Package 'CoGAPS'

April 14, 2017

Version 2.8.0

Date 2014-08-23

Title Coordinated Gene Activity in Pattern Sets

Author Elana J. Fertig, Michael F. Ochs

Description Coordinated Gene Activity in Pattern Sets (CoGAPS) implements a Bayesian MCMC matrix factorization algorithm, GAPS, and links it to gene set statistic methods to infer biological process activity. It can be used to perform sparse matrix factorization on any data, and when this data represents biomolecules, to do gene set analysis.

Maintainer Elana J. Fertig <ejfertig@jhmi.edu>

Depends R (>= 3.0.1), Rcpp (>= 0.11.2)

Imports RColorBrewer (>= 1.0.5), gplots (>= 2.8.0), graphics, grDevices, methods, stats, utils

Suggests testthat, lintr

LinkingTo Rcpp, BH

License GPL (==2)

biocViews GeneExpression, Transcription, GeneSetEnrichment, DifferentialExpression, Bayesian, Clustering, TimeCourse, RNASeq, Microarray, MultipleComparison, DimensionReduction

NeedsCompilation yes

RoxygenNote 5.0.1

R topics documented:

JAPS-package	2
ıryA	2
CoGAPSStat	3
GeneGSStat	3
Ζ	4
JAPS	4
puteGeneGSProb	5
MapRun	7
MapTestRun	
sRun	10

binaryA

gapsTestRun	11
GIST.D	12
GIST.S	12
GSets	
plotAtoms	13
plotDiag	13
plotGAPS	14
plotP	14
plotSmoothPatterns	14
reorderByPatternMatch	15
residuals	15
SimpSim.A	16
SimpSim.D	16
SimpSim.P	16
SimpSim.S	17
tf2ugFC	17
	18

Index

CoGAPS-package

CoGAPS: Coordinated Gene Activity in Pattern Sets

Description

CoGAPS implements a Bayesian MCMC matrix factorization algorithm, GAPS, and links it to gene set statistic methods to infer biological process activity. It can be used to perform sparse matrix factorization on any data, and when this data represents biomolecules, to do gene set analysis.

Package:	CoGAPS
Type:	Package
Version:	1.0
Date:	2014-07-23
License:	LGPL

Author(s)

Maintainer: Elana J. Fertig <ejfertig@jhmi.edu>, Michael F. Ochs <ochsm@tcnj.edu>

References

Fertig EJ, Ding J, Favorov AV, Parmigiani G, Ochs MF. CoGAPS: an R/C++ package to identify patterns and biological process activity in transcriptomic data. Bioinformatics. 2010 Nov 1;26(21):2792-3

binaryA binaryA creates a binarized heatmap of the A matrix in which the value is 1 if the value in Amean is greater than threshold * Asd and 0 otherwise

2

calcCoGAPSStat

Description

binaryA creates a binarized heatmap of the A matrix in which the value is 1 if the value in Amean is greater than threshold * Asd and 0 otherwise

Usage

```
binaryA(Amean, Asd, threshold = 3)
```

Arguments

Amean	the mean estimate for the A matrix
Asd	the standard deviations on Amean
threshold	the number of standard deviations above zero that an element of Amean must be to get a value of 1

calcCoGAPSStat	calcCoGAPSStat calculates the gene set statistics for each column of
	A using a Z-score from the elements of the A matrix, the input gene set,
	and permutation tests

Description

calcCoGAPSStat calculates the gene set statistics for each column of A using a Z-score from the elements of the A matrix, the input gene set, and permutation tests

Usage

```
calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm = 500)
```

Arguments

Amean	A matrix mean values
Asd	A matrix standard deviations
GStoGenes	data.frame or list with gene sets
numPerm	number of permutations for null

calcGeneGSStat	calcGeneGSStat calculates the probability that a gene listed in a gene	
	set behaves like other genes in the set within the given data set	

Description

calcGeneGSStat calculates the probability that a gene listed in a gene set behaves like other genes in the set within the given data set

Usage

```
calcGeneGSStat(Amean, Asd, GSGenes, numPerm, Pw = rep(1, ncol(Amean)),
nullGenes = F)
```

