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Abstract

Gene expression datasets are complicated and have multiple sources of biological and technical
variation. These datasets have recently become more complex as it is now feasible to assay gene
expression from the same individual in multiple tissues or at multiple time points. The variancePar-
tition package implements a statistical method to quantify the contribution of multiple sources
of variation and decouple within/between-individual variation. In addition, variancePartition pro-
duces results at the gene-level to identity genes that follow or deviate from the genome-wide
trend.

variancePartition version: 1.2.11
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http://bioconductor.org/packages/variancePartition
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1 Overview

The variancePartition package provides a general framework for understanding drivers of variation in
gene expression in experiments with complex designs. A typical application would consider a dataset of
gene expression from individuals sampled in multiple tissues or multiple time points where the goal is to
understand variation within versus between individuals and tissues. variancePartition use a linear mixed
model to partition the variance attributable to multiple variables in the data. The analysis is built on
top of the lme4 package [1], and some basic knowledge about linear mixed models will give you some
intuition about the behavior of variancePartition [2, 3]

1.1 Inputs

There are three components to an analysis:

1) Gene expression data: In general, this is a matrix of normalized gene expression values with
genes as rows and experiments as columns.

– Count-based quantification: featureCounts [4], HTSeq [5]
Counts mapping to each gene can be normalized using counts per million (CPM), reads per
kilobase per million (RPKM) or fragments per kilobase per million (FPKM). These count
results can be processed with limma/voom [6] to model the precision of each observation or
DESeq2 [7].

– Isoform quantification: kallisto [8], sailfish [9], salmon [10], RSEM [11], cufflinks [12]
These perform isoform-level quantification using reads that map to multiple transcripts.
Quantification values can be read directly into R , or processed with ballgown [13] or txim-
port [14].

– Microarray data: any standard normalization such as rma in the oligo [15] package can be used.

2) Meta-data about each experiment: A data.frame with information about each experiment
such as patient ID, tissue, sex, disease state, time point, batch, etc.

2) Formula indicating which meta-data variables to consider: An R formula such as
∼ Age + (1|Individual) + (1|Tissue) + (1|Batch) indicating which meta-data vari-
ables should be used in the analysis.

variancePartition will assess the contribution of each meta-data variable to variation in gene expression
and can report the intra-class correlation for each variable.
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2 Running an analysis

A typical analysis with variancePartition is only a few lines of R code, assuming the expression data has
already been normalized. Normalization is a separate topic, and I address it briefly in Section 5.

The simulated dataset included as an example contains measurements of 200 genes from 100 samples.
These samples include assays from 3 tissues across 25 individuals processed in 4 batches. The individuals
range in age from 36 to 73. A typical variancePartition analysis will assess the contribution of each
aspect of the study design (i.e. individual, tissue, batch, age) to the expression variation of each gene.
The analysis will prioritize these axes of variation based on a genome-wide summary and give results at
the gene-level to identity genes that follow or deviate from this genome-wide trend. The results can be
visualized using custom plots and can be used for downstream analysis.

2.1 Standard application

# load library

library(variancePartition)

# optional step to run analysis in parallel on multicore machines

# Here use 4 threads

# This is strongly recommended since the analysis

# can be computationally intensive

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)

# load simulated data:

# geneExpr: matrix of gene expression values

# info: information/metadata about each sample

data(varPartData)

# Specify variables to consider

# Age is continuous so model it as a fixed effect

# Individual and Tissue are both categorical, so model them as random effects

# Note the syntax used to specify random effects

form <- ~ Age + (1|Individual) + (1|Tissue) + (1|Batch)

# Fit model and extract results

# 1) fit linear mixed model on gene expression

# If categorical variables are specified, a linear mixed model is used

# If all variables are modeled as fixed effects, a linear model is used

# each entry in results is a regression model fit on a single gene

# 2) extract variance fractions from each model fit

# for each gene, returns fraction of variation attributable to each variable
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# Interpretation: the variance explained by each variables after correcting

# for all other variables

# Note that geneExpr can either be a matrix,

# and EList output by voom() in the limma package,

# or an ExpressionSet

varPart <- fitExtractVarPartModel( geneExpr, form, info )

# sort variables (i.e. columns) by median fraction of variance explained

vp <- sortCols( varPart )

# Figure 1a

# Bar plot of variance fractions for the first 10 genes

plotPercentBars( vp[1:10,] )

#

# Figure 1b

# violin plot of contribution of each variable to total variance

plotVarPart( vp )

variancePartition includes a number of custom plots to visualize the results. Since variancePartition
attributes the fraction of total variation attributable to each aspect of the study design, these fractions
naturally sum to 1. plotPercentBars plots the partitioning results for a subset of genes (Figure 1a),
and plotVarPart shows a genome-wide violin plot of the distribution of variance explained by each
variable across all genes (Figure 1b). (Note that these plots show results in terms of percentage of
variance explained, while the results are stored in terms of the fraction.)

The core functions of variancePartition work seemlessly with gene expression data stored as a matrix,
data.frame, EList from limma or ExpressionSet from Biobase. fitExtractVarPartModel()

returns an object that stores the variance fractions for each gene and each variable in the formula
specified. These fractions can be accessed just like a data.frame:

# Access first entries

head(varPart)

## Batch Individual Tissue Age Residuals

## gene1 0.000158 0.890 0.0247 4.57e-05 0.0847

## gene2 0.000000 0.806 0.1010 3.37e-04 0.0926

## gene3 0.002422 0.890 0.0356 1.49e-03 0.0704

## gene4 0.000000 0.769 0.1253 1.02e-03 0.1048

## gene5 0.000000 0.700 0.2091 3.91e-05 0.0911

## gene6 0.002344 0.722 0.1679 2.74e-03 0.1048

# Access first entries for Individual

head(varPart$Individual)

