
csaw: ChIP-seq analysis with windows

User’s Guide

Aaron Lun

First edition 15 August 2012

Last revised 12 March 2016

Contents

1 Introduction 1
1.1 Scope . 1
1.2 How to get help . 1
1.3 How to cite this package . 2
1.4 Quick start . 2

2 Converting reads to counts 4
2.1 Types of input data . 4
2.2 Counting reads into windows . 4

2.2.1 Overview . 4
2.2.2 Filtering out low-quality reads . 6
2.2.3 Avoiding problematic genomic regions 7
2.2.4 Additional notes about parameter specification 8
2.2.5 Increasing speed and memory efficiency 9

2.3 Experiments involving paired-end data . 10
2.4 Estimating the average fragment length . 12

2.4.1 Using cross-correlation plots . 12
2.4.2 Variable fragment lengths between libraries 14

2.5 Choosing an appropriate window size . 15
2.6 Miscellaneous functions for non-standard counting 17

2.6.1 Counting over manually specified regions 17
2.6.2 Strand-specific counting . 17

3 Filtering out uninteresting windows 19
3.1 Independent filtering for count data . 19
3.2 By count size . 20
3.3 By proportion . 20
3.4 By global enrichment . 21
3.5 By local enrichment . 22

3.5.1 Mimicking single-sample peak callers 22
3.5.2 Identifying local maxima . 24

i

3.5.3 With negative controls . 24
3.6 By prior information . 25
3.7 Some final comments about filtering . 26

4 Calculating normalization factors 27
4.1 Overview . 27
4.2 Eliminating composition biases . 27

4.2.1 Using the TMM method on binned counts 27
4.2.2 Choosing a bin size . 28
4.2.3 Visualizing normalization efforts with MA plots 29

4.3 Eliminating efficiency biases . 29
4.3.1 Using the TMM method on high-abundance regions 29
4.3.2 Checking normalization with MA plots 30
4.3.3 Choosing between normalization strategies 32

4.4 Scaling normalization with spike-in chromatin 32
4.5 Dealing with trended biases . 33
4.6 A word on other biases . 35

5 Testing for differential binding 36
5.1 Introduction to edgeR . 36

5.1.1 Overview . 36
5.1.2 Setting up the data . 36

5.2 Estimating the dispersions . 37
5.2.1 Stabilising estimates with empirical Bayes 37
5.2.2 Modelling variable dispersions between windows 39

5.3 Testing for DB windows . 40
5.4 What to do without replicates . 41
5.5 Examining replicate similarity with MDS plots 41

6 Correction for multiple testing 43
6.1 Problems with false discovery rate control 43

6.1.1 Overview . 43
6.1.2 Restoring FDR control with clustered windows 44

6.2 Clustering windows into regions . 44
6.2.1 Clustering with external information 44
6.2.2 Quick and dirty clustering . 45
6.2.3 Summarizing the direction of DB per cluster 47

6.3 Integrating results from multiple window sizes 48
6.4 Choosing a single representative window . 49

6.4.1 Based on differential binding . 49
6.4.2 Based on average abundance . 50
6.4.3 Weighting windows on abundance . 51

ii

6.5 Filtering after testing but before correction 52
6.6 Clustering only on DB windows . 52

7 Post-processing steps 54
7.1 Adding gene-based annotation . 54
7.2 Checking bimodality for TF studies . 56
7.3 Saving the results to file . 56
7.4 Simple visualization of genomic coverage . 57

8 Epilogue 60
8.1 Datasets . 60

8.1.1 Obtaining the FastQ files . 60
8.1.2 Alignment and processing to produce BAM files 61

8.2 Session information . 61
8.3 References . 63

iii

Chapter 1

Introduction

1.1 Scope

This document gives an overview of the Bioconductor package csaw for detecting differential
binding (DB) in ChIP-seq experiments. Specifically, csaw uses sliding windows to identify
significant changes in binding patterns for transcription factors (TFs) or histone marks across
different biological conditions [Lun and Smyth, 2015a]. However, it can also be applied to
any sequencing technique where reads represent coverage of enriched genomic regions. The
statistical methods described here are based upon those in the edgeR package [Robinson
et al., 2010]. Knowledge of edgeR is useful but not a prerequesite for reading this guide.

1.2 How to get help

Most questions about csaw should be answered by the documentation. Every function men-
tioned in this guide has its own help page. For example, a detailed description of the argu-
ments and output of the windowCounts function can be obtained by typing ?windowCounts

or help(windowCounts) at the R prompt. Further detail on the methods or the underlying
theory can be found in the references at the bottom of each help page.

The authors of the package always appreciate receiving reports of bugs in the pack-
age functions or in the documentation. The same goes for well-considered suggestions for
improvements. Other questions about how to use csaw are best sent to the Bioconduc-
tor support site at https://support.bioconductor.org. Please send requests for general
assistance and advice to the support site, rather than to the individual authors.

Users posting to the support site for the first time may find it helpful to read the posting
guide at http://www.bioconductor.org/help/support/posting-guide.

1

https://support.bioconductor.org
http://www.bioconductor.org/help/support/posting-guide

1.3 How to cite this package

Most users of csaw should cite the following in any publications:

A. T. Lun and G. K. Smyth. csaw: a Bioconductor package for differential binding
analysis of ChIP-seq data using sliding windows. Nucleic Acids Res., 2015. doi:
10.1093/nar/gkv1191

Anyone who uses the Bioconductor workflow to construct their analyses should also cite:

A. T. L. Lun and G. K. Smyth. From reads to regions: a Bioconductor workflow
to detect differential binding in ChIP-seq data. F1000Research, 4, 2015

For people interested in combined p-values, their use in DB analyses was proposed in:

A. T. Lun and G. K. Smyth. De novo detection of differentially bound regions
for ChIP-seq data using peaks and windows: controlling error rates correctly.
Nucleic Acids Res., 42(11):e95, Jul 2014

The DB analyses shown here use methods from the edgeR package, which has its own citation
recommendations. See the appropriate section of the edgeR user’s guide for more details.

1.4 Quick start

A typical ChIP-seq analysis in csaw would look something like that described below. This
assumes that a vector of file paths to sorted and indexed BAM files is provided in bam.files

and a design matrix in supplied in design. The code is split across several steps:

1. Loading in data from BAM files.

> require(csaw)

> param <- readParam(minq=50)

> data <- windowCounts(bam.files, ext=110, width=10, param=param)

2. Filtering out uninteresting regions.

> require(edgeR)

> keep <- aveLogCPM(asDGEList(data)) >= -1

> data <- data[keep,]

3. Calculating normalization factors.

> binned <- windowCounts(bam.files, bin=TRUE, width=10000, param=param)

> normfacs <- normOffsets(binned)

4. Identifying DB windows.

2

https://www.bioconductor.org/help/workflows/chipseqDB/

> y <- asDGEList(data, norm.factors=normfacs)

> y <- estimateDisp(y, design)

> fit <- glmQLFit(y, design, robust=TRUE)

> results <- glmQLFTest(fit)

5. Correcting for multiple testing.

> merged <- mergeWindows(rowRanges(data), tol=1000L)

> tabcom <- combineTests(merged$id, results$table)

In this guide, the behavior of each step will be demonstrated with some publicly available
data. The dataset below focuses on changes in the binding profile of the NFYA protein
between embryonic stem cells and terminal neurons [Tiwari et al., 2012]. This will be used
as a case study for most of the code examples throughout the guide.

> bam.files <- c("es_1.bam", "es_2.bam", "tn_1.bam", "tn_2.bam")

> design <- model.matrix(~factor(c('es', 'es', 'tn', 'tn')))

> colnames(design) <- c("intercept", "cell.type")

A comprehensive listing of the datasets used in this guide is provided in Section 8.1, along
with instructions on how to obtain and process them for entry into the csaw pipeline.

3

Chapter 2

Converting reads to counts

Hello, reader. A little box like this will be present at the start of each chapter. The
idea is to list the objects from previous chapters that are needed to run the code in the
current chapter. Hopefully, it’ll provide a nice segue between chapters for tired eyes. At
this point, all we need are the bam.files that we defined in the introduction above.

2.1 Types of input data

Sorted and indexed BAM (i.e., binary SAM) files are required as input into the read counting
functions in csaw. Sorting should be performed on the genomic position of the mapped read.
For a given BAM file named xxx.bam, the corresponding index file should be named as
xxx.bam.bai such that both files are in the same directory. Users should be aware that the
sensibility of the supplied index is not checked prior to counting. A common mistake is to
replace or update the BAM file without updating the index. This will cause csaw to return
incorrect results when it attempts to load alignments from new BAM file.

2.2 Counting reads into windows

2.2.1 Overview

The windowCounts function uses a sliding window approach to count fragments for a set
of libraries. For single-end data, the fragment corresponding to a read is imputed by di-
rectionally extending each read to the average fragment length. The number of fragments
overlapping a genomic window is counted. This is repeated after sliding the window along
the genome to a new position. A count is then obtained for each window in each library.

4

> frag.len <- 110

> win.width <- 10

> param <- readParam(minq=50)

> data <- windowCounts(bam.files, ext=frag.len, width=win.width, param=param)

The function returns a RangedSummarizedExperiment object where the matrix of counts
is stored as the first entry in the assays slot. Each row corresponds to a genomic window
while each column corresponds to a library. The coordinates of each window are stored in
the rowRanges. The total number of reads in each library is stored as totals in the colData.

> head(assay(data))

[,1] [,2] [,3] [,4]
[1,] 3 3 1 3
[2,] 5 6 1 3
[3,] 7 5 0 0
[4,] 4 7 0 0
[5,] 3 7 0 0
[6,] 1 2 2 6

> head(rowRanges(data))

GRanges object with 6 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] chr1 [3003701, 3003710] *
[2] chr1 [3003751, 3003760] *
[3] chr1 [3003801, 3003810] *
[4] chr1 [3004001, 3004010] *
[5] chr1 [3004051, 3004060] *
[6] chr1 [3007551, 3007560] *

seqinfo: 66 sequences from an unspecified genome

> data$totals

[1] 17196528 20040530 23118590 22075821

For single-end data, suitable values for the average fragment length in ext can be es-
timated from the primary peak in a cross-correlation plot (see Section 2.4). Alternatively,
the length can be estimated from diagnostics during ChIP or library preparation, e.g., post-
fragmentation gel electrophoresis images. Typical values range from 100 to 300 bp, depending
on the efficiency of sonication and the use of size selection steps in library preparation.

5

width

forward
read

reverse
read

fragment length (ext)

The specified width of each window controls the compromise between spatial resolution
and count size. Larger windows will yield higher read counts which can provide more power
for DB detection. However, spatial resolution is also lost for large windows whereby adjacent
features can no longer be distinguished. Reads from a DB site may be counted alongside
reads from a non-DB site (e.g., non-specific background) or even those from an adjacent site
that is DB in the opposite direction. This will result in the loss of DB detection power.

The window size can be interpreted as a measure of the width of the binding site. Thus,
TF analyses will typically use a small window size, e.g., 10 - 20 bp. This maximizes spatial
resolution to allow optimal detection of narrow regions of enrichment. For histone marks,
widths of at least 150 bp are recommended [Humburg et al., 2011]. This corresponds to the
length of DNA wrapped up in each nucleosome, i.e., the smallest relevant unit for histone
mark enrichment. For diffuse marks, the sizes of enriched regions are more variable and so
the compromise between resolution and power is more arbitrary. Analyses with multiple
widths can be combined to examine DB across several resolutions (see Section 6.3).

For TF analyses with small windows, the choice of spacing interval will also have an effect
on the choice of window size – see Section 2.2.5 for more details.

2.2.2 Filtering out low-quality reads

Read extraction from the BAM files is controlled with the param argument in windowCounts.
This takes a readParam object which specifies a number of extraction parameters. The idea
is to define the readParam object once in the pipeline. It can then be reused for all relevant
functions, to ensure that read loading is consistent throughout the analysis.

> param

Extracting reads in single-end mode
Duplicate removal is turned off
Minimum allowed mapping score is 50
Reads are extracted from both strands
No restrictions are placed on read extraction
No regions are specified to discard reads

6

In the example above, reads are filtered out based on the minimum mapping score with
the minq argument. Low mapping scores are indicative of incorrectly and/or non-uniquely
aligned sequences. Removal of these reads is highly recommended as it will ensure that only
the reliable alignments are supplied to csaw. The exact value of the threshold depends on
the range of scores provided by the aligner. The subread program [Liao et al., 2013] was
used to align the reads in this dataset, so a value of 50 might be appropriate.

Reads marked as PCR duplicates in the SAM flag can be ignored by setting dedup=TRUE.
This can reduce the variability caused by inconsistent amplification between replicates, and
avoid spurious duplicate-driven DB between groups. However, it also caps the number of
reads at each position. This can lead to loss of DB detection power in high abundance
regions. Spurious differences may also be introduced when the same upper bound is applied
to libraries of varying size. Thus, duplicate removal is not recommended for routine DB
analyses. Of course, it may be unavoidable in some cases, e.g., involving libraries generated
from low quantities of DNA. An example of counting with duplicate removal is shown below.
Comparison to data$totals indicates that fewer reads are used from each library.

> dedup.param <- readParam(minq=50, dedup=TRUE)

> demo <- windowCounts(bam.files, ext=frag.len, width=win.width, param=dedup.param)

> demo$totals

[1] 13925800 13826445 16342981 18905912

2.2.3 Avoiding problematic genomic regions

Read extraction and counting can be restricted to particular chromosomes by specifying the
names of the chromosomes of interest in restrict. This avoids the need to count reads on
unassigned contigs or uninteresting chromosomes, e.g., the mitochondrial genome for ChIP-
seq studies targeting nuclear factors. Alternatively, it allows windowCounts to work on huge
datasets or in limited memory by analyzing only one chromosome at a time.

> restrict.param <- readParam(restrict=c("chr1", "chr10", "chrX"))

Reads lying in certain regions can also be removed by specifying the coordinates of those
regions in discard. This is intended to remove reads that are wholly aligned within known
repeat regions but were not removed by the minq filter. Repeats are problematic as changes
in repeat copy number or accessibility between conditions can lead to spurious DB. Removal
of reads within repeat regions can avoid detection of these irrelevant differences.

> repeats <- GRanges("chr1", IRanges(3000001, 3041000)) # telomere

> discard.param <- readParam(discard=repeats)

7

Coordinates of annotated repeats can be obtained from several different sources. A
curated blacklist of problematic regions is available from the ENCODE project [Consortium,
2012], and can be obtained by following this link. This list is constructed empirically from
the ENCODE datasets and includes obvious offenders like telomeres, microsatellites and
some rDNA genes. Alternatively, repeats can be predicted from the genome sequence using
software like RepeatMasker. These calls are available from the UCSC website (e.g., for
mouse) or they can be extracted from an appropriate masked BSgenome object.

