Inferring and visualising the hierarchical tree structure of
Single-Cell RNA-seq Data data with the cellTree package

David duVerle & Koji Tsuda

Graduate School of Frontier Sciences, the University of Tokyo

*Correspondence to dave (at) cb.k.u-tokyo.ac.jp

May 15, 2016

Abstract

Single-cell RNA sequencing, one of the most significant advances in recent genomics [1], is
becoming increasingly common, providing unique insights into the exact gene-expression snapshots
of cells throughout biological processes such as cell differentiation or tumorigenesis.

A number of methods have been suggested to help organise and visualise the structure of cells
measured through single-cell sequencing [2, 3], yet none seem to be able to accurately capture
complex differentiation paths over time, or offer a satisfying explanation for the low-dimensional
support used to infer the cell distances.

This R package implements a new statistical method based on topic modelling techniques,
for inferring and visualising the tree structure of single-cell RNA-seq samples and interpreting the
sets of genes driving transitions between states.

cellTree version: 1.2.2 1

1This document used the vignette from Bioconductor package DESeq2 as knitr template

http://bioconductor.org/packages/DESeq2
http://cran.fhcrc.org/web/packages/knitr/index.html

Single-Cell RNA-seq Data with cellTree 2

Contents
1 Introduction 2
2 Installing the cellTree package 3
3 Preparing the Gene Expression Data Input 3
4 Fitting LDA Model 4
4.1 Using Latent Dirichlet Allocation for Gene Expression Data 4
4.2 Choosing the Number of Topics 4
4.3 Computing LDA Model Fit 5
5 Building a Backbone Tree 6
6 Gene Set Enrichment with Gene Ontologies 13
7 Result Summary 15
8 Session Info 16

1 Introduction

When considering a number of single-cell expression measurements taken over time (e.g during cell
differentiation) or space (e.g. with samples taken across similar tissues), we expect specific pathways,
and the genes that compose them, to be more or less active based on the exact state of the cell sampled.
This leads us to hypothesise the existence of (possibly overlapping) sets of genes, representing groups
of pathways and indirectly characterising specific biological processes under way at sampling time.

In trying to identify the structure connecting these cell measurements, we therefore make the assumption
that there exist a latent gene group structure that explains the similarities between cell measurements.
Such a (low-dimensional) group structure would additionally provides a support for dimension-reduction
of the overall data set that we expect to be both vastly more accurate and more semantically-useful
than other statistical procedures such as PCA, ICA or MDS.

We borrowed a method from the field of natural language processing known as Latent Dirichlet Al-
location (itself part of the more general field of research of ‘topic modelling’) to identify this group
structure and use it to build a tree structure connecting all cells. In addition to wrapping existing infer-
ence methods in a ‘bioinformatics-friendly’ package, we added a number of functions to take advantage
and visualise the fitted model.

Principally, we introduced “backbone trees”, a new type of tree structure specifically designed to easily
visualise cells along complex differentiation paths, and proposed a heuristic implementation to estimate
such a tree from the distance matrix obtained through the fitted model.

Additionally, we implemented a pipeline to run gene set enrichment analysis on the different LDA

Single-Cell RNA-seq Data with cellTree 3

“topics”, using Gene Ontology terms. Results can be visualised in the form of annotated tables or
subgraph of the Gene Ontology DAG.

All tabular results can be exported to KTEX, for convenient re-use in scientific communication.

2 Installing the cellTree package

cellTree requires the following CRAN-R packages: topicmodels, slam, maptpx, igraph, xtable, Rgraphviz
and gplots, along with the Bioconductor package: topGO.

Installing cellTree from Bioconductor will install all these dependencies:
source("http://bioconductor.org/biocLite.R")

biocLite("cellTree")

The documentation’s examples as well as this vignette's code will further require Bioconductor packages:

HSMMSingleCell, org.Hs.eg.db and biomaRt:
biocLite(c("HSMMSingleCell", "org.Hs.eg.db", "biomaRt"))

Then load the package with:
library(cellTree)

3 Preparing the Gene Expression Data Input

The principal input to cellTree is a matrix of gene expression values, with genes as rows and cells
as columns. Both gene names (preferably in HGNC format) and cell identifiers should be present as
rownames and colnames for the matrix.

