Package 'Anaquin'

April 14, 2017

Type Package

Title Statistical analysis of sequins

Version 1.0.0

Date 2016-10-05

Author Ted Wong

Maintainer Ted Wong <t.wong@garvan.org.au>

Description The project is intended to support the use of sequins (synthetic sequencing spike-in controls) owned and made available by the Garvan Institute of Medical Research. The goal is to provide a standard open source library for quantitative analysis, modelling and visualization of spike-in controls.

License BSD_3_clause + file LICENSE

VignetteBuilder knitr

URL www.sequin.xyz

Depends R (>= 3.3)

Imports ggplot2, ROCR, knitr, qvalue, locfit, methods, stats, utils,

plyr

Suggests RUnit, rmarkdown

BugReports https://github.com/student-t/RAnaquin/issues

LazyData true

biocViews DifferentialExpression, Preprocessing, RNASeq, GeneExpression, Software

NeedsCompilation no

R topics documented:

lysis
IquinData
ıt
.1
sured
tureA
tureB
tureF
Linear

analysis

28

plotLODR	
plotLogistic	
plotROC	
pval	
qval	
ratio	
RnaQuin.gen2iso	
RnaQuin.genes	
RnaQuin.isoforms	
score	
seqs	
std	
UserGuideData_5.4.5.1	
UserGuideData_5.4.6.3	
UserGuideData_5.6.3	

Index

analysis

Return type of analysis

Description

Return type of analysis from data set created by AnaquinData

Usage

```
analysis(object, ...)
## S4 method for signature 'AnaquinData'
analysis(object)
```

Arguments

	Not used
object	S4 object created by AnaquinData

Details

This function takes an AnaquinData object and return the type of analysis.

Value

Type of analysis, eg: PlotLinear

AnaquinData

Examples

AnaquinData

Create Anaquin dataset

Description

Create an Anaquin dataset. The resulting S4 object is required for every Anaquin analysis.

Usage

AnaquinData(analysis, ...)

Arguments

analysis	Type of analysis to be performed (eg. 'PlotLinear', 'PlotLogistic', 'PlotROC', 'PlotLODR'.)
	Analysis specific data inputs. The function requires the following mandatory data inputs:

analysis	Type of analysis
seqs	Sequin names
	Analysis specific data inputs

analysis indicates the type of the analysis. The current release supports the following analysis:

Linear model with sequins
GLM logistic model with sequins
ROC analysis with sequins
LODR (LOESS) analysis with sequins

seqs gives the sequin names. The function will give an error message unless both analysis and seqs are given.

The function accepts the following optional data inputs:

std	Standard deviation
pval	P-value probability
qval	Q-value probability
ratio	Expected sequin ratio
input	Input concentration (attomol/ul)
measured	Measured variable (eg: FPKM)
label	Classified labels (eg: 'TP', 'FP')
score	Value used for ranking sequins

Details

Create an Anaquin dataset. The resulting R-object is required for every Anaquin analysis.

Value

An S4 object of class AnaquinData.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

```
#
# Example 1: Create Anaquin dataset for PlotLogistic
#
data(UserGuideData_5.4.5.1)
title <- 'Assembly Plot'</pre>
xlab <- 'Input Concentration (log2)'</pre>
ylab <- 'Sensitivity'</pre>
# Sequin names
seqs <- row.names(UserGuideData_5.4.5.1)</pre>
# Input concentration
input <- log2(UserGuideData_5.4.5.1$InputConcent)</pre>
# Measured sensitivity
measured <- UserGuideData_5.4.5.1$Sn</pre>
anaquin <- AnaquinData(analysis='PlotLogistic',</pre>
                            seqs=seqs,
                            input=input,
                        measured=measured)
plotLogistic(anaquin, title=title, xlab=xlab, ylab=ylab, showLOA=TRUE)
#
# Example 2: Create Anaquin dataset for PlotLinear
#
data(UserGuideData_5.4.6.3)
```