Using discard is safer than simply ignoring windows that overlap the repeats. For exam-
ple, a large window might contain both repeat regions and non-repeat regions. Discarding
the window because of the former will compromise detection of DB features in the latter.
Of course, any DB sites within the discarded regions will be lost from downstream analyses.
Some caution is therefore required when specifying the regions of disinterest. For example,
many more repeats are called by RepeatMasker than are present in the ENCODE blacklist,
so the use of the former may result in loss of potentially interesting features.

2.2.4 Additional notes about parameter specification

Users can modify an existing readParam object using the reform method. The example below
copies param and replaces minq and discard with new values. This is safer than directly
modifying the slots, as appropriate type/value checking of each class member is performed.

> another.param <- reform(param, minq=20, discard=repeats)

> another.param

Extracting reads in single-end mode
Duplicate removal is turned off
Minimum allowed mapping score is 20
Reads are extracted from both strands
No restrictions are placed on read extraction
Reads in 1 region will be discarded

The windowCounts function will also accept a list of readParam objects. Different read
extraction parameters can then be specified for each library. Use of library-specific settings
is dangerous as spurious differences can be introduced between libraries. Nonetheless, it
may be unavoidable, e.g., if the dataset is composed of a mixture of single- and paired-end
libraries. A hypothetical example is shown below with one single- and one paired-end library.
To mimic single-end data in the second library, only the first read of the pair is used.

> paramlist <- list(readParam(), readParam(pe="first"))

> checkList(paramlist)

[1] "pe"

8

https://sites.google.com/site/anshulkundaje/projects/blacklists
hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/chromOut.tar.gz

For convenience, the checkList function is provided to identify those parameters that are
different across the list. This can be useful to ensure that only the intended parameters are
varied across libraries. Lists can also be manipulated with the reformList function, which
sets parameters to their specified values in all elements of the list. In the code below, coercion
of pe to a common value removes any differences between readParam objects.

> paramlist <- reformList(paramlist, pe="none")

> checkList(paramlist)

character(0)

Users are encouraged to construct their own readParam objects (or lists thereof) and apply
them consistently throughout their analyses. A good measure of synchronisation between
windowCounts calls is to check that the values of ...$totals are identical between calls. This
suggests that the same reads are being extracted from the BAM files in each call.

2.2.5 Increasing speed and memory efficiency

The spacing parameter controls the distance between adjacent windows in the genome. By
default, this is set to 50 bp, i.e., sliding windows are shifted 50 bp forward at each step.
Using a higher value will reduce computational work as fewer features need to be counted.
This may be useful when machine memory is limited. Of course, spatial resolution is lost
with larger spacings. Adjacent positions are not counted and thus cannot be distinguished.

> demo <- windowCounts(bam.files, spacing=100, ext=frag.len, width=win.width, param=param)

> head(rowRanges(demo))

GRanges object with 6 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] chr1 [3003701, 3003710] *
[2] chr1 [3003801, 3003810] *
[3] chr1 [3004001, 3004010] *
[4] chr1 [3008301, 3008310] *
[5] chr1 [3008401, 3008410] *
[6] chr1 [3009201, 3009210] *

seqinfo: 66 sequences from an unspecified genome

For analyses with large windows, it is worth increasing the spacing to a fraction of the
specified width. This reduces the computational work by decreasing the number of windows
and extracted counts. Any loss in spatial resolution due to a larger spacing interval is
negligble when compared to that already lost by using a large window size. Conversely,
spacing should not be larger than ext/2 for analyses with small windows. This ensures that
a narrow binding site will not be overlooked if it falls between two windows. If ext is also
very small, spacing should be set to width to avoid loading too many small windows.

9

Windows that are overlapped by few fragments can be filtered out using the filter

argument. This improves memory efficiency by discarding the majority of low-abundance
windows corresponding to uninteresting background regions. Specifically, any window is
removed if the sum of counts across all libraries is below filter. The default value of the
filter threshold is 10, though it can be raised to reduce memory usage for large libraries.
More sophisticated filtering is recommended and should be applied later (see Chapter 3).

> demo <- windowCounts(bam.files, ext=frag.len, width=win.width, filter=30, param=param)

> head(assay(demo))

[,1] [,2] [,3] [,4]
[1,] 5 14 2 9
[2,] 5 2 19 6
[3,] 4 6 17 4
[4,] 6 8 16 5
[5,] 3 11 16 5
[6,] 5 11 13 2

Setting bin=TRUE will cause windowCounts to count reads into contiguous bins across the
genome. Specifically, spacing is set to width such that each window forms a bin. Only the
5′ end of each read is used for counting into bins, without any directional extension. No
filtering is performed on the count sum, such that counts will be returned for each genomic
bin. As a result, users should set width to a reasonably large value. This avoids problems
with memory constraints when counts are returned for a large number of small bins.

> demo <- windowCounts(bam.files, width=1000, bin=TRUE, param=param)

> head(rowRanges(demo))

GRanges object with 6 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] chr1 [3000001, 3001000] *
[2] chr1 [3001001, 3002000] *
[3] chr1 [3002001, 3003000] *
[4] chr1 [3003001, 3004000] *
[5] chr1 [3004001, 3005000] *
[6] chr1 [3005001, 3006000] *

seqinfo: 66 sequences from an unspecified genome

2.3 Experiments involving paired-end data

ChIP experiments with paired-end sequencing can be accomodated by setting pe="both" in
the param object supplied to windowCounts. Read extension is not required as the genomic

10

interval spanned by the originating fragment is explicitly defined as that between the 5′

positions of the paired reads. The number of fragments overlapping each window is then
counted as described. By default, only proper pairs are used in which the two paired reads
are on the same chromosome, face inward and are no more than max.frag apart.

> pe.bam <- "example-pet.bam"

> pe.param <- readParam(max.frag=400, pe="both")

> demo <- windowCounts(pe.bam, ext=250, param=pe.param)

> demo$totals

[1] 11723240

A suitable value for max.frag can be chosen by examining the distribution of fragment
sizes from the getPESizes function. In this example, a user might use a value of around
400 bp as it exceeds the vast majority of the fragment size distribution. The plot can also
be used to examine the quality of the PE sequencing procedure. The location of the mode
should be consistent with the fragmentation and size selection steps in library preparation.

> out <- getPESizes(pe.bam)

> frag.sizes <- out$sizes[out$sizes<=800]

> hist(frag.sizes, breaks=50, xlab="Fragment sizes (bp)", ylab="Frequency", main="")

> abline(v=400, col="red")

11

The number of fragments exceeding the maximum size can be recorded for quality control.
The getPESizes function also returns the number of single reads, pairs with one unmapped
read, improperly orientated pairs and inter-chromosomal pairs. A non-negligble proportion
of these reads may be indicative of problems with paired-end alignment or sequencing.

> c(out$diagnostics, too.large=sum(out$sizes > 400))

total.reads mapped.reads single mate.unmapped unoriented
33498954 27420853 0 2000261 95382
inter.chr too.large

761432 130242

Note that all of the paired-end methods in csaw depend on the synchronisation of mate
information for each alignment in the BAM file. This is usually enforced in the alignments
that are reported directly from the aligner. Any file manipulations that might break the
synchronisation should be corrected (e.g., with Picard) prior to read counting.

Paired-end data can also be treated as single-end by specifiying pe="first" or "second"

in the readParam constructor. This will only use the first or second read of each read pair,
regardless of the validity of the pair or the relative quality of the alignments. This setting
may be useful for contrasting paired- and single-end analyses, or in disastrous situations
where paired-end sequencing has failed, e.g., due to ligation between DNA fragments.

> first.param <- readParam(pe="first")

> demo <- windowCounts(pe.bam, param=first.param)

> demo$totals

[1] 13715351

2.4 Estimating the average fragment length

2.4.1 Using cross-correlation plots

Cross-correlation plots can be generated directly from BAM files using the correlateReads

function. This provides a measure of the immunoprecipitation (IP) efficiency of a ChIP-seq
experiment [Kharchenko et al., 2008]. Efficient IP should yield a smooth peak at a delay
distance corresponding to the average fragment length. This reflects the strand-dependent
bimodality of reads around narrow regions of enrichment, e.g., TF binding sites.

> max.delay <- 500

> dedup.on <- reform(param, dedup=TRUE)

> x <- correlateReads(bam.files, max.delay, param=dedup.on)

> plot(0:max.delay, x, type="l", ylab="CCF", xlab="Delay (bp)")

12

http://broadinstitute.github.io/picard

The location of the peak can be used as an estimate of the fragment length for read
extension in windowCounts. An estimate of ∼110 bp is obtained from the plot above. This
can be done more precisely with the maximizeCcf function, which returns a similar value.

> maximizeCcf(x)

[1] 110

A sharp spike may also observed in the plot at a distance corresponding to the read
length. This is thought to be an artifact, caused by the preference of aligners towards
uniquely mapped reads. Duplicate removal is typically required here (i.e., set dedup=TRUE in
readParam) to reduce the size of this spike. Otherwise, the fragment length peak will not
be visible as a separate entity. The size of the smooth peak can also be compared to the
height of the spike to assess the signal-to-noise ratio of the data [Landt et al., 2012]. Poor
IP efficiency will result in a smaller or absent peak as bimodality is less pronounced.

Cross-correlation plots can also be used for fragment length estimation of narrow histone
marks such as histone acetylation and H3K4 methylation. However, they are less effective for
regions of diffuse enrichment where bimodality is not obvious (e.g., H3K27 trimethylation).

13

> n <- 1000

> h3ac <- correlateReads("h3ac.bam", n, param=dedup.on)

> h3k27me3 <- correlateReads("h3k27me3.bam", n, param=dedup.on)

> h3k4me2 <- correlateReads("h3k4me2.bam", n, param=dedup.on)

> plot(0:n, h3ac, col="blue", ylim=c(0, 0.1), xlim=c(0, 1000),

+ xlab="Delay (bp)", ylab="CCF", pch=16, type="l", lwd=2)

> lines(0:n, h3k27me3, col="red", pch=16, lwd=2)

> lines(0:n, h3k4me2, col="forestgreen", pch=16, lwd=2)

> legend("topright", col=c("blue", "red", "forestgreen"),

+ c("H3Ac", "H3K27me3", "H3K4me2"), pch=16)

2.4.2 Variable fragment lengths between libraries

The windowCounts function also supports the use of library-specific fragment lengths. For
example, libraries with larger fragment lengths will have wider peaks. The single-end reads
in those peaks will then require more extension, in order to impute a fragment interval that
covers the binding site. This is done by supplying a vector to the ext argument. Each entry
specifies the average fragment length to be used for the corresponding library. The extension
lengths are also stored in the RangedSummarizedExperiment output for future reference.

14

> multi.frag.lens <- c(100, 150, 200, 250)

> demo <- windowCounts(bam.files, ext=multi.frag.lens, filter=30, param=param)

> demo$ext

[1] 100 150 200 250

Caution is required to avoid detecting irrelevant DB from differences in peak widths.
windowCounts can provide some protection by scaling extended reads to the same length
in all libraries. Consider a bimodal peak across several libraries. Scaling ensures that the
subpeak on the forward strand is centered at the same location in each library. The same
applies for the subpeak on the reverse strand. As a result, most of the differences in peak
width between libraries can be removed. The desired final fragment length can be specified
by setting ext to a list (or any subsettable object) of length two. The first element of this list
represents the library-specific fragment sizes, while the second element represents the final
fragment size. If the second element is set to NA, no rescaling is performed and the library-
specific fragment sizes are used directly. This also works for analyses with paired-end data,
though the first element of ext will be ignored as directional extension is not performed.
The example below rescales all fragments to the mean of the library-specific sizes.

> demo <- windowCounts(bam.files, filter=30, param=param,

+ ext=DataFrame(multi.frag.lens, mean(multi.frag.lens)))

In general, use of different extension lengths is unnecessary in well-controlled datasets.
Difference in lengths between libraries are usually smaller than 50 bp. This is less than
the inherent variability in fragment lengths within each library (see the histogram for the
paired-end data in Section 2.3). Such variability will affect the read coverage profile more
than any difference in lengths, and is likely to mask the latter. Thus, an ext vector should
only specified for datasets that exhibit large differences in the fragment sizes.

2.5 Choosing an appropriate window size

The coverage profile around potential binding sites can be obtained with the profileSites

function. Here, the binding sites are defined by taking high-abundance 50 bp windows and
identifying those that are locally maximal using findMaxima. For each selected window,
profileSites records the coverage across the flanking regions as a function of the distance
from the edge of the window. This is divided by the count for the window itself to obtain a
relative coverage, based on the specification of weight. The values are then averaged across
all windows to obtain an aggregated coverage profile for each library.

> all.bam <- c("h3ac.bam", "h3k4me2.bam", "es_1.bam")

> collected <- list()

> for (curbam in all.bam) {

+ windowed <- windowCounts(curbam, spacing=50, width=50, param=dedup.on, filter=20)

15

+ rwsms <- rowSums(assay(windowed))

+ maxed <- findMaxima(rowRanges(windowed), range=1000, metric=rwsms)

+ collected[[curbam]] <- profileSites(curbam, rowRanges(windowed)[maxed],

+ param=dedup.on, weight=1/rwsms[maxed])

+ }

> xranged <- as.integer(names(collected[[1]]))

> plot(xranged, collected[[1]], type="l", col="blue", xlim=c(-1000, 1000), lwd=2,

+ xlab="Distance (bp)", ylab="Relative coverage per base")

> lines(xranged, collected[[2]], col="forestgreen", lwd=2)

> lines(xranged, collected[[3]], col=rgb(0,0,0,0.5), lwd=2)

> legend("topright", col=c("blue", "forestgreen", rgb(0,0,0,0.5)),

+ c("H3Ac", "H3K4me2", "NF-YA"), pch=16)

> abline(v=c(-150,200), col="dodgerblue", lty=2)

In the example above, enrichment for the two histone marks is mostly contained within
a 350 bp region around the maxima (dashed lines). This suggests that a window size of
∼150 bp is ideal, given that directional extension by 100 bp has been performed on both
sides of the peak. Most of the coverage can then be captured without including too much
background noise. In contrast, the NF-YA profile drops off more sharply. This indicates that

16

a smaller window size (< 50 bp) is probably adequate, consistent with sharp TF binding.
See the wwhm function for selection of a window width from the coverage profile.

In practice, a clear-cut choice of distance/window size is rarely found in real datasets.
For many non-TF targets, the widths of the enriched regions can be highly variable. This
manifests as a long tail in the coverage profile plot and suggests that no single window size
is optimal. Indeed, even if all enriched regions were of constant width, the width of the DB
events occurring within those regions may be variable. Thus, it may be preferable to err on
the side of smaller windows to maintain spatial resolution for such events.

The performance of this approach also deteriorates when background enrichment is preva-
lent. This makes it difficult to determine when the coverage becomes negligble. The problem
is compounded for diffuse marks where the transition between enrichment and background
is unclear. Indeed, local maxima are unlikely to be well-defined within diffuse regions. Thus,
users are advised to exercise caution when picking a window size from these plots.