In this vignette, we will be using RNA-seq data for human skeletal muscle myoblasts (HSMM) compiled
in the HSMMSingleCell package:

library (HSMMSingleCell)
data (HSMM_expr_matrix)

dim(HSMM_expr_matrix)
[1] 47192 271
Unlike other cell ordering methods, cellTree's functions scale relatively well to very-high-dimensional

data, and it is therefore not particularly essential to reduce the set of genes selected. However, the
default pipeline will automatically apply a log transformation and remove low-variance values from the

http://cran.fhcrc.org/web/packages/topicmodels/index.html
http://cran.fhcrc.org/web/packages/slam/index.html
http://cran.fhcrc.org/web/packages/maptpx/index.html
http://cran.fhcrc.org/web/packages/igraph/index.html
http://cran.fhcrc.org/web/packages/xtable/index.html
http://cran.fhcrc.org/web/packages/Rgraphviz/index.html
http://cran.fhcrc.org/web/packages/gplots/index.html
http://bioconductor.org/packages/topGO
http://bioconductor.org/packages/HSMMSingleCell
http://bioconductor.org/packages/org.Hs.eg.db
http://bioconductor.org/packages/biomaRt
http://bioconductor.org/packages/HSMMSingleCell

Single-Cell RNA-seq Data with cellTree 4

data set. This can be disabled if the data is already treated or if you would prefer to do your own
treatment (see the documentation for compute.lda).

4 Fitting LDA Model

4.1 Using Latent Dirichlet Allocation for Gene Expression Data

The Latent Dirichlet Allocation (LDA; [4]) model is a Bayesian mixture model initially developed for
the analysis of text documents, that allows sets of observations to be explained by unobserved groups
that explain why some parts of the data are similar. In natural language processing, given a set of
documents and word-occurence counts for each documents, the model assumes that each document is
a mixture of topics (with a Dirichlet prior) and each word is the result of one of the document's topic
(with a Dirichlet prior on the per-topic word distribution).

For an in-depth explanation of the mathematics behind the general LDA model, we recommend con-
sulting David Blei's original paper [4]. For details on the different inference methods and their imple-
mentation, please consult the documentation and vignettes for the topicmodels and maptpx packages,
along with their companion publications [5, 6].

In the context of single-cell gene expression analysis, cells play the role of ‘documents’ and discretised
gene expression levels stand for ‘word-occurence counts’. The fitted LDA model for our data is therefore
composed of a set of topic distributions for each cell, and per-topic gene distributions. The per-cell
topic histograms can then be used as a low-dimension support to compute cell distances and build a
structured representation of the cell hierarchy.

4.2 Choosing the Number of Topics

The main parameter to the LDA fitting procedure is the desired number of topics: k, (best values
for other hyper-parameters are automatically picked by the different fitting methods). As often with
such models, a large number of topics (and therefore a more complex statistical model) can lead to
overfitting, and it is therefore preferable to use the smallest possible number that provides a good
explanation of the data.

Because of the loose significance of the concept of ‘topics’ in the context of gene expression in a cell, it
is difficult to give a reliable estimate of the ideal number, based on biological knowledge alone. A good
rule of thumb is that the number of topics should somewhat match the number of major processes
(e.g. differentiation steps) undertaken by the cells during the experiment. During our own experiments
with a number of single-cell time-series and tissue-based data sets, we found that the optimal number
of topics generally stayed between 3 and 7.

The generally-recommended method to select a number of topics is to use cross-validation with different
values of k, looking at the likelihood for each topic number. However, the computation time for such
a method can be prohibitive on large data sets and large range of topic numbers. For convenience,
we provide a wrapper to the maptpx implementation that uses Matthew Taddy’s ingenious method for

http://cran.fhcrc.org/web/packages/topicmodels/index.html
http://cran.fhcrc.org/web/packages/maptpx/index.html
http://cran.fhcrc.org/web/packages/maptpx/index.html

Single-Cell RNA-seq Data with cellTree 5

model selection through joint MAP estimation [6]: as it fits models for iteratively larger number of
topics (using the previous fit's residuals as a basis), this method can exhaustively look at a large range
of topic numbers in considerably less time than it takes other methods.

