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1 Introduction

High-throughput, non-targeted, technologies such as transcriptomics, proteomics and metabolomics, are
widely used to discover molecules which allow to efficiently discriminate between biological or clinical
conditions of interest (e.g., disease vs control states). Powerful machine learning approaches such as
Partial Least Square Discriminant Analysis (PLS-DA), Random Forest (RF) and Support Vector Machines
(SVM) have been shown to achieve high levels of prediction accuracy. Feature selection, i.e., the selection
of the few features (i.e., the molecular signature) which are of highest discriminating value, is a critical
step in building a robust and relevant classifier ([1]): First, dimension reduction is usefull to limit the risk
of overfitting and reduce the prediction variability of the model; second, intrepretation of the molecular
signature is facilitated; third, in case of the development of diagnostic product, a restricted list is required
for the subsequent validation steps ([2])

Since the comprehensive analysis of all combinations of features is not computationally tractable, several
selection techniques have been described, including filter (e.g., p-values thresholding), wrapper (e.g.,
recursive feature elimination), and embedded (e.g., sparse PLS) approaches ([3]). The major challenge for
such methods is to be fast and extract restricted and stable molecular signatures which still provide high
performance of the classifier ([4]; [5]).

2 The biosigner package

The biosigner implements a new wrapper feature selection algorithm:

1. the dataset is split into training and testing subsets (by bootstraping, controling class proportion),
2. model is trained on the training set and balanced accuracy is evaluated on the test set,
3. the features are ranked according to their importance in the model,
4. the relevant feature subset at level f is found by a binary search: a feature subset is considered

relevant if and only if, when randomly permuting the intensities of other features in the test subsets,
the proportion of increased or equal prediction accuracies is lower than a defined threshold f,

5. the dataset is restricted to the selected features and steps 1 to 4 are repeated until the selected list
of features is stable.

Three binary classifiers have been included in biosigner, namely PLS-DA, RF and SVM, as the performances
of each machine learning approach may vary depending on the structure of the dataset ([5]). The algorithm
returns the tier of each feature for the selected classifer(s): tier S corresponds to the final signature, i.e.,
features which have been found significant in all the selection steps; features with tier A have been found
significant in all but the last selection, and so on for tier B to D. Tier E regroup all previous round of
selection.

As for a classical classification algorithm, the biosign method takes as input the x samples times features
data frame (or matrix) of intensities, and the y factor (or character vector) of class labels (note that only
binary classification is currently available). It returns the signature (signatureLs: selected feature names)
and the trained model (modelLs) for each of the selected classifier. The plot method for biosign objects
enable to visualize the individual boxplots of the selected features. Finally, the predict method allows to
apply the trained classifier(s) on new datasets.

The algorithm has been successfully applied to transcriptomics and metabolomics data ([6]; see also the
Hands-on section below).

3 Hands-on
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3.1 Loading

We first load the biosigner package:

> library(biosigner)

We then use the diaplasma metabolomics dataset ([6]) which results from the analysis of plasma samples
from 69 diabetic patients were analyzed by reversed-phase liquid chromatography coupled to high-resolution
mass spectrometry (Orbitrap Exactive) in the negative ionization mode. The raw data were pre-processed
with XCMS and CAMERA (5,501 features), corrected for signal drift, log10 transformed, and annotated
with an in-house spectral database. The patient’s age, body mass index, and diabetic type are recorded.

> data(diaplasma)

We attach diaplasma to the search path and display a summary of the content of the dataMatrix, sam-
pleMetadata and variableMetadata with the strF function (from the ropls package):

> attach(diaplasma)

> strF(dataMatrix)

dim class mode typeof size NAs min mean median max

69 x 5,501 matrix numeric double 3.2 Mb 0 0 4.2 4.4 8.2

m096.009t01.6 m096.922t00.8 ... m995.603t10.2 m995.613t10.2

DIA001 2.98126177377087 6.08172882312848 ... 3.93442594703862 3.96424920154706

DIA002 0 6.13671997362279 ... 3.74201112636229 3.78128422428722

... ... ... ... ... ...