2.6 Miscellaneous functions for non-standard counting

2.6.1 Counting over manually specified regions

The csaw package focuses on counting reads into windows. However, it may be occasionally
desirable to use the same conventions (e.g., duplicate removal, quality score filtering) when
counting reads into pre-specified regions. This can be performed with the regionCounts

function, which is largely a wrapper for countOverlaps from the GenomicRanges package.

> my.regions <- GRanges(c("chr11", "chr12", "chr15"),

+ IRanges(c(75461351, 95943801, 21656501),

+ c(75461610, 95944810, 21657610)))

> reg.counts <- regionCounts(bam.files, my.regions, ext=frag.len, param=param)

> head(assay(reg.counts))

[,1] [,2] [,3] [,4]
[1,] 37 57 103 102
[2,] 0 0 1 0
[3,] 15 17 16 7

2.6.2 Strand-specific counting

Techniques like CLIP-seq, MeDIP-seq or CAGE provide strand-specific sequence information.
The csaw package can analyze these datasets through strand-specific counting. This can
be done manually setting the forward slot in the readParam object to TRUE or FALSE, to
count only forward- or reverse-strand reads respectively. Alternatively, the strandedCounts

wrapper function can be used to obtain strand-specific counts for each window or region.
The strand of each output range indicates the strand on which reads were counted for that
row. Up to two rows can be generated for each window or region, depending on filtering.

17

> ss.param <- reform(param, forward=NULL)

> ss.counts <- strandedCounts(bam.files, ext=frag.len, width=win.width, param=ss.param)

> strand(rowRanges(ss.counts))

factor-Rle of length 656381 with 70 runs
Lengths: 48361 46926 15963 15666 27617 ... 657 1289 1217 49 75
Values : + - + - + ... - + - + -

Levels(3): + - *

Note that strandedCounts operates internally by calling windowCounts (or regionCounts)
twice with different settings for param$forward. Any value for forward in the input param

object will be ignored. In fact, the function will only accept a NULL value for this slot. This
is intended to protect the user, as any attempt to re-use the ss.param object in functions
that are not designed for strand specificity will (appropriately) raise an error.

18

Chapter 3

Filtering out uninteresting windows

This chapter will require the frag.len, param and data from the last chapter, as well
as the bam.files vector we defined at the start. We’ll also need the aveLogCPM function
from edgeR, so load the package if you haven’t done so already.

3.1 Independent filtering for count data

Many of the low abundance windows in the genome correspond to background regions in
which DB is not expected. Indeed, windows with low counts will not provide enough evi-
dence against the null hypothesis to obtain sufficiently low p-values for DB detection. Simi-
larly, some approximations used in the statistical analysis will fail at low counts. Removing
such uninteresting or ineffective tests reduces the severity of the multiple testing correction,
increases detection power amongst the remaining tests and reduces computational work.

Filtering is valid so long as it is independent of the test statistic under the null hypothesis
[Bourgon et al., 2010]. In the negative binomial (NB) framework, this (probably) corresponds
to filtering on the overall NB mean. The DB p-values retained after filtering on the overall
mean should be uniform under the null hypothesis, by analogy to the normal case. Row
sums can also be used for datasets where the effective library sizes are not very different, or
where the counts are assumed to be Poisson-distributed between biological replicates.

In edgeR, the log-transformed overall NB mean is referred to as the average abundance.
This is computed with the aveLogCPM function, as shown below for each region.

> abundances <- aveLogCPM(asDGEList(data))

> summary(abundances)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.211 -2.189 -2.110 -2.041 -1.971 9.811

19

For demonstration purposes, an arbitrary threshold of -1 is used here to filter the window
abundances. This restricts the analysis to windows with abundances above this threshold.

> keep.simple <- abundances > -1

> filtered.data <- data[keep.simple,]

> summary(keep.simple)

Mode FALSE TRUE NA's
logical 3674738 15072 0

The exact choice of filter threshold may not be obvious. In particular, there is often no
clear distinction in abundances between genuine binding and background events, e.g., due to
the presence of many weak but genuine binding sites. A threshold that is too small will be
ineffective, whereas a threshold that is too large may decrease power by removing true DB
sites. Arbitrariness is unavoidable when balancing these opposing considerations.

Nonetheless, several strategies for defining the threshold are described below. Users
should start by choosing one of these filtering approaches to implement in their analyses.
Each approach yields a logical vector that can be used in the same way as keep.simple.

3.2 By count size

The simplest approach is to simply filter according to the count size. This removes windows
for which the counts are simply too low to provide strong evidence for DB. The code below
retains windows with (library size-adjusted) average counts greater than 5.

> keep <- abundances > aveLogCPM(5, lib.size=mean(data$totals))

> summary(keep)

Mode FALSE TRUE NA's
logical 3621824 67986 0

However, a count-based filter becomes less effective as the library size increases. More
windows will be retained with greater sequencing depth, even in uninteresting background
regions. This increases both computational work and the severity of the multiplicity correc-
tion. The threshold may also be inappropriate when library sizes are very different.

3.3 By proportion

One approach is to to assume that only a certain proportion - say, 0.1% - of the genome is
genuinely bound. This corresponds to the top proportion of high-abundance windows. The
total number of windows is calculated from the genome length and the spacing interval used
in windowCounts. The filterWindows function returns the ratio of the rank of each window
to this total, where higher-abundance windows have larger ranks. Users can then retain
those windows with rank ratios above the unbound proportion of the genome.

20

> keep <- filterWindows(data, type="proportion")$filter > 0.999

> sum(keep)

[1] 54620

This approach is simple and has the practical advantage of maintaining a constant number
of windows for the downstream analysis. However, it may not adapt well to different datasets
where the proportion of bound sites can vary. Using an inappropriate percentage of binding
sites will result in the loss of potential DB regions or inclusion of background regions.

3.4 By global enrichment

An alternative approach involves choosing a filter threshold based on the fold change over
the level of non-specific enrichment. The degree of background enrichment can be estimated
by counting reads into large bins across the genome. Binning is necessary here to increase
the size of the counts when examining low-density background regions. This ensures that
precision is maintained when estimating the background abundance.

> bin.size <- 2000L

> binned <- windowCounts(bam.files, bin=TRUE, width=bin.size, param=param)

The median of the average abundances across all bins can be computed and used as a
global estimate of the background coverage. This global background can then be compared
to the window-based abundances. However, some care is required as the sizes of the regions
used for read counting are different between bins and windows. The average abundance of
each bin must be scaled down to be comparable to those of the windows.

With type="global", the filterWindows function returns the increase in the abundance of
each window over the global background. Windows can be filtered by setting some minimum
threshold on this increase. Here, a fold change of 3 is necessary for a window to be considered
as containing a binding site. This approach has an intuitive and experimentally relevant
interpretation that adapts to the level of non-specific enrichment in the dataset.

> filter.stat <- filterWindows(data, background=binned, type="global")

> keep <- filter.stat$filter > log2(3)

> sum(keep)

[1] 20588

The effect of filtering can also be visualized with a histogram. This allows users to
confirm that the bulk of (assumed) background bins are discarded upon filtering. Note that
bins containing genuine binding sites will usually not be visible on such plots. This is due
to the dominance of the background-containing bins throughout the genome.

21

> hist(filter.stat$back.abundances, xlab="Adjusted bin log-CPM", breaks=100, main="",

+ xlim=c(min(filter.stat$back.abundances), 0))

> global.bg <- filter.stat$abundances - filter.stat$filter

> abline(v=global.bg[1], col="red", lwd=2)

> abline(v=global.bg[1]+log2(3), col="blue", lwd=2)

> legend("topright", lwd=2, col=c('red', 'blue'), legend=c("Background", "Threshold"))

Of course, the pre-specified minimum fold change may be too aggressive when binding
is weak. For TF data, a large cut-off works well as narrow binding sites will have high read
densities and are unlikely to be lost during filtering. Smaller minimum fold changes are
recommended for diffuse marks where the difference from background is less obvious.

3.5 By local enrichment

3.5.1 Mimicking single-sample peak callers

Local background estimators can also be constructed. This avoids inappropriate filtering
when there are differences in background coverage across the genome. Here, the 2 kbp region

22

surrounding each window will be used as the “neighborhood” over which a local estimate of
non-specific enrichment for that window can be obtained. The counts for this region can be
obtained with the aptly-named regionCounts function. This should be synchronized with
windowCounts by using the same param, if any non-default settings were used.

> surrounds <- 2000

> neighbor <- suppressWarnings(resize(rowRanges(data), surrounds, fix="center"))

> wider <- regionCounts(bam.files, regions=neighbor, ext=frag.len, param=param)

Counts for each window are subtracted from the counts for its neighborhood. This
ensures that any enriched regions or binding sites inside the window will not interfere with
estimation of its local background. The width of the window is also subtracted from that of
its neighborhood, to reflect the effective size of the latter after subtraction of counts. Using
these differences in widths, the abundance of the neighborhood is scaled down for a valid
comparison to that of the corresponding window. This entire procedure can be performed
automatically by setting type="local" for filterWindows, which returns the enrichment
values i.e., the increase in the abundance of each window over its neighborhood.

> filter.stat <- filterWindows(data, wider, type="local")

Filtering can then be performed using a quantile- or fold change-based threshold on the
enrichment values. In this scenario, a 3-fold increase in enrichment over the neighborhood
abundance is required for retention of each window. This roughly mimics the behavior of
single-sample peak-calling programs such as MACS [Zhang et al., 2008].

> keep <- filter.stat$filter > log2(3)

> sum(keep)

[1] 9539

Note that this procedure also assumes that no other enriched regions are present in each
neighborhood. Otherwise, the local background will be overestimated and windows may be
incorrectly filtered out. This may be problematic for diffuse histone marks or TFBS clusters
where enrichment may be observed in both the window and its neighborhood.

If this seems too complicated, an alternative is to identify locally enriched regions using
peak-callers like MACS. Filtering can then be performed to retain only windows within called
peaks. However, peak calling must be done independently of the DB status of each window.
If libraries are of similar size or biological variability is low, reads can be pooled into one
library for single-sample peak calling [Lun and Smyth, 2014]. This is equivalent to filtering
on the average count and avoids loss of the type I error control from data snooping.

23

3.5.2 Identifying local maxima

Another approach uses the findMaxima function to identify local maxima in the read density
across the genome. The code below will determine if each window is a local maximum, i.e.,
whether it has the highest average abundance within 1 kbp on either side. The data can
then be filtered to retain only these locally maximal windows. This can also be combined
with other filters to ensure that the retained windows have high absolute abundance.

> maxed <- findMaxima(rowRanges(data), range=1000, metric=abundances)

> summary(maxed)

Mode FALSE TRUE NA's
logical 2823683 866127 0

This approach is very aggressive and should only be used (sparingly) in datasets where
binding is sharp, simple and isolated. Complex binding events involving diffuse enrichment
or adjacent binding sites will not be handled well. For example, DB detection will fail if a
low-abundance DB window is ignored in favor of a high-abundance non-DB neighbor.

3.5.3 With negative controls

Negative controls for ChIP-seq refer to input or IgG libraries where the IP step has been
skipped or compromised with an irrelevant antibody, respectively. This accounts for sequenc-
ing/mapping biases in ChIP-seq data. IgG controls also quantify the amount of non-specific
enrichment throughout the genome. These controls are mostly irrelevant when testing for
DB between ChIP samples. However, they can be used to filter out windows where the
average abundance across the ChIP samples is below the abundance of the control.

> in.demo <- windowCounts(c(bam.files, "input.bam"), ext=frag.len, param=param)

> chip <- in.demo[,1:4]

> control <- in.demo[,5]

Some additional work is required to account for composition biases (see Section 4.2.1).
These are likely to be present when comparing ChIP to negative control samples. A simple
strategy for normalization involves counting reads into large bins, as shown below.

> in.binned <- windowCounts(c(bam.files, "input.bam"), bin=TRUE, width=10000, param=param)

> chip.binned <- in.binned[,1:4]

> control.binned <- in.binned[,5]

The filterWindows function computes the enrichment of the ChIP counts over the con-
trol counts for each window. A larger prior.count of 5 is used to compute the average
abundance. This protects against inflated log-fold changes when the count for the window in
the control sample is near zero. Note that the global and local background estimates require
less protection (prior.count of 2) as they are derived from larger bins with more counts.

24

> filter.stat <- filterWindows(chip, control, type="control", prior.count=5,

+ norm.fac=list(chip.binned, control.binned))

The binned counts are also supplied as a list to the norm.fac argument, where the first
and second elements contain the counts for the ChIP and control samples, respectively. The
log-fold enrichment of the ChIP sample over the control is then computed for each window,
after normalizing for composition bias with the binned counts. The example below requires
a 3-fold or greater increase in abundance over the control to retain each window.

> keep <- filter.stat$filter > log2(3)

> sum(keep)

[1] 5910

As an aside, the csaw pipeline can also be applied to search for “DB” between ChIP
libraries and control libraries. The ChIP and control libraries can be treated as separate
groups, in which most “DB” events are expected to be enriched in the ChIP samples. If
this is the case, the filtering procedure described above is inappropriate as it will select
for windows with differences between ChIP and control samples. This compromises the
assumption of the null hypothesis during testing, resulting in loss of type I error control.

3.6 By prior information

When only a subset of genomic regions are of interest, DB detection power can be improved
by removing windows lying outside of these regions. Such regions could include promoters,
enhancers, gene bodies or exons. Alternatively, sites could be defined from a previous ex-
periment or based on the genome sequence, e.g., TF motif matches. The example below
retrieves the coordinates of the broad gene bodies from the mouse genome, including the 3
kbp region upstream of the TSS that represents the putative promoter region for each gene.

> require(TxDb.Mmusculus.UCSC.mm10.knownGene)

> broads <- genes(TxDb.Mmusculus.UCSC.mm10.knownGene)

> broads <- resize(broads, width(broads)+3000, fix="end")

> head(broads)

GRanges object with 6 ranges and 1 metadata column:
seqnames ranges strand | gene_id

<Rle> <IRanges> <Rle> | <character>
100009600 chr9 [21062393, 21078496] - | 100009600
100009609 chr7 [84940169, 84967009] - | 100009609
100009614 chr10 [77708446, 77712009] + | 100009614
100009664 chr11 [45805083, 45842878] + | 100009664

100012 chr4 [144157556, 144165651] - | 100012
100017 chr4 [134745412, 134771004] - | 100017

seqinfo: 66 sequences (1 circular) from mm10 genome

25

Windows can be filtered to only retain those which overlap with the regions of interest.
Discerning users may wish to distinguish between full and partial overlaps, though this should
not be a significant issue for small windows. This could also be combined with abundance
filtering to retain windows that contain putative binding sites in the regions of interest.

> suppressWarnings(keep <- overlapsAny(rowRanges(data), broads))

> sum(keep)

[1] 2012876

Any information used here should be independent of the DB status under the null in
the current dataset. For example, DB calls from a separate dataset and/or independent
annotation can be used without problems. However, using DB calls from the same dataset
to filter regions would violate the null assumption and compromise type I error control.