One way to check the sparsity of the model based on biological knowledge, is to examine the gene set
enrichment for the different topics (see 6): if two topics share a large amount of identical GO terms, it
is quite possible that they are redundant and the model could be made sparser.

4.3 Computing LDA Model Fit

Using the HSMM data set previously loaded, we can use maptpx to automatically select the best number
of topics and return the fitted model for that number:

lda.results = compute.lda(HSMM_expr_matrix, k.topics=3:8, method="maptpx")

The argument k. topics can only be sent a vector of integers when method argument is set to “maptpx”
(other methods must be sent a scalar value).

Optionally, we could run the (much slower, though potentially more accurate) collapsed Gibbs sampling
method:

lda.results = compute.lda(HSMM_expr_matrix, k.topics=6, method="Gibbs")

In order to perform further analysis on the fitted LDA model, it is be preferable for the row names of the
input data matrix to contain HGNC-conformant gene names. This can be done by using the biomaRt
package to convert the original ENSEMBL gene names of the HSMMSingleCell package to HGCN (a
pre-computed set can also be used: see following paragraph):

HSMM_expr_matrix.hgnc = HSMM_expr_matrix

library("biomaRt")
ensembl.ids = sapply(strsplit(rownames(HSMM_expr_matrix), split=".",fixed=TRUE),
" [ll s
1)
ensembl .mart = useMart(host="www.ensembl.org",
"ENSEMBL_MART_ENSEMBL",

dataset = "hsapiens_gene_ensembl")
gene.map = getBM(attributes = c("ensembl_gene_id", "entrezgene", "hgnc_symbol"),
filters = "ensembl_gene_id",

values = ensembl.ids,
mart = ensembl.mart)
idx = match(ensembl.ids, gene.map$ensembl_gene_id)
hgnc.ids = gene.map$hgnc_symbol [idx]
has.hgnc.ids = !is.na(hgnc.ids)&(hgnc.ids!="")

http://cran.fhcrc.org/web/packages/maptpx/index.html
http://bioconductor.org/packages/biomaRt
http://bioconductor.org/packages/HSMMSingleCell

Single-Cell RNA-seq Data with cellTree 6

rownames (HSMM_expr_matrix.hgnc) [has.hgnc.ids] = hgnc.ids[has.hgnc.ids]

HSMM_lda_model = compute.lda(HSMM_expr_matrix.hgnc, k.topics=6)

For convenience, we have packaged a pre-computed LDA model that already includes converted gene
names:

data(HSMM_1lda_model)

print (HSMM_lda_model$K)
[1] 5

head (rownames (HSMM_1lda_model$theta))

[1] "TSPANG" "DPM1" "SCYL3" "Clorfi112" "CFH" "FUCA2"

5 Building a Backbone Tree

Once a model has been fitted to the data using compute.lda, it is possible to compute pairwise
distances for all cells, based on per-cell topic histograms (we use the Chi-square distance):

dists = get.cell.dists(HSMM_lda_model)

print(dists[1:5,1:5])

#it TO_CT_AO1 TO_CT_AO3 TO_CT_A0O5 TO_CT_AO6 TO_CT_AO7
TO_CT_AO1 0.000 0.578 0.645 0.262 0.598
TO_CT_AO3 0.578 0.000 0.386 0.401 0.462
TO_CT_AOS5 0.645 0.386 0.000 0.566 0.441
TO_CT_AO6 0.262 0.401 0.566 0.000 0.539
TO_CT_AO7 0.598 0.462 0.441 0.539 0.000

This distance matrix can be used with methods such as hclust, to perform hierarchical cluster analysis,
or with various tree-building algorithm, to identifying the underlying tree structure of the cells.

In most cases, the cells measured are taken in groups of similar samples (e.g. at specific time-points)
that spread along a continuum between the various groups. We expect a small (or at least smaller)
variance within groups, and average short distance between samples belonging to neighbouring groups

(in time or space). One natural way to visualise such a structure is using a minimum spanning tree
(MST).