## [1] 0.890 0.806 0.890 0.769 0.700 0.722

# sort genes based on variance explained by Individual
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head(varPart[order(varPart$Individual, decreasing=TRUE),])

## Batch Individual Tissue Age Residuals

## gene43 0.00000 0.914 0.01174 3.81e-04 0.0735

## gene174 0.00000 0.911 0.00973 2.04e-03 0.0770

## gene111 0.00000 0.907 0.00839 9.83e-04 0.0839

## gene127 0.00000 0.904 0.01384 5.13e-04 0.0821

## gene151 0.00608 0.903 0.00000 1.36e-05 0.0910

## gene91 0.00000 0.900 0.01414 1.12e-06 0.0856

2.1.1 Saving plot to file

In order to save the plot to a file, use the ggsave function:

fig <- plotVarPart( vp )

ggsave(file, fig)
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Figure 1: variancePartition example on simulated data
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2.2 Plot expression stratified by other variables

variancePartition also includes plotting functions to visualize the variation across a variable of interest.
plotStratify plots the expression of a gene stratified by the specified variable. In the example dataset,
users can plot a gene expression trait stratified by Tissue (Figure 2a) or Individual (Figure 2b).

# get gene with the highest variation across Tissues

# create data.frame with expression of gene i and Tissue type for each sample

i <- which.max( varPart$Tissue )

GE <- data.frame( Expression = geneExpr[i,], Tissue = info$Tissue)

# Figure 2a

# plot expression stratified by Tissue

plotStratify( Expression ~ Tissue, GE, main=rownames(geneExpr)[i])

#

# get gene with the highest variation across Individuals

# create data.frame with expression of gene i and Tissue type for each sample

i <- which.max( varPart$Individual )

GE <- data.frame( Expression = geneExpr[i,], Individual = info$Individual)

# Figure 2b

# plot expression stratified by Tissue

label <- paste("Individual:", format(varPart$Individual[i]*100, digits=3), "%")

main <- rownames(geneExpr)[i]

plotStratify( Expression ~ Individual, GE, colorBy=NULL, text=label, main=main)

For gene141, variation across tissues explains 52.9% of variance in gene expression. For gene43, variation
across Individuals explains 91.4% of variance in gene expression.

2.3 Intuition about the backend

At the heart of variancePartition, a regression model is fit for each gene separately and summary
statistics are extracted and reported to the user for visualization and downstream analysis. For a single
model fit, calcVarPart computes the fraction of variance explained by each variable. calcVarPart

is defined by this package, and computes these statistics from either a fixed effects model fit with lm

or a linear mixed model fit with lmer. fitExtractVarPart loops over each gene, fits the regression
model and returns the variance fractions reported by calcVarPart.

Fitting the regression model and extracting variance statistics can also be done directly:

library(lme4)

# fit regression model for the first gene

fit <- lmer(geneExpr[1,] ~ Age + (1|Individual) + (1|Tissue), info, REML=FALSE )
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Figure 2: Plot gene expression stratified by a) Tissue and b) Individual

# extract variance statistics

calcVarPart(fit)

## Individual Tissue Age Residuals

## 0.890313 0.024680 0.000044 0.084962
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3 Interpretation

variancePartition fits a linear (mixed) model thats jointly considers the contribution of all specified
variables on the expression of each gene. It uses a multiple regression model so that the effect of
each variable is assessed while correcting for all others. Therefore, fitting the model with each variable
separately will give very different results from the considering all variables jointly. I have found joint
analysis the best option in most cases.

The results of variancePartition give insight into the expression data at multiple levels. Moreover, a
single statistic often has multiple equivalent interpretations while only one is relevant to the biological
question. Analysis of the example data in Figure 1 gives some strong interpretations.

Considering the median across all genes,

1) variation across individuals explains a median of 81.5% of the variation in expression, after cor-
recting for tissue, batch and age

2) variation across tissues explains a median of 8.2% of the variation in expression, after correcting
for other the variables

3) variation across batches is negligible after correcting for variation due to other variables
4) the effect of age is negligible after correcting for other variables
5) correcting for individual, tissue, batch and age leaves a median of 9.3% of the total variance in

expression.

These statistics also have a natural interpretation in terms of the intra-class correlation (ICC), the
correlation between observations made from samples in the same group.

Considering the median across across all genes and all experiments,

1) the ICC for individual is 81.5%.
2) the ICC for tissue is 8.2%.
3) two randomly selected gene measurements from same individual, but regardless of tissue, batch

or age, have a correlation of 81.5%.
4) two randomly selected gene measurements from same tissue, but regardless of individual, batch

or age, have a correlation of 8.2%.
5) two randomly selected gene measurements from the same individual and same tissue, but regard-

less of batch and age, have an correlation of 81.5% + 8.2% = 89.7%.

Note that that the ICC here is interpreted as the ICC after correcting for all other variables in the model.

These conclusions are based on the genome-wide median across all genes, but the same type of state-
ments can be made at the gene-level. Moreover, care must be taken in the interpretation of nested
variables. For example, Age is nested within Individual since the multiple samples from each indi-
vidual are taken at the same age. Thus the effect of Age removes some variation from being explained
by Individual. This often arises when considering variation across individuals and across sexes: any
cross-sex variation is a component of the cross-individual variation. So the total variation across individ-
uals is the sum of the fraction of variance explained by Sex and Individual. This nesting/summing
of effects is common for variables that are properties of the individual rather than the sample. For
example, sex and ethnicity are always properties of the individual. Variables like age and disease state
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can be properties of the individual, but could also vary in time-course or longitudinal experiments. The
the interpretation depends on the experimental design.

The real power of variancePartition is to identify specific genes that follow or deviate from the genome-
wide trend. The gene-level statistics can be used to identify a subset of genes that are enriched for
specific biological functions. For example, we can ask if the 500 genes with the highest variation in
expression across tissues (i.e. the long tail for tissue in Figure 1a) are enriched for genes known to have
high tissue-specificity.

