keggorthology: the KEGG orthology as graph

VJ Carey

May 3, 2016

Contents

1	Introduction	1
2	KOgraph	1
3	Application to gene filtering	3
4	Infrastructure considerations	4
5	Session info	4

1 Introduction

KEGG is the Kyoto Encyclopedia of Genes and Genomes. An important product of the KEGG group is a catalog of pathways. The KEGG Orthology (KO) organizes the pathways into a conceptual hierarchy. This package encodes the hierarchy as a graph, and provides some support for deriving sets of array feature identifiers from the hierarchy.

2 KOgraph

```
> library(keggorthology)
> library(graph)
> data(KOgraph)
> KOgraph
A graphNEL graph with directed edges
Number of Nodes = 358
Number of Edges = 357
> nodes(KOgraph)[1:5]
```

```
[1] "KO.Feb10root" "Metabolism"
[3] "Carbohydrate Metabolism" "Glycolysis / Gluconeogenesis"
[5] "Citrate cycle (TCA cycle)"
```

The upper component of the hierarchy is:

```
> adj(KOgraph, nodes(KOgraph)[1])
```

\$KO.Feb10root

- [1] "Metabolism"
- [2] "Genetic Information Processing"
- [3] "Environmental Information Processing"
- [4] "Cellular Processes"
- [5] "Organismal Systems"
- [6] "Human Diseases"

Graph operations can be used to explore the orthology. For example, the context of the PPAR signaling pathway is found as follows:

```
> library(RBGL)
> sp.between(KOgraph, nodes(KOgraph)[1], "PPAR signaling pathway")
$`KO.Feb10root:PPAR signaling pathway`
$`KO.Feb10root:PPAR signaling pathway`$length
[1] 3
$`KO.Feb10root:PPAR signaling pathway`$path_detail
[1] "KO.Feb10root"
                             "Organismal Systems"
                                                       "Endocrine System"
[4] "PPAR signaling pathway"
$`KO.Feb10root:PPAR signaling pathway`$length_detail
$`KO.Feb10root:PPAR signaling pathway`$length_detail[[1]]
        KO.Feb10root->Organismal Systems
                                        1
    Organismal Systems->Endocrine System
                                        1
Endocrine System->PPAR signaling pathway
                                        1
```

Fixed-length identifiers are used to label pathways. These are available as the 'tag' nodeData attribute.

```
> nodeData(KOgraph,,"tag")[1:5]
```

\$KO.Feb10root [1] "NONE" \$Metabolism [1] "01100" \$`Carbohydrate Metabolism` [1] "01101" \$`Glycolysis / Gluconeogenesis` [1] "00010" \$`Citrate cycle (TCA cycle)` [1] "00020" The depth of each term is also available. > nodeData(KOgraph,, "depth")[1:5] \$KO.Feb10root [1] 0 \$Metabolism [1] 1 \$`Carbohydrate Metabolism` [1] 2 \$`Glycolysis / Gluconeogenesis` [1] 3 \$`Citrate cycle (TCA cycle)` [1] 3

3 Application to gene filtering

"04910"

Several functions are available for retrieving relevant information from the orthology. If you know a substring of the pathway name of interest, you can obtain the numerical tag(s).

```
> getKOtags("insulin")
Insulin signaling pathway
```

3

We can get probe set identifiers corresponding to a term. The default chip annotation package used is hgu95av2.db.

```
> library(hgu95av2.db)
> mp = getKOprobes("Methionine")
> library(ALL)
> data(ALL)
> ALL[mp,]
ExpressionSet (storageMode: lockedEnvironment)
assayData: 32 features, 128 samples
  element names: exprs
protocolData: none
phenoData
  sampleNames: 01005 01010 ... LAL4 (128 total)
  varLabels: cod diagnosis ... date last seen (21 total)
  varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
  pubMedIds: 14684422 16243790
Annotation: hgu95av2
```

4 Infrastructure considerations

Based on keggorthology read of KEGG orthology, March 2 2010. Specifically, we run wget on ftp://ftp.genome.jp/pub/kegg/brite/ko/ko00001.keg and use parsing and modeling code given in inst/keggHTML to generate a data frame respecting the hierarchy, and then keggDF2graph function in keggorthology package to construct the graph.

5 Session info

```
> sessionInfo()
```

R version 3.3.0 (2016-05-03) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 14.04.4 LTS

```
locale:
```

[1]	LC_CTYPE=en_US.UTF-8	LC_NUMERIC=C
[3]	LC_TIME=en_US.UTF-8	LC_COLLATE=C
[5]	LC_MONETARY=en_US.UTF-8	LC_MESSAGES=en_US.UTF-8
[7]	LC_PAPER=en_US.UTF-8	LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] stats4 parallel stats graphics grDevices utils datasets [8] methods base other attached packages: [1] ALL_1.13.0 RBGL_1.48.0 keggorthology_2.24.0 [4] hgu95av2.db_3.2.2 AnnotationDbi_1.34.0 org.Hs.eg.db_3.3.0 Biobase_2.32.0 [7] IRanges_2.6.0 S4Vectors_0.10.0 [10] graph_1.50.0 BiocGenerics_0.18.0 loaded via a namespace (and not attached): [1] DBI_0.4 tools_3.3.0 RSQLite_1.0.0