TCC: Differential expression analysis for tag count data with robust normalization strategies

Jianqiang Sun^{1§}, Tomoaki Nishiyama^{2§}, Kentaro Shimizu¹, and Koji Kadota¹

¹ The University of Tokyo, Tokyo, Japan

² Kanazawa University, Kanazawa, Japan

§ Maintainer: Jianqiang Sun (wukong@bi.a.u-tokyo.ac.jp),

Tomoaki Nishiyama (tomoakin@staff.kanazawa-u.ac.jp)

May 26, 2016

Abstract

The R/Bioconductor package, **TCC**, provides users with a robust and accurate framework to perform differential expression (DE) analysis of tag count data. We recently developed a multi-step normalization method (TbT; Kadota et al., 2012) for two-group RNA-seq data. The strategy (called DEGES) is to remove data that are potential differentially expressed genes (DEGs) before performing the data normalization. DEGES in **TCC** is essential for accurate normalization of tag count data, especially when the up- and down-regulated DEGs in one of the groups are extremely biased in their number. A major characteristic of **TCC** is to provide the DEGES-based normalization methods for several kinds of count data (two-group with or without replicates, multi-group, and so on) by virtue of the use of combinations of functions in other sophisticated packages (especially **edgeR**, **DESeq**, and **baySeq**). The appropriate combination provided by **TCC** allows a more robust and accurate estimation to be performed more easily than directly using original packages and **TCC** provides a simple unified interface to perform the robust normalization.

Contents

1	Intr	oduction	4
	1.1	Installation	4
	1.2	Citations	5
	1.3	Quick start	5
	_		
2	-	parations	7
	2.1	Preparing the count data	7
	2.2	Reading the count data	7
	2.3	Constructing TCC class object	8
	2.4	Filtering low-count genes (optional)	9
3	Nor	malization	10
J	3.1		10 11
	0.1	÷	11
			11 13
		7 0	$13 \\ 14$
			14 14
			$14 \\ 15$
	3.2	/ 1	$10 \\ 16$
	5.2		$10 \\ 17$
			18
	3.3		10 19
	0.0		19 19
			19 20
	3.4		20 21
	0.1		$\frac{21}{22}$
			$\frac{22}{23}$
		1 0	20 24
	3.5		24 26
	0.0		20 27
			28
		3.5.3 Retrieving two-group DEGES/DESeq-normalized data with replicates	
		3.5.4 Retrieving two-group DEGES/edgeR-normalized data without repli-	20
			29
		3.5.5 Retrieving two-group DEGES/DESeq-normalized data without repli-	20
			31
			32
		of the second seco	0-
4	Diff	erential expression (DE)	34
	4.1	DE analysis for two-group data with replicates	34
		4.1.1 edgeR coupled with iDEGES/edgeR normalization	34
		4.1.2 DESeq2 coupled with iDEGES/DESeq2 normalization	36
	4.2	DE analysis for two-group data without replicates	40
		4.2.1 edgeR coupled with iDEGES/edgeR normalization	41
		4.2.2 DESeq2 coupled with iDEGES/DESeq2 normalization	43
	4.3		46
		4.3.1 edgeR coupled with iDEGES/edgeR normalization	46

	4.4DE analysis for multi-group data with replicates4.4.1baySeq coupled with DEGES/edgeR normalization4.4.2edgeR coupled with DEGES/edgeR normalization4.4.3DESeq coupled with DEGES/edgeR normalization	. 49 . 50
5	Generation of simulation data	54
	5.1 Introduction and basic usage	. 54
	5.2 Two-group data without replicates	. 57
	5.3 Multi-group data with and without replicates	. 58
	5.4 Multi-factor data	. 61
	5.5 Other utilities	. 63
6	Session info	67
7	References	68

1 Introduction

Differential expression analysis based on tag count data has become a fundamental task for identifying differentially expressed genes or transcripts (DEGs). The **TCC** package (Tag Count Comparison; Sun et al., 2013) provides users with a robust and accurate framework to perform differential expression analysis of tag count data. **TCC** provides integrated analysis pipelines with improved data normalization steps, compared with other packages such as **edgeR**, **DESeq**, and **baySeq**, by appropriately combining their functionalities. The package incorporates multi-step normalization methods whose strategy is to remove data that are potential DEGs before performing the data normalization.

Kadota et al. (2012) recently reported that the normalization methods implemented in R packages (such as edgeR (Robinson et al., 2010), DESeq (Anders and Huber, 2010), and baySeq (Hardcastle and Kelly, 2010)) for differential expression (DE) analysis between samples are inadequate when the up- and down-regulated DEGs in one of the samples are extremely biased in their number (i.e., biased DE). This is because the current methods implicitly assume a balanced DE, wherein the numbers of highly and lowly expressed DE entities in samples are (nearly) equal. As a result, methods assuming unbiased DE will not work well on data with biased DE. Although a major purpose of data normalization is to detect such DE entities, their existence themselves consequently interferes with their opportunity to be top-ranked. Conventional procedures for identifying DEGs from tag count data consisting of two steps (i.e., data normalization and identification of DEGs) cannot in principle eliminate the potential DE entities before data normalization.

To normalize data that potentially has various scenarios (including unbiased and biased DE), we recently proposed a multi-step normalization strategy (called TbT, an acronym for the TMM-baySeq-TMM pipeline; Kadota et al., 2012), in which the TMM normalization method (Robinson and Oshlack, 2010) is used in steps 1 and 3 and an empirical Bayesian method implemented in the **baySeq** package (Hardcastle and Kelly, 2010) is used in step 2. Although this multi-step DEG elimination strategy (called "DEGES" for short) can successfully remove potential DE entities identified in step 2 prior to the estimation of the normalization factors using the TMM normalization method in step 3, the **baySeq** package used in step 2 of the TbT method is much more computationally intensive than competing packages like **edgeR** and **DESeq**. While the three-step TbT normalization method performed best on simulated and real tag count data, it is practically possible to make different choices for the methods in each step. A more comprehensive study regarding better choices for DEGES is needed.

This package provides tools to perform multi-step normalization methods based on DEGES and enables differential expression analysis of tag count data without having to worry much about biased distributions of DEGs. The DEGES-based normalization function implemented in **TCC** includes the TbT method based on DEGES for two-group data with or without replicates, much faster method, and methods for multi-group comparison. **TCC** provides a simple unified interface to perform data normalization with combinations of functions provided by **baySeq**, **DESeq**, and **edgeR**. Functions to produce simulation data under various conditions and to plot the data are also provided.

1.1 Installation

This package is available from the Bioconductor website (http://bioconductor.org/). To install the package, enter the following command after starting R:

```
> source("http://bioconductor.org/biocLite.R")
> biocLite("TCC")
```

1.2 Citations

This package internally uses many of the functions implemented in the other packages. This is because our normalization procedures consist, in part, of combinations of existing normalization methods and differential expression (DE) methods.

For example, the TbT normalization method (Kadota et al., 2012), which is a particular functionality of the **TCC** package (Sun et al., 2013), consists of the TMM normalization method (Robinson and Oshlack, 2010) implemented in the **edgeR** package (Robinson et al., 2010) and the empirical Bayesian method implemented in the **baySeq** package (Hardcastle and Kelly, 2010). Therefore, please cite the appropriate references when you publish your results.

> citation("TCC")

1.3 Quick start

Let us begin by showing a example (Case 1) of identifying DEGs between two groups from tag count data consisting of 1,000 genes and a total of six samples (each group has three biological replicates). The hypothetical count data (termed "hypoData") is stored in this package (for details, see section 2.1). We then describe the DE analysis of count data without replicates (i.e., two samples), using the data of the first and the fourth column of hypoData (Case 2).

Case 1: DE analysis for two-group count data with replicates by using the exact test coupled with iterative DEGES/edgeR normalization (i.e., the iDEGES/edgeR-edgeR combination). This is an alternative pipeline designed to reduce the runtime (approx. 20 sec.), yet its performance is comparable to the above pipeline. Accordingly, we recommend using this pipeline as a default when analyzing tag count data with replicates. A notable advantage of this pipeline is that the multi-step normalization strategy only needs the methods implemented in the **edgeR** package. The suggested citations are as follows: **TCC** (Sun et al., 2013), TMM (Robinson and Oshlack, 2010), the exact test (Robinson and Smyth, 2008), and **edgeR** (Robinson et al., 2010). For details, see section 3.1.3 and 4.1.1.

```
> library(TCC)
> data(hypoData)
 group <- c(1, 1, 1, 2, 2, 2)
 tcc <- new("TCC", hypoData, group)</pre>
>
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
                         iteration = 3, FDR = 0.1, floorPDEG = 0.05)
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)</pre>
> result <- getResult(tcc, sort = TRUE)</pre>
> head(result)
                                                  q.value rank estimatedDEG
   gene_id a.value
                      m.value
                                    p.value
1 gene_151 9.736785 -2.753816 4.641083e-11 4.641083e-08
                                                            1
                                                                          1
2 gene_39 7.110842 -2.460691 9.115041e-10 3.388777e-07
                                                             2
                                                                          1
3 gene_599 5.927173 -3.282264 1.016633e-09 3.388777e-07
                                                             3
                                                                          1
 gene_68 6.209395 -2.867694 4.776945e-09 1.194236e-06
                                                             4
                                                                          1
5 gene_175 7.984265 -2.373657 1.082493e-08 1.810608e-06
                                                             5
                                                                          1
6 gene_144 7.588164 -2.130092 1.086365e-08 1.810608e-06
                                                             6
                                                                           1
```

Case 2: DE analysis for two-group count data without replicates by using the negative binomial (NB) test in **DESeq** coupled with iDEGES/DESeq normalization (i.e., the iDEGES/DESeq-DESeq combination). A procedure using the data of the first and fourth columns of hypoData is shown here. This pipeline entirely consists of methods implemented in the **DESeq** package. Suggested citations are as follows: **TCC** (Sun et al., 2013) and **DESeq** (Anders and Huber, 2010). For details, see section 3.2.

```
> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> tcc <- new("TCC", hypoData[,c(1,4)], group)
> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)
> tcc <- estimateDE(tcc, test.method = "deseq", FDR = 0.1)
> tcc <- getResult(tcc, sort = TRUE)
> head(result)
gene_id a.value m.value p.value q.value rank estimatedDEG
```

```
gene_36 -0.9988563 -8.525340 0.0001967999 0.1967999
                                                       1
                                                                     0
1
2 gene_17 5.9635499 -5.470058 0.0061694868 1.0000000
                                                        2
                                                                     0
3
  gene_5 3.3084986 -6.499805 0.0175001020 1.0000000
                                                        3
                                                                    0
4 gene_989 -0.9988563 -5.839291 0.0238080262 1.0000000
                                                        4
                                                                    0
                                                                     0
5 gene_187 3.6973024 5.507222 0.0305801058 1.0000000
                                                        5
6 gene_822 -0.9988563 5.436833 0.0496379836 1.0000000
                                                        6
                                                                     0
```

2 **Preparations**

2.1Preparing the count data

Similar to the other packages, **TCC** typically starts the DE analysis with a count table matrix where each row indicates a gene (or transcript), each column indicates a sample (or library). and each cell indicates the number of counts for a gene in a sample. There are many ways to obtain the count data from aligned read files such as BAM (Binary Alignment/Map). This includes the islandCounts function in htSeqTools (Planet et al., 2012), summarizeOverlaps in GenomicRanges (Lawrence et al., 2013), qCount in QuasR, and so on. For Windows end users, we recommend to use the **QuasR** package. It provides a comprehensive workflow for many kinds of NGS data including ChIP-seq, RNA-seq, smallRNA-seq, and BS-seq. The main functionalities are: (1) preprocessing raw sequence reads, (2) aligning reads to the reference genome or transcriptome using **Rbowtie**, and (3) producing count matrix from aligned reads. TCC uses the raw count data (a matrix of integer values) as input. As also clearly mentioned in **DESeq2**, the raw count data corresponds to a matrix of integer values. Please DO NOT use any normalized counts such as RPM (reads per million), CPM (counts per million), and RPKM.