Arguments

Amean	A matrix mean values
Asd	A matrix standard deviations
GSGenes	data.frame or list with gene sets
numPerm	number of permutations for null
Pw	weight on genes
nullGenes	- logical indicating gene adjustment

<u></u>	101
сa	TCZ

calcZ calculates the Z-score for each element based on input mean and standard deviation matrices

Description

calcZ calculates the Z-score for each element based on input mean and standard deviation matrices

Usage

calcZ(meanMat, sdMat)

Arguments

meanMat	matrix of mean values
sdMat	matrix of standard deviation values
Cogaps	CoGAPS calls the C++ MCMC code through gapsRun and performs Bayesian matrix factorization returning the two matrices that recon- struct the data matrix and then calls calcCoGAPSStat to estimate gene set activity with nPerm set to 500

Description

CoGAPS calls the C++ MCMC code through gapsRun and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix and then calls calcCoGAPSStat to estimate gene set activity with nPerm set to 500

Usage

```
CoGAPS(data, unc, ABins = data.frame(), PBins = data.frame(), GStoGenes,
nFactor = 7, simulation_id = "simulation", nEquil = 1000,
nSample = 1000, nOutR = 1000, output_atomic = FALSE,
fixedBinProbs = FALSE, fixedDomain = "N", sampleSnapshots = TRUE,
numSnapshots = 100, plot = TRUE, nPerm = 500, alphaA = 0.01,
nMaxA = 1e+05, max_gibbmass_paraA = 100, alphaP = 0.01, nMaxP = 1e+05,
max_gibbmass_paraP = 100)
```

4

Arguments

data	data matrix
unc	uncertainty matrix (std devs for chi-squared of Log Likelihood)
ABins	a matrix of same size as A which gives relative probability of that element being non-zero
PBins	a matrix of same size as P which gives relative probability of that element being non-zero
GStoGenes	data.frame or list with gene sets
nFactor	number of patterns (basis vectors, metagenes)
simulation_id	name to attach to atoms files if created
nEquil	number of iterations for burn-in
nSample	number of iterations for sampling
nOutR	how often to print status into R by iterations
output_atomic	whether to write atom files (large)
fixedBinProbs	Boolean for using relative probabilities given in Abins and Pbins
fixedDomain	character to indicate whether A or P is domain for relative probabilities
sampleSnapshot	S
	Boolean to indicate whether to capture individual samples from Markov chain during sampling
numSnapshots	the number of individual samples to capture
plot	Boolean to indicate whether to produce output graphics
nPerm	number of permutations in gene set test
alphaA	sparsity parameter for A domain
nMaxA	PRESENTLY UNUSED, future = limit number of atoms
<pre>max_gibbmass_p</pre>	
	limit truncated normal to max size
alphaP	sparsity parameter for P domain
nMaxP	PRESENTLY UNUSED, future = limit number of atoms
<pre>max_gibbmass_p</pre>	
	limit truncated normal to max size

computeGeneGSProb CoGAPS gene membership statistic

Description

Computes the p-value for gene set membership using the CoGAPS-based statistics developed in Fertig et al. (2012). This statistic refines set membership for each candidate gene in a set specified in GSGenes by comparing the inferred activity of that gene to the average activity of the set. Specifically, we compute the following summary statistic for each gene g that is a candidate member of gene set G:

$$S_{g,G} = \left(\sum_{p} -\log(Pr_{G,p})Pw[p](A_{gp}/\sigma_{gp})\right) / \sum_{p} -\log(Pr_{G,p})Pw[p],$$

where p indexes each of the patterns, $Pr_{G,p}$ is the probability that gene set G is upregulated computed with calcCoGAPSStat, A_{gp} is the mean amplitude matrix from the GAPS matrix factorization, Pw[p] is a prior weighting for each pattern based upon the context to which that pattern relates, and σ_{gp} is the standard deviation of the amplitude matrix. P-values are formulated from a permutation test comparing the value of $S_{g,G}$ for genes in GSGenes relative to the value of $S_{g,G}$ numPerm random gene sets with the same number of targets.