3.1 Should a variable be modeled as fixed or random effect?

Categorical variables should (almost) always be modeled as a random effect. The difference between
modeling a categorical variable as a fixed versus random effect is minimal when the sample size is large
compared to the number of categories (i.e. levels). So variables like disease status, sex or time point will
not be sensitive to modeling as a fixed versus random effect. However, variables with many categories
like Individual must be modeled as a random effect in order to obtain statistically valid results. So
to be on the safe side, categorical variable should be modeled as a random effect.

variancePartition fits two types of models:

1) linear mixed model where all categorical variables are modeled as random effects and all continuous
variables are fixed effects. The function lmer from lme4 is used to fit this model.

2) fixed effected model, where all variables are modeled as fixed effects. The function lm is used to
fit this model.

3.2 Which variables should be included?

In my experience, it is useful to include all variables in the first analysis and then drop variables that
have minimal effect. However, like all multiple regression methods, variancePartition will divide the
contribution over multiple variables that are strongly correlated. So, for example, including both sex
and height in the model will show sex having a smaller contribution to variation gene expression than if
height were omitted, since there variables are strongly correlated. This is a simple example, but should
give some intuition about a common issue that arises in analyses with variancePartition.

variancePartition can naturally assess the contribution of both individual and sex in a dataset. As
expected, genes for which sex explains a large fraction of variation are located on chrX and chrY. If the
goal is to interpret the impact of sex, then there is no issue. But recall the issue with correlated variables
and note that individual is correlated with sex, because each individual is only one sex regardless of
how many samples are taken from a individual. It follows that including sex in the model reduces the
apparent contribution of individual to gene expression. In other words, the ICC for individual will be
different if sex is included in the model.

In general, including variables in the model that do not vary within individual will reduce the apparent
contribution of individual as estimated by variancePartition. For example, sex and ethnicity never vary
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between multiple samples from the same individual and will always reduce the apparent contribution of
individual. However, disease state and age may or may not vary depending on the study design.

In biological datasets technical variability (i.e. batch effects) can often reduce the apparent biological
signal. In RNA-seq analysis, it is common for the the impact of this technical variability to be removed
before downstream analysis. Instead of including these batch variable in the variancePartition analysis,
it is simple to complete the expression residuals with the batch effects removed and then feeds these
residuals to variancePartition. This will increase the fraction of variation explained by biological variables
since technical variability is reduced.
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4 Advanced analysis

4.1 Extracting additional information from model fits

Advanced users may want to perform the model fit and extract results in separate steps in order to
examine the fit of the model for each gene. Thus the work of fitExtractVarPart can be divided into
two steps: 1) fit the regression model, and 2) extracting variance statistics.

# Fit model

results <- fitVarPartModel( geneExpr, form, info )

## Projected memory usage: > 9.1 Mb

# Extract results

varPart <- extractVarPart( results )

Note that storing the model fits can use a lot of memory (∼10Gb with 20K genes and 1000 experiments).
I do not recommend unless you have a specific need for storing the entire model fit.

Instead, fitVarPartModel can extract any desired information using any function that accepts the
model fit from lm/lmer. The results are stored in a list and can be used for downstream analysis.

# Fit model and run summary() function on each model fit

vpSummaries <- fitVarPartModel( geneExpr, form, info, fxn=summary )

## Projected memory usage: > 5.8 Mb

# Show results of summary() for the first gene

vpSummaries[[1]]

## Linear mixed model fit by maximum likelihood ['lmerMod']

## Formula: expr ~ Age + (1 | Individual) + (1 | Tissue) + (1 | Batch)

## Data: data2

## Weights: gene$weights

## Control: control

##

## AIC BIC logLik deviance df.resid

## 397 413 -193 385 94

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -2.0580 -0.5865 0.0147 0.6603 1.9708

##

## Random effects:

## Groups Name Variance Std.Dev.

## Individual (Intercept) 10.82275 3.2898

## Batch (Intercept) 0.00192 0.0438
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## Tissue (Intercept) 0.30010 0.5478

## Residual 1.02997 1.0149

## Number of obs: 100, groups: Individual, 25; Batch, 4; Tissue, 3

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) -10.60243 1.09492 -9.68

## Age 0.00318 0.01610 0.20

##

## Correlation of Fixed Effects:

## (Intr)

## Age -0.739

4.2 Removing batch effects before fitting model

Gene expression studies often have substantial batch effects, and variancePartition can be used to
understand the magnitude of the effects. However, we often want to focus on biological variables (i.e.
individual, tissue, disease, sex) after removing the effect of technical variables. Depending on the size
of the batch effect, I have found it useful to correct for the batch effect first and then perform a
variancePartition analysis afterward. Subtracting this batch effect can reduce the total variation in the
data, so that the contribution of other variables become clearer.

Standard analysis:

form <- ~ (1|Tissue) + (1|Individual) + (1|Batch) + Age

varPart <- fitExtractVarPartModel( geneExpr, form, info )

Analysis on residuals:

library(limma)

# subtract out effect of Batch

fit <- lmFit( geneExpr, model.matrix(~ Batch, info))

res <- residuals( fit, geneExpr)

# fit model on residuals

form <- ~ (1|Tissue) + (1|Individual) + Age

varPartResid <- fitExtractVarPartModel( res, form, info )

Remove batch effect with linear mixed model

# subtract out effect of Batch with linear mixed model

modelFit <- fitVarPartModel( geneExpr, ~ (1|Batch), info )

## Projected memory usage: > 6.3 Mb

res <- residuals( modelFit )
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# fit model on residuals

form <- ~ (1|Tissue) + (1|Individual) + Age

varPartResid <- fitExtractVarPartModel( res, form, info )

If the two-step process requires too much memory, the residuals can be computed more efficiently. Here,
run the residuals function inside the call to fitVarPartModel to avoid storing the large intermediate
results.

