
Package ‘EnrichmentBrowser’
April 14, 2017

Version 2.4.6

Date 2017-03-02

Title Seamless navigation through combined results of set-based and
network-based enrichment analysis

Author Ludwig Geistlinger, Gergely Csaba, Ralf Zimmer

Maintainer Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

Depends R(>= 3.0.0), Biobase, GSEABase, pathview

Imports AnnotationDbi, ComplexHeatmap, DESeq2, EDASeq, GO.db,
KEGGREST, KEGGgraph, MASS, ReportingTools, Rgraphviz,
S4Vectors, SPIA, SummarizedExperiment, biocGraph, edgeR,
geneplotter, graph, hwriter, limma, methods, safe, topGO

Suggests ALL, BiocStyle, airway, hgu95av2.db

Description The EnrichmentBrowser package implements essential functionality
for the enrichment analysis of gene expression data. The analysis combines
the advantages of set-based and network-based enrichment analysis in order
to derive high-confidence gene sets and biological pathways that are
differentially regulated in the expression data under investigation.
Besides, the package facilitates the visualization and exploration of such
sets and pathways.

License Artistic-2.0

biocViews Microarray, RNASeq, GeneExpression, DifferentialExpression,
Pathways, GraphAndNetwork, Network, GeneSetEnrichment,
NetworkEnrichment, Visualization, ReportWriting

NeedsCompilation no

R topics documented:
comb.ea.results . 2
compile.grn.from.kegg . 4
config.ebrowser . 5
de.ana . 6
download.kegg.pathways . 8
ea.browse . 8
ebrowser . 10
get.go.genesets . 12
get.kegg.genesets . 14

1

2 comb.ea.results

ggea.graph . 15
make.example.data . 16
map.ids . 18
nbea . 19
normalize . 22
plots . 24
probe.2.gene.eset . 25
read.eset . 26
sbea . 27

Index 31

comb.ea.results Combining enrichment analysis results

Description

Different enrichment analysis methods usually result in different gene set rankings for the same
dataset. This function allows to combine results from the different set-based and network-based
enrichment analysis methods. This includes the computation of average gene set ranks across meth-
ods.

Usage

comb.ea.results(res.list,
rank.col=config.ebrowser("GSP.COL"),
decreasing=FALSE,
rank.fun = c("comp.ranks", "rel.ranks", "abs.ranks"),
comb.fun = c("mean", "median", "min", "max", "sum"))

Arguments

res.list A list of enrichment analysis result lists (as returned by the functions sbea and
nbea).

rank.col Rank column. Column name of the enrichment analysis result table that should
be used to rank the gene sets. Defaults to the gene set p-value column, i.e. gene
sets are ranked according to gene set significance.

decreasing Logical. Should smaller (decreasing=FALSE, default) or larger (decreasing=TRUE)
values in rank.col be ranked better? In case of gene set p-values the smaller the
better, in case of gene set scores the larger the better.

rank.fun Ranking function. Used to rank gene sets according to the result table of indi-
vidual enrichment methods (as returned from the gs.ranking function). This is
typically done according to gene set p-values, but can also take into account gene
set scores/statistics, especially in case of gene sets with equal p-value. Can be
either one of the predefined functions (’comp.ranks’, ’rel.ranks’, ’abs.ranks’) or
a user-defined function. Defaults to ’comp.ranks’, i.e. competitive (percentile)
ranks are computed by calculating for each gene set the percentage of gene sets
with a p-value as small or smaller. Alternatively, ’rel.ranks’, i.e. relative ranks
are computed in 2 steps:

comb.ea.results 3

1. Ranks are assigned according to distinct gene set p-value *categories*, i.e.
gene sets with equal p-value obtain the *same* rank. Thus, the gene sets
with lowest p-value obtain rank 1, and so on.

2. As opposed to absolute ranks (rank.fun = ’abs.ranks’), which are returned
from step 1, relative ranks are then computed by dividing the absolute rank
by number of distinct p-value categories and multiplying with 100 (= per-
centile rank).

comb.fun Rank combination function. Used to combine gene set ranks across methods.
Can be either one of the predefined functions (mean, median, max, min, sum) or
a user-defined function. Defaults to ’sum’, i.e. the rank sum across methods is
computed.

Value

An enrichment analysis result list that can be detailedly explored by calling ea.browse and from
which a flat gene set ranking can be extracted by calling gs.ranking.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

See Also

sbea, nbea, ea.browse

Examples

(1) expression set:
simulated expression values of 100 genes
in two sample groups of 6 samples each
eset <- make.example.data(what="eset")
eset <- de.ana(eset)

(2) gene sets:
draw 10 gene sets with 15-25 genes
gs <- make.example.data(what="gs", gnames=featureNames(eset))

(3) make artificial enrichment analysis results:
2 ea methods with 5 significantly enriched gene sets each
ora.res <- make.example.data(what="ea.res", method="ora", eset=eset, gs=gs)
gsea.res <- make.example.data(what="ea.res", method="gsea", eset=eset, gs=gs)

(4) combining the results
res.list <- list(ora.res, gsea.res)
comb.res <- comb.ea.results(res.list)

(5) result visualization and exploration
gs.ranking(comb.res)

user-defined ranking and combination functions
(a) dummy ranking, give 1:nrow(res.tbl)
dummy.rank <- function(res.tbl) seq_len(nrow(res.tbl))

(b) weighted average for combining ranks

4 compile.grn.from.kegg

wavg <- function(r) mean(c(1,2) * r)

comb.res <- comb.ea.results(res.list, rank.fun=dummy.rank, comb.fun=wavg)

compile.grn.from.kegg Compilation of a gene regulatory network from KEGG pathways

Description

To perform network-based enrichment analysis a gene regulatory network (GRN) is required. There
are well-studied processes and organisms for which comprehensive and well-annotated regulatory
networks are available, e.g. the RegulonDB for E. coli and Yeastract for S. cerevisiae. However,
in many cases such a network is missing. A first simple workaround is to compile a network from
regulations in the KEGG database.

Usage

compile.grn.from.kegg(pwys, out.file = NULL)

Arguments

pwys Either a list of KEGGPathway objects or an absolute file path of a zip compressed
archive of pathway xml files in KGML format. Alternatively, you can specify
an organism in KEGG three letter code, e.g. ‘hsa’ for ‘Homo sapiens’, and the
pathways will be downloaded automatically.

out.file Optional output file the gene regulatory network will be written to.

Value

if(is.null(out.file)): the gene regulatory network; else: none, as the gene regulatory network is
written to file

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

See Also

KEGGPathway-class, parseKGML, download.kegg.pathways

Examples

(1) download human pathways
pwys <- download.kegg.pathways("hsa")
(2) compile gene regulatory network
grn <- compile.grn.from.kegg(pwys)

pwys <- system.file("extdata/hsa_kegg_pwys.zip", package="EnrichmentBrowser")
hsa.grn <- compile.grn.from.kegg(pwys)

config.ebrowser 5

config.ebrowser Configuring the EnrichmentBrowser

Description

Function to get and set configuration parameters determining the default behavior of the Enrich-
mentBrowser

Usage

config.ebrowser(key, value = NULL)

Arguments

key Configuration parameter.

value Value to overwrite the current value of key.