Usage

computeGeneGSProb(Amean, Asd, GSGenes, Pw=rep(1,ncol(Amean)),numPerm=500,PwNull=F)

Arguments

Amean	Sampled mean value of the amplitude matrix A . row.names(Amean) must correspond to the gene names contained in GSGenes.
Asd	Sampled standard deviation of the amplitude matrix A.
GSGenes	Vector containing the prior estimate of members of the gene set of interest.
Pw	Vector containing the weight to assign each pattern in the gene statistic assumed to be computed from the association of the pattern with samples in a given context (optional: default=1 giving all patterns equal weight).
numPerm	Number of permuations used for the null distribution in the gene set statistic. (optional; default=500)
PwNull	Logical value. If TRUE, use pattern weighting in Pw when computing the null distribution for the statistic. If FALSE, do not use the pattern weighting so that the null is context independent. (optional; default=F)

Value

A vector of length GSGenes containing the p-values of set membership for each gene containined in the set specified in GSGenes.

Author(s)

Elana J. Fertig <ejfertig@jhmi.edu>

References

E.J. Fertig, A.V. Favorov, and M.F. Ochs (2013) Identifying context-specific transcription factor targets from prior knowledge and gene expression data. 2012 IEEE Nanobiosciences.

See Also

calcCoGAPSStat

Examples

Not run:

load the data

gapsMapRun

```
data('GIST_TS_20084')
data('TFGSList')
# define transcription factors of interest based on Ochs et al. (2009)
# run the GAPS matrix factorization
nIter <- 10000
results <- CoGAPS(GIST.D, GIST.S, tf2ugFC,</pre>
                 nFactor=5,
                 nEquil=nIter, nSample=nIter,
                 plot=FALSE)
# set membership statistics
permTFStats <- list()</pre>
for (tf in TFs) {
    genes <- levels(tf2ugFC[,tf])</pre>
    genes <- genes[2:length(genes)]</pre>
    permTFStats[[tf]] <- computeGeneTFProb(Amean = GISTResults$Amean,</pre>
                                         Asd = GistResults$Asd, genes)
}
```

End(Not run)

```
gapsMapRun
```

gapsMapRun calls the C++ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix; as opposed to gapsRun, this method takes an additional input specifying set patterns in the P matrix

Description

gapsMapRun calls the C++ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix; as opposed to gapsRun, this method takes an additional input specifying set patterns in the P matrix

Usage

```
gapsMapRun(D, S, FP, ABins = data.frame(), PBins = data.frame(),
nFactor = 5, simulation_id = "simulation", nEquil = 1000,
nSample = 1000, nOutR = 1000, output_atomic = FALSE,
fixedMatrix = "P", fixedBinProbs = FALSE, fixedDomain = "N",
sampleSnapshots = TRUE, numSnapshots = 100, alphaA = 0.01,
nMaxA = 1e+05, max_gibbmass_paraA = 100, alphaP = 0.01, nMaxP = 1e+05,
max_gibbmass_paraP = 100, seed = -1)
```

D	data matrix
S	uncertainty matrix (std devs for chi-squared of Log Likelihood)
FP	data.frame with rows giving fixed patterns for P

ABins	a matrix of same size as A which gives relative probability of that element being non-zero
PBins	a matrix of same size as P which gives relative probability of that element being non-zero
nFactor	number of patterns (basis vectors, metagenes), which must be greater than or equal to the number of rows of FP
simulation_id	name to attach to atoms files if created
nEquil	number of iterations for burn-in
nSample	number of iterations for sampling
nOutR	how often to print status into R by iterations
output_atomic	whether to write atom files (large)
fixedMatrix	character indicating whether A or P matrix has fixed columns or rows respectively
fixedBinProbs	Boolean for using relative probabilities given in Abins and Pbins
fixedDomain	character to indicate whether A or P is domain for relative probabilities
sampleSnapshot	S
	Boolean to indicate whether to capture individual samples from Markov chain during sampling
numSnapshots	the number of individual samples to capture
alphaA	sparsity parameter for A domain
nMaxA	PRESENTLY UNUSED, future = limit number of atoms
<pre>max_gibbmass_p</pre>	
	limit truncated normal to max size
alphaP	sparsity parameter for P domain
nMaxP	PRESENTLY UNUSED, future = limit number of atoms
<pre>max_gibbmass_p</pre>	
	limit truncated normal to max size
seed	Set seed for reproducibility. Positive values provide initial seed, negative values just use the time.