# extract residuals directly without storing intermediate results

residList <- fitVarPartModel( geneExpr, ~ (1|Batch), info, fxn=residuals )

## Projected memory usage: > 1.3 Mb

# convert list to matrix

residMatrix = do.call(rbind, residList)

4.3 Variation within multiple subsets of the data

So far, we have focused on interpreting one variable at a time. But the linear mixed model behind
variancePartition is a very powerful framework for analyzing variation at multiple levels. We can easily
extend the previous analysis of the contribution of individual and tissue on variation in gene expression
to examine the contribution of individual within each tissue. This analysis is as easy as specifying a new
formula and rerunning variancePartition. Note that is analysis will only work when there are replicates
for at least some individuals within each tissue in order to assess cross-individual variance with in a
tissue.

# specify formula to model within/between individual variance

# separately for each tissue

# Note that including +0 ensures each tissue is modeled explicitly

# Otherwise, the first tissue would be used as baseline

form <- ~ (Tissue+0|Individual) + Age + (1|Tissue) + (1|Batch)

# fit model and extract variance percents

varPart <- fitExtractVarPartModel( geneExpr, form, info )

# violin plot

plotVarPart( sortCols(varPart), label.angle=60 )

This analysis corresponds to a varying coefficient model, where the correlation between individuals varies
for each tissue [2]. Since the variation across individuals is modeled within each tissue, the total variation
explained does not sum to 1 as it does for standard application of variancePartition. So interpretation
as intra-class does not strictly apply and use of plotPercentBars is no longer applicable. Yet the
variables in the study design are still ranked in terms of their genome-wide contribution to expression
variation, and results can still be analyzed at the gene level. See Section 7.3 for statistical details.
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Figure 3: Variation across individuals within each tissue
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4.4 Detecting problems caused by collinearity of variables

Including variables that are highly correlated can produce misleading results and overestimate the contri-
bution of variables modeled as fixed effects. This is usually not an issue, but can arise when statistically
redundant variables are included in the model. In this case, the model is “degenerate” or “computa-
tionally singular” and parameter estimates from this model are not meaningful. Dropping one or more
of the covariates will fix this problem.

A check of collinearity is built into fitVarPartModel and fitExtractVarPartModel, so the user
will be warned if this is an issue.

Alternatively, the user can use the colinearityScore function to evaluate whether this is an issue for
a single model fit:

form <- ~ (1|Individual) + (1|Tissue) + Age + Height

# fit model

res <- fitVarPartModel( geneExpr[1:4,], form, info )

## Projected memory usage: > 176 Kb

# evaluate the collinearity score on the first model fit

# this reports the correlation matrix between coefficients estimates

# for fixed effects
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# the collinearity score is the maximum absolute correlation value

# If the collinearity score > .99 then the variance partition

# estimates may be problematic

# In that case, a least one variable should be omitted

colinearityScore( res[[1]] )

## [1] 0.777

## attr(,"vcor")

## (Intercept) Age Height

## (Intercept) 1.000 -0.4191 -0.7774

## Age -0.419 1.0000 -0.0575

## Height -0.777 -0.0575 1.0000

4.5 Including weights computed separately

variancePartition automatically used precision weights computed by voom, but the user can also specify
custom weights using the weightsMatrix argument.

form <- ~ (1|Individual) + (1|Tissue) + Age + Height

# Specify custom weights

# In this example the weights are simulated from a uniform distribution

# and are not meaningful.

weights <- matrix(runif(length(geneExpr)), nrow=nrow(geneExpr))

# Specify custom weights

res <- fitExtractVarPartModel( geneExpr[1:4,], form, info, weightsMatrix=weights[1:4,] )

In addition, setting the useWeights=FALSE will suppress usage of the weights in all cases, i.e. when
the weights are specified manually or implicitly with the results of voom.
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5 Applying variancePartition to RNA-seq expression data

variancePartition works with gene expression data that has already been processed and normalized as
for differential expression analysis.

5.1 Gene-level counts

featureCounts [4] and HTSeq [5] report the number of reads mapping to each gene (or exon). These
results are easily read into R . limma/voom and DESeq2 are widely used for differential expression analysis
of gene- and exon-level counts and can be used to process data before analysis with variancePartition.
This section addresses processing and normalization of gene-level counts, but the analysis is the same
for exon-level counts.

5.1.1 limma/voom

Read RNA-seq counts into R , normalize for library size within and between experiments with TMM
[16], estimate precision weights with limma/voom.

library(limma)

library(edgeR)

# identify genes that pass expression cutoff

isexpr <- rowSums(cpm(geneCounts)>1) >= 0.5 * ncol(geneCounts)

# create data structure with only expressed genes

gExpr <- DGEList(counts=geneCounts[isexpr,])

# Perform TMM normalization

gExpr <- calcNormFactors(gExpr)

# Specify variables to be included in the voom() estimates of uncertainty

# recommend including variables with a small number of categories

# that explain a substantial amount of variation

design <- model.matrix( ~ Batch, info)

# Estimate precision weights for each gene and sample

# This models uncertainty in expression measurements

vobjGenes <- voom(gExpr, design )

# Define formula

form <- ~ (1|Individual) + (1|Tissue) + (1|Batch) + Age

# variancePartition seamlessly deals with the result of voom()
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# by default, it seamlessly models the precision weights

# This can be turned off with useWeights=FALSE

varPart <- fitExtractVarPartModel( vobjGenes, form, info )

5.1.2 DESeq2

Process and normalize the gene-level counts before running variancePartition analysis.

library(DESeq2)

# create DESeq2 object from gene-level counts and metadata

dds <- DESeqDataSetFromMatrix(countData = geneCounts,

colData = info,

design = ~ 1)

# Estimate library size correction scaling factors

dds <- estimateSizeFactors(dds)

# identify genes that pass expression cutoff

isexpr <- rowSums(fpm(dds)>1) >= 0.5 * ncol(dds)

# compute log2 Fragments Per Million

# Alternatively, fpkm(), vst() or rlog() could be used

quantLog <- log2( fpm( dds )[isexpr,] + 1)

# Define formula

form <- ~ (1|Individual) + (1|Tissue) + (1|Batch) + Age

# Run variancePartition analysis

varPart <- fitExtractVarPartModel( quantLog, form, info)

Note that DESeq2 does not compute precision weights like limma/voom, so they are not used in this
version of the analysis.