2.2Reading the count data

Here, we assume a hypothetical count matrix consisting of 1,000 rows (or genes) and a total of six columns: the first three columns are produced from biological replicates of Group 1 (G1_rep1, G1_rep2, and G1_rep3) and the remaining columns are from Group 2 (G2_rep1, G2_rep2, and G2_rep3). We start by loading the hypothetical data (hypoData) from TCC and giving a numeric vector (group) indicating which group each sample belongs to.

29

68

0

5

69

```
> library(TCC)
> data(hypoData)
> head(hypoData)
       G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3
                             122
            34
                     45
                                                14
                                       16
gene_1
                     388
                                                25
gene_2
            358
                              22
                                       36
           1144
                    919
                             990
                                      374
                                               480
                                                        239
gene_3
              0
                      0
                              44
                                       18
                                                 0
gene_4
                                                 8
gene_5
             98
                     48
                              17
                                        1
            296
                    282
                                       86
                                                62
gene_6
                             216
> dim(hypoData)
[1] 1000
             6
> group <- c(1, 1, 1, 2, 2, 2)
```

If you want to analyze another count matrix consisting of nine columns (e.g., the first four columns are produced from biological replicates of G1, and the remaining five columns are from G2), the group vector should be indicated as follows.

```
> group <- c(1, 1, 1, 1, 2, 2, 2, 2, 2)
```

2.3 Constructing TCC class object

The **new** function has to be used to perform the main functionalities of **TCC**. This function constructs a **TCC** class object, and subsequent analyses are performed on this class object. The object is constructed from i) a count matrix (hypoData) and ii) the corresponding numeric vector (group) as follows.

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> tcc <- new("TCC", hypoData, group)</pre>
> tcc
Count:
       G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3
                            122
gene_1
           34
                    45
                                     16
                                              14
                                                       29
           358
                    388
                             22
                                      36
                                              25
                                                       68
gene_2
gene_3
          1144
                    919
                            990
                                     374
                                             480
                                                      239
                                     18
gene_4
            0
                     0
                             44
                                               0
                                                        0
                                               8
            98
                     48
                             17
                                                       5
gene_5
                                      1
           296
                    282
                                      86
                                              62
                                                       69
                            216
gene_6
Sample:
        group norm.factors lib.sizes
G1_rep1
            1
                         1
                               142177
G1_rep2
                               145289
            1
                          1
G1_rep3
                               149886
            1
                          1
G2_rep1
            2
                               112100
                          1
            2
G2_rep2
                          1
                               104107
G2_rep3
            2
                          1
                               101975
```

The count matrix and group vector information can be retrieved from the stored class object by using tcc\$count and tcc\$group, respectively.

> head(tcc\$count)

	G1_rep1	G1_rep2	G1_rep3	G2_rep1	G2_rep2	G2_rep3
gene_1	34	45	122	16	14	29
gene_2	358	388	22	36	25	68
gene_3	1144	919	990	374	480	239
gene_4	0	0	44	18	0	0
gene_5	98	48	17	1	8	5
gene_6	296	282	216	86	62	69

> tcc\$group

	group
G1_rep1	1
G1_rep2	1
G1_rep3	1
G2_rep1	2
G2_rep2	2
G2_rep3	2

2.4 Filtering low-count genes (optional)

The way to filter out genes with low-count tags across samples depends on the user's philosophy. Although we recommend removing tags with zero counts across samples as a minimum filtering, this effort is optional. The filterLowCountGenes function performs this filtering.

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> tcc <- new("TCC", hypoData, group)
> tcc <- filterLowCountGenes(tcc)
> dim(tcc$count)
```

[1] 996 6

[1] 996

6

It can be seen that 4(= 1000 - 996) genes were filtered as non-expressed. The same procedure can be performed without the filterLowCountGenes function, in which case the filtering is performed before the **TCC** class object is constructed.

```
> filter <- as.logical(rowSums(hypoData) > 0)
> dim(hypoData[filter, ])
[1] 996   6
> tcc <- new("TCC", hypoData[filter, ], group)
> dim(tcc$count)
```

3 Normalization

This chapter describes the details of our robust normalization strategy (i.e., DEGES) implemented in **TCC**. Alternative DEGES procedures consisting of functions in other packages (edgeR, DESeq, and baySeq) are also provided, enabling *advanced* users familiar with the existing packages can easily learn what is done in **TCC**. Note that *end* users, who just want to perform robust differential expression analysis using **TCC**, can skip this chapter (3 Normalization) and move from here to, for example, the next chapter (4 Differential expression). Note also that the purpose here is to obtain accurate normalization factors to be used with statistical models (e.g., the exact test or empirical Bayes) for the DE analysis described in the next section (4 Differential expression). **TCC** can manipulate various kinds of experimental designs. Followings are some examples for individual designs. Appropriate sections should be referred for your specific experimental designs.

	Table 1: 3	3.1 unpaired	samples ((two-group)
--	------------	--------------	-----------	-------------

Label	Example 1	Example 2	Label	Example 3	Example 4
G1_rep1	G1(mouse_A)	Tumor(patient_A)	G1_rep1	G1(mouse_A)	Tumor(patient_A)
G1_rep2	$G1(mouse_B)$	$Tumor(patient_B)$	G1_rep2	$G1(mouse_B)$	$Tumor(patient_B)$
G1_rep3	$G1(mouse_C)$	$Tumor(patient_C)$	G2_rep1	$G2(mouse_D)$	Normal(patient_G)
G2_rep1	$G2(mouse_D)$	Normal(patient_G)	G2_rep2	$G2(mouse_E)$	Normal(patient_H)
G2_rep2	$G2(mouse_E)$	Normal(patient_H)			
G2_rep3	$G2(mouse_F)$	Normal(patient_K)			

Table 2: 3.3 paired samples (two-group)

Label	Example 1	Example 2	Label	Example 3	Example 4
G1_rep1	$G1(mouse_A)$	Tumor(patient_G)	G1_rep1	$G1(mouse_B)$	Tumor(patient_J)
G1_rep2	$G1(mouse_B)$	$Tumor(patient_H)$	G1_rep2	$G1(mouse_C)$	$Tumor(patient_K)$
G1_rep3	$G1(mouse_C)$	$Tumor(patient_K)$	G2_rep1	$G2(mouse_B)$	Normal(patient_J)
G2_rep1	$G2(mouse_A)$	Normal(patient_G)	G2_rep2	$G2(mouse_C)$	Normal(patient_K)
G2_rep2	$G2(mouse_B)$	Normal(patient_H)			
G2_rep3	$G2(mouse_C)$	Normal(patient_K)			

Label	Example 1	Example 2	Label	Example 3	Example 4
G1_rep1	$G1(mouse_A)$	Kidney(sample_A)	G1_rep1	$G1(mouse_A)$	Liver(sample_G)
G1_rep2	$G1(mouse_B)$	Kidney(sample_B)	G1_rep2	$G1(mouse_B)$	$Liver(sample_H)$
G1_rep3	$G1(mouse_C)$	Kidney(sample_C)	G2_rep1	$G2(mouse_D)$	$Brain(sample_Y)$
G2_rep1	$G2(mouse_D)$	Liver(sample_G)	G2_rep2	$G2(mouse_E)$	Brain(sample_Z)
G2_rep2	$G2(mouse_E)$	$Liver(sample_H)$	G3_rep1	$G3(mouse_U)$	Kidney(sample_B)
G2_rep3	$G2(mouse_F)$	Liver(sample_K)	G3_rep2	$G3(mouse_T)$	Kidney(sample_C)
G3_rep1	$G3(mouse_G)$	$Brain(sample_X)$			
G3_rep2	$G3(mouse_H)$	$Brain(sample_Y)$			
G3_rep3	G3(mouse_I)	$Brain(sample_Z)$			

Table 3: 3.4 unpaired samples (multi-group)

3.1 Normalization of two-group count data with replicates

This package provides robust normalization methods based on DEGES proposed by Kadota et al. (2012). When obtaining normalization factors from two-group data with replicates, users can select a total of six combinations (two normalization methods \times three DEG identification methods) coupled with an arbitrary number of iterations (n = 0, 1, 2, ..., 100) in our DEGES-based normalization pipeline. We show some of the practical combinations below.

Since the three-step TbT normalization method was originally designed for normalizing tag count data with (biological) replicates, we will first explain the TbT method (3.1.1 DEGES/TbT). In relation to the other DEGES-based methods, we will call the method "DEGES/TbT" for convenience. As mentioned in the original study, DEGES/TbT needs a long computation time. Accordingly, we present three shorter alternatives (3.1.2 DEGES/edgeR, 3.1.3 iDEGES/edgeR, and 3.1.4 DEGES/DESeq).

3.1.1 DEGES/TbT

The DEGES/TbT (Kadota et al., 2012) with default parameter settings can be performed as follows.

```
> set.seed(1000)
> library(TCC)
> data(hypoData)
> samplesize <- 100
> group <- c(1, 1, 1, 2, 2, 2)
> tcc <- new("TCC", hypoData, group)
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "bayseq",
+ iteration = 1, samplesize = samplesize)</pre>
```

Note that a smaller sampling size (i.e., samplesize = 100) is used here to reduce the computation time when performing the empirical Bayesian method in step 2, but a larger sampling size of around 10,000 (i.e., samplesize = 10000) is recommended (Hardcastle and Kelly, 2010). This method estimates an empirical distribution of the parameters of the NB distribution by bootstrapping from the input data. While the sampling size can be made smaller to reduce the computation time (e.g., samplesize = 40), the resulting normalization factors will vary from trial to trial. In this vignette, we will call the set.seed function for obtaining reproducible results (i.e., the tcc\$norm.factors values) when using any random

function. The calculated normalization factors and the computation time can be retrieved with the following commands.

```
> tcc$norm.factors
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3
0.8792448 0.8452165 0.8455062 1.0798996 1.1472120 1.2029209
> tcc$DEGES$execution.time
    user system elapsed
    6.891 0.055 6.992
```

Of course, the procedure can be performed by using functions in edgeR and baySeq, instead of using the calcNormFactors function in TCC. The calcNormFactors function together with the above parameter settings can be regarded as a wrapper function for the following commands.

```
> set.seed(1000)
> library(TCC)
> data(hypoData)
> samplesize <- 100
> group <- c(1, 1, 1, 2, 2, 2)
> floorPDEG <- 0.05</pre>
> FDR <- 0.1
> ### STEP 1 ###
> d <- DGEList(count = hypoData, group = group)</pre>
> d <- calcNormFactors(d)</pre>
> norm.factors <- d$samples$norm.factors</pre>
> norm.factors <- norm.factors / mean(norm.factors)</pre>
> ### STEP 2 ###
> cD <- new("countData", data = hypoData, replicates = group,</pre>
            groups = list(NDE = rep(1, length = length(group)), DE = group),
+
            libsizes = colSums(hypoData) * norm.factors)
> cD <- getPriors.NB(cD, samplesize = samplesize, estimation = "QL", cl = NULL)</pre>
> cD <- getLikelihoods(cD, pET = "BIC", cl = NULL)</pre>
> result <- topCounts(cD, group = "DE", number = nrow(hypoData))</pre>
> result <- result[order(result$rowID), ]</pre>
> pval <- result$FWER.DE
> qval <- result$FDR.DE</pre>
> if (sum(qval < FDR) > (floorPDEG * nrow(hypoData))) {
+
  is.DEG <- as.logical(qval < FDR)</pre>
+ } else {
    is.DEG <- as.logical(rank(pval, ties.method = "min") <=</pre>
+
+
                           nrow(hypoData) * floorPDEG)
+ }
> ### STEP 3 ###
> d <- DGEList(count = hypoData[!is.DEG, ], group = group)</pre>
> d <- calcNormFactors(d)</pre>
> norm.factors <- d$samples$norm.factors * colSums(hypoData[!is.DEG, ]) /</pre>
+
                  colSums(hypoData)
> norm.factors <- norm.factors / mean(norm.factors)</pre>
> norm.factors
  G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2
                                                        G2_rep3
0.8792448 0.8452165 0.8455062 1.0798996 1.1472120 1.2029209
```