gapsMapTestRun	gapsMapTestRun calls the C++ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the
	data matrix; as opposed to gapsRun, this method takes an additional input specifying set patterns in the P matrix

Description

gapsMapTestRun calls the C++ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix; as opposed to gapsRun, this method takes an additional input specifying set patterns in the P matrix

gapsMapTestRun

Usage

```
gapsMapTestRun(D, S, FP, ABins = data.frame(), PBins = data.frame(),
nFactor = 7, simulation_id = "simulation", nEquil = 1000,
nSample = 1000, nOutR = 1000, output_atomic = FALSE,
fixedMatrix = "P", fixedBinProbs = FALSE, fixedDomain = "N",
alphaA = 0.01, nMaxA = 1e+05, max_gibbmass_paraA = 100, alphaP = 0.01,
nMaxP = 1e+05, max_gibbmass_paraP = 100)
```

D	data matrix
S	uncertainty matrix (std devs for chi-squared of Log Likelihood)
FP	data.frame with rows giving fixed patterns for P
ABins	a matrix of same size as A which gives relative probability of that element being non-zero
PBins	a matrix of same size as P which gives relative probability of that element being non-zero
nFactor	number of patterns (basis vectors, metagenes), which must be greater than or equal to the number of rows of FP
simulation_id	name to attach to atoms files if created
nEquil	number of iterations for burn-in
nSample	number of iterations for sampling
nOutR	how often to print status into R by iterations
output_atomic	whether to write atom files (large)
fixedMatrix	character indicating whether A or P matrix has fixed columns or rows respectively
fixedBinProbs	Boolean for using relative probabilities given in Abins and Pbins
fixedDomain	character to indicate whether A or P is domain for relative probabilities
alphaA	sparsity parameter for A domain
nMaxA	PRESENTLY UNUSED, future = limit number of atoms
max_gibbmass_paraA	
	limit truncated normal to max size
alphaP	sparsity parameter for P domain
nMaxP	PRESENTLY UNUSED, future = limit number of atoms
<pre>max_gibbmass_pa</pre>	araP limit truncated normal to max size

gapsRun

gapsRun calls the C++ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix

Description

gapsRun calls the C++ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix

Usage

```
gapsRun(D, S, ABins = data.frame(), PBins = data.frame(), nFactor = 7,
simulation_id = "simulation", nEquil = 1000, nSample = 1000,
nOutR = 1000, output_atomic = FALSE, fixedBinProbs = FALSE,
fixedDomain = "N", sampleSnapshots = TRUE, numSnapshots = 100,
alphaA = 0.01, nMaxA = 1e+05, max_gibbmass_paraA = 100, alphaP = 0.01,
nMaxP = 1e+05, max_gibbmass_paraP = 100, seed = -1)
```

D	data matrix
S	uncertainty matrix (std devs for chi-squared of Log Likelihood)
ABins	a matrix of same size as A which gives relative probability of that element being non-zero
PBins	a matrix of same size as P which gives relative probability of that element being non-zero
nFactor	number of patterns (basis vectors, metagenes), which must be greater than or equal to the number of rows of FP
simulation_id	name to attach to atoms files if created
nEquil	number of iterations for burn-in
nSample	number of iterations for sampling
nOutR	how often to print status into R by iterations
output_atomic	whether to write atom files (large)
fixedBinProbs	Boolean for using relative probabilities given in Abins and Pbins
fixedDomain	character to indicate whether A or P is domain for relative probabilities
sampleSnapshots	
	Boolean to indicate whether to capture individual samples from Markov chain during sampling
numSnapshots	the number of individual samples to capture
alphaA	sparsity parameter for A domain
nMaxA	PRESENTLY UNUSED, future = limit number of atoms
max_gibbmass_paraA	
	limit truncated normal to max size
alphaP	sparsity parameter for P domain
nMaxP	PRESENTLY UNUSED, future = limit number of atoms

gapsTestRun

<pre>max_gibbmass</pre>	_paraP
	limit truncated normal to max size
seed	Set seed for reproducibility. Positive values provide initial seed, negative values just use the time.
gapsTestRun	gapsTestRun calls the C ++ $MCMC$ code and performs Bayesian ma- trix factorization returning the two matrices that reconstruct the data matrix