Details

Important pData, fData, and result column names:

• SMPL.COL: pData column storing the sample IDs (default: "SAMPLE")

• GRP.COL: pData column storing binary group assignment (default: "GROUP")

• BLK.COL: pData column defining paired samples or sample blocks (default: "BLOCK")

• PRB.COL: fData column storing probe/feature IDs ("PROBEID", read-only)

• EZ.COL: fData column storing gene ENTREZ IDs ("ENTREZID", read-only)

• SYM.COL: fData column storing gene symbols ("SYMBOL", read-only)

• GN.COL: fData column storing gene names ("GENENAME", read-only)

• FC.COL: fData column storing (log2) fold changes of differential expression between sample
groups (default: "FC")

• ADJP.COL: fData column storing adjusted (corrected for multiple testing) p-values of differ-
ential expression between sample groups (default: "ADJ.PVAL")

• GS.COL: result table column storing gene set IDs (default: "GENE.SET")

• GSP.COL: result table column storing gene set significance (default: "P.VALUE")

• PMID.COL: gene table column storing PUBMED IDs ("PUBMED", read-only)

Important URLs (all read-only):

• NCBI.URL: http://www.ncbi.nlm.nih.gov/

• PUBMED.URL: http://www.ncbi.nlm.nih.gov/pubmed/

• GENE.URL: http://www.ncbi.nlm.nih.gov/gene/

• KEGG.URL: http://www.genome.jp/dbget-bin/

• KEGG.GENE.URL: http://www.genome.jp/dbget-bin/www_bget?

• KEGG.SHOW.URL: http://www.genome.jp/dbget-bin/show_pathway?

• GO.SHOW.URL: http://amigo.geneontology.org/amigo/term/

Default output directory:

6 de.ana

• EBROWSER.HOME: system.file(package="EnrichmentBrowser")

• OUTDIR.DEFAULT: file.path(EBROWSER.HOME, "results")

Gene set size:

• GS.MIN.SIZE: minimum number of genes per gene set (default: 5)

• GS.MAX.SIZE: maximum number of genes per gene set (default: 500)

Result appearance:

• RESULT.TITLE: (default: "Table of Results")

• NR.SHOW: maximum number of entries to show (default: 20)

Value

If is.null(value) this returns the value of the selected configuration parameter. Otherwise, it updates
the selected parameter with the given value.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

Examples

getting config information
config.ebrowser("GS.MIN.SIZE")

setting config information
WARNING: this is for advanced users only!
inappropriate settings will impair EnrichmentBrowser's functionality
config.ebrowser(key="GS.MIN.SIZE", value=3)

de.ana Differential expression analysis between two sample groups

Description

The function carries out a differential expression analysis between two sample groups. Resulting
fold changes and derived p-values are returned. Raw p-values are corrected for multiple testing.

Usage

de.ana(expr, grp = NULL, blk = NULL,
de.method = c("limma", "edgeR", "DESeq"), padj.method = "BH", stat.only=FALSE, min.cpm=2)

de.ana 7

Arguments

expr Expression data. A numeric matrix. Rows correspond to genes, columns to sam-
ples. Alternatively, this can also be an object of class ExpressionSet (in case of
microarray data) or an object of class SeqExpressionSet (in case of RNA-seq
data). See the man page of read.eset for prerequisites for the expression data.

grp *BINARY* group assignment for the samples. Use ’0’ and ’1’ for unaffected
(controls) and affected (cases) samples, respectively. If NULL, this is assumed
to be defined via a column named ’GROUP’ in the pData slot if ’expr’ is a
(Seq)ExpressionSet.

blk Optional. For paired samples or sample blocks. This can also be defined via a
column named ’BLOCK’ in the pData slot if ’expr’ is a (Seq)ExpressionSet.

de.method Differential expression method. Use ’limma’ for microarray and RNA-seq data.
Alternatively, differential expression for RNA-seq data can be also calculated
using edgeR (’edgeR’) or DESeq2 (’DESeq’). Defaults to ’limma’.

padj.method Method for adjusting p-values to multiple testing. For available methods see the
man of page the of the stats function p.adjust. Defaults to ’BH’.

stat.only Logical. Should only the test statistic be returned? This is mainly for internal
use, in order to carry out permutation tests on the DE statistic for each gene.
Defaults to FALSE.

min.cpm In case of RNA-seq data: should genes not satisfying a minimum counts-per-
million (cpm) threshold be excluded from the analysis? This is typically rec-
ommended. See the edgeR vignette for details. The default filter is to exlcude
genes with cpm < 2 in more than half of the samples.

Value

A DE-table with measures of differential expression for each gene/row, i.e. a two-column matrix
with log2 fold changes in the 1st column and derived p-values in the 2nd column. If ’expr’ is a
(Seq)ExpressionSet, the DE-table will be automatically appended to the fData slot.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

See Also

read.eset describes prerequisites for the expression data, normalize for normalization of ex-
pression data, voom for preprocessing of RNA-seq data, p.adjust for multiple testing correction,
eBayes for DE analysis with limma, glmFit for DE analysis with edgeR, and DESeq for DE analysis
with DESeq.

Examples

(1) microarray data: intensity measurements
ma.eset <- make.example.data(what="eset", type="ma")
ma.eset <- de.ana(ma.eset)
head(fData(ma.eset))

(2) RNA-seq data: read counts
rseq.eset <- make.example.data(what="eset", type="rseq")
rseq.eset <- de.ana(rseq.eset, de.method="DESeq")
head(fData(rseq.eset))

8 ea.browse

download.kegg.pathways

Download of KEGG pathways for a particular organism

Description

The function downloads all metabolic and non-metabolic pathways in KEGG XML format for a
specified organism.

Usage

download.kegg.pathways(org, out.dir = NULL, zip = FALSE)

Arguments

org Organism in KEGG three letter code, e.g. ‘hsa’ for ‘homo sapiens’.

out.dir Output directory. If not null, pathways are written to files in the specified direc-
tory.

zip Logical. In case pathways are written to file (‘out.dir’ is not null): should output
files be zipped?

Value

if(is.null(out.dir)): a list of KEGGPathway objects else: none, as pathways are written to file

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

See Also

keggList, keggGet, KEGGPathway-class, parseKGML

Examples

pwys <- download.kegg.pathways("hsa")

ea.browse Exploration of enrichment analysis results

Description

Functions to extract a flat gene set ranking from an enrichment analysis result object and to de-
tailedly explore it.

ea.browse 9

Usage

ea.browse(res, nr.show = -1, graph.view = NULL, html.only = FALSE)

gs.ranking(res, signif.only = TRUE)

Arguments

res Enrichment analysis result list (as returned by the functions sbea and nbea).
nr.show Number of gene sets to show. As default all statistically significant gene sets are

displayed.
graph.view Optional. Should a graph-based summary (reports and visualizes consistency

of regulations) be created for the result? If specified, it needs to be a gene
regulatory network, i.e. either an absolute file path to a tabular file or a character
matrix with exactly *THREE* cols; 1st col = IDs of regulating genes; 2nd col
= corresponding regulated genes; 3rd col = regulation effect; Use ’+’ and ’-’ for
activation/inhibition.

html.only Logical. Should the html file only be written (without opening the browser to
view the result page)? Defaults to FALSE.

signif.only Logical. Display only those gene sets in the ranking, which satisfy the signifi-
cance level? Defaults to TRUE.

