponsive.
# Note that because we parse the expression
# the columns must be enclosed in backquotes
# to protect the \quote{+} and \quote{-} characters.
lrTest(zlmVbeta, Hypothesis('`PopulationCD154+VbetaUnresponsive` -
        `PopulationCD154-VbetaUnresponsive`'))
waldTest(zlmVbeta, Hypothesis('`PopulationCD154+VbetaUnresponsive` -
        `PopulationCD154-VbetaUnresponsive`'))
```

# Index

| applyFlat,4                                    | Drop, 13                                        |
|------------------------------------------------|-------------------------------------------------|
| assay, 7                                       |                                                 |
|                                                | ebayes, 13, <i>55</i>                           |
| BayesGLMlike-class,4                           | expavg, 14, <i>31</i>                           |
| bootVcov1, 5                                   |                                                 |
| burdenOfFiltering (filter), 15                 | fData, 15                                       |
|                                                | fData, SingleCellAssay-method (fData), 15       |
| calcZ, 5                                       | featureData, 15                                 |
| cbind2, 7                                      | featureData,SingleCellAssay-method              |
| cData, 6                                       | (featureData), 15                               |
| cData, SingleCellAssay-method (cData), 6       | filter, 15                                      |
| cData<- (cData), 6                             | filterLowExpressedGenes, 17                     |
| cData<-,SingleCellAssay-method(cData),         | fit, 17                                         |
| 6                                              | <pre>fit,GLMlike,missing-method(fit), 17</pre>  |
| coef,LMERlike-method(LMERlike-class),          | <pre>fit,LMERlike,missing-method(fit), 17</pre> |
| 27                                             | <pre>fitted_phat (collectResiduals), 8</pre>    |
| coef,ZlmFit-method(ZlmFit-class),56            | FluidigmAssay, 18                               |
| CoefficientHypothesis, 57                      | FluidigmAssay (FromFlatDF), 18                  |
| CoefficientHypothesis (Hypothesis), 25         | freq, 18                                        |
| colData, 7                                     | FromFlatDF, 18, 52                              |
| colData<-,SingleCellAssay,DataFrame-method,    | FromMatrix, 19, <i>34</i>                       |
| 7                                              |                                                 |
| collectResiduals, 8                            | getConcordance, 20                              |
| combine, SingleCellAssay, ANY-method           | getLogFC (logFC), 30                            |
| (aData) 6                                      | getrc (getConcordance), $20$                    |
| combine, SingleCellAssay, SingleCellAssay-meth | getss (getConcordance), 20                      |
| (cData), 6                                     | getwellKey, 21                                  |
| combined_residuals_hook                        | getwellKey,SingleCellAssay-method               |
| (collectResiduals), 8                          | (getwellKey), 21                                |
| computeEtFromCt, 10                            | getwss (getConcordance), 20                     |
| condmean, 10                                   | GLMlike-class, 22                               |
|                                                | gseaAfterBoot, 23                               |
| condSd, 11                                     | GSEATests-class, 24                             |
| continuous_residuals_hook                      |                                                 |
| (collectResiduals), 8                          | hushWarning, 24                                 |
| convertMASTClassicToSingleCellAssay,           | Hypothesis, 25, 30, 57                          |
| 11                                             |                                                 |
| dafaultDaian 12                                | impute, 26                                      |
| defaultPrior, 12                               | influence.bayesglm, 26                          |
| deviance_residuals_hook                        | influence.glm, 26                               |
| (collectResiduals), 8                          | invlogit, 27                                    |
| discrete_residuals_hook                        |                                                 |
| (collectResiduals), 8                          | LMERlike-class, 27                              |
| dof, 12                                        | LMlike-class, 28                                |
| dof,GLMlike-method(dof),12                     | logFC, 30                                       |

60 INDEX

| <pre>logLik,GLMlike-method(LMlike-class), 28</pre>    | rstandard, 43                                 |
|-------------------------------------------------------|-----------------------------------------------|
| logLik,LMERlike-method                                | rstandard.bayesglm,43                         |
| (LMERlike-class), 27                                  |                                               |