AnaquinData

```
title <- 'Gene Expression'</pre>
xlab <- 'Input Concentration (log2)'</pre>
ylab <- 'FPKM (log2)'
# Sequin names
seqs <- row.names(UserGuideData_5.4.6.3)</pre>
# Input concentration
input <- log2(UserGuideData_5.4.6.3$InputConcent)</pre>
# Measured FPKKM
measured <- log2(UserGuideData_5.4.6.3[,2:4])</pre>
anaquin <- AnaquinData(analysis='PlotLinear',</pre>
                             seqs=seqs,
                            input=input,
                         measured=measured)
plotLinear(anaquin, title=title, xlab=xlab, ylab=ylab, showLOQ=TRUE)
#
# Example 3: Create Anaquin dataset for plotROC
#
data(UserGuideData_5.6.3)
# Sequin names
seqs <- row.names(UserGuideData_5.6.3)</pre>
# Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC</pre>
# How ROC points are ranked (scoring function)
score <- 1-UserGuideData_5.6.3$Pval</pre>
# Classified labels (TP/FP)
label <- UserGuideData_5.6.3$Label</pre>
anaquin <- AnaquinData(analysis='PlotROC',</pre>
                             seqs=seqs,
                            ratio=ratio,
                            score=score,
                            label=label)
plotROC(anaquin, title='ROC Plot', refRats=0)
#
# Example 4: Create Anaquin dataset for plotLODR
#
data(UserGuideData_5.6.3)
xlab <- 'Average Counts'</pre>
ylab <- 'P-value'
title <- 'LODR Curves'</pre>
# Sequin names
```

```
seqs <- row.names(UserGuideData_5.6.3)</pre>
# Measured average mean
measured <- UserGuideData_5.6.3$Mean</pre>
# Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC</pre>
# P-value
pval <- UserGuideData_5.6.3$Pval</pre>
# Q-value
qval <- UserGuideData_5.6.3$Qval</pre>
anaquin <- AnaquinData(analysis='PlotLODR',</pre>
                             seqs=seqs,
                         measured=measured,
                            ratio=ratio,
                             pval=pval,
                             qval=qval)
plotLODR(anaquin, xlab=xlab, ylab=ylab, title=title, FDR=0.1)
```

input

Return input concentration

Description

Return input concentarion from data set created by AnaquinData.

Usage

```
input(object, ...)
## S4 method for signature 'AnaquinData'
input(object)
```

Arguments

object	S4 object created by AnaquinData
	Not used

Details

This function takes an AnaquinData object and return the input concentration in the data set.

Value

List of input concentration for each sequin. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>

label

Examples

label

Return classified labels

Description

Return classified labels from data set created by AnaquinData.

Usage

```
label(object, ...)
## S4 method for signature 'AnaquinData'
label(object)
```

Arguments

object	S4 object created by AnaquinData
	Not used

Details

This function takes an AnaquinData object and return the classified labels.

Value

List of classified labels for each sequin. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>

measured

Examples

measured

Return measured abundance

Description

Return measured abundance from data set created by AnaquinData.

Usage

```
measured(object, ...)
## S4 method for signature 'AnaquinData'
measured(object)
```

Arguments

object	S4 object created by AnaquinData
	Not used

Details

This function takes an AnaquinData object and return the measured abundance.

Value

List of measured abundance for each sequin. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>

mixtureA

Examples

mixtureA

RnaQuin mixture A

Description

RnaQuin sequins are combined together across a range of concentration to formulate a mixture for emulating expression level. The concentration of each sequin within a mixture is specificed in a CSV mixture file.

This is a staggered mixture (A) for RnaQuin, user can also download the file directly from s3. amazonaws.com/sequins/

Usage

data(mixtureA)

Format

Data frame for each RnaQuin sequin:

- Length: Length in nucleotide bases
- MXA: Input concentration in attomol/ul

Value

A data frame with columns defined in Format.

mixtureB

Description

RnaQuin sequins are combined together across a range of concentration to formulate a mixture for emulating expression level. The concentration of each sequin within a mixture is specificed in a CSV mixture file.

