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1 Introduction

This vignette introduces analysis methods for data from high-throughput sequencing of bisulphite treated DNA to
detect cytosine methylation. The segmentSeq package was originally designed to detect siRNA loci [1] and many of
the methods developed for this can be used to detect loci of cytosine methylation from replicated (or unreplicated)
sequencing data.

2 Preparation

Preparation of the segmentSeq package proceeds as in siRNA analysis. We begin by loading the segmentSeq package.

> library(segmentSeq)

Note that because the experiments that segmentSeq is designed to analyse are usually massive, we should use (if
possible) parallel processing as implemented by the parallel package. If using this approach, we need to begin
by define a cluster. The following command will use eight processors on a single machine; see the help page for
’makeCluster’ for more information. If we don’t want to parallelise, we can proceed anyway with a NULL cluster.
Results may be slightly different depending on whether or not a cluster is used owing to the non-deterministic elements
of the method.

> if(require("parallel"))

+ {

+ numCores <- min(8, detectCores())

+ cl <- makeCluster(numCores)

+ } else {

+ cl <- NULL

+ }

The segmentSeq package is designed to read in output from the YAMA (Yet Another Methylome Aligner) program.
This is a perl-based package using either bowtie or bowtie2 to align bisulphite treated reads (in an unbiased manner)
to a reference and identify the number of times each cytosine is identified as methylated or unmethylated. Unlike
most other aligners, YAMA does not require that reads that map to more than one location are discarded, instead
it reports the number of alternate matches to the reference for each cytosine. This is then used by segmentSeq to
weight the observed number of methylated/un-methylated cytosines at a location.

> datadir <- system.file("extdata", package = "segmentSeq")

> files <- c("short_18B_C24_C24_trim.fastq_CG_methCalls",

+ "short_Sample_17A_trimmed.fastq_CG_methCalls",

+ "short_13_C24_col_trim.fastq_CG_methCalls",

+ "short_Sample_28_trimmed.fastq_CG_methCalls")

> mD <- readMeths(files = files, dir = datadir,

+ libnames = c("A1", "A2", "B1", "B2"), replicates = c("A","A","B","B"),

+ nonconversion = c(0.004777, 0.005903, 0.016514, 0.006134))
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We can begin by plotting the distribution of methylation for these samples. The distribution can be plotted for each
sample individually, or as an average across multiple samples. We can also subtract one distribution from another to
visualise patterns of differential methylation on the genome.

> par(mfrow = c(2,1))

> dists <- plotMethDistribution(mD, main = "Distributions of methylation", chr = "Chr1")

> plotMethDistribution(mD, subtract = rowMeans(sapply(dists, function(x) x[,2])), main = "Differences between distributions", chr = "Chr1")
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Figure 1: Distributions of methylation on the genome (first two million bases of chromosome 1.

Next, we process this alignmentData object to produce a segData object. This segData object contains a set of
potential segments on the genome defined by the start and end points of regions of overlapping alignments in the
alignmentData object. It then evaluates the number of tags that hit in each of these segments.

> sD <- processAD(mD, gap = 300, squeeze = 10, filterProp = 0.05, verbose = TRUE, strandSplit = TRUE, cl = cl)

We can now construct a segment map from these potential segments.

Segmentation by heuristic Bayesian methods

A fast method of segmentation can be achieved by assuming a binomial distribution on the data with an uninformative
beta prior, and identifying those potential segments which have a sufficiently large posterior likelihood that the
proportion of methylation exceeds some critical value.

> hS <- heuristicSeg(sD = sD, aD = mD, prop = 0.2, cl = cl, gap = 100, getLikes = FALSE)

> hS
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Slot "coordinates"

GRanges object with 2317 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] Chr1 [ 108, 948] +

[2] Chr1 [ 150, 837] -

[3] Chr1 [5226, 5465] +

[4] Chr1 [6452, 6452] +

[5] Chr1 [7021, 7021] -

... ... ... ...

[2313] Chr1 [1990298, 1990298] +

[2314] Chr1 [1993118, 1993149] +

[2315] Chr1 [1993335, 1993335] +

[2316] Chr1 [1994611, 1994611] +

[2317] Chr1 [1994857, 1994886] +

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

An object of class "methData"

2317 rows and 4 columns

Slot "replicates"

A A B B

Slot "groups":

list()

Slot "data":

A.1 A.2 B.1 B.2

[1,] 166:67 145:89 128:50 22:11

[2,] 81:90 30:33 35:61 3:15

[3,] 1:86 1:120 24:36 2:9

[4,] 2:0 5:3 0:3 0:1

[5,] 0:12 0:8 8:4 0:1

2312 more rows...

Slot "annotation":

data frame with 0 columns and 2317 rows

Slot "locLikelihoods" (stored on log scale):

Matrix with 2317 rows.

A B

1 1 1

2 1 1

3 0 1

4 1 0

5 0 1

... ... ...