Description

gapsTestRun calls the C++ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix

Usage

```
gapsTestRun(D, S, ABins = data.frame(), PBins = data.frame(), nFactor = 7,
simulation_id = "simulation", nEquil = 1000, nSample = 1000,
nOutR = 1000, output_atomic = FALSE, fixedBinProbs = FALSE,
fixedDomain = "N", alphaA = 0.01, nMaxA = 1e+05,
max_gibbmass_paraA = 100, alphaP = 0.01, nMaxP = 1e+05,
max_gibbmass_paraP = 100)
```

D	data matrix
S	uncertainty matrix (std devs for chi-squared of Log Likelihood)
ABins	a matrix of same size as A which gives relative probability of that element being non-zero
PBins	a matrix of same size as P which gives relative probability of that element being non-zero
nFactor	number of patterns (basis vectors, metagenes), which must be greater than or equal to the number of rows of FP
simulation_id	name to attach to atoms files if created
nEquil	number of iterations for burn-in
nSample	number of iterations for sampling
nOutR	how often to print status into R by iterations
output_atomic	whether to write atom files (large)
fixedBinProbs	Boolean for using relative probabilities given in Abins and Pbins
fixedDomain	character to indicate whether A or P is domain for relative probabilities
alphaA	sparsity parameter for A domain
nMaxA	PRESENTLY UNUSED, future = limit number of atoms
max_gibbmass_paraA	
	limit truncated normal to max size
alphaP	sparsity parameter for P domain
nMaxP	PRESENTLY UNUSED, future = limit number of atoms
<pre>max_gibbmass_pa</pre>	
	limit truncated normal to max size

GIST.D

Description

Gene expression data from gastrointestinal stromal tumor cell lines treated with Gleevec.

Usage

GIST_TS_20084

Format

Matrix with 1363 genes by 9 samples of mean gene expression data.

References

Ochs, M., Rink, L., Tarn, C., Mburu, S., Taguchi, T., Eisenberg, B., and Godwin, A. (2009). Detection of treatment-induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data. Cancer Res, 69(23), 9125-9132.

GIST.S

Sample GIST gene expression data from Ochs et al. (2009).

Description

Standard deviation of gene expression data from gastrointestinal stromal tumor cell lines treated with Gleevec.

Usage

GIST_TS_20084

Format

Matrix with 1363 genes by 9 samples containing standard deviation (GIST.S) of the gene expression data.

References

Ochs, M., Rink, L., Tarn, C., Mburu, S., Taguchi, T., Eisenberg, B., and Godwin, A. (2009). Detection of treatment-induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data. Cancer Res, 69(23), 9125-9132.

GSets

Description

Simulated gene sets used to generate amplitude matrix in SimpSim. A and corresponding data SimpSim. D.

Usage

GSets

Format

A list containing names of genes in two simulated gene sets used to generate the data in SimpSim.D.

plotAtoms	plotAtoms a simple plot of the number of atoms from one of the vec-
	tors returned with atom numbers

Description

plotAtoms a simple plot of the number of atoms from one of the vectors returned with atom numbers

Usage

plotAtoms(gapsRes, type = "sampA")

Arguments

gapsRes	the list resulting from applying GAPS
type	the atoms to plot, values are "sampA", "sampP", "equilA", or "equilP" to plot sampling or equilibration teop atom numbers

plotDiag	plotDiag plots a series of diagnostic plots
----------	---

Description

plotDiag plots a series of diagnostic plots

Usage

```
plotDiag(gapsRes)
```

Arguments

gapsRes list returned by gapsRun, gapsMapRun, or CoGAPS

plotGAPS

Description

plotGAPS plots the output A and P matrices as a heatmap and line plot respectively

Usage

```
plotGAPS(A, P, outputPDF = "")
```

Arguments

A	the mean A matrix
Р	the mean P matrix
outputPDF	optional root name for PDF output, if not specified, output goes to screen

```
plotP
```

plotP plots the P matrix in a line plot with error bars

Description

plotP plots the P matrix in a line plot with error bars

Usage

plotP(PMean_Mat, P_SD)

Arguments

PMean_Mat	matrix of mean values of P
P_SD	matrix of standard deviation values of P

plotSmoothPatterns	plotSmoothPatterns plots the output A and P matrices as a heatmap
	and line plot respectively