5.2 Isoform quantification

Other software performs isoform-level quantification using reads that map to multiple transcripts. These
include kallisto [8], sailfish [9], salmon [10], RSEM [11] and cufflinks [12].
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5.2.1 tximport

Quantifications from kallisto, salmon, sailfish and RSEM can be read into R and processed with
the Bioconductor package tximport. The gene- or transcript-level quantifications can be used directly
in variancePartition.

library(tximportData)

library(tximport)

library(readr)

# Get data from folder where tximportData is installed

dir <- system.file("extdata", package = "tximportData")

samples <- read.table(file.path(dir, "samples.txt"), header = TRUE)

files <- file.path(dir, "kallisto", samples$run, "abundance.tsv")

names(files) <- paste0("sample", 1:6)

tx2gene <- read.csv(file.path(dir, "tx2gene.csv"))

# reads results from kallisto

txi <- tximport(files, type = "kallisto", tx2gene = tx2gene, reader = read_tsv,

countsFromAbundance = "lengthScaledTPM")

# define metadata (usually read from external source)

info_tximport <- data.frame( Sample = sprintf("sample%d", 1:6),

Disease=c("case", "control")[c(rep(1, 3), rep(2, 3) )] )

# Extract counts from kallisto

y <- DGEList( txi$counts )

# compute library size normalization

y <- calcNormFactors(y)

# apply voom to estimate precision weights

design <- model.matrix( ~ Disease, data = info_tximport)

vobj <- voom(y, design)

# define formula

form <- ~ (1|Disease)

# Run variancePartition analysis (on only 10 genes)

varPart_tx <- fitExtractVarPartModel( vobj[1:10,], form, info_tximport)

Code to process results from sailfish, salmon, RSEM is very similar.

See tutorial at http://bioconductor.org/packages/release/bioc/vignettes/tximport/inst/doc/tximport.

http://bioconductor.org/packages/release/bioc/vignettes/tximport/inst/doc/tximport.html
http://bioconductor.org/packages/release/bioc/vignettes/tximport/inst/doc/tximport.html
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html for more details.

5.2.2 ballgown

Quantifications from Cufflinks/Tablemaker and RSEM can be processed and read into R with the
Bioconductor package ballgown.

library(ballgown)

# Get data from folder where ballgown is installed

data_directory <- system.file('extdata', package='ballgown')

# Load results of Cufflinks/Tablemaker

bg <- ballgown(dataDir=data_directory, samplePattern='sample', meas='all')

# extract gene-level FPKM quantification

# Expression can be convert to log2-scale if desired

gene_expression <- gexpr(bg)

# extract transcript-level FPKM quantification

# Expression can be convert to log2-scale if desired

transcript_fpkm <- texpr(bg, 'FPKM')

# define metadata (usually read from external source)

info_ballgown <- data.frame( Sample = sprintf("sample%02d", 1:20),

Batch = rep(letters[1:4], 5),

Disease=c("case", "control")[c(rep(1, 10), rep(2, 10) )] )

# define formula

form <- ~ (1|Batch) + (1|Disease)

# Run variancePartition analysis

# Gene-level analysis

varPart_gene <- fitExtractVarPartModel( gene_expression, form, info_ballgown)

# Transcript-level analysis

varPart_transcript <- fitExtractVarPartModel( transcript_fpkm, form, info_ballgown)

Note that ballgownrsem can be used for a similar analysis of RSEM results.

See tutorial at http://bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.
html for more details.

http://bioconductor.org/packages/release/bioc/vignettes/tximport/inst/doc/tximport.html
http://bioconductor.org/packages/release/bioc/vignettes/tximport/inst/doc/tximport.html
http://bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.html
http://bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.html
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6 Comparison with other methods on simulated data

Characterizing drivers of variation in gene expression data has typically relied on principal components
analysis (PCA) and hierarchical clustering. Here I apply these methods to two simulated datasets to
demonstrate the additional insight from an analysis with variancePartition. Each simulated dataset
comprises 60 experiments from 10 individuals and 3 tissues with 2 biological replicates. In the first
dataset, tissue is the major driver of variation in gene expression(Figure 4). In the second dataset,
individual is the major driver of variation in gene expression (Figures 5).

Analysis of simulated data illustrates that PCA identifies the major driver of variation when tissue is
dominant and there are only 3 categories. But the results are less clear when individual is dominant
because there are now 10 categories. Meanwhile, hierarchical clustering identifies the major driver of
variation in both cases, but does not give insight into the second leading contributor.