Value

gs.ranking: DataFrame with gene sets ranked by the corresponding p-value;

ea.browse: none, opens the browser to explore results.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

See Also

sbea, nbea, comb.ea.results

Examples

real data
(1) reading the expression data from file
exprs.file <- system.file("extdata/exprs.tab", package="EnrichmentBrowser")
pdat.file <- system.file("extdata/pData.tab", package="EnrichmentBrowser")
fdat.file <- system.file("extdata/fData.tab", package="EnrichmentBrowser")
probe.eset <- read.eset(exprs.file, pdat.file, fdat.file)
gene.eset <- probe.2.gene.eset(probe.eset)
gene.eset <- de.ana(gene.eset)
annotation(gene.eset) <- "hsa"

artificial enrichment analysis results
gs <- make.example.data(what="gs", gnames=featureNames(gene.eset))
ea.res <- make.example.data(what="ea.res", method="ora", eset=gene.eset, gs=gs)

(5) result visualization and exploration
gs.ranking(ea.res)
ea.browse(ea.res)

10 ebrowser

ebrowser Seamless navigation through enrichment analysis results

Description

This is the all-in-one wrapper function to perform the standard enrichment analysis pipeline imple-
mented in the EnrichmentBrowser package.

Given flat gene expression data, the data is read in and subsequently subjected to chosen enrichment
analysis methods.

The results from different methods can be combined and investigated in detail in the default browser.

Usage

ebrowser(meth, exprs, pdat, fdat, org, data.type = c(NA, "ma", "rseq"),
norm.method = "quantile", de.method = "limma",
gs, grn = NULL, perm = 1000, alpha = 0.05, beta = 1,
comb = FALSE, browse = TRUE, nr.show = -1)

Arguments

meth Enrichment analysis method. Currently, the following enrichment analysis meth-
ods are supported: ‘ora’, ‘safe’, ‘gsea’, ‘samgs’, ‘ggea’, ‘spia’, ‘nea’, and ‘path-
net’. See sbea and nbea for details.

exprs Expression matrix. A tab separated text file containing *normalized* expression
values on a *log* scale. Columns = samples/subjects; rows = features/probes/genes;
NO headers, row or column names. Supported data types are log2 counts (mi-
croarray single-channel), log2 ratios (microarray two-color), and log2-counts
per million (RNA-seq logCPMs). See limma’s user guide for definition and nor-
malization of the different data types. Alternatively, this can be an object of
ExpressionSet-class, assuming the expression matrix in the ’exprs’ slot.

pdat Phenotype data. A tab separated text file containing annotation information for
the samples in either *two or three* columns. NO headers, row or column
names. The number of rows/samples in this file should match the number of
columns/samples of the expression matrix. The 1st column is reserved for the
sample IDs; The 2nd column is reserved for a *BINARY* group assignment.
Use ’0’ and ’1’ for unaffected (controls) and affected (cases) sample class, re-
spectively. For paired samples or sample blocks a third column is expected
that defines the blocks. If ’exprs’ is an object of ExpressionSet-class, the
’pdat’ argument can be left unspecified, which then expects group and optional
block assignments in respectively named columns ’GROUP’ (mandatory) and
’BLOCK’ (optional) in the ’pData’ slot of the ExpressionSet.

fdat Feature data. A tab separated text file containing annotation information for
the features. Exactly *TWO* columns; 1st col = feature IDs; 2nd col = cor-
responding KEGG gene ID for each feature ID in 1st col; NO headers, row
or column names. The number of rows/features in this file should match the
number of rows/features of the expression matrix. If ’exprs’ is an object of
ExpressionSet-class, the ’fdat’ argument can be left unspecified, which then
expects feature and gene IDs in respectively named columns ’PROBE’ and
’GENE’ in the ’fData’ slot of the ExpressionSet.

ebrowser 11

org Organism under investigation in KEGG three letter code, e.g. ‘hsa’ for ‘Homo
sapiens’. See also kegg.species.code to convert your organism of choice to
KEGG three letter code.

data.type Expression data type. Use ’ma’ for microarray and ’rseq’ for RNA-seq data. If
NA, data.type is automatically guessed. If the expression values in ’eset’ are
decimal numbers they are assumed to be microarray intensities. Whole numbers
are assumed to be RNA-seq read counts. Defaults to NA.

norm.method Determines whether and how the expression data should be normalized. For
available microarray normalization methods see the man page of the limma
function normalizeBetweenArrays. For available RNA-seq normalization meth-
ods see the man page of the EDASeq function betweenLaneNormalization.
Defaults to ’quantile’, i.e. normalization is carried out so that quantiles between
arrays/lanes/samples are equal. Use ’none’ to indicate that the data is already
normalized and should not be normalized by ebrowser. See the man page of
normalize for details.

de.method Determines which method is used for per-gene differential expression analysis.
See the man page of de.ana for details. Defaults to ’limma’, i.e. differential
expression is calculated based on the typical limma lmFit procedure.

gs Gene sets. Either a list of gene sets (vectors of KEGG gene IDs) or a text file in
GMT format storing all gene sets under investigation.

grn Gene regulatory network. Either an absolute file path to a tabular file or a char-
acter matrix with exactly *THREE* cols; 1st col = IDs of regulating genes; 2nd
col = corresponding regulated genes; 3rd col = regulation effect; Use ’+’ and ’-’
for activation/inhibition.

perm Number of permutations of the expression matrix to estimate the null distribu-
tion. Defaults to 1000. Can also be an integer vector matching the length of
’meth’ to assign different numbers of permutations for different methods.

alpha Statistical significance level. Defaults to 0.05.

beta Log2 fold change significance level. Defaults to 1 (2-fold).

comb Logical. Should results be combined if more then one enrichment method is
selected? Defaults to FALSE.

browse Logical. Should results be displayed in the browser for interactive exploration?
Defaults to TRUE.

nr.show Number of gene sets to show. As default all statistical significant gene sets are
displayed.

Value

None, opens the browser to explore results.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

References

Limma User’s guide: http://www.bioconductor.org/packages/limma

http://www.bioconductor.org/packages/limma

12 get.go.genesets

See Also

read.eset to read expression data from file; probe.2.gene.eset to transform probe to gene level
expression; kegg.species.code maps species name to KEGG code. get.kegg.genesets to re-
trieve gene set definitions from KEGG; compile.grn.from.kegg to construct a GRN from KEGG
pathways; sbea to perform set-based enrichment analysis; nbea to perform network-based enrich-
ment analysis; comb.ea.results to combine results from different methods; ea.browse for explo-
ration of resulting gene sets

Examples

expression data from file
exprs.file <- system.file("extdata/exprs.tab", package="EnrichmentBrowser")
pdat.file <- system.file("extdata/pData.tab", package="EnrichmentBrowser")
fdat.file <- system.file("extdata/fData.tab", package="EnrichmentBrowser")

getting all human KEGG gene sets
hsa.gs <- get.kegg.genesets("hsa")
gs.file <- system.file("extdata/hsa_kegg_gs.gmt", package="EnrichmentBrowser")
hsa.gs <- parse.genesets.from.GMT(gs.file)

set-based enrichment analysis
ebrowser(meth="ora",

exprs=exprs.file, pdat=pdat.file, fdat=fdat.file,
gs=hsa.gs, org="hsa", nr.show=3)

compile a gene regulatory network from KEGG pathways
hsa.grn <- compile.grn.from.kegg("hsa")
pwys <- system.file("extdata/hsa_kegg_pwys.zip", package="EnrichmentBrowser")
hsa.grn <- compile.grn.from.kegg(pwys)

network-based enrichment analysis
ebrowser(meth="ggea",

exprs=exprs.file, pdat=pdat.file, fdat=fdat.file,
gs=hsa.gs, grn=hsa.grn, org="hsa", nr.show=3)

combining results
ebrowser(meth=c("ora", "ggea"), comb=TRUE,

exprs=exprs.file, pdat=pdat.file, fdat=fdat.file,
gs=hsa.gs, grn=hsa.grn, org="hsa", nr.show=3)

get.go.genesets Definition of gene sets according to the Gene Ontology (GO)

Description

This function retrieves GO gene sets for an organism under investigation either via download from
BioMart or based on BioC annotation packages.