3.1.2 DEGES/edgeR

Now let us describe an alternative approach that is roughly 200-400 times faster than DEGES/TbT, yet has comparable performance. The TMM-edgeR-TMM pipeline (called DEGES/edgeR) employs the exact test implemented in **edgeR** in step 2. To use this pipeline, we have to provide a reasonable threshold for defining potential DEGs in step 2. We will define the threshold as an arbitrary false discovery rate (FDR) with a floor value of P_{DEG} . The default FDR is < 0.1, and the default floor P_{DEG} is 5%, but different choices are of course possible. For example, in case of the default settings, x%(x > 5%) of the top-ranked potential DEGs are eliminated in step 2 if the percentage (= x%) of genes satisfying FDR < 0.1 is over 5%. The DEGES/edgeR pipeline has an apparent advantage over TbT in computation time. It can be performed as follows:

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> tcc <- new("TCC", hypoData, group)
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)
> tcc$norm.factors
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3
0.8756470 0.8440551 0.8412683 1.0811889 1.1520110 1.2058296
> tcc$DEGES$execution.time
user system elapsed
0.320 0.004 0.324
```

The normalization factors calculated from the DEGES/edgeR are very similar to those of DEGES/TbT with the default parameter settings (i.e., samplesize = 10000). For edgeR users, we provide commands, consisting of functions in edgeR, to perform the DEGES/edgeR pipeline without TCC. The calcNormFactors function together with the above parameter settings can be regarded as a wrapper function for the following commands.

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> FDR <- 0.1
> floorPDEG <- 0.05</pre>
> d <- DGEList(counts = hypoData, group = group)</pre>
> ### STEP 1 ###
> d <- calcNormFactors(d)</pre>
> ### STEP 2 ###
> d <- estimateCommonDisp(d)</pre>
> d <- estimateTagwiseDisp(d)</pre>
> result <- exactTest(d)</pre>
> pval <- result$table$PValue</pre>
> qval <- p.adjust(pval, method = "BH")</pre>
> if (sum(qval < FDR) > (floorPDEG * nrow(hypoData))) {
+
   is.DEG <- as.logical(qval < FDR)</pre>
+
    is.DEG <- as.logical(rank(pval, ties.method = "min") <=</pre>
+
                           nrow(hypoData) * floorPDEG)
+ }
> ### STEP 3 ###
```

```
> d <- DGEList(counts = hypoData[!is.DEG, ], group = group)
> d <- calcNormFactors(d)
> norm.factors <- d$samples$norm.factors * colSums(hypoData[!is.DEG, ]) /
+ colSums(hypoData)
> norm.factors <- norm.factors / mean(norm.factors)
> norm.factors
```

0.8756470 0.8440551 0.8412683 1.0811889 1.1520110 1.2058296

3.1.3 iDEGES/edgeR

Our multi-step normalization can be repeated until the calculated normalization factors converge (Kadota et al., 2012). An iterative version of DEGES/TbT (i.e., iDEGES/TbT) can be described as the TMM-(baySeq-TMM)_n pipeline with $n \ge 2$. Although the iDEGES/TbT would not be practical in terms of the computation time, the TMM-(edgeR-TMM)_n pipeline (iDEGES/edgeR) is potentially superior to both the DEGES/edgeR and the DEGES/TbT. A suggested iDEGES/edgeR implementation (n = 3) consists of seven steps, as follows:

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> tcc <- new("TCC", hypoData, group)
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)
> tcc$norm.factors
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3
0.8766053 0.8450605 0.8346595 1.0842097 1.1538160 1.2056491
> tcc$DEGES$execution.time
user system elapsed
0.943 0.000 0.942
```

3.1.4 DEGES/DESeq

The DEGES pipeline can also be performed by using only the functions in the **DESeq** package. Similar to the **edgeR** case above, this DESeq-DESeq-DESeq pipeline (DEGES/DESeq) changes the corresponding arguments of the norm.method and test.method as follows:

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> tcc <- new("TCC", hypoData, group)
> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)
> tcc$norm.factors
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3
0.8885503 0.8810866 0.8298458 1.0698392 1.1513431 1.1793351
```

> tcc\$DEGES\$execution.time

user system elapsed 0.841 0.000 0.840

For **DESeq** users, we also provide commands, consisting of functions in **DESeq**, to perform the DEGES/DESeq pipeline without **TCC**. The calcNormFactors function together with the above arguments can be regarded as a wrapper function for the following commands.

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> FDR <- 0.1
> floorPDEG <- 0.05
> cds <- newCountDataSet(hypoData, group)</pre>
> ### STEP 1 ###
> cds <- estimateSizeFactors(cds)</pre>
> ### STEP 2 ###
> cds <- estimateDispersions(cds)</pre>
> result <- nbinomTest(cds, 1, 2)</pre>
> result$pval[is.na(result$pval)] <- 1</pre>
> result$padj[is.na(result$padj)] <- 1</pre>
> pval <- result$pval
> qval <- result$padj</pre>
> if (sum(qval < FDR) > (floorPDEG * nrow(hypoData))) {
   is.DEG <- as.logical(qval < FDR)</pre>
+
+ } else {
+
    is.DEG <- as.logical(rank(pval, ties.method = "min") <=</pre>
+
                            nrow(hypoData) * floorPDEG)
+ }
> ### STEP 3 ###
> cds <- newCountDataSet(hypoData[!is.DEG, ], group)</pre>
> cds <- estimateSizeFactors(cds)</pre>
> norm.factors <- sizeFactors(cds) / colSums(hypoData)</pre>
> norm.factors <- norm.factors / mean(norm.factors)</pre>
> norm.factors
             G1_rep2 G1_rep3 G2_rep1 G2_rep2
  G1 rep1
                                                         G2 rep3
```

0.8885503 0.8810866 0.8298458 1.0698392 1.1513431 1.1793351

3.1.5 DEGES/DESeq2

The DEGES pipeline can also be performed by using only the functions in the **DESeq2** package. Similar to the **DESeq** case above, this DESeq2-DESeq2-DESeq2 pipeline (DEGES/DESeq2) changes the corresponding arguments of the norm.method and test.method as follows:

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> tcc <- new("TCC", hypoData, group)
> tcc <- calcNormFactors(tcc, norm.method = "deseq2", test.method = "deseq2",
+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)
> tcc$norm.factors
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3
0.8790778 0.8707714 0.8196901 1.0794903 1.1584153 1.1925550
```

> tcc\$DEGES\$execution.time

user system elapsed 1.501 0.000 1.499

For **DESeq2** users, we also provide commands, consisting of functions in **DESeq2**, to perform the DEGES/DESeq2 pipeline without **TCC**. The calcNormFactors function together with the above arguments can be regarded as a wrapper function for the following commands.

```
> library(TCC)
> data(hypoData)
> FDR <- 0.1
> floorPDEG <- 0.05</pre>
> group <- factor(c(1, 1, 1, 2, 2, 2))
> cl <- data.frame(group = group)</pre>
> design <- formula(~ group)
> dds <- DESeqDataSetFromMatrix(countData = hypoData, colData = cl,</pre>
                                   design = design)
> ### STEP 1 ###
> dds <- estimateSizeFactors(dds)</pre>
> sizeFactors(dds) <- sizeFactors(dds) / mean(sizeFactors(dds))</pre>
> ### STEP 2 ###
> dds <- estimateDispersions(dds)</pre>
> dds <- nbinomWaldTest(dds)</pre>
> result <- results(dds)</pre>
> result$pvalue[is.na(result$pvalue)] <- 1</pre>
> pval <- result$pvalue
> qval <- p.adjust(pval, method = "BH")</pre>
> if (sum(qval < FDR) > (floorPDEG * nrow(hypoData))) {
  is.DEG <- as.logical(qval < FDR)</pre>
+ } else {
+
    is.DEG <- as.logical(rank(pval, ties.method = "min") <=</pre>
+
                           nrow(hypoData) * floorPDEG)
+ }
> ### STEP 3 ###
> dds <- DESeqDataSetFromMatrix(countData = hypoData[!is.DEG, ], colData = cl,</pre>
                                   design = design)
> dds <- estimateSizeFactors(dds)</pre>
> norm.factors <- sizeFactors(dds) / colSums(hypoData)</pre>
> norm.factors <- norm.factors / mean(norm.factors)</pre>
> norm.factors
  G1_rep1
           G1_rep2
                      G1_rep3
                                 G2_rep1
                                              G2_rep2
                                                         G2_rep3
0.8790778 0.8707714 0.8196901 1.0794903 1.1584153 1.1925550
```

3.2 Normalization of two-group count data without replicates

It is important to keep in mind that most R packages (including edgeR, DESeq, and bay-Seq) are primarily for analyzing data including biological replications because the biological variability has to be accurately estimated to avoid spurious DE calls (Glaus et al., 2012). Similar to 3.1, users can select a total of six combinations (two normalization methods \times three DEG identification methods) when obtaining normalization factors from two-group count data without replicates.

We here describe two DEGES-based normalization pipelines (3.2.1 DEGES/edgeR and 3.2.2 DEGES/DESeq) using the subset of hypoData consisting of the first and the fourth columns, i.e.,

```
> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> tcc <- new("TCC", hypoData[, c(1, 4)], group)</pre>
> head(tcc$count)
       G1_rep1 G2_rep1
gene_1
           34
                   16
gene_2
           358
                   36
         1144
                   374
gene_3
gene_4
           0
                  18
           98
                   1
gene_5
           296
                    86
gene_6
> tcc$group
        group
G1_rep1
            1
G2_rep1
            2
```

3.2.1 DEGES/edgeR

The DEGES/edgeR pipeline for two-group data without replicates can be performed as follows:

```
> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> tcc <- new("TCC", hypoData[, c(1, 4)], group)
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)
> tcc$norm.factors
```

G1_rep1 G2_rep1 0.9430178 1.0569822

For edgeR users, we provide commands, consisting of functions in edgeR, to perform the DEGES/edgeR pipeline without TCC. The calcNormFactors function together with the above parameter settings can be regarded as a wrapper function for the following commands.

```
> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> FDR <- 0.1
> floorPDEG <- 0.05</pre>
> d <- DGEList(counts = hypoData[, c(1, 4)], group = group)</pre>
> ### STEP 1 ###
> d <- calcNormFactors(d)</pre>
> ### STEP 2 ###
> d <- estimateGLMCommonDisp(d, method = "deviance", robust = TRUE, subset = NULL)
> result <- exactTest(d)</pre>
> pval <- result$table$PValue</pre>
> qval <- p.adjust(pval, method = "BH")</pre>
> if (sum(qval < FDR) > (floorPDEG * nrow(hypoData))) {
 is.DEG <- as.logical(qval < FDR)</pre>
+
+ } else {
```

```
+ is.DEG <- as.logical(rank(pval, ties.method = "min") <=
+ nrow(hypoData) * floorPDEG)
+ }
> ### STEP 3 ###
> d <- DGEList(counts = hypoData[!is.DEG, c(1, 4)], group = group)
> d <- calcNormFactors(d)
> norm.factors <- d$samples$norm.factors *
+ colSums(hypoData[!is.DEG, c(1, 4)]) / colSums(hypoData[, c(1, 4)])
> norm.factors <- norm.factors / mean(norm.factors)
> norm.factors
G1_rep1 G2_rep1
0.9430178 1.0569822
```

3.2.2 DEGES/DESeq

The DEGES/DESeq pipeline for two-group data without replicates can be performed as follows:

```
> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> tcc <- new("TCC", hypoData[, c(1, 4)], group)
> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)
> tcc$norm.factors
```

```
G1_rep1 G2_rep1
0.921658 1.078342
```