In addition, this filter is unlike the others in that it does not operate on the abundance
of the windows. It is possible that the set of retained windows may be very small, e.g., if
no non-empty windows overlap the pre-defined regions of interest. Thus, it may be better
to apply this filter before the multiplicity correction but after DB testing. This ensures that
there are sufficient windows for stable estimation of the downstream statistics.

3.7 Some final comments about filtering

It should be stressed that these filtering strategies do not eliminate subjectivity. Some
thought is still required in selecting an appropriate proportion of bound sites or minimum
fold change above background for each method. Rather, these filters provide a relevant
interpretation for what would otherwise be an arbitrary threshold on the abundance.

As a general rule, users should filter less aggressively if there is any uncertainty about
the features of interest. In particular, the thresholds shown in this chapter for each filtering
statistic are fairly mild. This ensures that more potentially DB windows are retained for
testing. Use of an aggressive filter risks the complete loss of detection for such windows, even
if power is improved among those that are retained. Low numbers of retained windows may
also lead to unstable estimates during, e.g., normalization, variance modelling.

Different filters can also be combined in more advanced applications, e.g., by running
data[keep1 & keep2,] for filter vectors keep1 and keep2. Any benefit will depend on the
type of filters involved. The greatest effect is observed for filters that operate on different
principles. For example, the low-count filter can be combined with others to ensure that
all retained windows surpass some minimum count. This is especially relevant for the local
background filters, where a large enrichment value does not guarantee a large count.

26

Chapter 4

Calculating normalization factors

This chapter will need the bam.files vector again (from the introduction). We’ll also
need the param object that we defined in Chapter 2. You’ll notice that that a num-
ber of other BAM files are used in this chapter. However, these are only present for
demonstration purposes and aren’t necessary for the main NF-YA example.

4.1 Overview

The complexity of the ChIP-seq technique gives rise to a number of different biases in the
data. For a DB analysis, library-specific biases are of particular interest as they can introduce
spurious differences between conditions. This includes composition biases, efficiency biases
and trended biases. Thus, normalization between libraries is required to remove these biases
prior to any statistical analysis. Several normalization strategies are presented here, though
users should only pick one to use for any given analysis. Advice on choosing the most
appropriate method is scattered throughout the chapter, so read carefully.

4.2 Eliminating composition biases

4.2.1 Using the TMM method on binned counts

As the name suggests, composition biases are formed when there are differences in the com-
position of sequences across libraries. Highly enriched regions consume more sequencing
resources and thereby suppress the representation of other regions. Differences in the mag-
nitude of suppression between libraries can lead to spurious DB calls. Scaling by library size
fails to correct for this as composition biases can still occur in libraries of the same size.

27

To remove composition biases in csaw, reads are counted in large bins and the counts are
used for normalization with the normOffsets wrapper function. This uses the trimmed mean
of M-values (TMM) method [Robinson and Oshlack, 2010] to correct for any sytematic fold
change in the coverage of the bins. The assumption here is that most bins represent non-DB
background regions so any consistent difference across bins must be spurious.

> binned <- windowCounts(bam.files, bin=TRUE, width=10000, param=param)

> normfacs <- normOffsets(binned)

> normfacs

[1] 1.0075434 0.9745238 1.0137867 1.0046093

The TMM method trims away putative DB bins (i.e., those with extreme M-values) and
computes normalization factors from the remainder to use in edgeR. The size of each library
is scaled by the corresponding factor to obtain an effective library size for modelling. A larger
normalization factor results in a larger effective library size and is conceptually equivalent to
scaling each individual count downwards, given that the ratio of that count to the (effective)
library size will be smaller. Check out the edgeR user’s guide for more information.

Note that the normOffsets method skips the precision weighting step in the TMM
method. Weighting aims to increase the contribution of bins with high counts. However,
these bins are more likely to contain binding sites and thus are more likely to be DB. If any
DB regions should survive trimming, upweighting them would be counterproductive.

4.2.2 Choosing a bin size

By definition, read coverage is low for background regions. This can result in a large number
of zero counts and undefined M-values when reads are counted into small windows. Adding
a prior count is only a superficial solution as the chosen prior will have undue influence on
the estimate of the normalization factor when many counts are low. The variance of the
fold change distribution is also higher for low counts. This reduces the effectiveness of the
trimming procedure during normalization. These problems can be overcome by using large
bins to increase the size of the counts prior to TMM normalization.

Of course, this strategy requires the user to supply a bin size. If the bins are too large,
background and enriched regions will be included in the same bin. This makes it difficult to
trim away bins corresponding to enriched regions. On the other hand, the counts will be too
low if the bins are too small. Testing multiple bin sizes is recommended to ensure that the
estimates are robust to any changes. A value of 10 kbp is suitable for most datasets.

> demo <- windowCounts(bam.files, bin=TRUE, width=5000, param=param)

> normOffsets(demo)

[1] 1.0093596 0.9754046 1.0105468 1.0051082

> demo <- windowCounts(bam.files, bin=TRUE, width=15000, param=param)

> normOffsets(demo)

28

[1] 1.007559 0.972134 1.016096 1.004775

These factors are consistently close to unity, which suggests that composition bias is
negligble in this dataset. See Section 4.3.2 for some examples with greater bias.

4.2.3 Visualizing normalization efforts with MA plots

The effectiveness of normalization can be examined using a MA plot. A single main cloud
of points should be present, consisting primarily of background regions. Separation into
multiple discrete points indicates that the counts are too low and that larger bin sizes should
be used. Composition biases manifest as a vertical shift in the position of this cloud. Ideally,
the log-ratios of the corresponding normalization factors should pass through the centre of
the cloud. This indicates that undersampling has been identified and corrected.

> par(mfrow=c(1, 3), mar=c(5, 4, 2, 1.5))

> adj.counts <- cpm(asDGEList(binned), log=TRUE)

> for (i in 1:(length(bam.files)-1)) {

+ cur.x <- adj.counts[,1]

+ cur.y <- adj.counts[,1+i]

+ smoothScatter(x=(cur.x+cur.y)/2+6*log2(10), y=cur.x-cur.y,

+ xlab="A", ylab="M", main=paste("1 vs", i+1))

+ all.dist <- diff(log2(normfacs[c(i+1, 1)]))

+ abline(h=all.dist, col="red")

+ }

4.3 Eliminating efficiency biases

4.3.1 Using the TMM method on high-abundance regions

Efficiency biases are commonly observed in ChIP-seq data. This refers to fold changes in
enrichment that are introduced by variability in IP efficiencies between libraries. These

29

technical differences are not biologically interesting and must be removed. This can be
achieved by assuming that high-abundance windows contain binding sites. In the examples
below, reads are counted into 150 bp windows for histone mark data. High-abundance
windows are chosen using a global filtering approach described in Section 3.4. The TMM
method can then be applied to eliminate systematic differences across those windows.

> me.files <- c("h3k4me3_mat.bam", "h3k4me3_pro.bam")

> me.demo <- windowCounts(me.files, width=150, param=param)

> me.bin <- windowCounts(me.files, bin=TRUE, width=10000, param=param)

> keep <- filterWindows(me.demo, me.bin, type="global")$filter > log2(3)

> me.eff <- normOffsets(me.demo[keep,])

> me.eff

[1] 0.791484 1.263449

> ac.files <- c("h3ac.bam", "h3ac_2.bam")

> ac.demo <- windowCounts(ac.files, width=150, param=param)

> ac.bin <- windowCounts(ac.files, bin=TRUE, width=10000, param=param)

> keep <- filterWindows(ac.demo, ac.bin, type="global")$filter > log2(5)

> ac.eff <- normOffsets(ac.demo[keep,])

> ac.eff

[1] 1.2012717 0.8324512

This method also assumes that most binding sites in the genome are not DB. Thus, any
systematic differences in coverage among the high-abundance windows must be caused by
differences in IP efficiency between libraries or some other technical issue. However, genuine
biological differences may be removed when the assumption of a non-DB majority does not
hold, e.g., overall binding is truly lower in one condition. Also, care is required when filtering
prior to normalization. Retaining too many windows will include background regions, while
retaining too few will result in unstable estimates. See Chapter 3 for more details.

Note that TMM normalization is performed on window counts instead of bin counts.
This is possible as the former should be large enough after filtering and retention of high-
abundance candidates (Chapter 3). Direct use of the windows also ensures that there is
no systematic difference in the counts between libraries during DB testing. In practice, the
estimated normalization factors are usually robust to the choice of window or bin size.

4.3.2 Checking normalization with MA plots

The effect of normalization can be visualized with MA plots. Plots are constructed using
counts for 10 kbp bins, rather than with those from the windows. This is useful as the
behavior of the entire genome can be examined, rather than just that of the high-abundance
windows. It also allows calculation of and comparison to the factors for composition bias.

> me.comp <- normOffsets(me.bin)

> me.comp

30

[1] 1.2801380 0.7811658

> ac.comp <- normOffsets(ac.bin)

> ac.comp

[1] 0.9049943 1.1049793

The clouds at low and high A-values represent the background and bound regions, respec-
tively. The normalization factors from removal of composition bias (dashed) pass through
the former, whereas the factors to remove efficiency bias (full) pass through the latter. A
non-zero M-value location for the high A-value cloud represents a systematic difference be-
tween libraries for the bound regions, either due to genuine DB or variable IP efficiency. This
also induces composition bias, leading to a non-zero M-value for the background cloud.

> par(mfrow=c(1,2))

> for (main in c("H3K4me3", "H3ac")) {

+ if (main=="H3K4me3") { bins <- me.bin; comp <- me.comp; eff <- me.eff }

+ else { bins <- ac.bin; comp <- ac.comp; eff <- ac.eff }

+ adjc <- cpm(asDGEList(bins), log=TRUE)

+ smoothScatter(x=rowMeans(adjc), y=adjc[,1]-adjc[,2],

+ xlab="A", ylab="M", main=main)

+ abline(h=log2(eff[1]/eff[2]), col="red")

+ abline(h=log2(comp[1]/comp[2]), col="red", lty=2)

+ }

31

4.3.3 Choosing between normalization strategies

The normalization strategies for composition and efficiency biases are mutually exclusive,
as only one set of factors will ultimately be used. The choice between the two methods
depends on whether one assumes that the systematic differences at high abundances represent
genuine DB events. If so, composition bias should be removed to preserve the assumed DB.
Otherwise, the differences must represent efficiency bias and should be removed. Some
understanding of the biological context is useful in making this decision, e.g., comparing a
wild-type against a knock-out for the target protein should result in systematic DB, while
overall levels of histone marking are expected to be consistent in most conditions.

For the main NF-YA example, there is no expectation of constant binding between cell
types. Thus, normalization factors will be computed to remove composition biases. This
ensures that any genuine systematic changes in binding will still be picked up. In general,
normalization for composition bias is a good starting point for any analysis. This can be
considered as the “default” unless there is evidence for a confounding efficiency bias.

4.4 Scaling normalization with spike-in chromatin

Several studies have used spike-in chromatin for scaling normalization of ChIP-seq data
[Bonhoure et al., 2014, Orlando et al., 2014]. Briefly, chromatin or whole cells from a different
species is added to each of the samples of interest at the start of the ChIP-seq protocol. The
mixture is processed and sequenced in the usual manner, and the coverage of the spiked-in
foreign chromatin is quantified in each library. The quantity of foreign chromatin added
per cell should be constant in each sample, so the library size-adjusted coverage of the
foreign genome should also be the same between libraries. Any difference in spike-in coverage
between libraries represents some technical bias that should be removed by scaling.

This normalization strategy can be implemented in csaw with some work. Assume that
the spike.data object contains the counts for all spike-in regions (i.e., from the foreign
genome) in each library. This object can be constructed by, e.g., running windowCounts on
the BAM files obtained after aligning reads to the foreign genome. Normalization factors
can be computed by applying the TMM method on these counts, as done before. In this
calculation, the total number of reads for the endogenous genome is used as the library size.
This ensures that the computed factors will yield effective library sizes that are relevant to
the final analysis on the endogenous regions. Otherwise, if the total number of spike-in reads
was used as the library size, the estimated factors would always be equal to unity.

> spike.facs <- normOffsets(spike.data, lib.sizes=data$totals)

The spike-in approach does not distinguish between composition and efficiency biases.
Instead, it uses the differences in spike-in coverage to empirically measure and remove the
net bias between libraries. This avoids the need for assumptions regarding the origin of any
systematic differences between libraries. That said, spike-in normalization involves some

32

(possibly strong) assumptions of its own. For example, the same quantity of spike-in chro-
matin per cell is assumed to be added in each sample. This requires accurate quantitation of
the number of cells in each sample, followed by precise addition of small spike-in quantities.
In addition, the behaviour of the spike-in chromatin is assumed to be the same as that of
the endogenous chromatin throughout the ChIP-seq protocol. Whether these assumptions
are reasonable will depend on the experimenter and the nature of the spike-ins.

4.5 Dealing with trended biases

In more extreme cases, the bias may vary with the average abundance to form a trend. One
possible explanation is that changes in IP efficiency will have little effect at low-abundance
background regions and more effect at high-abundance binding sites. Thus, the magnitude
of the bias between libraries will change with abundance. The trend cannot be corrected
with scaling methods as no single scaling factor will remove differences at all abundances.
Rather, non-linear methods are required, such as cyclic loess or quantile normalization.

One such implementation is provided in normOffsets by setting type="loess". This is
based on the fast loess algorithm [Ballman et al., 2004] with minor adaptations to handle low
counts. A matrix is produced that contains an offset term for each bin/window in each library.
This offset matrix can then be directly used in edgeR, assuming that the bins or windows
used in normalization are also the ones to be tested for DB. Filtering prior to normalization
is strongly recommended, to avoid inaccuracies in loess fitting at low abundances.

The example below operates on the filtered counts for 2 kbp windows. This window size
is chosen purely for aesthetics in this demonstration, as the trend is less obvious at smaller
widths. Obviously, users should pick a more appropriate value for their analysis.

> ac.demo2 <- windowCounts(ac.files, width=2000L, param=param)

> filtered <- filterWindows(ac.demo2, ac.bin, type="global")

> keep <- filtered$filter > log2(4)

> ac.demo2 <- ac.demo2[keep,]

> ac.off <- normOffsets(ac.demo2, type="loess")

> head(ac.off)

[,1] [,2]
[1,] 0.1382389 -0.1382389
[2,] 0.1382389 -0.1382389
[3,] 0.1673179 -0.1673179
[4,] 0.1805067 -0.1805067
[5,] 0.2021534 -0.2021534
[6,] 0.2144910 -0.2144910

MA plots can be examined to determine whether normalization was successful. Any
abundance-dependent trend in the M-values should be eliminated. In addition, any filter
statistic for the windows should be based on the average abundance from aveLogCPM. An

33

average abundance threshold will act as a clean vertical cutoff in the plots below. Spurious
trends that might affect normalization will not be introduced at the filter boundary.

> abval <- filtered$abundances[keep]

> o <- order(abval)

> adjc <- cpm(asDGEList(ac.demo2), log=TRUE)

> mval <- adjc[,1]-adjc[,2]

> fit <- loessFit(x=abval, y=mval)

> smoothScatter(abval, mval, ylab="M", xlab="Average logCPM",

+ main="Raw", ylim=c(-2,2), xlim=c(0, 7))

> lines(abval[o], fit$fitted[o], col="red")

> # Repeating after normalization.