Analysis with variancePartition has a number of advantages over these standard methods:

• variancePartition provides a natural interpretation of multiple variables
– figures from PCA/hierarchical clustering allow easy interpretation of only one variable

• variancePartition quantifies the contribution of each variable
– PCA/hierarchical clustering give only a visual representation

• variancePartition interprets contribution of each variable to each gene individually for downstream
analysis

– PCA/hierarchical clustering produces genome-wide summary and does not allow gene-level
interpretation

• variancePartition can assess contribution of one variable (i.e. Individual) separately in subset of
the data defined by another variable (i.e. Tissue)
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Figure 4: Similarity within Tissue is dominant
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(b) PCA - colored by Individual
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(c) hclust - colored by Tissue

s29
s39
s24
s34
s27
s37
s22
s32
s30
s40
s23
s33
s26
s36
s28
s38
s25
s35
s21
s31
s43
s53
s42
s52
s44
s54
s46
s56
s50
s60
s45
s55
s49
s59
s41
s51
s47
s57
s48
s58
s3
s13
s1
s11
s2
s12
s10
s20
s4
s14
s7
s17
s6
s16
s9
s19
s5
s15
s8
s18

Tissue

A
B
C

(d) hclust - colored by Individual

s29
s39
s24
s34
s27
s37
s22
s32
s30
s40
s23
s33
s26
s36
s28
s38
s25
s35
s21
s31
s43
s53
s42
s52
s44
s54
s46
s56
s50
s60
s45
s55
s49
s59
s41
s51
s47
s57
s48
s58
s3
s13
s1
s11
s2
s12
s10
s20
s4
s14
s7
s17
s6
s16
s9
s19
s5
s15
s8
s18

Individual

1
2
3
4
5
6
7
8
9
10

(e) variancePartition

●●●●●

0

25

50

75

100

Individual
Tissue

Residuals

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

(%
)

(f) variancePartition - within Tissue
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Figure 5: Similarity within Individual is dominant

(a) PCA - colored by Tissue

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−15 −5 0 5 10 15 20

−
15

−
10

−
5

0
5

10
15

20

PC1

P
C

2

(b) PCA - colored by Individual
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(f) variancePartition - within Tissue
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7 Statistical details

A variancePartition analysis evaluates the linear (mixed) model

y =
∑
j

Xjβj +
∑
k

Zkαk + ε (1)

αk ∼ N (0, σ2
αk
) (2)

ε ∼ N (0, σ2
ε) (3)

where y is the expression of a single gene across all samples, Xj is the matrix of jth fixed effect with
coefficients βj, Zk is the matrix corresponding to the kth random effect with coefficients αk drawn
from a normal distribution with variance σ2

αk
. The noise term, ε, is drawn from a normal distribution

with variance σ2
ε . Parameters are estimated with maximum likelihood, rather than REML, so that fixed

effect coefficients, βj, are explicitly estimated.

I use the term “linear (mixed) model” here since variancePartition works seamlessly when a fixed
effects model (i.e. linear model) is specified.

Variance terms for the fixed effects are computed using the post hoc calculation

σ̂2
βj

= var(Xjβ̂j). (4)

For a fixed effects model, this corresponds to the sum of squares for each component of the model.

For a standard application of the linear mixed model, where the effect of each variable is additive,
the fraction of variance explained by the jth fixed effect is

σ̂2
βj∑

j σ̂
2
βj
+

∑
k σ̂2

αk
+ σ̂2

ε

, (5)

by the kth random effect is

σ̂2
αk∑

j σ̂
2
βj
+

∑
k σ̂2

αk
+ σ̂2

ε

, (6)

and the residual variance is

σ̂2
ε∑

j σ̂
2
βj
+

∑
k σ̂2

αk
+ σ̂2

ε

. (7)

7.1 Implementation in R

An R formula is used to define the terms in the fixed and random effects, and fitVarPartModel fits the
specified model for each gene separately. If random effects are specified, lmer from lme4 is used behind
the scenes to fit the model, while lm is used if there are only fixed effects. fitVarPartModel returns
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a list of the model fits, and extractVarPart returns the variance partition statistics for each model in
the list. fitExtractVarPartModel combines the actions of fitVarPartModel and extractVarPart

into one function call. calcVarPart is called behind the scenes to compute variance fractions for both
fixed and mixed effects models, but the user can also call this function directly on a model fit with
lm/lmer.

7.2 Interpretation of percent variance explained

The percent variance explained can be interpreted as the intra-class correlation (ICC) when a special
case of Equation 1 is used. Consider the simplest example of the ith sample from the kth individual

yi,k = µ+ Zαi,k + ei,k (8)

with only an intercept term, one random effect corresponding to individual, and an error term. In this
case ICC corresponds to the correlation between two samples from the same individual. This value is
equal to the fraction of variance explained by individual. For example, consider the correlation between
samples from the same individual:

ICC = cor(y1,k, y2,k) (9)

= cor(µ+ Zα1,k + e1,k, µ+ Zα2,k + e2,k) (10)

=
cov(µ+ Zα1,k + e1,k, µ+ Zα2,k + e2,k)√
var(µ+ Zα1,k + e1,k)var(µ+ Zα2,k + e2,k)

(11)

=
cov(Zα1,k, Zα2,k)

σ2
α + σ2

ε

(12)

=
σ2
α

σ2
α + σ2

ε

(13)

The correlation between samples from different individuals is:

= cor(y1,1, y1,2) (14)

= cor(µ+ Zα1,1 + e1,1, µ+ Zα1,2 + e1,2) (15)

=
cov(Zα1,1, Zα1,2)

σ2
α + σ2

ε

(16)

=
0

σ2
α + σ2

ε

(17)

= 0 (18)

This interpretation in terms of fraction of variation explained (FVE) naturally generalizes to multiple
variance components. Consider two sources of variation, individual and cell type with variances σ2

id and
σ2
cell, respectively. Applying a generalization of the the previous derivation, two samples are correlated

according to:
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Individual cell type variance Interpretation Correlation value

same different
σ2
id

σ2
id
+σ2

cell
+σ2

ε
FVE by individual ICCindividual

different same
σ2
cell

σ2
id
+σ2

cell
+σ2

ε
FVE by cell type ICCcell

same same
σ2
id+σ

2
cell

σ2
id
+σ2

cell
+σ2

ε
sum of FVE by individual & cell type ICCindividual,cell

different different 0
σ2
id
+σ2

cell
+σ2

ε
sample are independent

Notice that the correlation between samples from the same individual and same cell type corresponds
to the sum of the fraction explained by individual + fraction explained by cell type. This defines ICC
for individual and tissue, as well as the combined ICC and relates these values to FVE.