For **DESeq** users, we provide commands, consisting of functions in **DESeq**, to perform the DEGES/DESeq pipeline without **TCC**. The calcNormFactors function together with the above parameter settings can be regarded as a wrapper function for the following commands.

```
> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> FDR <- 0.1
> floorPDEG <- 0.05</pre>
> cds <- newCountDataSet(hypoData[, c(1, 4)], group)</pre>
> ### STEP 1 ###
> cds <- estimateSizeFactors(cds)</pre>
> ### STEP 2 ###
> cds <- estimateDispersions(cds, method = "blind", sharingMode = "fit-only")</pre>
> result <- nbinomTest(cds, 1, 2)</pre>
> result$pval[is.na(result$pval)] <- 1</pre>
> result$padj[is.na(result$padj)] <- 1</pre>
> pval <- result$pval</pre>
> qval <- result$padj</pre>
> if (sum(qval < FDR) > (floorPDEG * nrow(hypoData))) {
+
  is.DEG <- as.logical(qval < FDR)</pre>
+ } else {
    is.DEG <- as.logical(rank(pval, ties.method = "min") <=</pre>
+
+
                            nrow(hypoData) * floorPDEG)
+ }
> ### STEP 3 ###
> cds <- newCountDataSet(hypoData[!is.DEG, c(1, 4)], group)</pre>
> cds <- estimateSizeFactors(cds)</pre>
> norm.factors <- sizeFactors(cds) / colSums(hypoData[, c(1, 4)])</pre>
> norm.factors <- norm.factors / mean(norm.factors)</pre>
> norm.factors
```

3.3 Normalization of two-group count data without replicates (paired)

edgeR and DESeq (and DESeq2) employs generalized linear models (GLMs) which can apply to detect DEGs from paired two-group count data. When obtaining normalization factors from paired two group samples, users can select a total of four combinations (two normalization methods \times two DEG identification methods) coupled with an arbitrary number of iterations ($n = 0, 1, 2, \dots, 100$) in our DEGES-based normalization pipeline. The analysis for paired samples can be performed by indicating (1) the pair information when constructing the TCC class object and (2) paired = TRUE when performing the calcNormFactors function. For analyzing paired data, we here use the hypothetical count data (hypoData; for details see 2.2) by changing the label information, i.e.,

	T_dogA	T_dogB	T_dogC	N_dogA	N_dogB	N_dogC
gene_1	34	45	122	16	14	29
gene_2	358	388	22	36	25	68
gene_3	1144	919	990	374	480	239
gene_4	0	0	44	18	0	0
gene_5	98	48	17	1	8	5
gene_6	296	282	216	86	62	69

This count data consists of three individuals (or sibships), dogA, dogB, and dogC. "T" and "N" indicate tumor and normal tissues, respectively.

3.3.1 DEGES/edgeR

The DEGES/edgeR pipeline for two-group paired data can be performed as follows:

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> pair <- c(1, 2, 3, 1, 2, 3)
> cl <- data.frame(group = group, pair = pair)</pre>
> tcc <- new("TCC", hypoData, cl)</pre>
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",</pre>
                       iteration = 1, FDR = 0.1, floorPDEG = 0.05, paired = TRUE)
> tcc$norm.factors
                                                 N_dogC
  T_dogA
            T_dogB
                     T_dogC
                              N_dogA
                                        N_dogB
0.8836110 0.8470810 0.8344556 1.0724684 1.1508698 1.2115142
```

For edgeR users, we provide commands, consisting of functions in edgeR, to perform the DEGES/edgeR pipeline without TCC. The calcNormFactors function together with the above parameter settings can be regarded as a wrapper function for the following commands.

```
> library(TCC)
> data(hypoData)
> colnames(hypoData) <- c("T_dogA", "T_dogB", "T_dogC",</pre>
                             "N_dogA", "N_dogB", "N_dogC")
> group <- factor(c(1, 1, 1, 2, 2, 2))
> pair <- factor(c(1, 2, 3, 1, 2, 3))
> design <- model.matrix(~ group + pair)</pre>
> coef <- 2
> FDR <- 0.1
> floorPDEG <- 0.05</pre>
> d <- DGEList(counts = hypoData, group = group)</pre>
> ### STEP 1 ###
> d <- calcNormFactors(d)</pre>
> ### STEP 2 ###
> d <- estimateGLMCommonDisp(d, design)</pre>
> d <- estimateGLMTrendedDisp(d, design)</pre>
> d <- estimateGLMTagwiseDisp(d, design)</pre>
> fit <- glmFit(d, design)</pre>
> lrt <- glmLRT(fit, coef = coef)</pre>
> pval <- lrt$table$PValue</pre>
> qval <- p.adjust(pval, method = "BH")</pre>
> if (sum(qval < FDR) > (floorPDEG * nrow(hypoData))){
   is.DEG <- as.logical(qval < FDR)</pre>
+
+ } else {
+
    is.DEG <- as.logical(rank(pval, ties.method = "min") <=</pre>
+
                           nrow(hypoData) * floorPDEG)
+ }
> ### STEP 3 ###
> d <- DGEList(counts = hypoData[!is.DEG, ], group = group)</pre>
> d <- calcNormFactors(d)</pre>
> norm.factors <- d$samples$norm.factors * colSums(hypoData[!is.DEG, ]) /</pre>
+ colSums(hypoData)
> norm.factors <- norm.factors / mean(norm.factors)</pre>
> norm.factors
   T_dogA
              T_dogB
                         T_dogC
                                    N_dogA
                                                N_dogB
                                                           N_dogC
```

3.3.2 DEGES/DESeq

The DEGES/DESeq pipeline for two-group paired data can be performed as follows:

0.8836110 0.8470810 0.8344556 1.0724684 1.1508698 1.2115142

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> pair <- c(1, 2, 3, 1, 2, 3)
> cl <- data.frame(group = group, pair = pair)</pre>
> tcc <- new("TCC", hypoData, cl)</pre>
> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",</pre>
                      iteration = 1, FDR = 0.1, floorPDEG = 0.05, paired = TRUE)
> tcc$norm.factors
            T_dogB
                     T_dogC
                              N_dogA
                                        N_dogB
                                                 N_dogC
  T dogA
0.8985824 0.8922696 0.8477332 1.0559596 1.1359396 1.1695156
```

For **DESeq** users, we provide commands, consisting of functions in **DESeq**, to perform the DEGES/DESeq pipeline without **TCC**. The calcNormFactors function together with the above parameter settings can be regarded as a wrapper function for the following commands.

```
> library(TCC)
> data(hypoData)
> colnames(hypoData) <- c("T_dogA", "T_dogB", "T_dogC",</pre>
                            "N_dogA", "N_dogB", "N_dogC")
> group <- factor(c(1, 1, 1, 2, 2, 2))
> pair <- factor(c(1, 2, 3, 1, 2, 3))
> FDR <- 0.1
> floorPDEG <- 0.05</pre>
> cl <- data.frame(group = group, pair = pair)</pre>
> full <- count ~ group + pair</pre>
> reduced <- count ~ pair</pre>
> ### STEP 1 ###
> cds <- newCountDataSet(hypoData, cl)</pre>
> ### STEP 2 ###
> cds <- estimateSizeFactors(cds)</pre>
> cds <- estimateDispersions(cds, method = "blind", sharingMode = "fit-only")</pre>
> full.model <- fitNbinomGLMs(cds, full)</pre>
> reduced.model <- fitNbinomGLMs(cds, reduced)</pre>
> pval <- nbinomGLMTest(full.model, reduced.model)</pre>
> pval[is.na(pval)] <- 1</pre>
> qval <- p.adjust(pval, method = "BH")</pre>
> if (sum(qval < FDR) > (floorPDEG * nrow(hypoData))) {
   is.DEG <- as.logical(qval < FDR)</pre>
+
is.DEG <- as.logical(rank(pval, ties.method = "min") <=</pre>
+
                           nrow(hypoData) * floorPDEG)
+ }
> ### STEP 3 ###
> cds <- newCountDataSet(hypoData[!is.DEG, ], group)</pre>
> cds <- estimateSizeFactors(cds)</pre>
> norm.factors <- sizeFactors(cds) / colSums(hypoData)</pre>
> norm.factors <- norm.factors / mean(norm.factors)</pre>
> norm.factors
   T_dogA
              T_dogB
                        T_dogC
                                    N_dogA
                                               N_dogB
                                                          N_dogC
0.8985824 0.8922696 0.8477332 1.0559596 1.1359396 1.1695156
```

3.4 Normalization of multi-group count data with replicates

Many R packages (including edgeR, DESeq, and baySeq) support DE analysis for multigroup tag count data. TCC provides some prototypes of DEGES-based pipelines for such data. Here, we analyze another hypothetical three-group count matrix, the hypoData_mg object, provided in TCC. It consists of 1,000 genes and a total of nine columns for testing any difference among three groups that each have triplicates.

```
> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)
> tcc
```

Count:									
	G1_rep1	G1_rep2	G1_rep3	G2_rep1	G2_rep2	G2_rep3	G3_rep1	G3_rep2	G3_rep3
gene_1	63	48	31	15	12	12	24	15	14
gene_2	18	0	7	2	3	8	3	5	2
gene_3	106	66	25	9	14	14	11	11	3
gene_4	4	9	6	1	6	1	0	2	2
gene_5	0	1	2	1	0	1	0	0	1
gene_6	57	100	83	20	5	16	26	7	21
Sample									
	group 1	norm.fact	cors lib	.sizes					
G1_rep1	l 1		1 :	150490					
G1_rep2	2 1		1 :	166665					
G1_rep3	3 1		1 :	199283					
G2_rep1	L 2		1 :	183116					
G2_rep2	2 2		1 :	126651					
G2_rep3	3 2		1 :	131377					
G3_rep1	L 3		1 :	149828					
G3_rep2	2 3		1 :	150288					
G3_rep3	3 3		1 :	141702					

> dim(tcc\$count)

[1] 1000 9

Of the 1,000 genes, the first 200 genes are DEGs and the remaining 800 genes are non-DEGs. The breakdowns for the 200 DEGs are as follows: 140, 40, and 20 DEGs are up-regulated in Groups 1, 2, and 3. Below, we show some DEGES-based normalization pipelines for this multi-group data (3.4.1 DEGES/TbT, 3.4.2 DEGES/edgeR, and 3.4.3 DEGES/DESeq).

3.4.1 DEGES/TbT

The DEGES/TbT pipeline for multi-group data is essentially the same as those for two-group data with or without replicates. Note that a smaller sampling size (i.e., samplesize = 100) is used here to reduce the computation time, but a larger sampling size of around 10,000 (i.e., samplesize = 10000) is recommended (Hardcastle and Kelly, 2010).

```
> set.seed(1000)
> library(TCC)
> data(hypoData_mg)
> samplesize <- 100
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)</pre>
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "bayseq",</pre>
                         iteration = 1, samplesize = samplesize)
> tcc$norm.factors
 G1_rep1
          G1_rep2 G1_rep3 G2_rep1 G2_rep2
                                                     G2_rep3
                                                               G3_rep1
                                                                         G3_rep2
1.0357658 0.9163707 0.7958758 0.8314590 1.1846221 1.1729204 0.9922590 1.0205286
  G3_rep3
1.0501986
```

3.4.2 DEGES/edgeR

edgeR employs generalized linear models (GLMs) to find DEGs between any of the groups. The DEGES/edgeR normalization pipeline in **TCC** internally uses functions for the GLM approach that require two models (a full model and a null model). The full model corresponds to a design matrix to describe sample groups. The null model corresponds to the model coefficients. The two models can be defined as follows:

```
> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)
> design <- model.matrix(~ as.factor(group))
> coef <- 2:length(unique(group))</pre>
```

The design matrix (design) can be constructed by using the model.matrix function. For the model coefficients (coef), the user should specify all the coefficients except for the intercept term. The DEGES/edgeR pipeline with the two models (design and coef) can be performed as follows.

```
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 1, design = design, coef = coef)
> tcc$norm.factors
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2
1.0375941 0.9040316 0.7825986 0.8327883 1.1751212 1.2029691 1.0140550 1.0325848
G3_rep3
1.0182572
```

The two models (design and coef) will automatically be generated when performing the following calcNormFactors function if those models are not explicitly indicated. That is

```
> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 1)
> tcc$norm.factors
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2
1.0375941 0.9040316 0.7825986 0.8327883 1.1751212 1.2029691 1.0140550 1.0325848
G3_rep3
1.0182572
```