Single-Cell RNA-seq Data with cellTree 7

In order to help properly root the tree, we can provide additional information to the function, in the
form of group labels for each cell batch. In this instance, cells were measured at 4 separate time points
(0, 24, 48 and 72 hours):

Recover sampling time point for each cell:
library (HSMMSingleCell)

data (HSMM_sample_sheet)

days.factor = HSMM_sample_sheet$Hours

days = as.numeric(levels(days.factor)) [days.factor]

Our grouping annotation (in hours):
print (unique(days))

[1] 0 24 48 72

With this time annotation, we can then compute the rooted MST:

compute MST from a fitted LDA model:
mst.tree = compute.backbone.tree(HSMM_lda_model, days, only.mst=TRUE)

Using start group: 0 (1)

Using rooting method: center.start.group
Using root vertex: 4

Returning Minimum Spanning Tree

plot the tree (showing topic distribution for each cell):
mst.tree.with.layout = ct.plot.topics(mst.tree)

Computing tree layout...

Single-Cell RNA-seq Data with cellTree 8

* Topic 1
a Topic 2
; ® » Topic 3
[- * Topic 4
@ ; e @ ; ® i‘ ' 8 - T;E:g 5
[
s d oo b §:°
[<)
-

-
220 % By
s’*i‘i,
S g o.os %
3 3
:0;3 ‘J‘ ; . R .ss
; ‘ i ; b | l L ! ! 3
.‘.: b B E 8 :
i3

To have a better idea of the accuracy of the tree representation, we can plot it with the time group for
each cell:

plot the tree (showing time point for each cell):
mst.tree.with.layout = ct.plot.grouping(mst.tree)

Computing tree layout...

Single-Cell RNA-seq Data with cellTree 9

Group: 0
P Group: 24
® * Group: 48
® Group: 72
g 8 ¢
: L
'e%e_ o % > e
’ 8 o ¢
® . ® @
3. +%e o ¢ !
[@ 4
-

As we can see, the inferred tree structure of the cells is somewhat consistent with the time points (i.e.
generally follows a chronological order).

However, the MST approach relies to some extent on the assumption that cell distances are uniformly
distributed, whereas in fact, we can expect cells inside a same group to have much lower variance than
across groups.

The “ideal” structure of a typical cell differentiation experiment would look like a single path from one
cell to the next or, in the case of subtype differentiation, a tree with a very small number of branches.
Of course, because the samples do in fact represent separate cells, rather than the evolution of a single
cell, we must expect small variations around such an idealised continuum. Our suggested approach
is to identify cells that are most representative (at the gene expression level) of the biological process
continuum, to create a “backbone”, with all remaining cells at reasonably small distances from the
backbone.

In more formal terms:

Considering a set of vertices V' and a distance function over all pairs of vertices: d: V x V — R™, we
call backbone tree a graph, T" with backbone B, such that:

e T is a tree with set of vertices V' and edges E.

Single-Cell RNA-seq Data with cellTree 10

e B is a tree with set of vertices Vg C V and edges Eg
E.

e All vertices in V' \ Vp are less than distance 0 to a vertex in the backbone tree B: Vv €
V '\ Vi, Jvp € Vi such that d(v,v,) <.

e All ‘vertebrae’ vertices of T (v € V' \ V) are connected by a single edge to the closest vertex in
the backbone tree: Yo € V \ Vg, Vo' € V : (v,0') € E <= V' = argminycy,d(v,v").

In this instance, we relax the last condition to cover only “most” non-backbone vertices, allowing for a
variable proportion of outliers at distance > ¢ from any vertices in V3.

We can then define an optimal backbone tree, T to be a backbone tree that minimises the sum of
weighted edges in its backbone subtree:

T* = argminr Y d(e) (1)

ecEp

Finding such a tree can be easily shown to be NP-Complete (by reduction to the Vertex Cover prob-
lem), but we developed a fast heuristic relying on Minimum Spanning Tree to produce a reasonable
approximation. The resulting quasi-optimal backbone tree (simply referred to as ‘the’ backbone tree
hereafter) gives a clear hierarchical representation of the cells relationship: the objective function puts
pressure on finding a (small) group of prominent cells (the backbone) that are good representatives of
major steps in the cell evolution (in time or space), while remaining cells are similar enough to their
closest representative for their difference to be ignored.