Usage

get.go.genesets(org, onto = c("BP", "MF", "CC"), mode = c("GO.db","biomart"))

get.go.genesets 13

Arguments

org An organism in (KEGG) three letter code, e.g. ‘hsa’ for ‘Homo sapiens’.

onto Character. Specifies one of the three GO ontologies: ’BP’ (biological process),
’MF’ (molecular function), ’CC’ (cellular component). Defaults to ’BP’.

mode Character. Determines in which way the gene sets are retrieved. This can be
either ’GO.db’ or ’biomart’. The ’GO.db’ mode creates the gene sets based on
BioC annotation packages - which is fast, but represents not necessarily the most
up-to-date mapping. In addition, this option is only available for the currently
supported model organisms in BioC. The ’biomart’ mode downloads the map-
ping from BioMart - which can be time consuming, but allows to select from a
larger range of organisms and contains the latest mappings. Defaults to ’GO.db’.

Value

A list of gene sets (vectors of gene IDs).

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

References

http://geneontology.org/

See Also

annFUN for general GO2gene mapping used in the ’GO.db’ mode, the biomaRt package for general
queries to BioMart, get.kegg.genesets for defining gene sets according to KEGG, parse.genesets.from.GMT
to parse user-def. gene sets from file.

Examples

Typical usage for gene set enrichment analysis:
Biological process terms based on BioC annotation (for human)
gs <- get.go.genesets("hsa")

eq.:
gs <- get.go.genesets(org="hsa", onto="BP", mode="GO.db")

Alternatively:
downloading from BioMart
this may take a few minutes ...

gs <- get.go.genesets(org="hsa", mode="biomart")

http://geneontology.org/

14 get.kegg.genesets

get.kegg.genesets Definition of gene sets according to KEGG pathways for a specified
organism

Description

To perform a gene set enrichment analysis on KEGG pathways, it is necessary to build up the gene
set database in a format that the GSEA method can read. Parsing a list of gene sets from a flat
text file in GMT format. This function performs the necessary steps, including the retrieval of the
participating gene IDs for each pathway and the conversion to GMT format.

Usage

get.kegg.genesets(pwys, gmt.file = NULL)

parse.genesets.from.GMT(gmt.file)

Arguments

pwys Either a list of KEGGPathway objects or an absolute file path of a zip compressed
archive of pathway xml files in KGML format. Alternatively, an organism in
KEGG three letter code, e.g. ‘hsa’ for ‘Homo sapiens’.

gmt.file Gene set file in GMT format. See details.

Details

The GMT (Gene Matrix Transposed) file format is a tab delimited file format that describes gene
sets. In the GMT format, each row represents a gene set. Each gene set is described by a name, a
description, and the genes in the gene set. See references.

Value

A list of gene sets (vectors of gene IDs).

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

References

GMT file format http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/
Data_formats

KEGG Organism code http://www.genome.jp/kegg/catalog/org_list.html

See Also

keggList, keggLink, KEGGPathway-class, parseKGML

http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats
http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats
http://www.genome.jp/kegg/catalog/org_list.html

ggea.graph 15

Examples

WAYS TO DEFINE GENE SETS ACCORDING TO HUMAN KEGG PATHWAYS

(1) from scratch: via organism ID

gs <- get.kegg.genesets("hsa")

(2) extract from pathways
download human pathways via:
pwys <- download.kegg.pathways("hsa")
pwys <- system.file("extdata/hsa_kegg_pwys.zip", package="EnrichmentBrowser")
gs <- get.kegg.genesets(pwys)

(3) parsing gene sets from GMT
gmt.file <- system.file("extdata/hsa_kegg_gs.gmt", package="EnrichmentBrowser")
gs <- parse.genesets.from.GMT(gmt.file)

ggea.graph GGEA graphs of consistency between regulation and expression

Description

Gene graph enrichment analysis (GGEA) is a network-based enrichment analysis method imple-
mented in the EnrichmentBrowser package. The idea of GGEA is to evaluate the consistency of
known regulatory interactions with the observed gene expression data. A GGEA graph for a gene set
of interest displays the consistency of each interaction in the network that involves a gene set mem-
ber. Nodes (genes) are colored according to expression (up-/down-regulated) and edges (interac-
tions) are colored according to consistency, i.e. how well the interaction type (activation/inhibition)
is reflected in the correlation of the expression of both interaction partners.

Usage

ggea.graph(gs, grn, eset,
alpha = 0.05, beta = 1, max.edges = 50, cons.thresh = 0.7)

ggea.graph.legend()

Arguments

gs Gene set under investigation. This should be a character vector of KEGG gene
IDs.

grn Gene regulatory network. Character matrix with exactly *THREE* cols; 1st col
= IDs of regulating genes; 2nd col = corresponding regulated genes; 3rd col =
regulation effect; Use ’+’ and ’-’ for activation/inhibition.

eset Expression set. An object of class ExpressionSet containing the gene expres-
sion set. See read.eset and probe.2.gene.eset for required annotations in
the pData and fData slot.

alpha Statistical significance level. Defaults to 0.05.

beta Log2 fold change significance level. Defaults to 1 (2-fold).

16 make.example.data

max.edges Maximum number of edges that should be displayed. Defaults to 50.

cons.thresh Consistency threshold. Graphical parameter that correspondingly increases line
width of edges with a consistency above the chosen threshold (defaults to 0.7).

Value

None, plots to a graphics device.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

See Also

nbea to perform network-based enrichment analysis. ea.browse for exploration of resulting gene
sets.

Examples

(1) expression set:
simulated expression values of 100 genes
in two sample groups of 6 samples each
eset <- make.example.data(what="eset")
eset <- de.ana(eset)

(2) gene sets:
draw 10 gene sets with 15-25 genes
gs <- make.example.data(what="gs", gnames=featureNames(eset))

(3) compiling artificial regulatory network
grn <- make.example.data(what="grn", nodes=featureNames(eset))

(4) plot consistency graph
ggea.graph(gs=gs[[1]], grn=grn, eset=eset)

(5) get legend
ggea.graph.legend()

make.example.data Example data for the EnrichmentBrowser package

Description

Functionality to construct example data sets for demonstration. This includes expression data, gene
sets, gene regulatory networks, and enrichment analysis results.

Usage

make.example.data(what = c("eset", "gs", "grn", "ea.res"), ...)

make.example.data 17

Arguments

what Kind of example data set to be constructed. This should be one out of:

• eset: Expression set
• gs: Gene set list
• grn: Gene regulatory network
• ea.res: Enrichment analysis result object as returned by the functions sbea

and nbea

... Additional arguments to fine-tune the specific example data sets.
For what=’eset’:

• type: Expression data type. Should be either ’ma’ (Microarray intensity
measurements) or ’rseq’ (RNA-seq read counts).

• nfeat: Number of features/genes. Defaults to 100.
• nsmpl: Number of samples. Defaults to 12.
• blk: Create sample blocks. Defaults to TRUE.
• norm: Should the expression data be normalized? Defaults to FALSE.
• de.ana: Should an differential expression analysis be carried out automati-

cally? Defaults to FALSE.