> re.adjc <- log2(assay(ac.demo2)+0.5) - ac.off/log(2)

> mval <- re.adjc[,1]-re.adjc[,2]

> fit <- loessFit(x=abval, y=mval)

> smoothScatter(abval, re.adjc[,1]-re.adjc[,2], ylab="M",

+ xlab="Average logCPM", main="Normalized", ylim=c(-2,2), xlim=c(0, 7))

> lines(abval[o], fit$fitted[o], col="red")

Note that all non-linear methods assume that most bins/windows are not DB at each
abundance. This is a stronger assumption than that for scaling methods, which only require
a non-DB majority across all features. Removal of the trend may not be appropriate if it
represents some genuine biological phenomenon, e.g., involving changes in overall binding.
In addition, the computed offsets are not compatible with the normalization factors from the
scaling methods. Only one of these sets of values will ultimately be used by edgeR.

34

4.6 A word on other biases

No normalization is performed to adjust for differences in mappability or sequencability
between different regions of the genome. Region-specific biases are assumed to be constant
between libraries. This is generally reasonable as the biases depend on fixed properties of the
genome sequence such as GC content. Thus, biases should cancel out during DB comparisons.
Any variability between samples will just be absorbed into the dispersion estimate.

That said, explicit normalization to correct these biases can improve results for some
datasets. Procedures like GC correction could decrease the observed variability by removing
systematic differences between replicates. Of course, this also assumes that the targeted
differences have no biological relevance. Detection power may be lost if this is not true. For
example, differences in the GC content distribution can be driven by technical bias as well
as biology, e.g., when protein binding is associated with a specific GC composition.

35

Chapter 5

Testing for differential binding

Here, we’ll need the filtered.data from Chapter 3 along with the original data from
Chapter 2. We’ll also use the normfacs vector from Chapter 4, as well as the design

matrix from the introduction. Finally, we’ll be executing a number of edgeR functions,
so make sure the edgeR package is loaded if you’ve been skipping chapters.

5.1 Introduction to edgeR

5.1.1 Overview

Low counts per window are typically observed in ChIP-seq datasets, even for genuine binding
sites. Any statistical analysis to identify DB sites must be able to handle discreteness in the
data. Count-based models are ideal for this purpose. In this guide, the quasi-likelihood
(QL) framework in the edgeR package is used [Lund et al., 2012]. Counts are modelled using
NB distributions that account for overdispersion between biological replicates [Robinson and
Smyth, 2008]. Each window can then be tested for significant DB between conditions.

Of course, any statistical method can be used if it is able to accept a count matrix and a
vector of normalization factors (or more generally, a matrix of offsets). The choice of edgeR
is primarily motivated by its performance relative to some published alternatives [Law et al.,
2014]. This author’s desire to increase his h-index may also be a factor [Chen et al., 2014].

5.1.2 Setting up the data

A DGEList object is first formed from the count matrix, library sizes and normalization fac-
tors. Here, the normfacs vector from TMM normalization of background bins is used to
remove composition bias. If an offset matrix was generated (e.g., from non-linear normaliza-
tion), this can be assigned into y$offset for later use in the various edgeR functions.

36

> y <- asDGEList(filtered.data, norm.factors=normfacs)

The experimental design is described by a design matrix. In this case, the only relevant
factor is the cell type of each sample. A generalized linear model (GLM) will be fitted to
the counts for each window using the specified design [McCarthy et al., 2012]. This provides
a general framework for the analysis of complex experiments with multiple factors. Readers
are referred to the user’s guide in edgeR for more details on parametrization.

> design

intercept cell.type
1 1 0
2 1 0
3 1 1
4 1 1
attr(,"assign")
[1] 0 1
attr(,"contrasts")
attr(,"contrasts")$`factor(c("es", "es", "tn", "tn"))`
[1] "contr.treatment"

5.2 Estimating the dispersions

5.2.1 Stabilising estimates with empirical Bayes

Under the QL framework, both the QL and NB dispersions are used to model biological
variability in the data [Lund et al., 2012]. The former ensures that the NB mean-variance re-
lationship is properly specified with appropriate contributions from the Poisson and Gamma
components. The latter accounts for variability and uncertainty in the dispersion estimate.
However, limited replication in most ChIP-seq experiments means that each window does
not contain enough information for precise estimation of either dispersion.

This problem is overcome in edgeR by sharing information across windows. For the NB
dispersions, a mean-dispersion trend is fitted across all windows to model the mean-variance
relationship [McCarthy et al., 2012]. The raw QL dispersion for each window is estimated
after fitting a GLM with the trended NB dispersion. Another mean-dependent trend is fitted
to the raw QL estimates. An empirical Bayes (EB) strategy is then used to stabilize the
raw QL dispersion estimates by shrinking them towards the second trend [Lund et al., 2012].
The ideal amount of shrinkage is determined from the variability of the dispersions.

> y <- estimateDisp(y, design)

> summary(y$trended.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02980 0.08454 0.08953 0.09334 0.10200 0.11720

37

> fit <- glmQLFit(y, design, robust=TRUE)

> summary(fit$var.post)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.04998 1.06100 1.08900 1.08400 1.11600 17.06000

The effect of EB stabilisation can be visualized by examining the biological coefficient
of variation (for the NB dispersion) and the quarter-root deviance (for the QL dispersion).
These plots can also be used to decide whether the fitted trend is appropriate. Sudden irreg-
ulaties may be indicative of an underlying structure in the data which cannot be modelled
with the mean-dispersion trend. Discrete patterns in the raw dispersions are indicative of
low counts and suggest that more aggressive filtering is required.

> par(mfrow=c(1,2))

> o <- order(y$AveLogCPM)

> plot(y$AveLogCPM[o], sqrt(y$trended.dispersion[o]), type="l", lwd=2,

+ ylim=c(0, 1), xlab=expression("Ave."~Log[2]~"CPM"),

+ ylab=("Biological coefficient of variation"))

> plotQLDisp(fit)

A strong trend may also be observed where the NB dispersion drops sharply with in-
creasing average abundance. This is due to the disproportionate impact of artifacts such as
mapping errors and PCR duplicates at low counts. It is difficult to accurately fit an empiri-
cal curve to these strong trends. As a consequence, the dispersions at high abundances may
be overestimated. Filtering of low-abundance regions (as described in Chapter 3) provides
some protection by removing the strongest part of the trend. Users can compare raw and

38

filtered results to see whether it makes any difference. Filtering has an additional benefit of
removing those tests that have low power due to the magnitude of the dispersions.

> relevant <- rowSums(assay(data)) >= 20 # some filtering; otherwise, it takes too long.

> yo <- asDGEList(data[relevant], norm.factors=normfacs)

> yo <- estimateDisp(yo, design)

> oo <- order(yo$AveLogCPM)

> plot(yo$AveLogCPM[oo], sqrt(yo$trended.dispersion[oo]), type="l", lwd=2,

+ ylim=c(0, max(sqrt(yo$trended))), xlab=expression("Ave."~Log[2]~"CPM"),

+ ylab=("Biological coefficient of variation"))

> lines(y$AveLogCPM[o], sqrt(y$trended[o]), lwd=2, col="grey")

> legend("topright", c("raw", "filtered"), col=c("black", "grey"), lwd=2)

5.2.2 Modelling variable dispersions between windows

Any variability in the dispersions across windows is modelled in edgeR by the prior degrees
of freedom (d.f.). A large value for the prior d.f. indicates that the variability is low. This

39

means that more EB shrinkage can be performed to reduce uncertainty and maximize power.
However, strong shrinkage is not appropriate if the dispersions are highly variable. Fewer
prior degrees of freedom (and less shrinkage) are required to maintain type I error control.

> summary(fit$df.prior)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4131 64.7000 64.7000 64.6200 64.7000 64.7000

On occasion, the estimated prior degrees of freedom will be infinite. This is indicative of
a strong batch effect where the dispersions are consistently large. A typical example involves
uncorrected differences in IP efficiency across replicates. In severe cases, the trend may fail
to pass through the bulk of points as the variability is too low to be properly modelled in
the QL framework. This problem is usually resolved with appropriate normalization.

Note that the prior degrees of freedom should be robustly estimated [Phipson et al., 2013].
Obviously, this protects against large positive outliers (e.g., highly variable windows) but it
also protects against near-zero dispersions at low counts. These will manifest as large negative
outliers after a log transformation step during estimation [Smyth, 2004]. Without robustness,
incorporation of these outliers will inflate the observed variability in the dispersions. This
results in a lower estimated prior d.f. and reduced DB detection power.

5.3 Testing for DB windows

The effect of specific factors can be tested to identify windows with significant differential
binding. In the QL framework, p-values are computed using the QL F-test [Lund et al.,
2012]. This is more appropriate than using the likelihood ratio test as the F-test accounts
for uncertainty in the dispersion estimates. Associated statistics such as log-fold changes
and log-counts per million are also computed for each window.

> results <- glmQLFTest(fit, contrast=c(0, 1))

> head(results$table)

logFC logCPM F PValue
1 0.2657962 -0.9478889 0.1306817 0.71886889
2 0.2822794 -0.9519491 0.1429828 0.70653427
3 1.7984975 -0.8667843 5.5429311 0.02150824
4 0.7676641 -0.9870732 1.0274521 0.31442074
5 0.9151091 0.3674876 3.0489265 0.08539467
6 1.0975167 1.1942729 5.1775075 0.02609996

The null hypothesis here is that the cell type has no effect. The contrast argument in
the glmQLFTest function specifies which factors are of interest. In this case, a contrast of
c(0, 1) defines the null hypothesis as 0*intercept + 1*cell.type = 0, i.e., that the log-fold
change between cell types is zero. DB windows can then be identified by rejecting the null.
Specification of the contrast is explained in greater depth in the edgeR user’s manual.

40

5.4 What to do without replicates

Designing a ChIP-seq experiment without any replicates is strongly discouraged. Without
replication, the reproducibility of any findings cannot be determined. Nonetheless, it may
be helpful to salvage some information from datasets that lack replicates. This is done by
supplying a “reasonable” value for the NB dispersion during GLM fitting (e.g., 0.05 - 0.1,
based on past experience). DB windows are then identified using the likelihood ratio test.

> fit.norep <- glmFit(y, design, dispersion=0.05)

> results.norep <- glmLRT(fit.norep, contrast=c(0, 1))

> head(results.norep$table)

logFC logCPM LR PValue
1 0.2684752 -0.9478889 0.2120285 0.645182146
2 0.2780084 -0.9519491 0.2272337 0.633582614
3 1.8018136 -0.8667843 8.2161956 0.004151815
4 0.7577212 -0.9870732 1.5872704 0.207716548
5 0.9143437 0.3674876 4.2229915 0.039879791
6 1.0965133 1.1942729 7.5864545 0.005880849

Obviously, this approach has a number of pitfalls. The lack of replicates means that
the biological variability in the data cannot be modelled. Thus, it becomes impossible to
gauge the sensibility of the supplied NB dispersions in the analysis. Another problem is
spurious DB due to inconsistent PCR duplication between libraries. Normally, inconsistent
duplication results in a large QL dispersion for the affected window, such that significance is
downweighted. However, estimation of the QL dispersion is not possible without replicates.
This means that duplicates may need to be removed to protect against false positives.

5.5 Examining replicate similarity with MDS plots

As a quality control measure, the window counts can be used to examine the similarity of
replicates through multi-dimensional scaling (MDS) plots. The distance between each pair
of libraries is computed as the square root of the mean squared log-fold change across the
top set of bins with the highest absolute log-fold changes. A small top set visualizes the
most extreme differences whereas a large set visualizes overall differences. Checking a range
of top values may be useful when the scope of DB is unknown. Again, counting with large
bins is recommended as fold changes will be undefined in the presence of zero counts.

> par(mfrow=c(2,2), mar=c(5,4,2,2))

> adj.counts <- cpm(y, log=TRUE)

> for (top in c(100, 500, 1000, 5000)) {

+ out <- plotMDS(adj.counts, main=top, col=c("blue", "blue", "red", "red"),

+ labels=c("es.1", "es.2", "tn.1", "tn.2"), top=top)

+ }

41

Replicates from different groups should form separate clusters in the MDS plot, as ob-
served above. This indicates that the results are reproducible and that the effect sizes are
large. Mixing between replicates of different conditions indicates that the biological difference
has no effect on protein binding, or that the data is too variable for any effect to manifest.
Any outliers should also be noted as their presence may confound the downstream analysis.
In the worst case, outlier samples may need to be removed to obtain sensible results.

42

Chapter 6

Correction for multiple testing

All right, we’re almost there. This chapter needs the results object from the last
chapter. We also need a bunch of things from Chapter 3 - namely, the filtered.data

list, the broads object and the keep.simple and maxed vectors. Finally, we’ll need
ac.files and param from Chapters 4 and 2, respectively, for a little demonstration.

6.1 Problems with false discovery rate control

6.1.1 Overview

The false discovery rate (FDR) is usually the most appropriate measure of error for high-
throughput experiments. Control of the FDR can be provided by applying the Benjamini-
Hochberg (BH) method [Benjamini and Hochberg, 1995] to a set of p-values. This is less
conservative than the alternatives (e.g., Bonferroni) yet still provides some measure of error
control. The most obvious approach is to apply the BH method to the set of p-values across
all windows. This will control the FDR across the set of putative DB windows.

However, the FDR across all detected windows is not necessarily the most relevant error
rate. Interpretation of ChIP-seq experiments is more concerned with regions of the genome
in which (differential) protein binding is found, rather than the individual windows. In other
words, the FDR across all detected DB regions is usually desired. This is not equivalent to
that across all DB windows as each region will often consist of multiple overlapping windows.
Control of one will not guarantee control of the other [Lun and Smyth, 2014].

To illustrate this difference, consider an analysis where the FDR across all window po-
sitions is controlled at 10%. In the results, there are 18 adjacent window positions forming
one cluster and 2 windows forming a separate cluster. Each cluster represents a region.
The first set of windows is a truly DB region whereas the second set is a false positive. A
window-based interpretation of the FDR is correct as only 2 of the 20 window positions are

43

false positives. However, a region-based interpretation results in an actual FDR of 50%.

6.1.2 Restoring FDR control with clustered windows

Misinterpretation of the FDR can be avoided by obtaining a single p-value for each region.
In particular, several strategies can be used to cluster adjacent windows into regions. A
combined p-value can then be computed for each cluster, based on the p-values of the con-
stituent windows [Simes, 1986]. This tests the joint null hypothesis for each cluster, i.e., that
no enrichment is observed across any sites within the corresponding region. The combined
p-values are then adjusted using the BH method to control the region-level FDR.

An alternative approach is to choose a single window to represent each cluster/region.
For example, the window with the highest average abundance in each cluster can be used.
This is sensible for analyses involving sharp binding events, where each cluster is expected
to be small and contain no more than one binding site. Thus, a single window (and p-value)
can reasonably be used as a representative of the entire region. The BH method can then
be applied to the corresponding p-values of the representative windows from all clusters.