Backbone trees provides a very clear visualisation of overall cell differentiation paths (including potential
differentiation into sub-types):

b.tree = compute.backbone.tree(HSMM_lda_model, days)

Using start group: 0 (1)

Using rooting method: center.start.group
Using root vertex: 4

Adding branch #1:

##
##
##
#Hit
#it

[1] 65 53 45 2 b5 47 57 48 44 7 19 25 69 66 9 63 18 62 b1
[20] 56 16 70 136 133 143 89 78 140 94 100 177 194 141 199 201 181 161 204
[39] 225 236 255 247 246 233 229 259 258 146 235 159 185 191 216 166 149 83 168
[68] 1568 8

Using branch width: 0.927 (width.scale.factor: 1.2)

Outliers: 1
Total number of branches: 1 (forks: 0)
Backbone fork merge (width: 0.927): 60 -> 60

#it

Ranking all cells...

b.tree.with.layout = ct.plot.grouping(b.tree)

##

Computing tree layout...

Single-Cell RNA-seq Data with cellTree 11

@ Group: 0

Group: 24
* Group: 48
® Group: 72

C
°
®_
"
c,:..
..-
+
’.l
L
[2
..l-
L
L
[
&
Io.n_.
.--l:
b

In this plot, each backbone cell is represented as a larger disk, with its closest cells around it as smaller
disks.

The backbone tree algorithm correctly finds the forked structure we expect in this particular in-
stance, where proliferating cells eventually separate into interstitial mesenchymal and differentiating
myoblasts [7]. However, we may expect a longer common trunk at the beginning of the experiment.
This can be adjusted by passing a larger width.scale.factor argument (default is 1.2):

compute backbone tree from a fitted LDA model:
b.tree = compute.backbone.tree(HSMM_lda_model, days, width.scale.factor=1.5)

Using start group: 0 (1)

Using rooting method: center.start.group

Using root vertex: 4

Adding branch #1:

[1] 65 53 45 2 b5 47 57 48 44 7 19 25 69 66 9 63 18 62 51
[20] 56 16 70 136 133 143 89 78 140 94 100 177 194 141 199 201 181 161 204
[39] 225 236 255 247 246 233 229 259 258 146 235 159 185 191 216 166 149 83 168
[68] 168 8

Using branch width: 1.16 (width.scale.factor: 1.5)

Outliers: O

Single-Cell RNA-seq Data with cellTree 12

Total number of branches: 1 (forks: 0)
Backbone fork merge (width: 1.16): 60 -> 60
Ranking all cells...

plot the tree (showing time label for each cell):
b.tree.with.layout = ct.plot.grouping(b.tree)

Computing tree layout...

o Group: 0
' Group: 24

* Group: 48

® Group: 72

The width.scale.factor will affect what the backbone tree construction algorithm consider to be
“close enough” cells: larger values will lead to less branches and more shared branch segments.

Finally, we can plot the backbone tree with the topic distribution for each cell:

plot the tree (showing topic distribution for each cell):
b.tree.with.layout = ct.plot.topics(b.tree)

Computing tree layout...

Single-Cell RNA-seq Data with cellTree 13

* Topic 1

" Topic 2
Topic 3

* Topic 4

"L ® Topic 5

6 Gene Set Enrichment with Gene Ontologies

Because of their Bayesian mixture nature, and despite the slightly misleading name, ‘topics’ obtained
through LDA fitting do not always match clear and coherent groupings (biological or otherwise), de-
pending on sparsity of model and complexity of the input data. In particular, slightly less sparse models
(with higher number of topics) can lead to better cell distance computation, but be harder to interpret.

In most cases, however, enrichment analysis of per-topic gene distribution can help characterise a given
topic and its role in the cell's process, and even provide potential biological insight, by outlining the
general processes most active in specific sections of the cell tree.

Topic analysis is conducted using Gene Ontology (GO) terms [8]. For each topic, cellTree orders
genes by their per-topic probability and uses a Kolmogorov-Smirnov test to compute a p-value on the
matching nodes in the GO graph. Three annotation categories are available: biological processes,
cellular components and molecular functions.