For what=’gs’:

• gnames: gene names from which the sets will be sampled. Per default the
sets will be drawn from c(g1, ..., g100).

• n: number of sets. Defaults to 10.
• min.size: minimal set size. Defaults to 15.
• max.size: maximal set size. Defaults to 25.

For what=’grn’:

• nodes: gene node names for which edges will be drawn. Per default node
names will be c(g1, ..., g100).

• edge.node.ratio: ratio number of edges / number of nodes. Defaults to 3,
i.e. creates 3 times more edges than nodes.

For what=’ea.res’:

• eset: Expression set. Calls make.example.data(what="eset") per default.
• gs: Gene sets. Calls make.example.data(what="gs") per default.
• method: Enrichment analysis method. Defaults to ’ora’.
• alpha: Statistical significance level. Defaults to 0.05.

Value

Depends on the ’what’ argument.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

Examples

eset <- make.example.data(what="eset")

18 map.ids

map.ids Mapping between gene ID types for feature names of an expression
set

Description

Functionality to map feature names of an expression set between common gene ID types such as
ENSEMBL and ENTREZ.

Usage

id.types(org)

map.ids(eset, org=NA, from="ENSEMBL", to="ENTREZID")

Arguments

eset Expression set. An object of ExpressionSet-class. Expects the featureNames
to be of gene ID type given in argument ’from’.

org Organism in KEGG three letter code, e.g. ‘hsa’ for ‘Homo sapiens’. See refer-
ences.

from Gene ID type from which should be mapped. Corresponds to the gene ID type
of the featureNames of argument ’eset’. Defaults to ’ENSEMBL’.

to Gene ID type to which should be mapped. Corresponds to the gene ID type
the featuresNames of argument ’eset’ should be updated with. Defaults to ’EN-
TREZID’.

Details

The function ’id.types’ lists the valid values which the arguments ’from’ and ’to’ can take. This
corresponds to the names of the available gene ID types for the mapping.

Value

id.types: character vector listing the available gene ID types for the mapping;

map.ids: An object of ExpressionSet.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

References

KEGG Organism code http://www.genome.jp/kegg/catalog/org_list.html

See Also

ExpressionSet-class, mapIds, keytypes

http://www.genome.jp/kegg/catalog/org_list.html

nbea 19

Examples

create an expression set with 3 genes and 3 samples
eset <- make.example.data("eset", nfeat=3, nsmpl=3)
featureNames(eset) <- paste0("ENSG00000000", c("003","005", "419"))
eset <- map.ids(eset, org="hsa")

nbea Network-based enrichment analysis (NBEA)

Description

This is the main function for network-based enrichment analysis. It implements and wraps existing
implementations of several frequently used state-of-art methods and allows a flexible inspection of
resulting gene set rankings.

Usage

nbea(method = EnrichmentBrowser::nbea.methods(), eset, gs, grn,
prune.grn=TRUE, alpha = 0.05, perm = 1000, padj.method = "none",
out.file = NULL, browse = FALSE, ...)

nbea.methods()

Arguments

method Network-based enrichment analysis method. Currently, the following network-
based enrichment analysis methods are supported: ‘ggea’, ‘spia’, ‘pathnet’, ‘de-
graph’, ‘topologygsa’, ‘ganpa’, ‘cepa’, ‘netgsa’, and ‘nea’. Default is ’ggea’.
This can also be the name of a user-defined function implementing network-
based enrichment. See Details.

eset Expression set. An object of class ExpressionSet. See read.eset and probe.2.gene.eset
for required annotations in the pData and fData slot.

gs Gene sets. Either a list of gene sets (vectors of KEGG gene IDs) or a text file in
GMT format storing all gene sets under investigation.

grn Gene regulatory network. Either an absolute file path to a tabular file or a char-
acter matrix with exactly *THREE* cols; 1st col = IDs of regulating genes; 2nd
col = corresponding regulated genes; 3rd col = regulation effect; Use ’+’ and ’-’
for activation/inhibition.

prune.grn Logical. Should the GRN be pruned? This removes duplicated, self, and re-
versed edges. Defaults to TRUE.

alpha Statistical significance level. Defaults to 0.05.

perm Number of permutations of the expression matrix to estimate the null distribu-
tion. Defaults to 1000. If using method=‘ggea’, it is possible to set ’perm=0’ to
use a fast approximation of gene set significance to avoid permutation testing.
See Details.

padj.method Method for adjusting nominal gene set p-values to multiple testing. For available
methods see the man of page the of the stats function p.adjust. Defaults to
’none’, i.e. leaves the nominal gene set p-values unadjusted.

20 nbea

out.file Optional output file the gene set ranking will be written to.

browse Logical. Should results be displayed in the browser for interactive exploration?
Defaults to FALSE.

... Additional arguments passed to individual nbea methods. This includes cur-
rently:

• beta: Log2 fold change significance level. Defaults to 1 (2-fold).

For SPIA and NEA:

• sig.stat: decides which statistic is used for determining significant DE genes.
Options are:

– ’p’ (Default): genes with p-value below alpha.
– ’fc’: genes with abs(log2(fold change)) above beta
– ’&’: p & fc (logical AND)
– ’|’: p | fc (logical OR)

For GGEA:

• cons.thresh: edge consistency threshold between -1 and 1. Defaults to 0.2,
i.e. only edges of the GRN with consistency >= 0.2 are included in the
analysis. Evaluation on real datasets has shown that this works best to dis-
tinguish relevant gene sets. Use consistency of -1 to include all edges.

• gs.edges: decides which edges of the grn are considered for a gene set
under investigation. Should be one out of c(’&’, ’|’), denoting logical AND
and OR. respectively. Accordingly, this either includes edges for which
regulator AND / OR target gene are members of the investigated gene set.

Details

’ggea’: gene graph enrichment analysis, scores gene sets according to consistency within the given
gene regulatory network, i.e. checks activating regulations for positive correlation and repressing
regulations for negative correlation of regulator and target gene expression (Geistlinger et al., 2011).
When using ’ggea’ it is possible to estimate the statistical significance of the consistency score of
each gene set in two different ways: (1) based on sample permutation as described in the original
publication (Geistlinger et al., 2011) or (2) using an approximation in the spirit of Bioconductor’s
npGSEA package that is much faster.

’spia’: signaling pathway impact analysis, combines ORA with the probability that expression
changes are propagated across the pathway topology; implemented in Bioconductor’s SPIA pack-
age.

’pathnet’: pathway analysis using network information, applies ORA on combined evidence for
the observed signal for gene nodes and the signal implied by connected neighbors in the network;
implemented in Bioconductor’s PathNet package.

’degraph’: differential expression testing for gene graphs, multivariate testing of differences in mean
incorporating underlying graph structure; implemented in Bioconductor’s DEGraph package

’topologygsa’: topology-based gene set analysis, uses Gaussian graphical models to incorporate
the dependence structure among genes as implied by pathway topology; implemented in CRAN’s
topologyGSA package.

’ganpa’: gene association network-based pathway analysis, incorporates network-derived gene
weights in the enrichment analysis; implemented in CRAN’s GANPA package.

’cepa’: centrality-based pathway enrichment, incorporates network centralities as node weights
mapped from differentially expressed genes in pathways; implemented in CRAN’s CePa package.

nbea 21

’netgsa’: network-based gene set analysis, incorporates external information about interactions
among genes as well as novel interactions learned from data; implemented in CRAN’s NetGSA
package.