DIA077 0 6.12515971273103 ... 4.55458598372024 4.57310800324247

DIA078 4.69123816772499 6.134420482337 ... 4.1816445335704 4.20696191303494

> strF(sampleMetadata)

type age bmi

factor numeric numeric

nRow nCol size NAs

69 3 0 Mb 0

type age bmi

DIA001 T2 70 31.6

DIA002 T2 67 28

... ... ... ...

DIA077 T2 50 27

DIA078 T2 65 29

> strF(variableMetadata)

mzmed rtmed ... pcgroup spiDb

numeric numeric ... numeric character

nRow nCol size NAs

5,501 6 0.7 Mb 0

mzmed rtmed ... pcgroup spiDb

m096.009t01.6 96.00899361 93.92633015 ... 1984 N-Acetyl-L-aspartic acid_HMDB00812

m096.922t00.8 96.92192011 48.93274877 ... 4

... ... ... ... ... ...

m995.603t10.2 995.6030195 613.4388762 ... 7160

m995.613t10.2 995.6134422 613.4446705 ... 7161

We see that the diaplasma list contains three objects:
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dataMatrix 69 samples x 5,501 matrix of numeric type containing the intensity profiles (log10 trans-
formed),

sampleMetadata a 69 x 3 data frame, with the patients’
type diabetic type, factor
age numeric
bmi body mass index, numeric

variableMetadata a 5,501 x 8 data frame, with the median m/z (’mzmed’, numeric) and the median
retention time in seconds (’rtmed’, numeric) from XCMS, the ’isotopes’ (character), ’adduct’ (char-
acter) and ’pcgroups’ (numeric) annotations from CAMERA, the names of the m/z and RT matching
compounds from an in-house spectra of commercial metabolites (’name hmdb’, character), and the
p-values resulting from the non-parametric hypothesis testing of difference in medians between types
(’type wilcox fdr’, numeric), and correlation with age (’age spearman fdr’, numeric) and body mass
index (’bmi spearman fdr’, numeric), all corrected for multiple testing (False Discovery Rate).

We can observe that the 3 clinical covariates (diabetic type, age, and bmi) are stronlgy associated (Figure
1):

> with(sampleMetadata, plot(age, bmi, cex = 1.5, col = ifelse(type == "T1", "blue", "red")))

> legend("topleft", cex = 1.5, legend = paste0("T", 1:2), text.col = c("blue", "red"))
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Figure 1: age, body mass index (bmi) and diabetic type (T1 and T2) of the patients from the diaplasma
cohort.

3.2 Molecular signatures

Let us look for signatures of type in the diaplasma dataset by using the biosign method. To speed up
computations in this demo vignette, we restrict the number of features (from 5,501 to about 500) and the
number of bootstraps (5 instead of 50 [default]); the selection on the whole dataset, 50 bootstraps, and
the 3 classifiers, takes around 10 min.
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> featureSelVl <- variableMetadata[, "mzmed"] >= 450 & variableMetadata[, "mzmed"] < 500

> sum(featureSelVl)

[1] 533

> dataMatrix <- dataMatrix[, featureSelVl]

> variableMetadata <- variableMetadata[featureSelVl, ]

> set.seed(123)

> diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)

> set.seed(NULL)

Significant features from 'S' groups:

plsda randomforest svm

m471.241t07.6 "S" "B" "A"

m497.284t08.1 "S" "S" "E"

m495.261t08.7 "A" "E" "S"

m497.275t08.1 "S" "A" "E"

Accuracy:

plsda randomforest svm

Full 0.759 0.742 0.808

AS 0.832 0.784 0.780

S 0.911 0.738 0.752
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Figure 2: Relevant signatures for the PLS-DA, Random Forest, and SVM classifiers extracted from the
diaplasma dataset. The (S) tier corresponds to the final metabolite signature, i.e., metabolites which
passed through all the selection steps.