To be able to map genes to GO terms, cellTree needs the relevant species database, e.g. org.Hs.eg.db
for Homo Sapiens or org.Mm.eg.db for Mus Musculus:

http://bioconductor.org/packages/org.Hs.eg.db
http://bioconductor.org/packages/org.Mm.eg.db

Single-Cell RNA-seq Data with cellTree 14

Load GO mappings for human:
library(org.Hs.eg.db)

We can then compute significantly enriched sets for each topic:

Compute GO enrichment sets (using the Cellular Components category)

for each topic

go.results = compute.go.enrichment (HSMM_lda_model,
org.Hs.eg.db, ontology.type="CC",
bonferroni.correct=TRUE, p.val.threshold=0.01)

Print ranked table of significantly enriched terms for topic 1
that do not appear im other topics:
go.results$unique [[1]]

#i#t GO.ID Term Total p-Value
12 GO:0000777 condensed chromosome kinetochore 89 8.7e-11
16 G0:0005681 spliceosomal complex 161 1.2e-08
26 G0:0000784 nuclear chromosome, telomeric region 102 1.1e-06
27 G0:0005813 centrosome 406 1.4e-06
28 G0:0000922 spindle pole 106 1.5e-06
31 G0:0046540 U4/U6 x U5 tri-snRNP complex 18 3.0e-06
32 G0:0005686 U2 snRNP 17 3.1e-06
36 GO:0005689 Ul2-type spliceosomal complex 25 4.7e-06
38 GO0:0000785 chromatin 326 6.0e-06
39 G0:0005876 spindle microtubule 50 7.7e-06
40 G0:0000940 condensed chromosome outer kinetochore 13 9.3e-06

During enrichment testing, you can have the function plot and output a subgraph of significantly
enriched terms for each topic, by using the dag.file.prefix argument:

Compute GO enrichment sets (using the Biological Process category)

for each topic and saves DAG plots to files:

go.results.bp = compute.go.enrichment (HSMM_lda_model,
org.Hs.eg.db, ontology.type="BP",
bonferroni.correct=TRUE, p.val.threshold=0.01,
dag.file.prefix="hsmm_go_")

A useful way to visualise GO results is by plotting the subgraph of all enriched terms, coloured according
to topic, using function ct.plot.go.dag:

plot GO sub-DAG for topics 1 to 3:

go.dag.subtree = ct.plot.go.dag(go.results,
up.generations = 2,
only.topics=c(1:3))

Single-Cell RNA-seq Data with cellTree 15

» Topic: 1

w::m:tz‘. Toplc: 2
et il » Topic: 3

ressprey

-@

o Pmimtubule it bk
b, ontminng omiiR skelonn

spindis

Ty

st mbcmbubu o

oot s cikaeyota 433
e tnn

.'".; -) S~ i

Terms that are enriched for multiple topics are coloured with a mixture of the topics involved (weighted
by their significance), making it easy to tell the terms that are exclusive to a small number of topics.

It is also possible to export the entire set of GO enrichment tables to a self-contained IKTEXdocument
by using go.results.to.latex.

7 Result Summary

In addition to topic and grouping plotting, cellTree can output a useful ranked table of all cells in the
data set, ordered along the cell tree (non-backbone cells are placed using interpolation between the
nearest backbone cells).

Generate table summary of cells, ranked by tree position:
cell.table = cell.ordering.table(b.tree)

Print first 5 cells:
cell.table[1:5,]

#it branch node.label cell.name cell.group main.topic topics

Single-Cell RNA-seq Data with cellTree 16

##
##
##
#Hit
##

(1,1 "1" 4 "TO_CT_AO6" O 1 Numeric,5
[2,] "1" 40 "TO_CT_EO8" O 1 Numeric,b
[3,] "1" 13 "TO_CT_BO8" O 1 Numeric,b
(4,1 "1" 242 "T72_CT_C11" 72 1 Numeric,b
(5,1 "1" 64 "TO_CT_HO2" O 5 Numeric,b

There too, an option to create a self-contained ETEXversion is available:

cell.table = cell.ordering.table(b.tree,

write.to.tex.file=”cell_summary.tex”)

References

[1]

2]

8]
[4]
[5]
[6]

[7]

[8]

8

Antoine-Emmanuel Saliba, Alexander J Westermann, Stanislaw A Gorski, and Jorg Vogel. Single-cell
rna-seq: advances and future challenges. Nucleic acids research, page gkub55, 2014.