This is a staggered mixture (B) for RnaQuin, user can also download the file directly from s3. amazonaws.com/sequins/

Usage

data(mixtureB)

Format

Data frame for each RnaQuin sequin:

- Length: Length in nucleotide bases
- MXB: Input concentration in attomol/ul

Value

A data frame with columns defined in Format.

mixtureF RnaQuin mixture F

Description

RnaQuin sequins are combined together across a range of concentration to formulate a mixture for emulating expression level. The concentration of each sequin within a mixture is specificed in a CSV mixture file.

This is a flat mixture (F) for RnaQuin, user can also download the file directly from s3.amazonaws.com/sequins/mixture

Usage

data(mixtureF)

Format

Data frame for each RnaQuin sequin:

- Length: Length in nucleotide bases
- MXF: Input concentration in attomol/ul

Value

A data frame with columns defined in Format.

plotLinear

Description

Create a scatter plot with expected abundance on the x-axis, and measured abundance on the y-axis.

Usage

plotLinear(data, title, xlab, ylab, showSD, showLOQ, xBreaks, yBreaks, showAxis, ...)

Arguments

data	Anaquin dataset created by AnaquinData. It needs to define information in Details .
title	Label of the plot.
xlab	Label for the x-axis
ylab	Label for the y-axis
xBreaks	Breaks for the x-axis
yBreaks	Breaks for the y-axis
showSD	Show standard deviation bars vertically? Default to TRUE.
showLOQ	Show limit-of-quantification? Default to TRUE.
showAxis	Show x-axis and y-axis? Default to TRUE.
	Reserved for internal testing

Details

plotLinear requires the following data inputs from AnaquinData.

seqs	List of sequin identifiers (eg. R2_11_2).
input	Input concentration of sequins in attomol/ul.
measured	Measured abundance of sequins (typically FPKM).

The plotLinear function plots a scatter plot with expected abundance on the x-axis, and measured abundance on the y-axis. The expected abundance is typically the input concentration of sequins in the mixture, although other measures (such as expected allele frequency) are also possible. The function builds a linear regression between the two variables, and reports associated statistics (R2, correlation and regression parameters) on the plot.

The function also estimates limit-of-quantification (LOQ) breakpoint, and reports it on the plot if found. LOQ is defined as the lowest empirical detection limit, a threshold value beyond which stochastic behavior occur. LOQ is estimated by fitting segmented linear regression with two segments on the entire data set, while minimizing the total sum of squares of the differences between the variables.

Value

The functions does not return anything but it prints a scatter plot.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

library(Anaquin)

```
#
# Data set generated by Cufflinks and Anaquin. described in Section 5.4.6.3 of
# the user guide.
#
data(UserGuideData_5.4.6.3)
title <- 'Gene Expression'</pre>
xlab <- 'Input Concentration (log2)'</pre>
ylab <- 'FPKM (log2)'
# Sequin names
seqs <- row.names(UserGuideData_5.4.6.3)</pre>
# Input concentration
input <- log2(UserGuideData_5.4.6.3$InputConcent)</pre>
# Measured FPKM
measured <- log2(UserGuideData_5.4.6.3[,2:4])</pre>
anaquin <- AnaquinData(analysis='PlotLinear',</pre>
                             seqs=seqs,
                           input=input,
                        measured=measured)
plotLinear(anaquin, title=title, xlab=xlab, ylab=ylab, showLOQ=TRUE)
```

plotLODR

Create Limit-of-Detection Ratio (LODR) plot

Description

Create a Limit-of-Detection Ratio (LODR) plot between measured abundance (x-axis) and p-value probability (y-axis).