Both approaches are available in the csaw package. The combining procedure is known
as Simes’ method and is implemented in the combineTests function. Similarly, selection of a
representative window can be performed using the getBestTest function. Examples of their
usage are shown below, along with demonstrations of the different clustering strategies.

6.2 Clustering windows into regions

6.2.1 Clustering with external information

Combined p-values can be computed for a pre-defined set of regions based on the windows
overlapping those regions. The most obvious source of pre-defined regions is that of annotated
features such as promoters or gene bodies. Alternatively, called peaks can be used provided
that sufficient care has been taken to avoid loss of error control from data snooping [Lun and
Smyth, 2014]. In either case, the findOverlaps function from the GenomicRanges package
can be used to identify all windows in or overlapping each specified region.

> olap <- findOverlaps(broads, rowRanges(filtered.data))

> olap

Hits object with 15508 hits and 0 metadata columns:
queryHits subjectHits
<integer> <integer>

[1] 7 8690
[2] 7 8691
[3] 7 8692
[4] 18 10377
[5] 18 10378

44

...
[15504] 23949 8504
[15505] 23949 8505
[15506] 23952 8218
[15507] 23952 8219
[15508] 23952 8220

queryLength: 23956 / subjectLength: 15072

The combineOverlaps function can be used to combine the p-values for all windows in
each region. This is a wrapper around combineTests for Hits objects. It returns a single
combined p-value (and its BH-adjusted value) for each region. The number of windows in
each region that change by more than

√
2 in either direction are also reported. Regions that

do not overlap any windows have values of NA in all fields for the corresponding rows.

> tabbroad <- combineOverlaps(olap, results$table)

> head(tabbroad[!is.na(tabbroad$PValue),])

nWindows logFC.up logFC.down PValue FDR
7 3 3 0 0.0001260474 0.002164724
18 4 4 0 0.0001305998 0.002164724
22 1 1 0 0.1765568477 0.247628460
23 5 5 0 0.0017587719 0.010381338
25 4 0 0 0.9862478964 0.990019479
28 3 3 0 0.0027875571 0.014419259

At this point, one might imagine that it would be simpler to just collect and analyze
counts over the pre-defined regions. This is a valid strategy but will yield different results.
Consider a promoter containing two separate sites that are identically DB in opposite di-
rections. Counting reads across the promoter will give equal counts for each condition so
changes within the promoter will not be detected. Similarly, imprecise boundaries for called
peaks can lead to loss of DB detection power due to “contamination” by reads from back-
ground regions. In both cases, window-based methods may be more robust as each interval
of the promoter/peak region is examined separately [Lun and Smyth, 2014].

6.2.2 Quick and dirty clustering

Clustering can also be performed with a simple single-linkage algorithm in the mergeWindows

function. This approach avoids potential problems with the other clustering strategies, e.g.,
peak-calling errors, incorrect or incomplete annotation. Windows that are less than tol

apart are considered to be adjacent and are grouped into the same cluster. The chosen tol

represents the minimum distance at which two binding events are treated as separate sites.
Large values (500 - 1000 bp) reduce redundancy and favor a region-based interpretation of
the results, while smaller values (< 200 bp) allow resolution of individual binding sites.

45

> merged <- mergeWindows(rowRanges(filtered.data), tol=1000L)

> merged$region

GRanges object with 4422 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] chr1 [6466701, 6466760] *
[2] chr1 [7088951, 7088960] *
[3] chr1 [7397851, 7398110] *
[4] chr1 [9541401, 9541510] *
[5] chr1 [9545251, 9545360] *
...

[4418] chrX [164076151, 164076560] *
[4419] chrX [166170351, 166170410] *
[4420] chrY [259151, 259360] *
[4421] chrY [90808801, 90808860] *
[4422] chrY [90812401, 90812910] *

seqinfo: 66 sequences from an unspecified genome

A combined p-value is computed for each cluster with the combineTests function. The
BH method is then applied to control the FDR across all detected clusters. The number of
up or down windows can be used to gauge whether binding increases or decreases across the
cluster. A complex DB event may be present if both up and down are substantially non-zero
(i.e., opposing changes within the region) or if the total number of windows is much larger
than either number (e.g., interval of constant binding adjacent to the DB interval).

> tabcom <- combineTests(merged$id, results$table)

> head(tabcom)

nWindows logFC.up logFC.down PValue FDR
1 2 0 0 0.71886889 0.78431735
2 1 1 0 0.02150824 0.05666366
3 6 6 0 0.07829988 0.14190248
4 3 3 0 0.04172490 0.08978468
5 3 3 0 0.05912563 0.11482359
6 2 2 0 0.01364943 0.04188604

If many adjacent windows are present, very large clusters may be formed that are difficult
to interpret. A simple check can be used to determine whether most clusters are of an
acceptable size. Huge clusters indicate that more aggressive filtering from Chapter 3 is
required. This mitigates chaining effects by reducing the density of windows in the genome.

> summary(width(merged$region))

Min. 1st Qu. Median Mean 3rd Qu. Max.
10.0 60.0 110.0 159.2 160.0 15710.0

46

Alternatively, chaining can be limited by setting max.width to restrict the size of the
merged intervals. Clusters substantially larger than max.width are split into several smaller
subclusters of roughly equal size. The chosen value should be small enough so as to separate
DB regions from unchanged neighbors, yet large enough to avoid misinterpretation of the
FDR. Any value from 2000 to 10000 bp is recommended. This paramater can also interpreted
as the maximum distance at which two binding sites are considered part of the same event.

> merged.max <- mergeWindows(rowRanges(filtered.data), tol=1000L, max.width=5000L)

> summary(width(merged.max$region))

Min. 1st Qu. Median Mean 3rd Qu. Max.
10 60 110 158 160 4410

6.2.3 Summarizing the direction of DB per cluster

The number of significant clusters can be counted at a FDR threshold of 5%. This is
performed for clusters that contain windows changing in one direction only, and for those
with changes in both directions. The former includes simpler DB events involving consistent
changes throughout a region, while the latter corresponds to complex DB. In this manner,
the overall direction of significant DB can be summarized for the entire experiment.

> is.sig <- tabcom$FDR <= 0.05

> has.up <- tabcom$logFC.up > 0

> has.down <- tabcom$logFC.down > 0

> data.frame(Total.DB=sum(is.sig), DB.up=sum(is.sig & has.up & !has.down),

+ DB.down=sum(is.sig & !has.up & has.down), DB.both=sum(is.sig & has.up & has.down))

Total.DB DB.up DB.down DB.both
1 1543 1317 220 6

The same approach can be applied for the promoter-based clusters. This requires some
protection against the NA values for the promoters that contain no windows.

> is.sig <- tabbroad$FDR <= 0.05 & !is.na(tabbroad$FDR)

> has.up <- tabbroad$logFC.up > 0

> has.down <- tabbroad$logFC.down > 0

> data.frame(Total.DB=sum(is.sig), DB.up=sum(is.sig & has.up & !has.down),

+ DB.down=sum(is.sig & !has.up & has.down), DB.both=sum(is.sig & has.up & has.down))

Total.DB DB.up DB.down DB.both
1 1629 1529 70 30

An alternative approach to defining the direction of DB for each cluster is to use the
log-fold change of a single representative window (see below). This is simpler and allows
quantification of the magnitude of DB, but is not sufficient to describe complex events.

47

6.3 Integrating results from multiple window sizes

The sensitivity of the analysis to the choice of window size can be mitigated by testing a
range of different widths. DB results from each width can be integrated by clustering adjacent
windows together (even if they are of differing sizes), and combining p-values within each
of the resulting clusters. The example below uses the H3 acetylation data from Chapter 4.
Some filtering is performed to avoid excessive chaining in this demonstration. Corresponding
tables of DB results should also be obtained (for brevity, mock results are used here).

> ac.small <- windowCounts(ac.files, width=150L, spacing=100L, filter=25, param=param)

> ac.large <- windowCounts(ac.files, width=1000L, spacing=500L, filter=35, param=param)

> ns <- nrow(ac.small)

> mock.small <- data.frame(logFC=rnorm(ns), logCPM=0, PValue=runif(ns))

> nl <- nrow(ac.large)

> mock.large <- data.frame(logFC=rnorm(nl), logCPM=0, PValue=runif(nl))

The consolidateSizes function can then be applied to combine these results. This merges
windows of all sizes into a single set of clusters, and computes a combined p-value from the
associated p-values for each cluster. However, if a cluster contains many small windows, the
DB results for the small window size will contribute most to the combined p-value. This is
not ideal when results from all window sizes are of equal interest. Equal contributions from
each window size can be enforced by setting equiweight=TRUE, whereby a weighted version of
Simes’ method [Benjamini and Hochberg, 1997] is used. The weight assigned to each window
is inversely proportional to the number of windows of that size in the same cluster.

> cons <- consolidateSizes(list(ac.small, ac.large), list(mock.small, mock.large),

+ equiweight=TRUE, merge.args=list(tol=1000))

> cons$region

GRanges object with 29892 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] chr1 [4571001, 4572500] *
[2] chr1 [4783501, 4787000] *
[3] chr1 [4806501, 4809500] *
[4] chr1 [4856501, 4859500] *
[5] chr1 [5082501, 5084500] *
...

[29888] chrY [897001, 899000] *
[29889] chrY [1010001, 1012000] *
[29890] chrY [1244001, 1246500] *
[29891] chrY [1285001, 1287000] *
[29892] chrY [90738501, 90740500] *

seqinfo: 66 sequences from an unspecified genome

The same function can also be used to consolidate windows of varying size that overlap
pre-specified regions. This is done by specifying the region argument, as shown below.

48

> cons.broad <- consolidateSizes(list(ac.small, ac.large), list(mock.small, mock.large),

+ region=broads, equiweight=TRUE)

In this manner, DB results from multiple window widths can be gathered together and
reported as a single set of regions. Consolidation is most useful for histone marks and other
analyses involving diffuse regions of enrichment. For such studies, the ideal window size is
not known or may not even exist, e.g., if the widths of the enriched regions are variable.

6.4 Choosing a single representative window

6.4.1 Based on differential binding

In some cases, it may be necessary to also report the window in which the strongest DB
is found. This information can be useful for identifying the change in binding within large
clusters, or to narrow down the relevant sequence for motif discovery. Identification of the
most significant (i.e., “best”) window can be performed using the getBestTest function. This
reports the index of the window with the lowest p-value in each cluster.

> tab.best <- getBestTest(merged$id, results$table)

> head(tab.best)

best logFC logCPM F PValue FDR
1 2 0.2822794 -0.95194906 0.1429828 1.00000000 1.00000000
2 3 1.7984975 -0.86678426 5.5429311 0.02150824 0.05927619
3 7 1.2159955 1.12635657 6.0437746 0.09935180 0.17475485
4 11 1.4410886 0.01763413 5.4939481 0.06621118 0.13105902
5 14 1.4995058 -0.66575939 4.5954730 0.10711880 0.18572120
6 17 2.1478921 -0.80663417 7.7960329 0.01364943 0.04361112

A common use of the best index is to obtain the log-fold change of the best window in
each cluster. This value is useful as it focuses on the most DB interval within the cluster. In
contrast, taking the average log-fold change across all windows in a cluster will understate
the magnitude of DB. It may also be useful to report the start location of the best window.
This allows investigators to easily identify the DB subinterval within large clusters.

> tabcom$best.logFC <- tab.best$logFC

> tabcom$best.start <- start(rowRanges(filtered.data))[tab.best$best]

> head(tabcom[,c("best.logFC", "best.start")])

best.logFC best.start
1 0.2822794 6466751
2 1.7984975 7088951
3 1.2159955 7398001
4 1.4410886 9541451
5 1.4995058 9545301
6 2.1478921 9748451

49

The same approach can be applied to the overlaps between windows and pre-specified
regions, using the getBestOverlaps wrapper function. This is demonstrated below for the
broad gene body example. As with combineOverlaps, regions with no windows are assigned
NA in the output table, but these are removed here to show some actual results.

> tab.best.broad <- getBestOverlaps(olap, results$table)

> tabbroad$best.logFC <- tab.best.broad$logFC

> tabbroad$best.start <- start(rowRanges(filtered.data))[tab.best.broad$best]

> head(tabbroad[!is.na(tabbroad$PValue),c("best.logFC", "best.start")])

best.logFC best.start
7 4.5767466 32657051
18 3.9834677 8259301
22 0.9872510 118937801
23 3.6001757 92934401
25 -0.3387664 71596001
28 2.6344820 4137001

Typically, the best window will only be used as a descriptive measure for each cluster.
However, more statistical rigour is required if these windows are treated as the features of
interest over which the error rate is to be controlled. A Bonferroni correction is applied to
the p-value of each best window to obtain the corresponding PValue in tab.best. This is
necessary to account for the implicit multiple testing across all windows in each cluster.

6.4.2 Based on average abundance

Alternatively, the best window can be defined as the one with the highest average abundance
in each cluster. This represents the window with the strongest binding for the target protein,
though not necessarily the strongest DB. As the average abundance is (roughly) independent
of the p-value, there is no need to correct for multiple testing within each cluster.

> tab.ave <- getBestTest(merged$id, results$table, by.pval=FALSE)

> head(tab.ave)

best logFC logCPM F PValue FDR
1 1 0.2657962 -0.94788895 0.1306817 0.718868886 0.77062745
2 3 1.7984975 -0.86678426 5.5429311 0.021508241 0.05726035
3 6 1.0975167 1.19427291 5.1775075 0.026099959 0.06535335
4 11 1.4410886 0.01763413 5.4939481 0.022070395 0.05805787
5 14 1.4995058 -0.66575939 4.5954730 0.035706265 0.08122073
6 17 2.1478921 -0.80663417 7.7960329 0.006824716 0.02673064

For sharp binding events, it may be preferable to restrict the DB analysis to these win-
dows. This will usually provide more power as it avoids the conservativeness of Simes’
method. The use of the highest-abundance window will also favor detection of simple DB

50

events, where DB occurs at the most strongly bound loci in each cluster. This may be
preferable for some studies, given that complex DB events are often difficult to interpret.

The obvious drawback is that information is lost when the analysis is restricted to a
single window. Detection will fail for complex DB events, e.g., clusters of TF binding sites,
spreading of diffuse marks. Loss of information also increases the sensitivity of the analysis
to the clustering procedure. For example, a DB site will be ignored if it is clustered alongside
a stronger non-DB site, as the window covering the latter will represent the cluster.

A less formal approach is to simply report the log-fold change of the most abundant
window in each cluster. This will indicate whether any DB is present at the strongest binding
site within the corresponding genomic interval. If not, the DB event may be complex, e.g.,
involving multiple peaks or peaks that change in shape or position between conditions. These
require more careful interpretation than simpler “binary” (i.e., on/off) changes.

> tabcom$mab.logFC <- tab.ave$logFC # 'mab' stands for most abundant.