For edgeR users, we provide commands, consisting of functions in edgeR, to perform the DEGES/edgeR pipeline without TCC. The calcNormFactors function together with the above parameter settings can be regarded as a wrapper function for the following commands.

```
> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)
> FDR <- 0.1
> floorPDEG <- 0.05
> design <- model.matrix(~ as.factor(group))
> coef <- 2:length(unique(group))</pre>
```

```
> d <- DGEList(counts = hypoData_mg, group = group)</pre>
> ### STEP 1 ###
> d <- calcNormFactors(d)</pre>
> ### STEP 2 ###
> d <- estimateGLMCommonDisp(d, design)</pre>
> d <- estimateGLMTrendedDisp(d, design)</pre>
> d <- estimateGLMTagwiseDisp(d, design)</pre>
> fit <- glmFit(d, design)</pre>
> lrt <- glmLRT(fit, coef = coef)</pre>
> result <- as.data.frame(topTags(lrt, n = nrow(hypoData_mg)))</pre>
> result <- result$table[rownames(hypoData_mg), ]</pre>
> pval <- lrt$table$PValue</pre>
> qval <- p.adjust(pval, method = "BH")</pre>
> if (sum(qval < FDR) > (floorPDEG * nrow(hypoData_mg))) {
  is.DEG <- as.logical(qval < FDR)</pre>
+ } else {
+
    is.DEG <- as.logical(rank(pval, ties.method = "min") <=</pre>
+
                           nrow(hypoData_mg) * floorPDEG)
+ }
> ### STEP 3 ###
> d <- DGEList(counts = hypoData_mg[!is.DEG, ], group = group)</pre>
> d <- calcNormFactors(d)</pre>
> norm.factors <- d$samples$norm.factors * colSums(hypoData_mg[!is.DEG, ]) /</pre>
                   colSums(hypoData_mg)
> norm.factors <- norm.factors / mean(norm.factors)</pre>
> norm.factors
           G1_rep2 G1_rep3 G2_rep1 G2_rep2
  G1_rep1
                                                       G2_rep3 G3_rep1 G3_rep2
1.0375941 0.9040316 0.7825986 0.8327883 1.1751212 1.2029691 1.0140550 1.0325848
  G3_rep3
1.0182572
```

3.4.3 DEGES/DESeq

DESeq also employs GLMs for analyzing multi-group experiments. Similar to the **edgeR** package, it requires two models (full model and reduced model). The full model (full) and reduced model (reduced) can be created as follows:

```
> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)
> full <- count ~ condition
> reduced <- count ~ 1</pre>
```

The DEGES/DESeq pipeline with the two models (full and reduced) can be performed as follows.

```
> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
+ iteration = 1, full = full, reduced = reduced)
> tcc$norm.factors
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2
1.0232434 0.9096572 0.8017352 0.8249186 1.2025101 1.1728534 0.9884002 1.0164697
G3_rep3
1.0602121
```

The two models (full and reduced) will automatically be generated when performing the following calcNormFactors function if those models are not explicitly indicated. That is

```
> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)
> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
+ iteration = 1)
> tcc$norm.factors
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2
1.0232434 0.9096572 0.8017352 0.8249186 1.2025101 1.1728534 0.9884002 1.0164697
G3_rep3
1.0602121
```

For **DESeq** users, we provide commands, consisting of functions in **DESeq**, to perform the DEGES/DESeq pipeline without **TCC**. The calcNormFactors function together with the above parameter settings can be regarded as a wrapper function for the following commands.

```
> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> FDR <- 0.1
> floorPDEG <- 0.05</pre>
> tcc <- new("TCC", hypoData_mg, group)</pre>
> full <- count ~ condition
> reduced <- count ~ 1 \,
> cds <- newCountDataSet(hypoData_mg, group)</pre>
> ### STEP 1 ###
> cds <- estimateSizeFactors(cds)</pre>
> ### STEP 2 ###
> cds <- estimateDispersions(cds)</pre>
> full.model <- fitNbinomGLMs(cds, full)</pre>
> reduced.model <- fitNbinomGLMs(cds, reduced)</pre>
.
> pval <- nbinomGLMTest(full.model, reduced.model)</pre>
> pval[is.na(pval)] <- 1</pre>
> qval <- p.adjust(pval, method = "BH")</pre>
> if (sum(qval < FDR) > (floorPDEG * nrow(hypoData_mg))) {
  is.DEG <- as.logical(qval < FDR)</pre>
+ } else {
+
   is.DEG <- as.logical(rank(pval, ties.method = "min") <=</pre>
+
                          nrow(hypoData_mg) * floorPDEG)
+ }
> ### STEP 3 ###
> cds <- newCountDataSet(hypoData_mg[!is.DEG, ], group)</pre>
> cds <- estimateSizeFactors(cds)</pre>
> norm.factors <- sizeFactors(cds) / colSums(hypoData_mg)</pre>
> norm.factors <- norm.factors / mean(norm.factors)</pre>
> norm.factors
 G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2
1.0232434 0.9096572 0.8017352 0.8249186 1.2025101 1.1728534 0.9884002 1.0164697
 G3 rep3
1.0602121
```

3.5 Retrieving normalized data

Similar functions for calculating normalization factors are the calcNormFactors function in edgeR and the estimateSizeFactors function in both DESeq and DESeq2. Note that the terminology used in DESeq (i.e., size factors) is different from that used in edgeR (i.e., effective library sizes) and ours. The effective library size in edgeR is calculated as the library size multiplied by the normalization factor. The size factors in both DESeq and DESeq2 package are comparable to the *normalized* effective library sizes wherein the summary statistics for the effective library sizes are adjusted to one. Our normalization factors, which can be obtained from tcc\$norm.factors, have the same names as those in edgeR. Accordingly, the normalization factors calculated from TCC with arbitrary options should be manipulated together with the library sizes when normalized read counts are to be obtained. Since biologists are often interested in such information (Dillies et al., 2012), we provide the getNormalizedData function for retrieving normalized data.

Note that the hypoData consists of 1,000 genes and a total of six samples (three biological replicates for G1 and three biological replicates for G2); i.e., {G1_rep1, G1_rep2, G1_rep3} vs. {G2_rep1, G2_rep2, G2_rep3}. These simulation data have basically the same conditions as shown in Fig. 1 of the TbT paper (Kadota et al., 2012); i.e., (i) the first 200 genes are DEGs ($P_{\text{DEG}} = 200/1000 = 20\%$), (ii) the first 180 genes of the 200 DEGs are higher in G1 ($P_{\text{G1}} = 180/200 = 90\%$), and the remaining 20 DEGs are higher in G2, and (iii) the level of DE is four-fold. The last 800 genes were designed to be non-DEGs. The different normalization strategies can roughly be evaluated in terms of the similarity of their summary statistics for normalized data labeled as non-DEGs in one group (e.g., G1) to those of the other group (e.g., G2). The basic statistics for the non-DEGs are as follows.

```
> library(TCC)
> data(hypoData)
> nonDEG <- 201:1000
> summary(hypoData[nonDEG, ])
```

G1_rep1	G1_rep2	G1_rep3	G2_rep1
Min. : 0.00	Min. : 0	Min. : 0.00	Min. : 0.0
1st Qu.: 3.00	1st Qu.: 4	1st Qu.: 3.00	1st Qu.: 3.0
Median : 20.50	Median : 20	Median : 20.00	Median : 21.0
Mean : 103.36	Mean : 105	Mean : 104.45	Mean : 113.8
3rd Qu.: 74.25	3rd Qu.: 68	3rd Qu.: 73.25	3rd Qu.: 68.0
Max. :8815.00	Max. :9548	Max. :8810.00	Max. :9304.0
G2_rep2	G2_rep3		
Min. : O Mi	n. : 0.0		
1st Qu.: 3 1s	st Qu.: 3.0		
Median : 21 Me	dian : 20.0		
Mean : 105 Me	an : 104.6		
3rd Qu.: 70 3r	d Qu.: 70.0		
Max. :9466 Ma			

From now on, we will display only the median values for simplicity, i.e.,

```
> apply(hypoData[nonDEG, ], 2, median)
```

```
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3
20.5 20.0 20.0 21.0 21.0 20.0
```

In what follows, we show detailed examples using hypoData. Note, however, that the basic usage is simple.

```
> normalized.count <- getNormalizedData(tcc)</pre>
```

3.5.1 Retrieving two-group DEGES/edgeR-normalized data with replicates

The getNormalizedData function can be applied to the TCC class object after the normalization factors have been calculated. The DEGES/edgeR-normalized data can be retrieved as follows.

```
> library(TCC)
> data(hypoData)
> nonDEG <- 201:1000
> group <- c(1, 1, 1, 2, 2, 2)
> tcc <- new("TCC", hypoData, group)
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)
> normalized.count <- getNormalizedData(tcc)
> apply(normalized.count[nonDEG, ], 2, median)
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3
20.23490 20.04158 19.49126 21.29206 21.51732 19.98738
> range(apply(normalized.count[nonDEG, ], 2, median))
```

[1] 19.49126 21.51732

For comparison, the summary statistics for TMM-normalized data produced using the original normalization method (i.e., TMM) in **edgeR** can be obtained as follows.

[1] 18.59060 22.98591

It is obvious that the summary statistics (ranging from 19.49126 to 21.51732) from DEGES/edgeR-normalized data are closer to the truth (i.e., ranging from 20.0 to 21.0) than those (ranging from 18.59060 to 22.98591 from TMM-normalized data.

3.5.2 Retrieving two-group DEGES/DESeq-normalized data with replicates

Similar to the DEGES/edgeR case, the DEGES/DESeq-normalized data can be retrieved as follows.

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> nonDEG <- 201:1000
> tcc <- new("TCC", hypoData, group)
> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)
> normalized.count <- getNormalizedData(tcc)
> apply(normalized.count[nonDEG, ], 2, median)
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3
19.98051 19.23724 19.79865 21.56052 21.57241 20.47685
> range(apply(normalized.count[nonDEG, ], 2, median))
```

[1] 19.23724 21.57241

For comparison, the summary statistics for DESeq-normalized data produced using the original normalization method in **DESeq** can be obtained as follows.

```
> library(TCC)
> data(hypoData)
> nonDEG <- 201:1000
> group <- c(1, 1, 1, 2, 2, 2)
> cds <- newCountDataSet(hypoData, group)
> cds <- estimateSizeFactors(cds)
> normalized.count <- counts(cds, normalized = TRUE)
> apply(normalized.count[nonDEG, ], 2, median)
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3
18.92762 18.31568 18.55296 22.31430 22.17990 20.68485
> range(apply(normalized.count[nonDEG, ], 2, median))
```

[1] 18.31568 22.31430

It is obvious that the summary statistics (ranging from 19.23724 to 21.57241) from DEGES/DESeq-normalized data are closer to the truth (i.e., ranging from 20.0 to 21.0) than those (ranging from 18.31568 to 22.31430) from DESeq-normalized data.

3.5.3 Retrieving two-group DEGES/DESeq-normalized data without replicates

Similar to the case of count data with replicates, the DEGES/DESeq-normalized data without replicates can be retrieved as follows.

```
> library(TCC)
> data(hypoData)
> nonDEG <- 201:1000
> group <- c(1, 2)
> tcc <- new("TCC", hypoData[, c(1, 4)], group)
> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)
> normalized.count <- getNormalizedData(tcc)
> apply(normalized.count[nonDEG, ], 2, median)
G1_rep1 G2_rep1
19.70555 21.88220
```

For comparison, the summary statistics for DESeq-normalized data produced using the original normalization method in **DESeq** can be obtained as follows.