| logmean, 31                                           | se.coef, 44                                   |
| LRT, 32                                               | se.coef,ZlmFit-method(ZlmFit-class), 56       |
| LRT, SingleCellAssay, character-method                | show,LMlike-method,44                         |
| (LRT), 32                                             | show,ZlmFit-method                            |
| 1rTest, 32, 33                                        | (show,LMlike-method),44                       |
| lrTest,LMlike,character-method                        | SingleCellAssay (FromFlatDF), 18              |
| (LMlike-class), 28                                    | split, SingleCellAssay, character-method,     |
|                                                       | 45                                            |
| lrTest,LMlike,CoefficientHypothesis-method            | split,SingleCellAssay,factor-method           |
| (LMlike-class), 28                                    | (split,SingleCellAssay,character-method)      |
| lrTest,LMlike,Hypothesis-method                       | 45                                            |
| (LMlike-class), 28                                    | split,SingleCellAssay,list-method             |
| lrTest,LMlike,matrix-method                           |                                               |
| (LMlike-class), 28                                    | (split,SingleCellAssay,character-method)      |
| <pre>1rTest,ZlmFit,character-method, 33</pre>         | 45                                            |
| <pre>lrTest,ZlmFit,CoefficientHypothesis-method</pre> | stat_ell, 46                                  |
| (ZlmFit-class), 56                                    | subset, SingleCellAssay-method, 47            |
| <pre>lrTest,ZlmFit,Hypothesis-method</pre>            | summarize, 48                                 |
| (ZlmFit-class), 56                                    | summary,GSEATests-method,48                   |
| <pre>lrTest,ZlmFit,matrix-method</pre>                | summary,LMlike-method(LMlike-class),28        |
| (ZlmFit-class), 56                                    | summary,ZlmFit-method,49                      |
|                                                       | ${\sf summary.thresholdSCRNACountMatrix}, 50$ |
| maits, 34                                             |                                               |
| MAST (MAST-package), 3                                | thresholdSCRNACountMatrix, 51                 |
| MAST-package, 3                                       |                                               |
| mcols, 7                                              | update,LMERlike-method                        |
| melt.SingleCellAssay, 34                              | (LMERlike-class), 27                          |
| model.matrix, 35                                      | update,LMlike-method(LMlike-class), 28        |
| model.matrix,LMlike-method                            | 1                                             |
| (model.matrix), 35                                    | vbeta, <i>52</i> , <i>52</i>                  |
| model.matrix<-, 35                                    | vbetaFA, 52                                   |
|                                                       | vcov,GLMlike-method(GLMlike-class),22         |
| myBiplot, 36                                          | vcov,LMERlike-method(LMERlike-class),         |
| numaya 26                                             | 27                                            |
| numexp, 36                                            | vcov,ZlmFit-method(ZlmFit-class),56           |
| partialScore (collectResiduals), 8                    | 1.17                                          |
| pbootVcov1, 37                                        | waldTest, 52                                  |
|                                                       | waldTest,LMlike,CoefficientHypothesis-method  |
| plot.thresholdSCRNACountMatrix, 37                    | (LMlike-class), 28                            |
| plotlrt, 38                                           | waldTest,LMlike,matrix-method                 |
| plotSCAConcordance, 39                                | (LMlike-class), 28                            |
| predict.ZlmFit, 39                                    | waldTest,ZlmFit,CoefficientHypothesis-method  |
| primerAverage, 40                                     | (ZlmFit-class), 56                            |
| <pre>print.summaryThresholdSCRNA</pre>                | waldTest,ZlmFit,Hypothesis-method             |
| <pre>(summary.thresholdSCRNACountMatrix),</pre>       | (ZlmFit-class), 56                            |
| 50                                                    | waldTest,ZlmFit,matrix-method,53              |
| <pre>print.summaryZlmFit, 41</pre>                    |                                               |
|                                                       | xform, 54                                     |
| rbind2, 7                                             |                                               |
| read.fluidigm, 41                                     | zlm, 54                                       |
| read.table, 42                                        | zlm.SingleCellAssay, 55                       |
| removeResponse, 43                                    | ZlmFit-class, 56                              |