Usage

```
plotLODR(data, FDR, title, xlab, ylab, legTitle, showConf, ...)
```

Arguments

data	Anaquin dataset created by AnaquinData. It needs to define information in Details .
FDR	Chosen false-discovery-rate. Default to NULL.
title	Label of the plot. Default to NULL.
xlab	Label for the x-axis. Default to NULL.

plotLODR

ylab	Label for the y-axis. Default to NULL.
legTitle	Title for the legend. Default to 'Ratio'.
showConf	Show confidence interval? Default to FALSE.
	Reserved for internal testing

Details

plotLODR requires the following data inputs from AnaquinData.

seqs	List of sequin identifiers (eg. R2_11_2).
measured	Measured abundance (eg: average counts, DP field in a VCF file etc)
ratio	Expected ratio; eg: expected log-fold ratio or expected allele frequency etc
pval	P-value probability

Create a Limit-of-Detection Ratio (LODR) plot between measured abundance (x-axis) and p-value probability (y-axis).

The LODR plot indicates the confidence in measurement relative to the magnitude of the measurement. For example, p-value should converge to zero as the sequencing depth increases.

The function also fits non-parametric curves for each sequin ratio group. The curves are modelled with local regression analysis, and are colored by the sequin group.

plotLODR is an amendment from the LODR code in the ERCC dashboard R-package. Further details on the statistical algorithm is available in the ERCC documentation at https://bioconductor.org/packages/release/bioc

Value

The functions does not return anything but it prints a LODR plot.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

```
library(Anaquin)
```

```
#
# Data set generated by DESeq2 and Anaquin. described in Section 5.6.3.3 of
# the user guide.
#
data(UserGuideData_5.6.3)
xlab <- 'Average Counts'
ylab <- 'P-value'
title <- 'LODR Curves'
# Sequin names
seqs <- row.names(UserGuideData_5.6.3)
# Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC
# Measured average abundance</pre>
```

plotLogistic Plot logistic model for sequins

Description

Create a scatter plot with input concentration on the x-axis, and measured proportion on the y-axis.

Usage

```
plotLogistic(data, title, xlab, ylab, showLOA, threshold, ...)
```

Arguments

data	Anaquin dataset created by AnaquinData. It needs to define information in Details .
title	Title of the plot. (Default to NULL).
xlab	Label for the x-axis. (Default to NULL).
ylab	Label for the y-axis. (Default to NULL).
showL0A	Display limit-of-assembly. (Default to TRUE).
threshold	Threshold required for limit-of-assembly (LOA)
	Reserved for internal testing

Details

plotLogistic requires the following data inputs from AnaquinData.

seqs	List of sequin identifiers (eg. R2_11_2).
input	Input concentration of sequins in attomol/ul.
measured	Measured variable (eg: sensitivity).

The plotLogistic function creates a scatter plot with input concentration on the x-axis, and measured proportion on the y-axis. Common measured statistics include p-value, percentage and sensi-

plotROC

tivity. The plot builds a GLM logistic regression model between the two variables.

The function also estimates limit-of-assembly (LOA) breakpoint, and reports it on the plot if found. The LOA breakpoint is an empirical detection limit, and also the abundance whereby the fitted logistic curve exceeds a user-defined threshold.

Value

The functions does not return anything but it prints a scatter plot with a fitted logistic function.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

```
library(Anaquin)
#
# Data set generated by Cufflinks and Anaquin. described in Section 5.4.5.1 of
# the user guide.
#
data(UserGuideData_5.4.5.1)
title <- 'Assembly Plot'</pre>
xlab <- 'Input Concentration (log2)'</pre>
ylab <- 'Sensitivity'</pre>
# Sequin names
seqs <- row.names(UserGuideData_5.4.5.1)</pre>
# Input concentration
input <- log2(UserGuideData_5.4.5.1$InputConcent)</pre>
# Measured sensitivity
measured <- UserGuideData_5.4.5.1$Sn</pre>
anaquin <- AnaquinData(analysis='PlotLogistic',</pre>
                             seqs=seqs,
                            input=input,
                         measured=measured)
plotLogistic(anaquin, title=title, xlab=xlab, ylab=ylab, showLOA=TRUE)
```

```
plotROC
```

Create ROC plot

Description

Create a receiver operating characteristic (ROC) plot at various threshold settings.