```
> library(TCC)
> data(hypoData)
> nonDEG <- 201:1000
> group <- c(1, 2)
> cds <- newCountDataSet(hypoData[, c(1, 4)], group)
> cds <- estimateSizeFactors(cds)
> normalized.count <- counts(cds, normalized = TRUE)
> apply(normalized.count[nonDEG, ], 2, median)
G1_rep1_G2_rep1
```

19.40717 22.18253

It is obvious that the summary statistics (19.70555 and 21.88220) from DEGES/DESeqnormalized data are closer to the truth (i.e., ranging from 20.5 to 21.0) than those (19.40717 and 22.18253) from DESeq-normalized data.

3.5.4 Retrieving two-group DEGES/edgeR-normalized data without replicates (paired)

We here analyze the hypoData object provided in TCC. As described in 3.3, we regard hypoData as a hypothetical paired data. The DEGES/edgeR-normalized data can be retrieved as follows.

```
T_dogC
                                        N_dogA
          T_dogA
                    T_dogB
                                                 N_dogB
                                                           N_dogC
        33.25937 44.93456 119.87294 16.35519
                                               14.35977 28.84705
gene_1
gene_2 350.20163 387.43574 21.61643 36.79917 25.64245 67.64135
gene_3 1119.08006 917.66352 972.73940 382.30247 492.33500 237.73947
         0.00000
                  0.00000 43.23286 18.39958
                                                0.00000 0.00000
gene_4
> apply(normalized.count[nonDEG, ], 2, median)
          T_dogB
                   T_dogC
                            N_dogA
                                     N_dogB
 T_dogA
                                             N_dogC
20.05345 19.97091 19.65130 21.46618 21.53966 19.89452
> range(apply(normalized.count[nonDEG, ], 2, median))
```

[1] 19.65130 21.53966

For comparison, the summary statistics for TMM-normalized data produced using the original normalization method (i.e., TMM) in **edgeR** can be obtained as follows.

```
> library(TCC)
> data(hypoData)
> nonDEG <- 201:1000
> group <- factor(c(1, 1, 1, 2, 2, 2))</pre>
> d <- DGEList(counts = hypoData, group = group)
> d <- calcNormFactors(d)</pre>
> norm.factors <- d$samples$norm.factors</pre>
> effective.libsizes <- colSums(hypoData) * norm.factors
> normalized.count <- sweep(hypoData, 2,</pre>
                          mean(effective.libsizes) / effective.libsizes, "*")
> apply(normalized.count[nonDEG, ], 2, median)
          T_dogB
                   T_dogC
                           N_dogA
 T_dogA
                                    N_dogB
                                            N_dogC
19.35893 19.01078 18.59060 22.98591 22.16273 21.00685
```

[1] 18.59060 22.98591

> range(apply(normalized.count[nonDEG,], 2, median))

It is obvious that the summary statistics (ranging from 19.65130 to 21.53966) from DEGES/edgeR-normalized data are closer to the truth (i.e., ranging from 20.0 to 21.0) than those (ranging from 18.59060 to 22.98591) from TMM-normalized data.

3.5.5 Retrieving two-group DEGES/DESeq-normalized data without replicates (paired)

We here analyze the hypoData object provided in TCC. As described in 3.3, we regard hypoData as a hypothetical paired data. The DEGES/DESeq-normalized data can be retrieved as follows.

```
> library(TCC)
> data(hypoData)
> nonDEG <- 201:1000
> group <- c(1, 1, 1, 2, 2, 2)
> pair <- c(1, 2, 3, 1, 2, 3)
> cl <- data.frame(group = group, pair = pair)</pre>
> tcc <- new("TCC", hypoData, cl)</pre>
> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",</pre>
                       iteration = 1, FDR = 0.1, floorPDEG = 0.05, paired = TRUE)
> normalized.count <- getNormalizedData(tcc)</pre>
> apply(normalized.count[nonDEG, ], 2, median)
                 T_dogC
 T_dogA
         T_dogB
                          N_dogA
                                  N_dogB
                                            N_dogC
19.79946 19.03654 19.42212 21.89038 21.91144 20.69270
> range(apply(normalized.count[nonDEG, ], 2, median))
```

[1] 19.03654 21.91144

For comparison, the summary statistics for DESeq-normalized data produced using the original normalization method in **DESeq** can be obtained as follows.

```
> library(TCC)
> data(hypoData)
> colnames(hypoData) <- c("T_dogA", "T_dogB", "T_dogC",</pre>
                           "N_dogA", "N_dogB", "N_dogC")
> nonDEG <- 201:1000
> group <- factor(c(1, 1, 1, 2, 2, 2))
> pair <- factor(c(1, 2, 3, 1, 2, 3))
> cl <- data.frame(group = group, pair = pair)</pre>
> cds <- newCountDataSet(hypoData, cl)</pre>
> cds <- estimateSizeFactors(cds)</pre>
> normalized.count <- counts(cds, normalized = TRUE)</pre>
> apply(normalized.count[nonDEG, ], 2, median)
 T_dogA
           T_dogB
                     T_dogC
                              N_dogA
                                        N_dogB
                                                  N_dogC
18.92762 18.31568 18.55296 22.31430 22.17990 20.68485
> range(apply(normalized.count[nonDEG, ], 2, median))
```

```
[1] 18.31568 22.31430
```

It is obvious that the summary statistics (ranging from 19.03654 to 21.91144) from DEGES/DESeq-normalized data are closer to the truth (i.e., ranging from 20.0 to 21.0) than those (ranging from 18.31568 to 22.31430) from DESeq-normalized data.

3.5.6 Retrieving multi-group iDEGES/edgeR-normalized data with replicates

Here, we analyze another hypothetical three-group count matrix, the hypoData_mg object, provided in TCC. It consists of 1,000 genes and a total of nine columns for testing any difference among three groups that each have triplicates. Similar to the hypoData object, the first 200 genes are DEGs and the remaining 800 genes are non-DEGs. The basic statistics for the non-DEGs are as follows.

> library(TCC)
> data(hypoData_mg)
> nonDEG <- 201:1000</pre>

```
> summary(hypoData_mg[nonDEG, ])
```

G1_rep1	G1_rep2	G1_rep3	G2_rep1	
Min. : 0.00			Min. : 0.0	
1st Qu.: 2.00	1st Qu.: 2.0	1st Qu.: 2.0	1st Qu.: 2.0	
Median : 14.00	Median : 13.0	Median : 14.5	Median : 13.0	
Mean : 135.41	Mean : 150.5	Mean : 190.6	Mean : 199.4	
3rd Qu.: 51.25	3rd Qu.: 53.0	3rd Qu.: 55.0	3rd Qu.: 52.0	
Max. :27218.00	Max. :27987.0	Max. :66273.0	Max. :75148.0	
G2_rep2	G2_rep3	G3_rep1	G3_rep2	
Min. : 0.00	Min. : 0.0	Min. : 0	Min. : 0.0	
1st Qu.: 2.00	1st Qu.: 2.0	1st Qu.: 2	1st Qu.: 2.0	
Median : 13.00	Median : 14.0	Median : 14	Median : 15.0	
Mean : 132.53	Mean : 138.4	Mean : 164	Mean : 166.2	
3rd Qu.: 52.25	3rd Qu.: 55.0	3rd Qu.: 52	3rd Qu.: 55.0	
Max. :22381.00	Max. :24979.0	Max. :49398	Max. :49709.0	
G3_rep3				
Min. : 0.0				
1st Qu.: 2.0				
Median : 15.0				
Mean : 152.1				
3rd Qu.: 50.0				
Max. :39299.0				

From now on, we will display only the median values for simplicity, i.e.,

```
> apply(hypoData_mg[nonDEG, ], 2, median)
```

```
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2 G3_rep3
14.0 13.0 14.5 13.0 13.0 14.0 14.0 15.0 15.0
```

The iDEGES/edgeR-normalized data can be retrieved as follows.

```
> library(TCC)
> data(hypoData_mg)
> nonDEG <- 201:1000
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)
> design <- model.matrix(~ as.factor(group))
> coef <- 2:length(unique(group))
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 3)
> normalized.count <- getNormalizedData(tcc)
> apply(normalized.count[nonDEG, ], 2, median)
G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2
13.88374 13.22872 14.08230 13.01186 13.24126 13.75022 14.22157 14.76685
G3_rep3
15.30593
```

```
> range(apply(normalized.count[nonDEG, ], 2, median))
```

[1] 13.01186 15.30593

For comparison, the summary statistics for TMM-normalized data produced using the original normalization method (i.e., TMM) in **edgeR** are obtained as follows.

```
> range(apply(normalized.count[nonDEG, ], 2, median))
```

[1] 19.69837 21.12359

It is obvious that the summary statistics (ranging from 13.01186 to 15.30593) from iDEGES/edgeR-normalized data are closer to the truth (i.e., ranging from 13.0 to 15.0) than those (ranging from 19.69837 to 21.12359) from TMM-normalized data.

4 Differential expression (DE)

The particular feature of **TCC** is that it calculates robust normalization factors. Moreover, end users would like to have some accessory functions for subsequent analyses. Here, we provide the estimateDE function for identifying DEGs. Specifically, the function internally uses the corresponding functions implemented in three packages. Similar to the usage in the calcNormFactors function with the test.method argument in **TCC**, those DE methods in edgeR, DESeq, and baySeq can be performed by using the estimateDE function with test.method = "edger", "deseq", and "bayseq", respectively. Here, we show some examples of DE analysis for two-group data with replicates (4.1), two-group data with replicates (4.2), paired two-group data without replicates (4.3), and multi-group data with replicates (4.4).

4.1 DE analysis for two-group data with replicates

4.1.1 edgeR coupled with iDEGES/edgeR normalization

We give a procedure for DE analysis using the exact test implemented in **edgeR** together with iDEGES/edgeR normalization factors (i.e., the iDEGES/edgeR-edgeR combination) for the hypothetical two-group count data with replicates (i.e., the hypoData object). If the user wants to determine the genes having an FDR threshold of < 10% as DEGs, one can do as follows.

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> tcc <- new("TCC", hypoData, group)
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)</pre>
```

The results of the DE analysis are stored in the **TCC** class object. The summary statistics for top-ranked genes can be retrieved by using the **getResult** function.

```
> result <- getResult(tcc, sort = TRUE)
> head(result)
```

	gene_id	a.value	m.value	p.value	q.value	rank	estimatedDEG
1	gene_151	9.736785	-2.753816	4.641083e-11	4.641083e-08	1	1
2	gene_39	7.110842	-2.460691	9.115041e-10	3.388777e-07	2	1
3	gene_599	5.927173	-3.282264	1.016633e-09	3.388777e-07	3	1
4	gene_68	6.209395	-2.867694	4.776945e-09	1.194236e-06	4	1
5	gene_175	7.984265	-2.373657	1.082493e-08	1.810608e-06	5	1
6	gene_144	7.588164	-2.130092	1.086365e-08	1.810608e-06	6	1

The DE results can be broken down as follows.

> table(tcc\$estimatedDEG)

0 1 854 146 This means 854 non-DEGs and 146 DEGs satisfy FDR < 0.1. The plot function generates an M-A plot, where "M" indicates the log-ratio (i.e., $M = \log_2 G2 - \log_2 G1$) and "A" indicates average read count (i.e., $A = (\log_2 G2 + \log_2 G1)/2$), from the normalized count data. The magenta points indicate the identified DEGs at FDR < 0.1.

> plot(tcc)

MA plot

Since we know the true information for hypoData (i.e., 200 DEGs and 800 non-DEGs), we can calculate the area under the ROC curve (i.e., AUC; $0 \le AUC \le 1$) between the ranked gene list and the truth and thereby evaluate the sensitivity and specificity simultaneously. A well-ranked gene list should have a high AUC value (i.e., high sensitivity and specificity).

```
> library(ROC)
> truth <- c(rep(1, 200), rep(0, 800))
> AUC(rocdemo.sca(truth = truth, data = -tcc$stat$rank))
```

[1] 0.8910125

For comparison, the DE results from the original procedure in **edgeR** can be obtained as follows.