The arguments are:

x the numerical matrix (or data frame) of intensities (samples as rows, variables as columns),
y the factor (or character) specifying the sample labels from the 2 classes,



biosigner : A new method for signature discovery from omics data 6

methodVc the classifier(s) to be used; here, the default all value means that all classifiers available
(plsda, randomforest, and svm) are selected,

bootI the number of bootstraps is set to 5 to speed up computations when generating this vignette; we
however recommend to keep the default 50 value for your analyzes (otherwise signatures may be less
stable).

Note:

� If some features from the x matrix/data frame contain missing values (NA), these features will be
removed prior to modeling with Random Forest and SVM (in contrast, the NIPALS algorithm from
PLS-DA can handle missing values),

� The set.seed command was used here to be sure that the results from this vignette can be repro-
duced exactly; by choosing alternative seeds (and the default bootI = 50), similar signatures are
obtained, showing the stability of the selection.

The resulting signatures for the 3 selected classifiers are both printed and plotted (Figure 2) as tiers from
S, A, up to E by decreasing relevance. The (S) tier corresponds to the final signature, i.e. features which
passed through all the backward selection steps. In contrast, features from the other tiers were discarded
during the last (A) or previous (B to E ) selection rounds.

Note that tierMaxC = ’A’ argument in the print and plot methods can be used to view the features
from the larger S+A signatures (especially when no S features have been found, or when the performance
of the S model is much lower than the S+A model).

The performance of the model built with the input dataset (balanced accuracy : mean of the sensitivity
and specificity), or the subset restricted to the S or S+A signatures are shown. We see that with 1 to 5
S feature signatures (i.e., less than 1% of the input), the 3 classifiers achieve good performances (even
higher than the full Random Forest and SVM models). Furthermore, reducing the number of features
decreases the risk of building non-significant models (i.e., models which do not perform significantly better
than those built after randomly permuting the labels). The signatures from the 3 classifiers have some
distinct features, which highlights the interest of comparing various machine learning approaches.

The individual boxplots of the features from the complete signature can be visualized with (Figure 3):

> plot(diaSign, typeC = "boxplot")

Let us see the metadata of the complete signature:

> variableMetadata[getSignatureLs(diaSign)[["complete"]], ]

mzmed rtmed isotopes adduct pcgroup

m471.241t07.6 471.2408 455.5541 10538

m497.284t08.1 497.2840 486.5338 [M+Cl]- 462.31 [M-H]- 498.287 220

m495.261t08.7 495.2609 524.1249 1655

m497.275t08.1 497.2755 486.5722 [M+Cl]- 462.31 [M-H]- 498.287 220

spiDb

m471.241t07.6

m497.284t08.1

m495.261t08.7

m497.275t08.1 Taurochenodeoxycholic acid_HMDB00951

We observe that the taurochenodeoxycholic acid has been annotated, in addition to another [M-H]- ion at
470.233 Da. Six out of the 8 features are very significant by univariate hypothesis testings of difference
between type medians, and to a lesser extent, of the correlation with age and body mass index.
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Figure 3: Individual boxplots of the features selected for at least one of the classification methods. Features
selected for a single classifier are colored (red for PLS-DA, green for Random Forest and blue for SVM).

3.3 Predictions

Let us keep split the dataset into a training (the first 4/5th of the 183 samples) and a testing subsets, and
extract the relevant features from the training subset:

> trainVi <- 1:floor(0.8 * nrow(dataMatrix))

> testVi <- setdiff(1:nrow(dataMatrix), trainVi)

> set.seed(123)

> diaTrain <- biosign(dataMatrix[trainVi, ], sampleMetadata[trainVi, "type"], bootI = 5)

> set.seed(NULL)

Significant features from 'S' groups:

plsda randomforest svm

m471.241t07.6 "B" "A" "S"

m497.284t08.1 "S" "S" "D"

m456.182t12.9 "E" "E" "S"

m493.243t07.7 "E" "E" "S"