Cole Trapnell, Davide Cacchiarelli, Jonna Grimsby, Prapti Pokharel, Shugiang Li, Michael Morse,
Niall J Lennon, Kenneth J Livak, Tarjei S Mikkelsen, and John L Rinn. The dynamics and regulators
of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature biotechnology,
32(4):381-386, 2014.

Miguel Julid, Amalio Telenti, and Antonio Rausell. Sincell: an r/bioconductor package for statistical
assessment of cell-state hierarchies from single-cell rna-seq. Bioinformatics, page btv368, 2015.

David M Blei, Andrew Y Ng, and Michael | Jordan. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993-1022, 2003.

Kurt Hornik and Bettina Griin. topicmodels: An r package for fitting topic models. Journal of
Statistical Software, 40(13):1-30, 2011.

Matthew A Taddy. On estimation and selection for topic models. arXiv preprint arXiv:1109.4518,
2011.

Cole Trapnell, Davide Cacchiarelli, Jonna Grimsby, Prapti Pokharel, Shugiang Li, Michael Morse,
Niall J Lennon, Kenneth J Livak, Tarjei S Mikkelsen, and John L Rinn. Pseudo-temporal ordering
of individual cells reveals dynamics and regulators of cell fate decisions. Nature biotechnology,
32(4):381, 2014.

Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler, J Michael
Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al. Gene ontology: tool
for the unification of biology. Nature genetics, 25(1):25-29, 2000.

Session Info

Single-Cell RNA-seq Data with cellTree

sessionInfo()

R version 3.3.0 (2016-05-03)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.4 LTS

#it
#it
#it
##
##
#it
#it
#it
##
##
#it
#it
##
##
##
#it
#i#t
#Hit
#it
##
#it
#i#t
#i#t
#it
#H#
##
#it
#it
#it

locale:

[1]
[3]
[5]
[7]
[9]
[11]

LC_CTYPE=en_US.UTF-
LC_TIME=en_US.UTF-8

LC_MONETARY=en_US.UTF-8

LC_PAPER=en_US.UTF-
LC_ADDRESS=C

attached base packages:
[1] stats4 parallel
[8] methods base

other attached packages:

[1]
[4]
[7]
[10]
[13]

org.Hs.eg.db_3.3.0
topG0_2.24.0
AnnotationDbi_1.34.
Biobase_2.32.0
knitr_1.13

8 LC_NUMERIC=C
LC_COLLATE=C

8 LC_NAME=C

LC_MESSAGES=en_US.UTF-8

LC_TELEPHONE=C
LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

stats graphics

grDevices utils

17

datasets

HSMMSingleCell_0.106.0 cellTree_1.2.2

SparseM_1.7
2 IRanges_2.6.0
graph_1.50.0

loaded via a namespace (and not attached):

[1]
[5]
[9]
[13]
[17]
[21]

igraph_1.0.1
stringr_1.0.0
grid_3.3.0
gtools_3.5.0
slam_0.1-34
stringi_1.0-1

magrittr_1.5
highr 0.6
maptpx_1.9-2
matrixStats_0.50.2
evaluate_0.9
gplots_3.0.1

G0.db_3.3.0

S4Vectors_0.10.0
BiocGenerics_0.18.0

xtable_1.8-2
caTools_1.17.1

lattice_0.20-33
t001s_3.3.0

KernSmooth_2.23-15 DBI_0.4-1

formatR_1.4
RSQLite_1.0.0
BiocStyle_2.0.2

bitops_1.0-6
gdata_2.17.0

	1 Introduction
	2 Installing the cellTree package
	3 Preparing the Gene Expression Data Input
	4 Fitting LDA Model
	4.1 Using Latent Dirichlet Allocation for Gene Expression Data
	4.2 Choosing the Number of Topics
	4.3 Computing LDA Model Fit

	5 Building a Backbone Tree
	6 Gene Set Enrichment with Gene Ontologies
	7 Result Summary
	8 Session Info