Usage

```
plotROC(data, refRats, title, legTitle, ...)
```

plotROC

Arguments

data	Anaquin dataset created by AnaquinData. Details .	It needs to define information in
refRats	Reference ratio groups	
title	Label of the plot. Default to NULL.	
legTitle	Title of the legend. Default to Ratio.	
	Reserved for internal testing	

Details

plotROC requires the following data inputs from AnaquinData.

seqs	List of sequin identifiers (eg. R2_11_2)
label	Classified labels ('TP' or 'FP')
score	How the ROC points should be ranked
ratio	Expected ratio; eg: expected log-fold ratio

Create a receiver operating characteristic (ROC) plot at various threshold settings. The true positive rate (TPR) is plotted on the x-axis and false positive rate (FPR) is plotted on the y-axis.

The function requires a scoring threshold function, and illustrates the performance of the data as the threshold is varied. Common scoring threshold include p-value, sequencing depth and allele frequency, etc.

ROC plot is a useful diagnostic performance tool; it provides tools to select possibly optimal models and to discard suboptimal ones. In particularly, the AUC statistics indicate the performance of the model relatively to a random experiment (AUC 0.5).

Value

The functions does not return anything but it prints a ROC plot and it's AUC statistics.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

library(Anaquin)

#

```
# Data set generated by DESeq2 and Anaquin. described in Section 5.6.3.3 of
```

```
# the user guide.
#
```

```
data(UserGuideData_5.6.3)
```

Sequin names
seqs <- row.names(UserGuideData_5.6.3)</pre>

Expected log-fold
ratio <- UserGuideData_5.6.3\$ExpLFC</pre>

```
\ensuremath{\texttt{\#}} How the ROC curves are ranked
```

plotROC(anaquin, title='ROC Plot', refRats=0)

pval

Return p-value probability

Description

Return p-value probability from data set created by AnaquinData.

Usage

```
pval(object, ...)
## S4 method for signature 'AnaquinData'
pval(object)
```

Arguments

object	S4 object created by AnaquinData
	Not used

Details

This function takes an AnaquinData object and return it's p-value probability.

Value

List of p-value proability for each sequin. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

```
data(UserGuideData_5.6.3)
```

Sequin names
seqs <- row.names(UserGuideData_5.6.3)</pre>

Expected log-fold
ratio <- UserGuideData_5.6.3\$ExpLFC</pre>

```
# Measured average abundance
measured <- UserGuideData_5.6.3$Mean</pre>
# P-value
pv <- UserGuideData_5.6.3$Pval</pre>
# Q-value
qv <- UserGuideData_5.6.3$Qval</pre>
anaquin <- AnaquinData(analysis='PlotLODR',</pre>
                              seqs=seqs,
                        measured=measured,
                           ratio=ratio,
                            pval=pv,
                            qval=qv)
```

pval(anaquin)

qval

Return q-value probability

Description

Return q-value probability from data set created by AnaquinData.

Usage

```
qval(object, ...)
## S4 method for signature 'AnaquinData'
qval(object)
```

Arguments

object	S4 object created by AnaquinData
	Not used

Details

This function takes an AnaquinData object and return it's q-value probability.

Value

List of q-value proability for each sequin. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>

ratio

Examples

qval(anaquin)

ratio Return ratio

Description

Return ratio from data set created by AnaquinData.

pval=pv, qval=qv)

Usage

```
ratio(object, ...)
## S4 method for signature 'AnaquinData'
ratio(object)
```

Arguments

object	S4 object created by AnaquinData
	Not used

Details

This function takes an AnaquinData data set object and return its sequin ratio.

Value

List of sequin ratio for each sequin. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

data(UserGuideData_5.6.3)

```
# Sequin names
seqs <- row.names(UserGuideData_5.6.3)</pre>
```

```
# Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC</pre>
```

```
# How the ROC curves are ranked
score <- 1-UserGuideData_5.6.3$Pval</pre>
```

```
# Classified labels (TP/FP)
label <- UserGuideData_5.6.3$Label</pre>
```

ratio(anaquin)

RnaQuin.gen2iso Convert sequin isoforms to genes

Description

Convert RnaQuin sequin isoforms to genes.