Description

plotSmoothPatterns plots the output A and P matrices as a heatmap and line plot respectively

Usage

```
plotSmoothPatterns(P, x = NULL, breaks = NULL, breakStyle = T,
orderP = !all(is.null(x)), plotPTS = F, pointCol = "black",
lineCol = "grey", add = F, ...)
```

Arguments

Р	the mean A matrix
x	optional variables
breaks	breaks in plots
breakStyle	style of breaks
orderP	whether to order patterns
plotPTS	whether to plot points on lines
pointCol	color of points
lineCol	color of line
add	logical specifying if bars should be added to an already existing plot; defaults to 'FALSE'.
	arguments to be passed to/from other methods. For the default method these can include further arguments (such as 'axes', 'asp' and 'main') and graphical parameters (see 'par') which are passed to 'plot.window()', 'title()' and 'axis'.

reorderByPatternMatch reorderByPatternMatch plots the output A and P matrices as a heatmap and line plot respectively

Description

reorderByPatternMatch plots the output A and P matrices as a heatmap and line plot respectively

Usage

reorderByPatternMatch(P, matchTo)

Arguments

Р	matrix to be matched
matchTo	matrix to match P to

residuals

residuals calculate residuals and produce heatmap

Description

residuals calculate residuals and produce heatmap

Usage

residuals(AMean_Mat, PMean_Mat, D, S)

AMean_Mat	matrix of mean values for A from GAPS
PMean_Mat	matrix of mean values for P from GAPS
D	original data matrix run through GAPS
S	original standard deviation matrix run through GAPS

SimpSim.A

Description

True amplitude matrix generated from gene sets in GSets used to generate simulated data in SimpSim. D.

Usage

SimpSim.A

Format

Matrix with 30 genes by 3 patterns of true amplitude used to generate simulated data.

SimpSim.D Simulated data

Description

Simulated gene expression data from true patterns in SimpSim.P and amplitude in SimpSim.A.

Usage

SimpSim.D

Format

Matrix with 30 genes by 20 samples of simulated gene expression data.

SimpSim.P	Simulated data	
-----------	----------------	--

Description

True pattern matrix used to generate simulated data in SimpSim.D.

Usage

SimpSim.P

Format

Matrix with 3 patterns by 20 samples of true patterns used to generate simulated data.

SimpSim.S

Description

Standard deviation of simulated gene expression data from true patterns in SimpSim.P and amplitude in SimpSim.A.

Usage

SimpSim.S

Format

Matrix with 30 genes by 20 samples of containing standard deviation of simulated gene expression data.

tf2ugFC

Gene sets defined by transcription factors defined from TRANSFAC.

Description

List of genes contained in gastrointestinal stromal tumor cell line measurements that are regulated by transcription factors in the TRANSFAC database. Used for the gene set analysis in Ochs et al. (2009).

Usage

TFGSList

Format

Data.frame containing genes (rows) regulated by each transcription factor (columns).

References

Ochs, M., Rink, L., Tarn, C., Mburu, S., Taguchi, T., Eisenberg, B., and Godwin, A. (2009). Detection of treatment-induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data. Cancer Res, 69(23), 9125-9132.

Index

*Topic datasets GIST.D, 12 GIST.S, 12 GSets, 13 SimpSim.A, 16 SimpSim.D, 16 SimpSim.P, 16 SimpSim.S, 17 tf2ugFC, 17 *Topic misc computeGeneGSProb, 5binaryA,2 calcCoGAPSStat, 3, 6 calcGeneGSStat, 3 calcZ, 4 CoGAPS, 4 CoGAPS-package, 2 computeGeneGSProb, 5gapsMapRun, 7 ${\tt gapsMapTestRun, 8}$ gapsRun, 10 gapsTestRun, 11 geneGSProb (computeGeneGSProb), 5 GIST.D, 12 GIST.S, 12 GSets, 13, 16 list, 13 plotAtoms, 13 plotDiag, 13 plotGAPS, 14 plotP, 14 plotSmoothPatterns, 14 $\verb|reorderByPatternMatch, 15|$ residuals, 15 SimpSim.A, 13, 16, 16, 17 SimpSim.D, *13*, *16*, 16 SimpSim.P, *16*, *16*, *17* SimpSim.S, 17 tf2ugFC, 17