In order to illustrate how this FVE and ICC relate to the correlation between samples in multilevel
datasets, consider a simple example of 5 samples from 2 individuals and 2 tissues:

Sample Individual Cell type

a 1 T-Cell

b 1 T-Cell

c 1 monocyte

d 2 T-Cell

e 2 monocyte

Modeling the separate effects of individual and tissue gives the following covariance structure between
samples when a linear mixed model is used:

a b c d e



a σ2
id + σ2

cell + σ2
ε

b σ2
id + σ2

cell σ2
id + σ2

cell + σ2
ε

cov(y) = c σ2
id σ2

id σ2
id + σ2

cell + σ2
ε

d σ2
cell σ2

cell 0 σ2
id + σ2

cell + σ2
ε

e 0 0 σ2
cell σ2

id σ2
id + σ2

cell + σ2
ε

The covariance matrix is symmetric so that blank entries take the value on the opposite side of the
diagonal. The covariance can be converted to correlation by dividing by σ2

id + σ2
cell + σ2

ε , and this gives
the results from above. This example generalizes to any number of variance components [2].
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7.3 Variation with multiple subsets of the data

The linear mixed model underlying variancePartition allows the effect of one variable to depend on the
value of another variable. Statistically, this is called a varying coefficient model [2, 3]. This model arises
in variancePartition analysis when the variation explained by individual depends on tissue or cell type.

A given sample is only from one cell type, so this analysis asks a question about a subset of the
data. The the data is implicitly divided into subsets base on cell type and variation explained by indi-
vidual is evaluated within each subset. The data is not actually divided onto subset, but the statistical
model essentially examples samples with each cell type. This subsetting means that the variance frac-
tions do not sum to 1.

Consider a concrete example with variation from across individual and cell types (T-cells and mono-
cytes) with data from the ith sample from the kth individual, sex of s and cell type c. Modeling the
variation across individuals within cell type corresponds to

yi,k,s,c = µ+ Z(sex)αi,s + Z(Tcell|id)αi,k,c + Z(monocyte|id)αi,k,c + ei,k,s,c (19)

with corresponding variance components:

Variance component Interpretation

σ2
sex variance across sex (which is the same for all cell types)

σ2
(Tcell|id) variance across individuals within T-cells

σ2
(monocyte|id) variance across individuals within monocytes

σ2
ε residual variance

Since the dataset is now divided into multiple subsets, direct interpretation of the fraction of variation
explained (FVE) as intra-class correlation does not apply. Instead, we compute a “pseudo-FVE” by
approximating the total variance attributable to cell type by using a weighted average of the within cell
type variances weighted by the sample size within each cell type. Thus the values of pseudo-FVE do not
have the simple interpretation as in the standard application of variancePartition, but allows ranking of
variables based on genome-wide contribution to variance and analysis of gene-level results.

7.4 Relationship between variancePartition and differential expression

Differential expression (DE) is widely used to identify gene which show difference is expression between
two subsets of the data (i.e. case versus controls). For a single gene, DE analysis measures the dif-
ference in mean expression between the two subsets. (Since expression is usually analyzed on a log
scale, DE results are usually shown in terms of log fold changes between the two subsets ). In Figure
6, consider two simulated examples of a gene whose expression differs between males and females. The
mean expression in males is 0 and the mean expression in females is 2 in both cases. Therefore, the
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fold change is 2 in both cases.

However, the fraction of expression variation explained by sex is very different in these two exam-
ples. In example A, there is very little variation within each sex, so that variation between sexes is very
high at 91.1%. Conversely, example B shows high variation within sexes, so that variation between
sexes is only 17.8%.

The fact that the fold change or the fraction of variation is significantly different from 0 indicates
differential expression between the two sexes. Yet these two statistics have different interpretations.
The fold change from DE analysis tests a difference in means between two sexes. The fraction of
variation explained compares the variation explained by sex to the total variation.

Thus the fraction of variation explained reported by variancePartition reflects as different aspect of
the data not captured by DE analysis.

Figure 6: Compare variancePartition and differential expression
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(b) Example B
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7.5 Modelling error in gene expression measurements

Uncertainty in the measurement of gene expression can be modeled with precision weights and tests of
differentially expression using voom in limma model this uncertainty directly with a heteroskedastic linear
regression [6]. variancePartition can use these precision weights in a heteroskedastic linear mixed model
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implemented in lme4 [1]. These precision weights are used seamlessly by calling fitVarPartModel or
fitExtractVarPartModel on the output of voom. Otherwise the user can specify the weights with
the weightsMatrix parameter.
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8 Frequently asked questions

Interpreting warnings and errors from fitVarPartModel and fitExtractVarPartModel:

8.1 Warnings

• No Intercept term was specified in the formula:

The results will not behave as expected and may be very wrong!!

An intercept (i.e. mean term) must be specified order for the results to be statistically valid. Otherwise,
the variance percentages will be very overestimated.

• Categorical variables modeled as fixed effect:

The results will not behave as expected and may be very wrong!!

If a linear mixed model is used, all categorical variables must be modeled as a random effect. Alterna-
tively, a fixed effect model can be used by modeling all variables as fixed.

• Cannot have more than one varying coefficient term:

The results will not behave as expected and may be very wrong!!

Only one varying coefficient term can be specified. For example, the formula∼(Tissue+0|Individual)
+ (Batch+0|Individual) contains two varying coefficient terms and the results from this analysis
are not easily interpretable. Only a formula with one term like (Tissue+0|Individual) is allowed.

• executing %dopar% sequentially: no parallel backend registered

These functions are optimized to run in parallel using doParallel/doMC. This warning indicates that a
parallelization was not enabled. This is not a problem, but analysis will take more time.