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> d <- DGEList(count = hypoData, group = group)</pre>
> d <- calcNormFactors(d)</pre>
> d <- estimateCommonDisp(d)</pre>
> d <- estimateTagwiseDisp(d)</pre>
> out <- exactTest(d)</pre>
> result <- as.data.frame(topTags(out, n = nrow(hypoData), sort.by = "PValue"))</pre>
> head(result)
              logFC
                        logCPM
                                       PValue
                                                          FDR
```

gene_151 -2.599999 13.268811 2.396936e-10 2.396936e-07 gene_189 2.545357 9.661882 4.175915e-09 2.087957e-06 gene_181 2.311712 11.288130 7.007012e-09 2.139219e-06 gene_599 -3.111937 9.689018 8.556875e-09 2.139219e-06 gene_39 -2.305955 10.555807 1.081321e-08 2.162642e-06 gene_68 -2.718414 9.808467 3.179275e-08 4.580361e-06

This is the same as

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> tcc <- new("TCC", hypoData, group)</pre>
> tcc <- calcNormFactors(tcc, norm.method = "tmm", iteration = 0)</pre>
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)</pre>
> result <- getResult(tcc, sort = TRUE)</pre>
> head(result)
   gene_id a.value m.value
                                    p.value
                                                  q.value rank estimatedDEG
                                                           1
1 gene_151 9.740529 -2.600366 2.396936e-10 2.396936e-07
```

```
2 gene_189 6.127498 2.550316 4.175915e-09 2.087957e-06
                                                          2
                                                                       1
3 gene_181 7.853250 2.312820 7.007012e-09 2.139219e-06
                                                          3
                                                                       1
4 gene_599 5.937099 -3.116273 8.556875e-09 2.139219e-06
                                                                       1
                                                          4
5
  gene_39 7.114394 -2.308040 1.081321e-08 2.162642e-06
                                                          5
                                                                       1
6
  gene_68 6.209636 -2.723799 3.179275e-08 4.580361e-06
                                                          6
                                                                       1
```

> AUC(rocdemo.sca(truth = truth, data = -tcc\$stat\$rank))

[1] 0.8749719

DESeq2 coupled with iDEGES/DESeq2 normalization 4.1.2

We give a procedure for DE analysis using the likelihood ratio test for GLMs implemented in **DESeq2** together with iDEGES/DESeq2 normalization factors (i.e., the iDEGES/DESeq2-DESeq2 combination) for the hypothetical two-group count data with replicates (i.e., the hypoData object). If the user wants to determine the genes having an FDR threshold of < 10% as DEGs, one can do as follows.

1

```
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> tcc <- new("TCC", hypoData, group)</pre>
> tcc <- calcNormFactors(tcc, norm.method = "deseq2", test.method = "deseq2",
                          iteration = 3, FDR = 0.1, floorPDEG = 0.05)
> tcc <- estimateDE(tcc, test.method = "deseq2", FDR = 0.1)</pre>
```
The results of the DE analysis are stored in the TCC class object. The summary statistics for top-ranked genes can be retrieved by using the getResult function.

```
> result <- getResult(tcc, sort = TRUE)</pre>
> head(result)
                                                 q.value rank estimatedDEG
                                    p.value
   gene_id a.value
                      m.value
1 gene_168 8.902893 -1.971323 7.187656e-27 7.187656e-24
                                                            1
                                                                          1
2 gene_144 7.588585 -2.133537 6.392221e-23 3.196111e-20
                                                             2
                                                                          1
3
  gene_11 8.770810 -2.106914 7.323113e-21 2.441038e-18
                                                            3
                                                                          1
4
 gene_115 8.902587 -1.949952 7.227791e-20 1.806948e-17
                                                            4
                                                                          1
5 gene_143 9.284114 -1.975181 1.128918e-19 2.257835e-17
                                                            5
                                                                          1
 gene_109 9.328638 -1.888331 2.500868e-19 4.168114e-17
6
                                                             6
                                                                          1
```

The DE results can be broken down as follows.

```
> table(tcc$estimatedDEG)
```

0 1 860 140

This means 860 non-DEGs and 140 DEGs satisfy FDR < 0.1. The plot function generates an M-A plot, where "M" indicates the log-ratio (i.e., $M = \log_2 G2 - \log_2 G1$) and "A" indicates average read count (i.e., $A = (\log_2 G2 + \log_2 G1)/2$), from the normalized count data. The magenta points indicate the identified DEGs at FDR < 0.1.

> plot(tcc)

MA plot

Since we know the true information for hypoData (i.e., 200 DEGs and 800 non-DEGs), we can calculate the area under the ROC curve (i.e., AUC; $0 \leq AUC \leq 1$) between the ranked gene list and the truth and thereby evaluate the sensitivity and specificity simultaneously. A well-ranked gene list should have a high AUC value (i.e., high sensitivity and specificity).

```
> library(ROC)
> truth <- c(rep(1, 200), rep(0, 800))
> AUC(rocdemo.sca(truth = truth, data = -tcc$stat$rank))
```

[1] 0.8654125

For comparison, the DE results from the original procedure in **DESeq2** can be obtained as follows.

```
> library(TCC)
> data(hypoData)
> group <- factor(c(1, 1, 1, 2, 2, 2))
> cl <- data.frame(group = group)</pre>
> design <- formula(~ group)</pre>
> dds <- DESeqDataSetFromMatrix(countData = hypoData, colData = cl,</pre>
                                  design = design)
> dds <- estimateSizeFactors(dds)</pre>
> sizeFactors(dds) <- sizeFactors(dds) / mean(sizeFactors(dds))</pre>
> dds <- estimateDispersions(dds)</pre>
> dds <- nbinomWaldTest(dds)</pre>
> result <- results(dds)</pre>
> head(result[order(result$pvalue),])
log2 fold change (MAP): group 2 vs 1
Wald test p-value: group 2 vs 1
DataFrame with 6 rows and 6 columns
         baseMean log2FoldChange
                                        lfcSE
                                                   stat
                                                               pvalue
                                                                               padj
         <numeric> <numeric> <numeric> <numeric> <numeric>
                                                            <numeric>
                                                                          <numeric>
gene_168 577.3622
                         -1.788539 0.1865309 -9.588430 8.943529e-22 7.736152e-19
gene_144 239.7483
                         -1.939491 0.2163926 -8.962834 3.164399e-19 1.368602e-16
gene_11
          541.2809
                         -1.910103 0.2264566 -8.434745 3.319267e-17 9.570554e-15
gene_143 752.4784
                         -1.786074 0.2146078 -8.322505 8.612353e-17 1.862421e-14
                         -1.760311 0.2131496 -8.258569 1.474297e-16 2.550534e-14
gene_115
         574.7956
gene_109 763.2747
                         -1.698600 0.2111433 -8.044774 8.640468e-16 1.245668e-13
> library(ROC)
> truth <- c(rep(1, 200), rep(0, 800))
> result$pvalue[is.na(result$pvalue)] <- 1</pre>
> AUC(rocdemo.sca(truth = truth, data = -rank(result$pvalue)))
[1] 0.8445969
   This is the same as
> library(TCC)
> data(hypoData)
> group <- c(1, 1, 1, 2, 2, 2)
> tcc <- new("TCC", hypoData, group)</pre>
> tcc <- calcNormFactors(tcc, norm.method = "deseq2", iteration = 0)</pre>
> tcc <- estimateDE(tcc, test.method = "deseq2", FDR = 0.1)</pre>
> result <- getResult(tcc, sort = TRUE)</pre>
```

```
> head(result)
```

```
q.value rank estimatedDEG
  gene_id a.value m.value
                                p.value
1 gene_168 8.905999 -1.811262 8.943529e-22 8.943529e-19 1
2 gene_144 7.591478 -1.973100 3.164399e-19 1.582199e-16 2
3 gene_11 8.774276 -1.946228 3.319267e-17 1.106422e-14 3
4 gene_143 9.286710 -1.816512 8.612353e-17 2.153088e-14 4
5 gene_115 8.905535 -1.789730 1.474297e-16 2.948594e-14 5
                                                                   1
6 gene_109 9.331890 -1.726446 8.640468e-16 1.440078e-13 6
> library(ROC)
> truth <- c(rep(1, 200), rep(0, 800))
> AUC(rocdemo.sca(truth = truth, data = -tcc$stat$rank))
[1] 0.8445969
> tcc$norm.factors
           G1_rep2 G1_rep3 G2_rep1 G2_rep2
                                                 G2_rep3
 G1 rep1
0.9271692 0.9147550 0.8753592 1.0217885 1.1069052 1.1540229
```

As described in 3.5, the size factors termed in **DESeq2** and **DESeq** are comparable to the *normalized* effective library sizes termed in **TCC** and **edgeR**. The effective library size in edgeR is calculated as the library size multiplied by the normalization factor. The normalization factors and effective library sizes in **DESeq2** can be retrieved as follows.

1

1

1

1

1

```
> library(TCC)
> data(hypoData)
> group <- factor(c(1, 1, 1, 2, 2, 2))
> cl <- data.frame(group = group)</pre>
> design <- formula(~ group)</pre>
> dds <- DESeqDataSetFromMatrix(countData = hypoData, colData = cl,</pre>
                                 design = design)
> dds <- estimateSizeFactors(dds)</pre>
> size.factors <- sizeFactors(dds)</pre>
> size.factors
          G1_rep2 G1_rep3 G2_rep1 G2_rep2
  G1_rep1
                                                     G2_rep3
1.0830730 1.0919605 1.0779951 0.9411006 0.9468033 0.9668911
> hoge <- size.factors / colSums(hypoData)</pre>
> norm.factors <- hoge / mean(hoge)</pre>
> norm.factors
          G1_rep2 G1_rep3 G2_rep1 G2_rep2
  G1_rep1
                                                     G2_rep3
0.9271692 0.9147550 0.8753592 1.0217885 1.1069052 1.1540229
> ef.libsizes <- norm.factors * colSums(hypoData)</pre>
> ef.libsizes
 G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3
131822.1 132903.8 131204.1 114542.5 115236.6 117681.5
```

Note that the following commands should be the simplest procedure provided in **DESeq2**.

```
> library(TCC)
> data(hypoData)
> group <- factor(c(1, 1, 1, 2, 2, 2))
> cl <- data.frame(group = group)</pre>
> design <- formula(~ group)</pre>
> dds <- DESeqDataSetFromMatrix(countData = hypoData, colData = cl,</pre>
                                 design = design)
> dds <- estimateSizeFactors(dds)</pre>
> sizeFactors(dds) <- sizeFactors(dds) / mean(sizeFactors(dds))</pre>
> dds <- estimateDispersions(dds)</pre>
> dds <- nbinomWaldTest(dds)</pre>
> result <- results(dds)</pre>
> head(result[order(result$pvalue),])
log2 fold change (MAP): group 2 vs 1
Wald test p-value: group 2 vs 1
DataFrame with 6 rows and 6 columns
          baseMean log2FoldChange
                                       lfcSE
                                                   stat
                                                              pvalue
                                                                              padj
                       <numeric> <numeric> <numeric>
                                                           <numeric>
                                                                         <numeric>
         <numeric>
gene_168 577.3622
                        -1.788539 0.1865309 -9.588430 8.943529e-22 7.736152e-19
gene_144 239.7483
                        -1.939491 0.2163926 -8.962834 3.164399e-19 1.368602e-16
          541.2809
                        -1.910103 0.2264566 -8.434745 3.319267e-17 9.570554e-15
gene_11
gene_143 752.4784
                        -1.786074 0.2146078 -8.322505 8.612353e-17 1.862421e-14
gene_115 574.7956
                        -1.760311 0.2131496 -8.258569 1.474297e-16 2.550534e-14
gene_109 763.2747
                        -1.698600 0.2111433 -8.044774 8.640468e-16 1.245668e-13
> librarv(ROC)
> truth <- c(rep(1, 200), rep(0, 800))
> result$pvalue[is.na(result$pvalue)] <- 1</pre>
> AUC(rocdemo.sca(truth = truth, data = -rank(result$pvalue)))
```