Accuracy:

plsda randomforest svm

Full 0.794 0.777 0.793

AS 0.827 0.848 0.783

S 0.843 0.793 0.840

We extract the fitted types on the training dataset restricted to the S signatures:

> diaFitDF <- predict(diaTrain)

We then print the confusion tables for each classifier:
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> lapply(diaFitDF, function(predFc) table(actual = sampleMetadata[trainVi,

+ "type"], predicted = predFc))

$plsda

predicted

actual T1 T2

T1 16 6

T2 4 29

$randomforest

predicted

actual T1 T2

T1 14 8

T2 7 26

$svm

predicted

actual T1 T2

T1 18 4

T2 4 29

and the corresponding balanced accuracies:

> sapply(diaFitDF, function(predFc) { conf <- table(sampleMetadata[trainVi,

+ "type"], predFc)

+ conf <- sweep(conf, 1, rowSums(conf), "/")

+ round(mean(diag(conf)), 3)

+ })

plsda randomforest svm

0.803 0.712 0.848

Note that these values are slightly different from the accuracies returned by biosign because the latter
are computed by using the resampling scheme selected by the bootI (or crossvalI) arguments:

> round(getAccuracyMN(diaTrain)["S", ], 3)

plsda randomforest svm

0.843 0.793 0.840

Finally, we can compute the performances on the test subset:

> diaTestDF <- predict(diaTrain, newdata = dataMatrix[testVi, ])

> sapply(diaTestDF, function(predFc) { conf <- table(sampleMetadata[testVi,

+ "type"], predFc)

+ conf <- sweep(conf, 1, rowSums(conf), "/")

+ round(mean(diag(conf)), 3)

+ })

plsda randomforest svm

0.750 0.667 0.750

3.4 Closing

Before closing this example session, we detach diaplasma from the search path:
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> detach(diaplasma)

3.5 Session information

> sessionInfo()

� R version 3.3.0 (2016-05-03), x86_64-w64-mingw32
� Locale: LC_COLLATE=French_France.1252, LC_CTYPE=French_France.1252,
LC_MONETARY=French_France.1252, LC_NUMERIC=C, LC_TIME=French_France.1252

� Base packages: base, datasets, graphics, grDevices, methods, stats, utils
� Other packages: biosigner 1.0.2, e1071 1.6-7, randomForest 4.6-12, ropls 1.4.2
� Loaded via a namespace (and not attached): BiocStyle 2.0.2, class 7.3-14, tools 3.3.0

4 Extraction of biomarker signatures from other omics datasets

4.1 Physiological variations of the human urine metabolome (metabolomics)

The sacurine LC-HRMS dataset from the dependent ropls package can also be used ([7]): Urine samples
from a cohort of 183 adults were analyzed by using an LTQ Orbitrap in the negative ionization mode. A
total of 109 metabolites were identified or annotated at the MSI level 1 or 2. Signal drift and batch effect
were corrected, and each urine profile was normalized to the osmolality of the sample. Finally, the data
were log10 transformed (see the ropls vignette for further details and examples).

We can for instance look for signatures of the gender :

> data(sacurine)

> set.seed(123) ##

> sacSign <- biosign(sacurine[["dataMatrix"]], sacurine[["sampleMetadata"]][, "gender"],

+ methodVc = "plsda")

Significant features from 'S' groups:

plsda

Malic acid "S"

p-Anisic acid "S"

Testosterone glucuronide "S"

Accuracy:

plsda

Full 0.870

AS 0.861

S 0.879

> set.seed(NULL)

4.2 Apples spikes with known compounds (metabolomics)

The spikedApples dataset was obtained by LC-HRMS analysis (SYNAPT Q-TOF, Waters) of one control
and three spiked groups of 10 apples each. The spiked mixtures consists in 2 compounds which were not
naturally present in the matrix and 7 compounds aimed at achieving a final increase of 20%, 40% or 100%
of the endogeneous concentrations. The authors identified 22 features (out of the 1,632 detected in the
positive ionization mode; i.e. 1.3%) which came from the spiked compounds. The dataset is included in
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the BioMark R Bioconductor package ([8]). Let us use the control and group1 samples (20 in total) in
this study.