6.4.3 Weighting windows on abundance

A more graduated approach uses the weighted version of Simes’ method, where the window
with the highest abundance is upweighted. In the example below, the weight assigned to the
top window is increased relative to that of other windows in the same cluster. This means
that the behavior of the top window will have a greater influence on the final combined
p-value. That said, the other windows in the cluster still have unity weights. Any DB events
in those windows will still be considered when the p-values are combined.

> weights <- upweightSummit(merged$id, tab.ave$best)

> head(weights)

[1] 2 1 1 1 1 6

> tabcom.w <- combineTests(merged$id, results$table, weight=weights)

> head(tabcom.w)

nWindows logFC.up logFC.down PValue FDR
1 2 0 0 0.71886889 0.78084948
2 1 1 0 0.02150824 0.05639790
3 6 6 0 0.04101422 0.08816961
4 3 3 0 0.03477075 0.07848712
5 3 3 0 0.04927136 0.09998988
6 2 2 0 0.01023707 0.03429420

The weighting approach can also be applied to the clusters from the broad gene body
example. This is done by replacing the call to getBestTest with one to getBestOverlaps, as
before. Similarly, upweightSummit can be replaced with summitOverlaps. These wrappers are
designed to minimize book-keeping problems when one window overlaps multiple regions.

51

> broad.best <- getBestOverlaps(olap, results$table, by.pval=FALSE)

> head(broad.best[!is.na(broad.best$PValue),])

best logFC logCPM F PValue FDR
7 8691 3.2094650 -0.4991514 17.54921659 8.403162e-05 0.001466904
18 10378 1.3722377 0.7281036 6.70640612 1.178493e-02 0.037563381
22 4460 0.9872510 -0.8557649 1.86569653 1.765568e-01 0.250560086
23 405 1.1650432 0.4128039 4.54937666 3.661441e-02 0.079371186
25 12509 -0.1802385 -0.2788275 0.09146493 7.632641e-01 0.800574320
28 10964 2.1645344 -0.6245511 8.59062200 4.623758e-03 0.020063701

> broad.weights <- summitOverlaps(olap, region.best=broad.best$best)

> tabbroad.w <- combineOverlaps(olap, results$table, o.weight=broad.weights)

6.5 Filtering after testing but before correction

Most of the filters in Chapter 3 are applied before the statistical analysis. However, some
of the approaches may be too aggressive, e.g., filtering to retain only local maxima, filtering
based on pre-defined regions. In such cases, it may be preferable to apply one of the other,
milder filters first. This ensures that sufficient windows are retained for stable normalization
and/or EB shrinkage. The aggressive filters can then be applied after the statistics have
been calculated. This is still beneficial as it removes irrelevant windows that would increase
the severity of the BH correction. It may also reduce chaining effects during clustering.

For example, say the user wants to focus on local maxima. Assume that the test statistics
are computed from filtered.data, as generated with the mild keep.simple filter in Chap-
ter 3. These filtered windows are re-filtered using the maxed vector from Section 3.5.2, to
identify those that are local maxima. The re-filtered windows and their corresponding test
statistics can then be used for all FDR-controlling procedures described in this chapter.

> keep.new <- maxed[keep.simple]

> refilt.data <- filtered.data[keep.new,]

> refilt.res <- results[keep.new,]

Any filter vector from Chapter 3 can be used in place of maxed, so long as it was generated
with the original data. Generating the filter vectors with data instead of filtered.data is
generally recommended, as it avoids any unforseen interactions between filters. In particular,
the local maxima filter depends on the abundance of adjacent windows. It may behave
incorrectly if it is applied after another filter that removes high-abundance windows.

6.6 Clustering only on DB windows

The clustering procedures described above rely on independent filtering to remove irrelevant
windows. This ensures that the regions of interest are reasonably narrow and can be easily

52

interpreted, which is typically the case for most protein targets, e.g., TFs, narrow histone
marks. However, enriched regions may be very large for more diffuse marks. Such regions
may be difficult to interpret when only the DB subinterval is of interest. To overcome this, a
post-hoc analysis can be performed whereby only significant windows are used for clustering.

> postclust <- clusterWindows(rowRanges(filtered.data), results$table,

+ target=0.05, tol=100, max.width=1000)

> postclust$FDR

[1] 0.05018587

> postclust$region

GRanges object with 1614 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] chr1 [15805551, 15805610] *
[2] chr1 [33565951, 33566010] *
[3] chr1 [35985451, 35985510] *
[4] chr1 [36445351, 36445360] *
[5] chr1 [36684301, 36684360] *
...

[1610] chrX [75514251, 75514260] *
[1611] chrX [76599001, 76599110] *
[1612] chrX [100494251, 100494310] *
[1613] chrX [102157051, 102157060] *
[1614] chrX [143482951, 143483160] *

seqinfo: 66 sequences from an unspecified genome

This will define and cluster significant windows in a manner that controls the cluster-level
FDR at 5%. The clustering step itself is performed using mergeWindows with the specified
parameters. Each cluster consists entirely of DB windows and can be directly interpreted
as a DB region or a DB subinterval of a larger enriched region. This reduces the pressure
on abundance filtering to obtain well-separated regions prior to clustering, e.g., for diffuse
marks or in data sets with weak IP signal. That said, users should be aware that calculation
of the cluster-level FDR is not entirely rigorous. As such, independent clustering and FDR
control via Simes’ method should be considered as the default for routine analyses.

53

Chapter 7

Post-processing steps

This is where we bring it all together. We’ll need the merged list and the tabcom table
from the previous chapter. Oh, and the org.Mm.eg.db object that we loaded in Chap-
ter 3. There’s a bit about visualization at the end where we need the data and param

objects from Chapter 2, along with the bam.files that we started off with.

7.1 Adding gene-based annotation

Annotation can be added to a given set of regions using the detailRanges function. This will
identify overlaps between the regions and annotated genomic features such as exons, introns
and promoters. Here, the promoter region of each gene is defined as some interval 3 kbp up-
and 1 kbp downstream of the TSS for that gene. Any exonic features within dist on the left
or right side of each supplied region will also be reported.

> require(org.Mm.eg.db)

> anno <- detailRanges(merged$region, txdb=TxDb.Mmusculus.UCSC.mm10.knownGene,

+ orgdb=org.Mm.eg.db, promoter=c(3000, 1000), dist=5000)

> head(anno$overlap)

[1] "" "Pcmtd1|0-1|+"
[3] "" ""
[5] "Rrs1|0|+,Adhfe1|0|+" "Vcpip1|0|-,1700034P13Rik|0-1|+"

> head(anno$left)

[1] "" "" "" ""
[5] "" "Vcpip1|1|-[19]"

> head(anno$right)

54

[1] "" ""
[3] "" "Rrs1|1|+[3898]"
[5] "Rrs1|1|+[48],Adhfe1|1-2|+[2686]" "1700034P13Rik|2|+[3989]"

Character vectors of compact string representations are provided to summarize the fea-
tures overlapped by each supplied region. Each pattern contains GENE|EXONS|STRAND to
describe the strand and overlapped exons of that gene. Promoters are labelled as exon 0

whereas introns are labelled as I. For left and right, an additional [DISTANCE] field is
included. This indicates the gap between the annotated feature and the supplied region.

While the string representation saves space in the output, it is not easy to work with.
If the annotation needs to manipulated directly, users can obtain it from the detailRanges

command by not specifying the regions of interest. This can then be used for interactive
manipulation, e.g., to identify all genes where the promoter contains DB sites.

> anno.ranges <- detailRanges(txdb=TxDb.Mmusculus.UCSC.mm10.knownGene, orgdb=org.Mm.eg.db)

> anno.ranges

GRanges object with 288419 ranges and 3 metadata columns:
seqnames ranges strand | symbol exon

<Rle> <IRanges> <Rle> | <character> <integer>
100009600 chr9 [21062393, 21062717] - | Zglp1 7
100009600 chr9 [21062894, 21062987] - | Zglp1 6
100009600 chr9 [21063314, 21063396] - | Zglp1 5
100009600 chr9 [21066024, 21066377] - | Zglp1 4
100009600 chr9 [21066940, 21067925] - | Zglp1 3

...
99889 chr3 [85785218, 85887518] - | Arfip1 -1
99890 chr3 [110246104, 110250999] - | Prmt6 -1
99899 chr3 [151730923, 151749959] - | Ifi44 -1
99929 chr3 [65528447, 65555518] + | Tiparp -1
99982 chr4 [136550533, 136602723] - | Kdm1a -1

internal
<integer>

100009600 1
100009600 1
100009600 1
100009600 1
100009600 1

... ...
99889 24180
99890 24181
99899 24182
99929 24183
99982 24184

seqinfo: 66 sequences (1 circular) from mm10 genome

55

7.2 Checking bimodality for TF studies

For TF experiments, a simple measure of strand bimodality can be reported as a diagnostic.
Given a set of regions, the checkBimodality function will return the maximum bimodality
score across all base positions in each region. The bimodality score at each base position is
defined as the minimum of the ratio of the number of forward- to reverse-stranded reads to
the left of that position, and the ratio of the reverse- to forward-stranded reads to the right.
A high score is only possible if both ratios are large, i.e., strand bimodality is present.

> expanded <- suppressWarnings(resize(merged$region, fix="center",

+ width=width(merged$region)+50))

> sbm.score <- checkBimodality(bam.files, expanded, width=frag.len)

> head(sbm.score)

[1] 1.272727 1.437500 1.406977 2.315789 1.454545 1.222222

In the above code, all regions are expanded by spacing, i.e., 50 bp. This ensures that
the optimal bimodality score can be computed for the centre of the binding site, even if that
position is not captured by a window. The width argument specifies the span with which to
count reads for the score calculation. This should be set to the average fragment length. If
multiple bam.files are provided, they will be effectively pooled during counting.

For typical TF binding sites, bimodality scores can be considered to be “high” if they
are larger than 4. This allows users to distinguish between genuine binding sites and high-
abundance artifacts such as repeats or read stacks. However, caution is still required as some
high scores may be driven by the stochastic distribution of reads. Obviously, the concept of
strand bimodality is less relevant for diffuse targets like histone marks.

7.3 Saving the results to file

It is a simple matter to save the results for later perusal. This is done here in the *.tsv

format where all detail is preserved. Compression is used to reduce the file size.

> ofile <- gzfile("clusters.gz", open="w")

> write.table(data.frame(as.data.frame(merged$region)[,1:3], tabcom, anno),

+ file=ofile, row.names=FALSE, quote=FALSE, sep="\t")

> close(ofile)

Of course, other formats can be used depending on the purpose of the file. For example,
significantly DB regions can be exported to BED files through the rtracklayer package for
visual inspection with genomic browsers. A transformed FDR is used here for the score field.

> is.sig <- tabcom$FDR <= 0.05

> require(rtracklayer)

> test <- merged$region[is.sig]

56

> test$score <- -10*log10(tabcom$FDR[is.sig])

> names(test) <- paste0("region", 1:sum(is.sig))

> export(test, "clusters.bed")

> head(read.table("clusters.bed"))

V1 V2 V3 V4 V5 V6
1 chr1 9748400 9748460 region1 13.77931 .
2 chr1 15805500 15805660 region2 17.29547 .
3 chr1 23762950 23762960 region3 15.15878 .
4 chr1 32172600 32172710 region4 13.62579 .
5 chr1 33565950 33566010 region5 27.74059 .
6 chr1 35985450 35985560 region6 29.95586 .

Another useful format is to store the results as a GRanges object. Statistics are stored in
the various metadata fields, which is convenient as it synchronizes the subsetting of statistics
and genomic coordinates. This object can also be saved to file and reloaded later for direct
manipulation in the R environment, e.g., to find overlaps with other regions of interest.

> output.ranges <- merged$region

> elementMetadata(output.ranges) <- tabcom

> saveRDS(output.ranges, "ranges.rds")

7.4 Simple visualization of genomic coverage

Visualization of the read depth around interesting features is often desired. This is facilitated
by the extractReads function, which pulls out the reads from the BAM file. The returned
GRanges object can then be used to plot the sequencing coverage or any other statistic of
interest. Note that the extractReads function also accepts a readParam object. This ensures
that the same reads used in the analysis will be pulled out during visualization.

> cur.region <- GRanges("chr18", IRanges(77806807, 77807165))

> extractReads(bam.files[1], cur.region, param=param)

GRanges object with 45 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] chr18 [77806886, 77806922] +
[2] chr18 [77806887, 77806923] +
[3] chr18 [77806887, 77806923] +
[4] chr18 [77806887, 77806923] +
[5] chr18 [77806890, 77806926] +
...
[41] chr18 [77807048, 77807084] -
[42] chr18 [77807068, 77807104] -
[43] chr18 [77807082, 77807119] -

57

[44] chr18 [77807084, 77807120] -
[45] chr18 [77807087, 77807123] -

seqinfo: 1 sequence from an unspecified genome

Here, coverage is visualized as the number of reads covering each base pair in the in-
terval of interest. Specifically, the reads-per-million is shown to allow comparisons between
libraries of different size. The plots themselves are constructed using methods from the Gviz
package. The blue and red tracks represent the coverage on the forward and reverse strands,
respectively. Strong strand bimodality is consistent with a genuine TF binding site. For
paired-end data, coverage can be similarly plotted for fragments, i.e., proper read pairs.

> require(Gviz)

> collected <- list()

> for (i in 1:length(bam.files)) {

+ reads <- extractReads(bam.files[i], cur.region, param=param)

+ pcov <- as(coverage(reads[strand(reads)=="+"])/data$totals[i]*1e6, "GRanges")

+ ncov <- as(coverage(reads[strand(reads)=="-"])/data$totals[i]*1e6, "GRanges")

+ ptrack <- DataTrack(pcov, type="histogram", lwd=0, fill=rgb(0,0,1,.4), ylim=c(0,1.1),

+ name=bam.files[i], col.axis="black", col.title="black")

+ ntrack <- DataTrack(ncov, type="histogram", lwd=0, fill=rgb(1,0,0,.4), ylim=c(0,1.1))

+ collected[[i]] <- OverlayTrack(trackList=list(ptrack,ntrack))

+ }

> gax <- GenomeAxisTrack(col="black")

> plotTracks(c(gax, collected), from=start(cur.region), to=end(cur.region))

58

59

Chapter 8

Epilogue

Congratulations on getting to the end. Here’s a poem for your efforts.

There once was a man named Will
Who never ate less than his fill.
He ate meat and bread
Until he was fed
But died when he saw the bill.

8.1 Datasets

8.1.1 Obtaining the FastQ files

The NFYA dataset used throughout the guide was first mentioned in Section 1.4. This was
generated by Tiwari et al. [2012] and is available from the NCBI Gene Expression Omnibus
(GEO) with the accession number GSE25532. FastQ files werer obtained from the Sequence
Read Archive (SRA) with accessions of SRR074398 for es_1.bam, SRR074399 for es_2.bam,
SRR074417 for tn_1.bam, SRR074418 for tn_2.bam and SRR074401 for input.bam.