’nea’: network enrichment analysis, applies ORA on interactions instead of genes; implemented in
Bioconductor’s neaGUI package.

It is also possible to use additional network-based enrichment methods. This requires to implement
a function that takes ’eset’, ’gs’, ’grn’, ’alpha’, and ’perm’ as arguments and returns a numeric
matrix ’res.tbl’ with a mandatory column named ’P.VALUE’ storing the resulting p-value for each
gene set in ’gs’. The rows of this matrix must be named accordingly (i.e. rownames(res.tbl) ==
names(gs)). See examples.

Value

nbea.methods: a character vector of currently supported methods;

nbea: if(is.null(out.file)): an enrichment analysis result object that can be detailedly explored by
calling ea.browse and from which a flat gene set ranking can be extracted by calling gs.ranking.
If ’out.file’ is given, the ranking is written to the specified file.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

References

Geistlinger et al. (2011) From sets to graphs: towards a realistic enrichment analysis of transcrip-
tomic systems. Bioinformatics, 27(13), i366–73.

See Also

Input: read.eset, probe.2.gene.eset, get.kegg.genesets to retrieve gene set definitions from
KEGG. compile.grn.from.kegg to construct a GRN from KEGG pathways.

Output: gs.ranking to rank the list of gene sets. ea.browse for exploration of resulting gene sets.

Other: sbea to perform set-based enrichment analysis. comb.ea.results to combine results from
different methods. the SPIA package for more information on signaling pathway impact analysis.
the neaGUI package for more information on network enrichment analysis. the PathNet package
for more information on pathway analysis using network information.

Examples

currently supported methods
nbea.methods()

(1) expression data:
simulated expression values of 100 genes
in two sample groups of 6 samples each
eset <- make.example.data(what="eset")
eset <- de.ana(eset)

(2) gene sets:
draw 10 gene sets with 15-25 genes
gs <- make.example.data(what="gs", gnames=featureNames(eset))

(3) make 2 artificially enriched sets:

22 normalize

sig.genes <- featureNames(eset)[fData(eset)$ADJ.PVAL < 0.1]
gs[[1]] <- sample(sig.genes, length(gs[[1]]))
gs[[2]] <- sample(sig.genes, length(gs[[2]]))

(4) gene regulatory network
grn <- make.example.data(what="grn", nodes=featureNames(eset))

(5) performing the enrichment analysis
ea.res <- nbea(method="ggea", eset=eset, gs=gs, grn=grn)

(6) result visualization and exploration
gs.ranking(ea.res, signif.only=FALSE)

using your own tailored function as enrichment method
dummy.nbea <- function(eset, gs, grn, alpha, perm)
{

sig.ps <- sample(seq(0,0.05, length=1000),5)
insig.ps <- sample(seq(0.1,1, length=1000), length(gs)-5)
ps <- sample(c(sig.ps, insig.ps), length(gs))
score <- sample(1:100, length(gs), replace=TRUE)
res.tbl <- cbind(score, ps)
colnames(res.tbl) <- c("SCORE", "P.VALUE")
rownames(res.tbl) <- names(gs)
return(res.tbl[order(ps),])

}

ea.res2 <- nbea(method=dummy.nbea, eset=eset, gs=gs, grn=grn)
gs.ranking(ea.res2)

normalize Normalization of microarray and RNA-seq expression data

Description

This function wraps commonly used functionality from limma for microarray normalization and
from EDASeq for RNA-seq normalization.

Usage

normalize(eset,
norm.method = "quantile", within = FALSE, data.type = c(NA, "ma", "rseq"))

Arguments

eset Expression set. An object of ExpressionSet-class. See the man page of
read.eset for prerequisites for the expression data.

norm.method Determines how the expression data should be normalized. For available mi-
croarray normalization methods see the man page of the limma function normalizeBetweenArrays.
For available RNA-seq normalization methods see the man page of the EDASeq
function betweenLaneNormalization. Defaults to ’quantile’, i.e. normaliza-
tion is carried out so that quantiles between arrays/lanes/samples are equal. See
details.

normalize 23

within Logical. Is only taken into account if data.type=’rseq’. Determine whether GC
content normalization should be carried out (as implemented in the EDASeq
function withinLaneNormalization). Defaults to FALSE. See details.

data.type Expression data type. Use ’ma’ for microarray and ’rseq’ for RNA-seq data. If
NA, data.type is automatically guessed. If the expression values in ’eset’ are
decimal numbers they are assumed to be microarray intensities. Whole numbers
are assumed to be RNA-seq read counts. Defaults to NA.

Details

Normalization of high-throughput expression data is essential to make results within and between
experiments comparable. Microarray (intensity measurements) and RNA-seq (read counts) data
exhibit typically distinct features that need to be normalized for. For specific needs that deviate from
these standard normalizations, the user should always refer to more specific functions/packages.

Microarray data is expected to be single-channel. For two-color arrays, it is expected here that
normalization within arrays has been already carried out, e.g. using normalizeWithinArrays from
limma.

RNA-seq data is expected to be raw read counts. Please note that normalization for downstream
DE analysis, e.g. with edgeR and DESeq, is not ultimately necessary (and in some cases even
discouraged) as many of these tools implement specific normalization approaches. See the vignette
of EDASeq, edgeR, and DESeq for details.

Value

An object of ExpressionSet-class. For RNA-seq data, an object of SeqExpressionSet-class
to conform with downstream DE analysis.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

See Also

read.eset describes prerequisites for the expression data;

normalizeWithinArrays and normalizeBetweenArrays for normalization of microarray data;

withinLaneNormalization and betweenLaneNormalization for normalization of RNA-seq data.

Examples

#
(1) simulating expression data: 100 genes, 12 samples
#

(a) microarray data: intensity measurements
ma.eset <- make.example.data(what="eset", type="ma")

(b) RNA-seq data: read counts
rseq.eset <- make.example.data(what="eset", type="rseq")

#
(2) Normalization
#

24 plots

(a) microarray ...
norm.eset <- normalize(ma.eset)

(b) RNA-seq ...
norm.eset <- normalize(rseq.eset)

... normalize also for GC content
gc.content <- rnorm(100, 0.5, sd=0.1)
fData(rseq.eset)$gc <- gc.content

norm.eset <- normalize(rseq.eset, within=TRUE)

plots Visualization of gene expression

Description

Visualization of differential gene expression via heatmap, p-value histogram and volcano plot (fold
change vs. p-value).

Usage

pdistr(p)
volcano(fc, p)
exprs.heatmap(expr, grp)

Arguments

p Numeric vector of p-values for each gene.

fc Numeric vector of fold changes (typically on log2 scale).

expr Expression matrix. Rows correspond to genes, columns to samples.

grp *BINARY* group assignment for the samples. Use ’0’ and ’1’ for unaffected
(controls) and affected (cases) samples, respectively.

Value

None, plots to a graphics device.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

See Also

de.ana for differential expression analysis, heatmap and truehist for generic plotting.

probe.2.gene.eset 25

Examples

(1) simulating expression data: 100 genes, 12 samples
eset <- make.example.data(what="eset")

plot heatmap
exprs.heatmap(expr=exprs(eset), grp=as.factor(pData(eset)$GROUP))

(2) DE analysis
eset <- de.ana(eset)
pdistr(fData(eset)$ADJ.PVAL)
volcano(fc=fData(eset)$FC, p=fData(eset)$ADJ.PVAL)

probe.2.gene.eset Transformation of probe level expression to gene level expression

Description

Reads expression data at probe level and summarizes gene expression behavior by averaging over
all probes that are annotated to a particular gene.