Usage

```
RnaQuin.gen2iso(names)
```

Arguments

names Sequin isoform names

Details

For example:

R1_11_1 to R1_11 R1_11_2 to R1_11 R1_12_2 to R1_12

Value

A list of RnaQuin sequin genes.

Author(s)

Ted Wong <t.wong@garvan.org.au>

RnaQuin.genes

Examples

```
data(UserGuideData_5.4.5.1)
RnaQuin.gen2iso(row.names(UserGuideData_5.4.5.1))
```

RnaQuin.genes Return RnaQuin genes

Description

Return RnaQuin genes from data set created by AnaquinData.

Usage

```
RnaQuin.genes(object, ...)
## S4 method for signature 'AnaquinData'
RnaQuin.genes(object)
```

Arguments

object	S4 object created by AnaquinData
	Not used

Details

This function takes an AnaquinData object and return the RnaQuin genes identifiers.

Value

Data frame with the genes and their input concentration. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

library(Anaquin)

```
#
# Data set generated by Cufflinks and Anaquin. described in Section 5.4.5.1 of
# the user guide.
#
data(UserGuideData_5.4.5.1)
data <- UserGuideData_5.4.5.1
# Sequin names
seqs <- row.names(data)
# Input concentration
input <- log2(data$InputConcent)
# Measured sensitivity</pre>
```

RnaQuin.genes(anaquin)

RnaQuin.isoforms Return RnaQuin isoforms

Description

Return RnaQuin isoforms from data set created by AnaquinData.

Usage

```
RnaQuin.isoforms(object, ...)
## S4 method for signature 'AnaquinData'
RnaQuin.isoforms(object)
```

Arguments

object	S4 object created by AnaquinData
	Not used

Details

This function takes an AnaquinData object and return the RnaQuin isoform identifiers.

Value

Data frame with the isoforms and their input concentration. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

library(Anaquin)

```
#
# Data set generated by Cufflinks and Anaquin. described in Section 5.4.5.1 of
# the user guide.
#
data(UserGuideData_5.4.5.1)
data <- UserGuideData_5.4.5.1
# Sequin names
seqs <- row.names(data)</pre>
```

```
22
```

score

score

Return scores

Description

Return scores from data set created by AnaquinData.

Usage

```
score(object, ...)
## S4 method for signature 'AnaquinData'
score(object)
```

Arguments

object	S4 object created by AnaquinData
	Not used

Details

This function takes an AnaquinData object and return the ROC ranking scores.

Value

List of scores for each sequin. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

```
data(UserGuideData_5.6.3)
```

```
# Sequin names
seqs <- row.names(UserGuideData_5.6.3)</pre>
```

```
# Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC</pre>
```

```
# How the ROC curves are ranked
score <- 1-UserGuideData_5.6.3$Pval</pre>
```

```
# Classified labels (TP/FP)
label <- UserGuideData_5.6.3$Label</pre>
```

score(anaquin)

```
seqs
```

Return sequin names

Description

Return sequin names from AnaquinData data set.

Usage

```
seqs(object, ...)
## S4 method for signature 'AnaquinData'
seqs(object)
```

Arguments

object	S4 object created by AnaquinData
	Not used

Details

This function takes an AnaquinData object and return the sequin names in the data set.

Value

List of sequin names.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

```
data(UserGuideData_5.4.6.3)
```

```
# Sequin names
names <- row.names(UserGuideData_5.4.6.3)</pre>
```

```
# Input concentration
input <- log2(UserGuideData_5.4.6.3$InputConcent)</pre>
```

```
# Measured FPKM
measured <- log2(UserGuideData_5.4.6.3[,2:4])</pre>
```

seqs(anaquin)

std

std

Return standard deviation

Description

Return standard deviation from AnaquinData data set.