8.2 Errors

• Colinear score > .99: Covariates in the formula are so strongly

correlated that the parameter estimates from this model are not

meaningful. Dropping one or more of the covariates will fix this problem

• Error in asMethod(object) : not a positive definite matrix

• In vcov.merMod(fit) : Computed variance-covariance matrix problem:

not a positive definite matrix; returning NA matrix

• fixed-effect model matrix is rank deficient so dropping 26 columns / coefficients

Including variables that are highly correlated can produce misleading results (see Section ??). In this
case, parameter estimates from this model are not meaningful. Dropping one or more of the covariates
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will fix this problem.

• Error in checkNlevels(reTrms$flist, n = n, control) :

number of levels of each grouping factor must be < number of observations

This arises when using a varying coefficient model that examines the effect of one variable inside sub-
sets of the data defined by another: ∼(A+0|B). See Section 4.3. There must be enough observations
of each level of the variable B with each level of variable A. Consider an example with samples from
multiple tissues from a set of individual where we are interested in the variation across individuals within
each tissue using the formula: ∼ (Tissue+0|Individual). This analysis will only work if there are
multiple samples from the same individual in at least one tissue. If all tissues only have one sample per
individual, the analysis will fail and variancePartition will give this error.

• Problem with varying coefficient model in formula: should have form (A+0|B)

When analyzing the variation of one variable inside another (Section 4.3), the formula most be specified
as (Tissue+0|Individual). This error occurs when the formula contains (Tissue|Individual)

instead.

• fatal error in wrapper code

• Error in mcfork() : unable to fork, possible reason: Cannot allocate memory

• Error: cannot allocate buffer

This error occurs when fitVarPartModel uses too many threads and takes up too much memory.
The easiest solution is to use fitExtractVarPartModel instead. Occasionally there is an issue in the
parallel backend that is out of my control. Using fewer threads or restarting R will solve the problem.

8.2.1 Errors: Problems removing samples with NA/NaN/Inf values

variancePartition fits a regression model for each gene and drops samples that have NA/NaN/Inf values
in each model fit. This is generally seamless but can cause an issue when a variable specified in the
formula no longer varies within the subset of samples that are retained. Consider an example with
variables for sex and age where age is NA for all males samples. Dropping samples with invalid values
for variables included in the formula will retain only female samples. This will cause variancePartition
to throw an error because there is now no variation in sex in the retained subset of the data. This can
be resolved by removing either age or sex from the formula.

This situtation is indicated by the following errors

• Error: grouping factors must have > 1 sampled level

• Error: Invalid grouping factor specification, Individual

• Error in ‘contrasts<-‘(‘*tmp*‘, value = contr.funs[1 + isOF[nn]]):

contrasts can be applied only to factors with 2 or more levels

• Error in checkNlevels(reTrms$flist, n = n, control):

grouping factors must have > 1 sampled level
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Session Info

• R version 3.3.1 (2016-06-21), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils
• Other packages: Biobase 2.32.0, BiocGenerics 0.18.0, DESeq2 1.12.4, GenomeInfoDb 1.8.7,

GenomicRanges 1.24.3, IRanges 2.6.1, Matrix 1.2-7.1, S4Vectors 0.10.3,
SummarizedExperiment 1.2.3, ballgown 2.4.3, dendextend 1.3.0, doParallel 1.0.10,
edgeR 3.14.0, foreach 1.4.3, ggplot2 2.1.0, iterators 1.0.8, knitr 1.14, limma 3.28.21,
lme4 1.1-12, readr 1.0.0, tximport 1.0.3, tximportData 1.0.2, variancePartition 1.2.11
• Loaded via a namespace (and not attached): AnnotationDbi 1.34.4, BiocParallel 1.6.6,

BiocStyle 2.0.3, Biostrings 2.40.2, DBI 0.5-1, DEoptimR 1.0-6, Formula 1.2-1,
GenomicAlignments 1.8.4, Hmisc 3.17-4, KernSmooth 2.23-15, MASS 7.3-45,
RColorBrewer 1.1-2, RCurl 1.95-4.8, RSQLite 1.0.0, Rcpp 0.12.7, Rsamtools 1.24.0,
XML 3.98-1.4, XVector 0.12.1, acepack 1.3-3.3, annotate 1.50.0, assertthat 0.1, bitops 1.0-6,
caTools 1.17.1, chron 2.3-47, class 7.3-14, cluster 2.0.4, codetools 0.2-14, colorRamps 2.3,
colorspace 1.2-6, compiler 3.3.1, data.table 1.9.6, digest 0.6.10, diptest 0.75-7, evaluate 0.9,
flexmix 2.3-13, foreign 0.8-67, formatR 1.4, fpc 2.1-10, gdata 2.17.0, genefilter 1.54.2,
geneplotter 1.50.0, gplots 3.0.1, grid 3.3.1, gridExtra 2.2.1, gtable 0.2.0, gtools 3.5.0, highr 0.6,
kernlab 0.9-24, labeling 0.3, lattice 0.20-34, latticeExtra 0.6-28, locfit 1.5-9.1, magrittr 1.5,
mclust 5.2, mgcv 1.8-15, minqa 1.2.4, modeltools 0.2-21, munsell 0.4.3, mvtnorm 1.0-5,
nlme 3.1-128, nloptr 1.0.4, nnet 7.3-12, pbkrtest 0.4-6, plyr 1.8.4, prabclus 2.2-6,
reshape2 1.4.1, robustbase 0.92-6, rpart 4.1-10, rtracklayer 1.32.2, scales 0.4.0, splines 3.3.1,
stringi 1.1.1, stringr 1.1.0, survival 2.39-5, sva 3.20.0, tibble 1.2, tools 3.3.1, trimcluster 0.1-2,
whisker 0.3-2, xtable 1.8-2, zlibbioc 1.18.0
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