Usage

probe.2.gene.eset(probe.eset, use.mean = TRUE)

Arguments

probe.eset Probe expression set of class ExpressionSet. The fData slot of the expression
set must contain a ’GENE’ column that lists for each probe the corresponding
KEGG gene ID.

use.mean Logical. Determining, in case of multiple probes for one gene, whether a mean
value is computed (use.mean=TRUE), or the probe that discriminate the most
between the two sample group is kept (use.mean=FALSE). Defaults to TRUE.

Value

An ExpressionSet on gene level.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

See Also

ExpressionSet-class, read.eset for reading expression data from file, de.ana for differential
expression analysis.

Examples

(1) reading the expression data from file
exprs.file <- system.file("extdata/exprs.tab", package="EnrichmentBrowser")
pdat.file <- system.file("extdata/pData.tab", package="EnrichmentBrowser")
fdat.file <- system.file("extdata/fData.tab", package="EnrichmentBrowser")
probe.eset <- read.eset(exprs.file, pdat.file, fdat.file)
gene.eset <- probe.2.gene.eset(probe.eset)

26 read.eset

read.eset Reading gene expression data from file into an expression set

Description

The function reads in plain expression data from file with minimum annotation requirements for the
pData and fData slots.

Usage

read.eset(exprs.file, pdat.file, fdat.file,
data.type = c(NA, "ma", "rseq"), NA.method = c("mean", "rm", "keep"))

Arguments

exprs.file Expression matrix. A tab separated text file containing expression values. Columns
= samples/subjects; rows = features/probes/genes; NO headers, row or column
names. See details.

pdat.file Phenotype data. A tab separated text file containing annotation information for
the samples in either *two or three* columns. NO headers, row or column
names. The number of rows/samples in this file should match the number of
columns/samples of the expression matrix. The 1st column is reserved for the
sample IDs; The 2nd column is reserved for a *BINARY* group assignment.
Use ’0’ and ’1’ for unaffected (controls) and affected (cases) sample class, re-
spectively. For paired samples or sample blocks a third column is expected that
defines the blocks.

fdat.file Feature data. A tab separated text file containing annotation information for
the features. In case of probe level data: exactly *TWO* columns; 1st col =
probe/feature IDs; 2nd col = corresponding gene ID for each feature ID in 1st
col; In case of gene level data: The list of gene IDs newline-separated (i.e.
just one column). It is recommended to use *ENTREZ* gene IDs (to bene-
fit from downstream visualization and exploration functionality of the enrich-
ment analysis). NO headers, row or column names. The number of rows (fea-
tures/probes/genes) in this file should match the number of rows/features of the
expression matrix. Alternatively, this can also be the ID of a recognized plat-
form such as ’hgu95av2’ (Affymetrix Human Genome U95 chip) or ’ecoli2’
(Affymetrix E. coli Genome 2.0 Array). See details.

data.type Expression data type. Use ’ma’ for microarray and ’rseq’ for RNA-seq data. If
NA, data.type is automatically guessed. If the expression values in ’eset’ are
decimal numbers they are assumed to be microarray intensities. Whole numbers
are assumed to be RNA-seq read counts. Defaults to NA.

NA.method Determines how to deal with NA’s (missing values). This can be one out of:

• mean: replace NA’s by the row means for a feature over all samples.
• rm: rows (features) that contain NA’s are removed.
• keep: do nothing. Missing values are kept (which, however, can then cause

several issues in the downstream analysis)

Defaults to ’mean’.

sbea 27

Details

See the limma’s user guide http://www.bioconductor.org/packages/limma for definition and
normalization of the different expression data types.

In case of microarry data the feature IDs typically correspond to probe IDs. Thus, the fdat.file
should define a mapping from probe ID (1st column) to corresponding KEGG gene ID (2nd col-
umn). The mapping can be defined automatically by providing the ID of a recognized platform
such as ’hgu95av2’ (Affymetrix Human Genome U95 chip). This requires that a correspond-
ing ’.db’ package exists (see http://www.bioconductor.org/packages/release/BiocViews.
html#___ChipName for all available chips/packages) and that you have it installed. *However, this
option should be used with care*. Existing mappings might be outdated and sometimes the KEGG
gene ID does not correspond to the Entrez ID (e.g. for E. coli and S. cerevisae). In these cases probe
identifiers are mapped twice (probe ID -> Entrez ID -> KEGG ID), which almost always results in
loss of information. Thus, mapping quality should always be checked and in case properly defined
with a 2-column fdat.file.

Value

An object of ExpressionSet.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

See Also

ExpressionSet-class

Examples

reading the expression data from file
exprs.file <- system.file("extdata/exprs.tab", package="EnrichmentBrowser")
pdat.file <- system.file("extdata/pData.tab", package="EnrichmentBrowser")
fdat.file <- system.file("extdata/fData.tab", package="EnrichmentBrowser")
eset <- read.eset(exprs.file, pdat.file, fdat.file)

sbea Set-based enrichment analysis (SBEA)

Description

This is the main function for the enrichment analysis of gene sets. It implements and wraps existing
implementations of several frequently used state-of-art methods and allows a flexible inspection of
resulting gene set rankings.

Usage

sbea(method = EnrichmentBrowser::sbea.methods(), eset, gs, alpha = 0.05,
perm = 1000, padj.method = "none", out.file = NULL, browse = FALSE, ...)

sbea.methods()

http://www.bioconductor.org/packages/limma
http://www.bioconductor.org/packages/release/BiocViews.html#___ChipName
http://www.bioconductor.org/packages/release/BiocViews.html#___ChipName

28 sbea

Arguments

method Set-based enrichment analysis method. Currently, the following set-based en-
richment analysis methods are supported: ‘ora’, ‘safe’, ‘gsea’, ‘padog’, ‘roast’,
‘camera’, ‘gsa’, ‘gsva’, ‘globaltest’, ‘samgs’, ‘ebm’, and ‘mgsa’. For basic ora
also set ’perm=0’. Default is ‘ora’. This can also be the name of a user-defined
function implementing set-based enrichment. See Details.

eset Expression set. An object of class ExpressionSet. See read.eset and probe.2.gene.eset
for required annotations in the pData and fData slots.

gs Gene sets. Either a list of gene sets (vectors of KEGG gene IDs) or a text file in
GMT format storing all gene sets under investigation.

alpha Statistical significance level. Defaults to 0.05.

perm Number of permutations of the expression matrix to estimate the null distribu-
tion. Defaults to 1000. For basic ora set ’perm=0’. Using method="gsea" and
’perm=0’ invokes the permutation approximation from the npGSEA package.

padj.method Method for adjusting nominal gene set p-values to multiple testing. For available
methods see the man page of the stats function p.adjust. Defaults to’none’, i.e.
leaves the nominal gene set p-values unadjusted.

out.file Optional output file the gene set ranking will be written to.

browse Logical. Should results be displayed in the browser for interactive exploration?
Defaults to FALSE.

... Additional arguments passed to individual sbea methods. This includes cur-
rently for ORA and MGSA:

• beta: Log2 fold change significance level. Defaults to 1 (2-fold).
• sig.stat: decides which statistic is used for determining significant DE genes.