> library(BioMark)

> data(SpikePos)

> group1Vi <- which(SpikePos[["classes"]] %in% c("control", "group1"))

> appleMN <- SpikePos[["data"]][group1Vi, ]

> spikeFc <- factor(SpikePos[["classes"]][group1Vi])

> annotDF <- SpikePos[["annotation"]]

> rownames(annotDF) <- colnames(appleMN)

We can check that no clear separation can be observed by PCA:

> pcaLs <- opls(appleMN, plotL = FALSE)

PCA

20 samples x 1632 variables

standard scaling of predictors

R2X(cum) pre ort

Total 0.523 7 0

> plot(pcaLs, parAsColFcVn = spikeFc)

and that PLS-DA modeling with the full dataset is not significant (as seen on the top left plot: 7 out of
20 models trained after random permutations of the labels have Q2 values higher than the model trained
with the true labels):

> plsLs <- opls(appleMN, spikeFc)

PLS-DA

20 samples x 1632 variables and 1 response

standard scaling of predictors and response(s)

R2X(cum) R2Y(cum) Q2(cum) RMSEE pre ort pR2Y pQ2

Total 0.145 0.995 0.4 0.0396 2 0 0.15 0.35

Let us now extract the molecular signatures:

> set.seed(123)

> appleSign <- biosign(appleMN, spikeFc)

> set.seed(NULL)

The 449.1/327 corresponds to the Cyanidin-3-galactoside (absent in the control) and the 475.1/434.7 is
probably a potassium adduct of the Phloridzin (80% concentration increase in group1; [8]).

> annotDF <- SpikePos[["annotation"]]

> rownames(annotDF) <- colnames(appleMN)

> annotDF[getSignatureLs(appleSign)[["complete"]], c("adduct", "found.in.standards")]

4.3 Bone marrow from acute leukemia patients (transcriptomics)

Samples from 47 patients with acute lymphoblastic leukemia (ALL) and 25 patients with acute myeloid
leukemia (AML) have been analyzed using Affymetrix Hgu6800 chips resulting in expression data of 7,129
gene probes ([9]). The golub dataset is available in the golubEsets package from Bioconductor. Let
us compute for example the SVM signature (to speed up this demo example, the number of features is
restricted to 500):
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> library(golubEsets)

> data(Golub_Merge)

> golubMN <- t(exprs(Golub_Merge))

> leukemiaFc <- pData(Golub_Merge)[["ALL.AML"]]

> table(leukemiaFc)

leukemiaFc

ALL AML

47 25

> varSubVi <- 1501:2000

> set.seed(123)

> golubSign <- biosign(golubMN[, varSubVi], leukemiaFc, methodVc = "svm")

Significant features from 'S' groups:

svm

M19507_at "S"

M27891_at "S"

Accuracy:

svm

Full 0.950

AS 0.969

S 0.944

> set.seed(NULL)

The computation results in a signature of 2 features only and a sparse SVM model performing almost as
well (94.4% accuracy) as the model trained on the dataset of 500 variables (95.0% accuracy).

The hu6800.db bioconductor package can be used to get the annotation of the selected probes ([10]):

> library(hu6800.db)

> sapply(getSignatureLs(golubSign)[["complete"]],

+ function(probeC)

+ get(probeC, env = hu6800GENENAME))

M19507_at M27891_at

"myeloperoxidase" "cystatin C"

Cystatin C is part of the 50 gene signature selected by Golub and colleagues on the basis of a metric derived
from the Student’s statistic of mean differences between the AML and ALL groups ([9]). Interestingly,
the second probe, myeloperoxidase, is a cytochemical marker for the diagnosis (and also potentially the
prognosis) of acute myeloid leukemia (AML).
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