Usage

```
std(object, ...)
## S4 method for signature 'AnaquinData'
std(object)
```

Arguments

object	S4 object created by AnaquinData
	Not used

Details

This function takes an AnaquinData object and return the standard deviation in the data set.

Value

List of standard deviation for each sequin. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

```
data(UserGuideData_5.6.3)
```

```
# Sequin names
names <- row.names(UserGuideData_5.6.3)</pre>
```

```
# Expected LFC
input <- log2(UserGuideData_5.6.3$ExpLFC)</pre>
```

```
# Measured LFC
measured <- log2(UserGuideData_5.6.3$0bsLFC)</pre>
```

```
# Standard deviation
sd <- UserGuideData_5.6.3$SD</pre>
```

measured=measured)

std(anaquin)

UserGuideData_5.4.5.1 Section 5.4.5.1 Assembly Dataset

Description

Assembly sensitivity estimated by Cuffcompare. Section 5.4.5.1 of the Anaquin user guide has details on the data set.

Usage

```
data(UserGuideData_5.4.5.1)
```

Format

Data frame:

- InputConcent: Input concentration in attomol/ul
- Sn: Measured sensitivity

Value

Data frame with columns defined in Format.

Source

S.A Hardwick. Spliced synthetic genes as internal controls in RNA sequencing experiments. Nature Methods, 2016.

UserGuideData_5.4.6.3 Gene expression (RnaQuin)

Description

Gene expression estimated by Cufflinks. Section 5.4.6.3 of the Anaquin user guide has details on the data set.

Usage

data(UserGuideData_5.4.6.3)

Format

Data frame:

- InputConcent: Input concentration in attomol/ul
- Observed1: Measured FPKM for the first replicate
- Observed2: Measured FPKM for the second replicate
- Observed3: Measured FPKM for the third replicate

Value

Data frame with columns defined in Format.

Source

S.A Hardwick. Spliced synthetic genes as internal controls in RNA sequencing experiments. Nature Methods, 2016.

UserGuideData_5.6.3 Differential expression (RnaQuin)

Description

Differential gene expression estimated by DESeq2. Section 5.6.3 has details on the data set.

Usage

```
data(UserGuideData_5.6.3)
```

Format

Data frame:

- ExpLFC: Expected log-fold change
- ObsLFC: Observed log-fold change
- SD: Standard deviation of the measurment
- Pval: P-value probability
- Qval: Q-value probability
- Mean: Average counts across the samples
- Label: Average counts across the samples

Value

Data frame with columns defined in Format.

Source

S.A Hardwick. Spliced synthetic genes as internal controls in RNA sequencing experiments. Nature Methods, 2016.

Index

analysis, 2 analysis,AnaquinData-method(analysis), 2 AnaquinData, 3 input, 6 input, AnaquinData-method (input), 6 label, 7 label,AnaquinData-method(label),7 measured, 8 measured,AnaquinData-method (measured), 8 mixtureA, 9 mixtureB, 10 mixtureF, 10 plotLinear, 11 plotLODR, 12 plotLogistic, 14 plotROC, 15 pval, 17 pval,AnaquinData-method(pval), 17 qval, 18 qval, AnaquinData-method (qval), 18 ratio, 19 ratio, AnaquinData-method (ratio), 19 RnaQuin.gen2iso, 20 RnaQuin.gen2iso,AnaquinData-method (RnaQuin.gen2iso), 20 RnaQuin.genes, 21 RnaQuin.genes, AnaquinData-method (RnaQuin.genes), 21 RnaQuin.isoforms, 22 RnaQuin.isoforms, AnaquinData-method (RnaQuin.isoforms), 22 score, 23 score,AnaquinData-method(score),23 seqs, 24 seqs, AnaquinData-method (seqs), 24 std, 25

std,AnaquinData-method(std),25

UserGuideData_5.4.5.1,26 UserGuideData_5.4.6.3,26 UserGuideData_5.6.3,27