The paired-end dataset used in Section 2.3 was generated by Pal et al. [2013] and is
available from the NCBI GEO under the accession GSE43212. The lone FastQ file can be
obtained from the SRA with the accession SRR642390 for example-pet.bam.

All libraries used in Section 2.4.1 were generated by Zhang et al. [2012] and are available
from the NCBI GEO under the accession GSE31233. FastQ files can be obtained from
the SRA under the accessions SRR330784 and SRR330785 for h3ac.bam; SRR330800 and
SRR330801 for h3k4me2.bam; and SRR330814, SRR330815 and SRR330816 for h3k27me3.bam.
Multiple FastQ files represent technical replicates that were merged into a single BAM file.

Finally, the H3K4me3 dataset in Section 4.3.1 was generated by Revilla-I-Domingo et al.
[2012] and is available under the accession GSE38046. FastQ files can be obtained from the

60

SRA under the accessions SRR499732 and SRR499733 for h3k4me3_pro.bam, and SRR499716
and SRR499717 for h3k4me3_mat.bam. Again, technical replicates were merged together. For
H3ac, the FastQ file at SRR330786 was also downloaded and used as h3ac_2.bam.

8.1.2 Alignment and processing to produce BAM files

Technically, each of the libraries described above are downloaded in the SRA format. These
can be unpacked to yield FastQ files using the fastq-dump program from the SRA Toolkit
(http://www.ncbi.nlm.nih.gov/Traces/sra/?view=software). For the lone paired-end
library, users will need to specify fastq-dump -split-files to ensure that two separate files
are produced, i.e., containing sequences from either end of each fragment.

Reads in the FastQ files were then aligned to the mm10 build of the mouse genome using
subread v1.4.6 [Liao et al., 2013]. The subread software can be obtained from Bioconductor as
the Rsubread package, or as a standalone C program from http://subread.sourceforge.

net. The consensus threshold for alignment was set at 2 to accommodate short read lengths
(< 45 bp in all datasets). Only unique alignments were reported, and any tied alignments
were split by Hamming distance. Default values were used for all other parameters. Paired-
end data was aligned by supplying both FastQ files to subread within the same run.

Once aligned, SAM files were converted to BAM files using SAMtools v0.1.19 [Li et al.,
2009]. BAM files were position-sorted with the samtools sort command, and duplicate reads
were marked using the MarkDuplicates command from the Picard suite v1.117 (http://
broadinstitute.github.io/picard). Any technical replicates were merged together using
samtools merge to form a single library. Indexing was performed using samtools index.

If all relevant SRA files have been obtained, a set of explicit commands can be used to
produce each BAM file. These commands are stored in a Bash file, accessible by running:

> system.file("doc", "sra2bam.sh", package = "csaw")

8.2 Session information

> sessionInfo()

R Under development (unstable) (2015-12-28 r69816)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS release 6.4 (Final)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

61

http://www.ncbi.nlm.nih.gov/Traces/sra/?view=software
http://subread.sourceforge.net
http://subread.sourceforge.net
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] grid stats4 parallel stats graphics grDevices utils
[8] datasets methods base

other attached packages:
[1] Gviz_1.15.4
[2] rtracklayer_1.31.7
[3] org.Mm.eg.db_3.2.3
[4] RSQLite_1.0.0
[5] DBI_0.3.1
[6] TxDb.Mmusculus.UCSC.mm10.knownGene_3.2.2
[7] GenomicFeatures_1.23.25
[8] AnnotationDbi_1.33.7
[9] edgeR_3.13.4
[10] limma_3.27.13
[11] csaw_1.5.9
[12] SummarizedExperiment_1.1.22
[13] Biobase_2.31.3
[14] GenomicRanges_1.23.24
[15] GenomeInfoDb_1.7.6
[16] IRanges_2.5.39
[17] S4Vectors_0.9.41
[18] BiocGenerics_0.17.3

loaded via a namespace (and not attached):
[1] Rcpp_0.12.3 locfit_1.5-9.1
[3] biovizBase_1.19.4 lattice_0.20-33
[5] Rsamtools_1.23.3 Biostrings_2.39.12
[7] digest_0.6.9 mime_0.4
[9] R6_2.1.2 plyr_1.8.3
[11] acepack_1.3-3.3 httr_1.1.0
[13] ggplot2_2.1.0 BiocInstaller_1.21.3
[15] zlibbioc_1.17.0 rpart_4.1-10
[17] splines_3.3.0 BiocParallel_1.5.19
[19] statmod_1.4.24 Rhtslib_1.3.2
[21] AnnotationHub_2.3.14 foreign_0.8-66
[23] RCurl_1.95-4.8 biomaRt_2.27.2
[25] munsell_0.4.3 shiny_0.13.1
[27] httpuv_1.3.3 htmltools_0.3
[29] nnet_7.3-12 gridExtra_2.2.1
[31] interactiveDisplayBase_1.9.0 Hmisc_3.17-2
[33] matrixStats_0.50.1 XML_3.98-1.4
[35] GenomicAlignments_1.7.20 bitops_1.0-6
[37] xtable_1.8-2 gtable_0.2.0
[39] scales_0.4.0 KernSmooth_2.23-15
[41] XVector_0.11.7 latticeExtra_0.6-28
[43] Formula_1.2-1 RColorBrewer_1.1-2

62

[45] ensembldb_1.3.18 tools_3.3.0
[47] dichromat_2.0-0 BSgenome_1.39.4
[49] survival_2.38-3 colorspace_1.2-6
[51] cluster_2.0.3 VariantAnnotation_1.17.18

8.3 References

K. V. Ballman, D. E. Grill, A. L. Oberg, and T. M. Therneau. Faster cyclic loess: normal-
izing RNA arrays via linear models. Bioinformatics, 20(16):2778–2786, Nov 2004.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. R. Stat. Soc. Series B, 57:289–300, 1995.

Y. Benjamini and Y. Hochberg. Multiple hypotheses testing with weights. Scand. J. Stat.,
24:407–418, 1997.

N. Bonhoure, G. Bounova, D. Bernasconi, V. Praz, F. Lammers, D. Canella, I. M.
Willis, W. Herr, N. Hernandez, M. Delorenzi, N. Hernandez, M. Delorenzi, B. Deplancke,
B. Desvergne, N. Guex, W. Herr, F. Naef, J. Rougemont, U. Schibler, T. Andersin,
P. Cousin, F. Gilardi, P. Gos, F. Lammers, S. Raghav, D. Villeneuve, R. Fabbretti,
V. Vlegel, I. Xenarios, E. Migliavacca, V. Praz, F. David, Y. Jarosz, D. Kuznetsov,
R. Liechti, O. Martin, J. Delafontaine, J. Cajan, K. Gustafson, I. Krier, M. Leleu, N. Molina,
A. Naldi, L. Rib, L. Symul, and G. Bounova. Quantifying ChIP-seq data: a spiking method
providing an internal reference for sample-to-sample normalization. Genome Res., 24(7):
1157–1168, Jul 2014.

R. Bourgon, R. Gentleman, and W. Huber. Independent filtering increases detection power
for high-throughput experiments. Proc. Natl. Acad. Sci. U.S.A., 107(21):9546–9551, May
2010.

Y. Chen, A. T. L. Lun, and G. K. Smyth. Differential expression analysis of complex RNA-
seq experiments using edgeR. In S. Datta and D. S. Nettleton, editors, Statistical Analysis
of Next Generation Sequence Data. Springer, New York, 2014.

ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human
genome. Nature, 489(7414):57–74, Sep 2012.

P. Humburg, C. A. Helliwell, D. Bulger, and G. Stone. ChIPseqR: analysis of ChIP-seq
experiments. BMC Bioinformatics, 12:39, 2011.

P. V. Kharchenko, M. Y. Tolstorukov, and P. J. Park. Design and analysis of ChIP-seq
experiments for DNA-binding proteins. Nat. Biotechnol., 26(12):1351–1359, Dec 2008.

63

S. G. Landt, G. K. Marinov, A. Kundaje, P. Kheradpour, F. Pauli, S. Batzoglou, B. E.
Bernstein, P. Bickel, J. B. Brown, P. Cayting, Y. Chen, G. Desalvo, C. Epstein, K. I.
Fisher-Aylor, G. Euskirchen, M. Gerstein, J. Gertz, A. J. Hartemink, M. M. Hoffman,
V. R. Iyer, Y. L. Jung, S. Karmakar, M. Kellis, P. V. Kharchenko, Q. Li, T. Liu, X. S. Liu,
L. Ma, A. Milosavljevic, R. M. Myers, P. J. Park, M. J. Pazin, M. D. Perry, D. Raha, T. E.
Reddy, J. Rozowsky, N. Shoresh, A. Sidow, M. Slattery, J. A. Stamatoyannopoulos, M. Y.
Tolstorukov, K. P. White, S. Xi, P. J. Farnham, J. D. Lieb, B. J. Wold, and M. Snyder.
ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome
Res., 22(9):1813–1831, Sep 2012.

C. W. Law, Y. Chen, W. Shi, and G. K. Smyth. Voom: precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biol., 15(2):R29, Feb 2014.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
and R. Durbin. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25
(16):2078–2079, Aug 2009.

Y. Liao, G. K. Smyth, and W. Shi. The Subread aligner: fast, accurate and scalable read
mapping by seed-and-vote. Nucleic Acids Res., 41(10):e108, May 2013.

A. T. Lun and G. K. Smyth. De novo detection of differentially bound regions for ChIP-seq
data using peaks and windows: controlling error rates correctly. Nucleic Acids Res., 42
(11):e95, Jul 2014.

A. T. Lun and G. K. Smyth. csaw: a Bioconductor package for differential bind-
ing analysis of ChIP-seq data using sliding windows. Nucleic Acids Res., 2015a. doi:
10.1093/nar/gkv1191.

A. T. L. Lun and G. K. Smyth. From reads to regions: a Bioconductor workflow to detect
differential binding in ChIP-seq data. F1000Research, 4, 2015b.

S. P. Lund, D. Nettleton, D. J. McCarthy, and G. K. Smyth. Detecting differential expres-
sion in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat.
Appl. Genet. Mol. Biol., 11(5), 2012.

D. J. McCarthy, Y. Chen, and G. K. Smyth. Differential expression analysis of multifactor
RNA-Seq experiments with respect to biological variation. Nucleic Acids Res., 40(10):
4288–4297, May 2012.

D. A. Orlando, M. W. Chen, V. E. Brown, S. Solanki, Y. J. Choi, E. R. Olson, C. C. Fritz,
J. E. Bradner, and M. G. Guenther. Quantitative ChIP-Seq normalization reveals global
modulation of the epigenome. Cell Rep., 9(3):1163–1170, Nov 2014.

64

B. Pal, T. Bouras, W. Shi, F. Vaillant, J. M. Sheridan, N. Fu, K. Breslin, K. Jiang, M. E.
Ritchie, M. Young, G. J. Lindeman, G. K. Smyth, and J. E. Visvader. Global changes in
the mammary epigenome are induced by hormonal cues and coordinated by Ezh2. Cell
Rep., 3(2):411–426, Feb 2013.

B. Phipson, S. Lee, I. J. Majewski, W. S. Alexander, and G. K. Smyth. Empirical Bayes
in the presence of exceptional cases, with application to microarray data. Technical report,
Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, 2013.

R. Revilla-I-Domingo, I. Bilic, B. Vilagos, H. Tagoh, A. Ebert, I. M. Tamir, L. Smeenk,
J. Trupke, A. Sommer, M. Jaritz, and M. Busslinger. The B-cell identity factor Pax5
regulates distinct transcriptional programmes in early and late B lymphopoiesis. EMBO
J., 31(14):3130–3146, 2012.

M. D. Robinson and A. Oshlack. A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biol., 11(3):R25, 2010.

M. D. Robinson and G. K. Smyth. Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics, 9(2):321–332, Apr 2008.

M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics, 26(1):139–
140, Jan 2010.

R. J. Simes. An improved Bonferroni procedure for multiple tests of significance.
Biometrika, 73(3):751–754, 1986.

G. K. Smyth. Linear models and empirical bayes methods for assessing differential expres-
sion in microarray experiments. Stat. Appl. Genet. Mol. Biol., 3:Article3, 2004.

V. K. Tiwari, M. B. Stadler, C. Wirbelauer, R. Paro, D. Schubeler, and C. Beisel. A
chromatin-modifying function of JNK during stem cell differentiation. Nat. Genet., 44(1):
94–100, Jan 2012.

J. A. Zhang, A. Mortazavi, B. A. Williams, B. J. Wold, and E. V. Rothenberg. Dynamic
transformations of genome-wide epigenetic marking and transcriptional control establish T
cell identity. Cell, 149(2):467–482, Apr 2012.

Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, C. Nusbaum,
R. M. Myers, M. Brown, W. Li, and X. S. Liu. Model-based analysis of ChIP-Seq (MACS).
Genome Biol., 9(9):R137, 2008.

65

	Introduction
	Scope
	How to get help
	How to cite this package
	Quick start

	Converting reads to counts
	Types of input data
	Counting reads into windows
	Overview
	Filtering out low-quality reads
	Avoiding problematic genomic regions
	Additional notes about parameter specification
	Increasing speed and memory efficiency

	Experiments involving paired-end data
	Estimating the average fragment length
	Using cross-correlation plots
	Variable fragment lengths between libraries

	Choosing an appropriate window size
	Miscellaneous functions for non-standard counting
	Counting over manually specified regions
	Strand-specific counting

	Filtering out uninteresting windows
	Independent filtering for count data
	By count size
	By proportion
	By global enrichment
	By local enrichment
	Mimicking single-sample peak callers
	Identifying local maxima
	With negative controls

	By prior information
	Some final comments about filtering

	Calculating normalization factors
	Overview
	Eliminating composition biases
	Using the TMM method on binned counts
	Choosing a bin size
	Visualizing normalization efforts with MA plots

	Eliminating efficiency biases
	Using the TMM method on high-abundance regions
	Checking normalization with MA plots
	Choosing between normalization strategies

	Scaling normalization with spike-in chromatin
	Dealing with trended biases
	A word on other biases

	Testing for differential binding
	Introduction to edgeR
	Overview
	Setting up the data

	Estimating the dispersions
	Stabilising estimates with empirical Bayes
	Modelling variable dispersions between windows

	Testing for DB windows
	What to do without replicates
	Examining replicate similarity with MDS plots

	Correction for multiple testing
	Problems with false discovery rate control
	Overview
	Restoring FDR control with clustered windows

	Clustering windows into regions
	Clustering with external information
	Quick and dirty clustering
	Summarizing the direction of DB per cluster

	Integrating results from multiple window sizes
	Choosing a single representative window
	Based on differential binding
	Based on average abundance
	Weighting windows on abundance

	Filtering after testing but before correction
	Clustering only on DB windows

	Post-processing steps
	Adding gene-based annotation
	Checking bimodality for TF studies
	Saving the results to file
	Simple visualization of genomic coverage

	Epilogue
	Datasets
	Obtaining the FastQ files
	Alignment and processing to produce BAM files

	Session information
	References