Options are:
– ’p’ (Default): genes with p-value below alpha.
– ’fc’: genes with abs(log2(fold change)) above beta
– ’&’: p & fc (logical AND)
– ’|’: p | fc (logical OR)

Details

’ora’: overrepresentation analysis, simple and frequently used test based on the hypergeometric
distribution (see Goeman and Buhlmann, 2007, for a critical review).

’safe’: significance analysis of function and expression, generalization of ORA, includes other test
statistics, e.g. Wilcoxon’s rank sum, and allows to estimate the significance of gene sets by sample
permutation; implemented in the safe package (Barry et al., 2005).

’gsea’: gene set enrichment analysis, frequently used and widely accepted, uses a Kolmogorov-
Smirnov statistic to test whether the ranks of the p-values of genes in a gene set resemble a uniform
distribution (Subramanian et al., 2005).

’padog’: pathway analysis with down-weighting of overlapping genes, incorporates gene weights
to favor genes appearing in few pathways versus genes that appear in many pathways; implemented
in the PADOG package.

’roast’: rotation gene set test, uses rotation instead of permutation for assessment of gene set signif-
icance; implemented in the limma and edgeR packages for microarray and RNA-seq data, respec-
tively.

sbea 29

’camera’: correlation adjusted mean rank gene set test, accounts for inter-gene correlations as im-
plemented in the limma and edgeR packages for microarray and RNA-seq data, respectively.

’gsa’: gene set analysis, differs from GSEA by using the maxmean statistic, i.e. the mean of the
positive or negative part of gene scores in the gene set; implemented in the GSA package.

’gsva’: gene set variation analysis, transforms the data from a gene by sample matrix to a gene
set by sample matrix, thereby allowing the evaluation of gene set enrichment for each sample;
implemented in the GSVA package.

’globaltest’: global testing of groups of genes, general test of groups of genes for association with
a response variable; implemented in the globaltest package.

’samgs’: significance analysis of microarrays on gene sets, extends the SAM method for single
genes to gene set analysis (Dinu et al., 2007).

’ebm’: empirical Brown’s method, combines p-values of genes in a gene set using Brown’s
method to combine p-values from dependent tests; implemented in the EmpiricalBrownsMethod
package.

’mgsa’: model-based gene set analysis, Bayesian modeling approach taking set overlap into account
by working on all sets simultaneously, thereby reducing the number of redundant sets; implemented
in the mgsa package.

It is also possible to use additional set-based enrichment methods. This requires to implement a
function that takes ’eset’, ’gs’, ’alpha’, and ’perm’ as arguments and returns a numeric vector ’ps’
storing the resulting p-value for each gene set in ’gs’. This vector must be named accordingly (i.e.
names(ps) == names(gs)). See examples.

Value

sbea.methods: a character vector of currently supported methods;

sbea: if(is.null(out.file)): an enrichment analysis result object that can be detailedly explored by
calling ea.browse and from which a flat gene set ranking can be extracted by calling gs.ranking.
If ’out.file’ is given, the ranking is written to the specified file.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger@bio.ifi.lmu.de>

References

Goeman and Buhlmann (2007) Analyzing gene expression data in terms of gene sets: methodolog-
ical issues. Bioinformatics, 23, 980-7.

Barry et al. (2005) Significance Analysis of Function and Expression. Bioinformatics, 21:1943-9.

Subramanian et al. (2005) Gene Set Enrichment Analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles. Proc Natl Acad Sci USA, 102:15545-50.

Dinu et al. (2007) Improving gene set analysis of microarray data by SAM-GS. BMC Bioinformat-
ics, 8:242

See Also

Input: read.eset, probe.2.gene.eset get.kegg.genesets to retrieve gene sets from KEGG.

Output: gs.ranking to retrieve the ranked list of gene sets. ea.browse for exploration of resulting
gene sets.

Other: nbea to perform network-based enrichment analysis. comb.ea.results to combine results
from different methods.

30 sbea

Examples

currently supported methods
sbea.methods()

(1) expression data:
simulated expression values of 100 genes
in two sample groups of 6 samples each
eset <- make.example.data(what="eset")
eset <- de.ana(eset)

(2) gene sets:
draw 10 gene sets with 15-25 genes
gs <- make.example.data(what="gs", gnames=featureNames(eset))

(3) make 2 artificially enriched sets:
sig.genes <- featureNames(eset)[fData(eset)$ADJ.PVAL < 0.1]
gs[[1]] <- sample(sig.genes, length(gs[[1]]))
gs[[2]] <- sample(sig.genes, length(gs[[2]]))

(4) performing the enrichment analysis
ea.res <- sbea(method="ora", eset=eset, gs=gs, perm=0)

(5) result visualization and exploration
gs.ranking(ea.res)

using your own tailored function as enrichment method
dummy.sbea <- function(eset, gs, alpha, perm)
{

sig.ps <- sample(seq(0, 0.05, length=1000), 5)
nsig.ps <- sample(seq(0.1, 1, length=1000), length(gs)-5)
ps <- sample(c(sig.ps, nsig.ps), length(gs))
names(ps) <- names(gs)
return(ps)

}

ea.res2 <- sbea(method=dummy.sbea, eset=eset, gs=gs)
gs.ranking(ea.res2)

Index

annFUN, 13

betweenLaneNormalization, 11, 22, 23

comb.ea.results, 2, 9, 12, 21, 29
compile.grn.from.kegg, 4, 12, 21
config.ebrowser, 5

de.ana, 6, 11, 24, 25
DESeq, 7
download.kegg.pathways, 4, 8

ea.browse, 3, 8, 12, 16, 21, 29
eBayes, 7
ebrowser, 10
ExpressionSet, 7, 15, 18, 19, 25, 27, 28
exprs.heatmap (plots), 24

get.go.genesets, 12
get.kegg.genesets, 12, 13, 14, 21, 29
ggea (nbea), 19
ggea.graph, 15
glmFit, 7
gs.ranking, 2, 3, 21, 29
gs.ranking (ea.browse), 8
gsea (sbea), 27

heatmap, 24

id.types (map.ids), 18

kegg.species.code, 11, 12
keggGet, 8
keggLink, 14
keggList, 8, 14
KEGGPathway, 4, 14
keytypes, 18

lmFit, 11

make.example.data, 16
map.ids, 18
mapIds, 18

nbea, 2, 3, 9, 10, 12, 16, 17, 19, 29
normalize, 7, 11, 22

normalizeBetweenArrays, 11, 22, 23
normalizeWithinArrays, 23

ora (sbea), 27

p.adjust, 7, 19, 28
parse.genesets.from.GMT, 13
parse.genesets.from.GMT

(get.kegg.genesets), 14
parseKGML, 4, 8, 14
pdistr (plots), 24
plots, 24
probe.2.gene.eset, 12, 15, 19, 21, 25, 28, 29

read.eset, 7, 12, 15, 19, 21–23, 25, 26, 28, 29

sbea, 2, 3, 9, 10, 12, 17, 21, 27
SeqExpressionSet, 7

truehist, 24

volcano (plots), 24
voom, 7

withinLaneNormalization, 23

31

	comb.ea.results
	compile.grn.from.kegg
	config.ebrowser
	de.ana
	download.kegg.pathways
	ea.browse
	ebrowser
	get.go.genesets
	get.kegg.genesets
	ggea.graph
	make.example.data
	map.ids
	nbea
	normalize
	plots
	probe.2.gene.eset
	read.eset
	sbea
	Index