2313 1 1

2314 1 1

2315 1 0

2316 1 0

2317 0 1

Within a methylation locus, it is not uncommon to find completely unmethylated cytosines. If the coverage of these
cytosines is too high, it is possible that these will cause the locus to be split into two or more fragments. The
mergeMethSegs function can be used to overcome this splitting by merging loci with identical patterns of expression
that are not separated by too great a gap. Merging in this manner is optional, but recommended.

> hS <- mergeMethSegs(hS, mD, gap = 5000, cl = cl)
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We can then estimate posterior likelihoods on the defined loci by applying empirical Bayesian methods. These will
not change the locus definition, but will assign likelihoods that the identified loci represent a true methylation locus
in each replicate group.

> hSL <- lociLikelihoods(hS, mD, cl = cl)

......

Visualising loci

By one of these methods, we finally acquire an annotated methData object, with the annotations describing the
co-ordinates of each segment.

We can use this methData object, in combination with the alignmentMeth object, to plot the segmented genome.

> plotMeth(mD, hSL, chr = "Chr1", limits = c(1, 50000), cap = 10)
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Figure 2: Methylation and identified loci on the first ten thousand bases of chromosome 1.

Differential Methylation analysis

We can also examine the methData object for differentially methylated regions using the beta-binomial methods [2]
implemented in baySeq. We first define a group structure on the data.

> groups(hSL) <- list(NDE = c(1,1,1,1), DE = c("A", "A", "B", "B"))
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The methObservables function pre-calculates a set of data to improve the speed of prior and posterior estimation (at
some minor memory cost).

> hSL <- methObservables(hSL)

The density function used here is a composite of the beta-binomial and a binomial distribution that accounts for the
reported non-conversion rates.

> densityFunction(hSL) <- bbNCDist

We can then determine a prior distribution on the parameters of the model for the data.

> hSL <- getPriors(hSL, cl = cl)

We can then find the posterior likelihoods of the models defined in the groups structure.

> hSL <- getLikelihoods(hSL, cl = cl)

.

We can then retrieve the data for the top differentially methylated regions.

> topCounts(hSL, "DE")

seqnames start end width strand A.1 A.2 B.1 B.2 Likelihood

1 Chr1 958479 959092 614 + 0:284 0:702 1121:365 87:33 0.9999583

2 Chr1 958532 959091 560 - 0:299 1:324 284:257 15:18 0.9998443

3 Chr1 1764051 1764186 136 + 129:10 72:8 0:35 0:3 0.9998090

4 Chr1 1439804 1440002 199 + 1:228 0:90 100:46 9:3 0.9997982

5 Chr1 1655890 1656076 187 + 0:154 0:81 28:13 7:3 0.9997770

6 Chr1 1733868 1733987 120 + 0:23 0:85 48:5 10:1 0.9997764

7 Chr1 829704 829855 152 + 275:356 79:107 1:382 0:5 0.9997763

8 Chr1 235376 235557 182 + 2:252 0:111 73:38 9:5 0.9997756

9 Chr1 880822 880896 75 + 28:5 79:15 1:89 0:6 0.9997601

10 Chr1 25168 25354 187 + 0:197 1:119 197:64 10:4 0.9997584

ordering FDR.DE FWER.DE

1 B>A 4.173378e-05 4.173378e-05

2 B>A 9.871064e-05 1.974148e-04

3 A>B 1.294785e-04 3.883914e-04

4 B>A 1.475478e-04 5.900686e-04

5 B>A 1.626444e-04 8.129679e-04

6 B>A 1.727964e-04 1.036343e-03

7 A>B 1.800664e-04 1.259797e-03

8 B>A 1.856021e-04 1.483867e-03

9 A>B 1.916378e-04 1.723434e-03

10 B>A 1.966361e-04 1.964638e-03

Finally, to be a good citizen, we stop the cluster we started earlier:

> if(!is.null(cl))

+ stopCluster(cl)

Session Info

> sessionInfo()

R version 3.3.0 (2016-05-03)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.4 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
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[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets methods

[9] base

other attached packages:

[1] segmentSeq_2.6.0 ShortRead_1.30.0 GenomicAlignments_1.8.0

[4] SummarizedExperiment_1.2.0 Biobase_2.32.0 Rsamtools_1.24.0

[7] Biostrings_2.40.0 XVector_0.12.0 BiocParallel_1.6.0

[10] baySeq_2.6.0 perm_1.0-0.0 abind_1.4-3

[13] GenomicRanges_1.24.0 GenomeInfoDb_1.8.0 IRanges_2.6.0

[16] S4Vectors_0.10.0 BiocGenerics_0.18.0

loaded via a namespace (and not attached):

[1] lattice_0.20-33 bitops_1.0-6 grid_3.3.0 zlibbioc_1.18.0

[5] hwriter_1.3.2 latticeExtra_0.6-28 BiocStyle_2.0.0 RColorBrewer_1.1-2

[9] tools_3.3.0
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