4.2 DE analysis for two-group data without replicates

It is important to keep in mind that most R packages (including edgeR, DESeq, DESeq2 and baySeq) are primarily for analyzing data including biological replications because the biological variability has to be accurately estimated to avoid spurious DE calls (Glaus et al., 2012). We here describe two DE analysis pipelines using the subset of hypoData consisting of the first and the fourth columns, i.e.,

```
> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> tcc <- new("TCC", hypoData[, c(1, 4)], group)</pre>
> head(tcc$count)
       G1_rep1 G2_rep1
gene_1
           34
                     16
gene_2
           358
                     36
          1144
                    374
gene_3
gene_4
            0
                     18
            98
gene_5
                     1
           296
                     86
gene_6
> tcc$group
        group
G1_rep1
            1
G2_rep1
            2
```

[1] 0.8445969

4.2.1 edgeR coupled with iDEGES/edgeR normalization

We give a procedure for DE analysis using the exact test implemented in **edgeR** together with iDEGES/edgeR normalization factors (i.e., the iDEGES/edgeR-edgeR combination) for the hypothetical two-group count data without replicates (i.e., the hypoData object). If the user wants to determine the genes having an FDR threshold of < 10% as DEGs, one can do as follows.

```
> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> tcc <- new("TCC", hypoData[, c(1, 4)], group)
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)</pre>
```

The results of the DE analysis are stored in the TCC class object. The summary statistics for top-ranked genes can be retrieved by using the getResult function.

```
> result <- getResult(tcc, sort = TRUE)</pre>
> head(result)
                                                q.value rank estimatedDEG
   gene_id
              a.value
                        m.value
                                     p.value
  gene_36 -0.9972387 -8.461668 1.001181e-05 0.01001181
1
                                                          1
                                                                         1
2 gene_989 -0.9972387 -5.775619 1.077045e-03 0.29763751
                                                           2
                                                                         0
3 gene_17 5.9651675 -5.406386 1.176826e-03 0.29763751
                                                           3
                                                                         0
  gene_5 3.3101162 -6.436133 1.190550e-03 0.29763751
                                                                         0
4
                                                           4
5 gene_822 -0.9972387 5.500505 2.342792e-03 0.39547725
                                                           5
                                                                         0
6 gene_730 -0.9972387 5.426504 2.630936e-03 0.39547725
                                                           6
                                                                         0
```

The DE results can be broken down as follows.

```
> table(tcc$estimatedDEG)
```

```
0 1
999 1
```

This means 999 non-DEGs and 1 DEGs satisfy FDR < 0.1. The plot function generates an M-A plot, where "M" indicates the log-ratio (i.e., $M = \log_2 G2 - \log_2 G1$) and "A" indicates average read count (i.e., $A = (\log_2 G2 + \log_2 G1)/2$), from the normalized count data. The magenta points indicate the identified DEGs at FDR < 0.1.

> plot(tcc)

Since we know the true information for hypoData (i.e., 200 DEGs and 800 non-DEGs), we can calculate the area under the ROC curve (i.e., AUC; $0 \le AUC \le 1$) between the ranked gene list and the truth and thereby evaluate the sensitivity and specificity simultaneously. A well-ranked gene list should have a high AUC value (i.e., high sensitivity and specificity).

```
> library(ROC)
> truth <- c(rep(1, 200), rep(0, 800))
> AUC(rocdemo.sca(truth = truth, data = -tcc$stat$rank))
```

[1] 0.7628219

For comparison, the DE results from the original procedure in **edgeR** can be obtained as follows.

```
> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> d <- DGEList(counts = hypoData[, c(1, 4)], group = group)
> d <- calcNormFactors(d)
> d <- estimateGLMCommonDisp(d, method = "deviance", robust = TRUE, subset = NULL)
> out <- exactTest(d)
> result <- as.data.frame(topTags(out, n = nrow(hypoData), sort.by = "PValue"))
> head(result)
```

			PValue	
gene_36	-11.538164	10.536206	1.571459e-05	0.01571459
gene_989	-8.854750	7.937281	1.339172e-03	0.39616275
gene_5	-6.245634	8.576821	1.546152e-03	0.39616275
gene_17	-5.353983	10.683576	1.584651e-03	0.39616275
gene_822	8.436518	7.532575	2.671274e-03	0.48648720
gene_730	8.362736	7.464636	2.977998e-03	0.48648720

This is the same as

```
> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> tcc <- new("TCC", hypoData[, c(1, 4)], group)</pre>
> tcc <- calcNormFactors(tcc, norm.method = "tmm", iteration = 0)</pre>
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)</pre>
> result <- getResult(tcc, sort = TRUE)</pre>
> head(result)
   gene_id
              a.value m.value
                                        p.value
                                                    q.value rank estimatedDEG
                                                              1
  gene_36 -0.9960732 -8.427260 1.571459e-05 0.01571459
1
                                                                              1
2 gene_989 -0.9960732 -5.741211 1.339172e-03 0.39616275
                                                                2
                                                                              0
   gene_5 3.3112817 -6.401725 1.546152e-03 0.39616275
                                                               3
3
                                                                              0
4 gene_17 5.9663331 -5.371978 1.584651e-03 0.39616275
5 gene_822 -0.9960732 5.534913 2.671274e-03 0.48648720
                                                                4
                                                                              0
                                                                5
                                                                              0
6 gene_730 -0.9960732 5.460912 2.977998e-03 0.48648720
                                                                6
                                                                              0
> library(ROC)
> truth <- c(rep(1, 200), rep(0, 800))
> AUC(rocdemo.sca(truth = truth, data = -tcc$stat$rank))
```

[1] 0.75835

4.2.2 DESeq2 coupled with iDEGES/DESeq2 normalization

We give a procedure for DE analysis using the likelihood ratio test for GLMs implemented in **DESeq2** together with iDEGES/DESeq2 normalization factors (i.e., the iDEGES/DESeq2-DESeq2 combination) for the hypothetical two-group count data without replicates (i.e., the hypoData object). If the user wants to determine the genes having an FDR threshold of < 10% as DEGs, one can do as follows.

```
> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> tcc <- new("TCC", hypoData[, c(1, 4)], group)
> tcc <- calcNormFactors(tcc, norm.method = "deseq2", test.method = "deseq2",
+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)
> tcc <- estimateDE(tcc, test.method = "deseq2", FDR = 0.1)</pre>
```

The results of the DE analysis are stored in the TCC class object. The summary statistics for top-ranked genes can be retrieved by using the getResult function.

```
> result <- getResult(tcc, sort = TRUE)
> head(result)
```

	gene_id	a.value	m.value	p.value	q.value	rank	estimatedDEG
1	gene_17	5.963474	-5.473931	0.004155357	1	1	0
2	gene_5	3.308423	-6.503679	0.017493556	1	2	0
3	gene_187	3.697227	5.503349	0.022907548	1	3	0
4	gene_20	7.576021	-3.177400	0.028811164	1	4	0
5	gene_175	7.810562	-3.050319	0.032377530	1	5	0
6	gene_2	6.827938	-3.202859	0.033296132	1	6	0

The DE results can be broken down as follows.

```
> table(tcc$estimatedDEG)
```

0 1000

This means 1000 non-DEGs and 0 DEGs satisfy FDR < 0.1. The plot function generates an M-A plot, where "M" indicates the log-ratio (i.e., $M = \log_2 G2 - \log_2 G1$) and "A" indicates average read count (i.e., $A = (\log_2 G2 + \log_2 G1)/2$), from the normalized count data. The magenta points indicate the identified DEGs at FDR < 0.1.

> plot(tcc)

Since we know the true information for hypoData (i.e., 200 DEGs and 800 non-DEGs), we can calculate the area under the ROC curve (i.e., AUC; $0 \le AUC \le 1$) between the ranked gene list and the truth and thereby evaluate the sensitivity and specificity simultaneously. A well-ranked gene list should have a high AUC value (i.e., high sensitivity and specificity).

```
> library(ROC)
> truth <- c(rep(1, 200), rep(0, 800))
> AUC(rocdemo.sca(truth = truth, data = -tcc$stat$rank))
```

[1] 0.7930031

For comparison, the DE results from the original procedure in **DESeq2** can be obtained as follows.

```
> library(TCC)
> data(hypoData)
> group <- factor(c(1, 2))</pre>
> cl <- data.frame(group = group)
> design <- formula(~ group)</pre>
> dds <- DESeqDataSetFromMatrix(countData = hypoData[, c(1, 4)], colData = cl,</pre>
                                 design = design)
> dds <- estimateSizeFactors(dds)</pre>
> sizeFactors(dds) <- sizeFactors(dds) / mean(sizeFactors(dds))</pre>
> dds <- estimateDispersions(dds)</pre>
> dds <- nbinomLRT(dds, reduced = ~ 1)</pre>
> result <- results(dds)</pre>
> head(result[order(result$pvalue),])
log2 fold change (MLE): group 2 vs 1
LRT p-value: '~ group' vs '~ 1'
DataFrame with 6 rows and 6 columns
          baseMean log2FoldChange
                                       lfcSE
                                                   stat
                                                             pvalue
                                                                          padj
                       <numeric> <numeric> <numeric>
                                                          <numeric> <numeric>
         <numeric>
gene_17 209.55273
                        -5.426865 1.762617 6.816257 0.009033172 0.9975189
gene_989 29.39147
                        -8.238728 3.089768 5.744050 0.016544600 0.9975189
gene_5
          46.98644
                        -6.456588 2.480244 5.622641 0.017729917 0.9975189
gene_187 45.37975
                        5.550362 2.211041 4.978673 0.025661663 0.9975189
                         7.922592 3.210931 4.885343 0.027085648 0.9975189
gene_822 21.15792
gene_730 20.10003
                         7.848591 3.231283 4.738770 0.029490143 0.9975189
> library(ROC)
> truth <- c(rep(1, 200), rep(0, 800))
> result$pvalue[is.na(result$pvalue)] <- 1</pre>
> AUC(rocdemo.sca(truth = truth, data = -rank(result$pvalue)))
[1] 0.7879281
   This is the same as
> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> tcc <- new("TCC", hypoData[, c(1, 4)], group)</pre>
> tcc <- calcNormFactors(tcc, norm.method = "deseq2", iteration = 0)</pre>
> tcc <- estimateDE(tcc, test.method = "deseq2", FDR = 0.1)</pre>
> result <- getResult(tcc, sort = TRUE)</pre>
> head(result)
                                   p.value q.value rank estimatedDEG
   gene_id a.value
                      m.value
   gene_17 5.964570 -5.426894 0.003880153
                                              1
                                                     1
                                                                     0
    gene_5 3.309519 -6.456641 0.016851743
                                                       2
2
                                                                     0
                                                  1
3 gene_187 3.698322 5.550386 0.020610791
                                                     3
                                                                    0
                                                  1
4 gene_20 7.577117 -3.130363 0.028353868
                                                     4
                                                                    0
                                                  1
5 gene_465 7.457110 3.067962 0.031364946
                                                 1
                                                    5
                                                                     0
6 gene_175 7.811658 -3.003282 0.031926838
                                                 1
                                                       6
                                                                     0
> library(ROC)
> truth <- c(rep(1, 200), rep(0, 800))
> AUC(rocdemo.sca(truth = truth, data = -tcc$stat$rank))
[1] 0.7870719
```

4.3 DE analysis for two-group data without replicates (paired)

edgeR and DESeq (and DESeq2) employs generalized linear models (GLMs) which can apply to detect DEGs from paired two-group count data. The analysis for paired samples can be performed by indicating (1) the pair information when constructing the TCC class object and (2) paired = TRUE when performing the calcNormFactors and estimateDE functions. For analyzing paired data, we here use the hypothetical count data (hypoData; for details see 2.2) by changing the label information, i.e.,

```
> data(hypoData)
> colnames(hypoData) <- c("T_dogA", "T_dogB", "T_dogC",
+ "N_dogA", "N_dogB", "N_dogC")
> head(hypoData)
       T_dogA T_dogB T_dogC N_dogA N_dogB N_dogC
          34
                  45
                       122
                                 16
                                         14
                                                  29
gene_1
                          22
gene_2
          358
                  388
                                  36
                                          25
                                                  68
          1144
                  919
                          990
                                 374
                                         480
                                                 239
gene_3
                                         0
           0
                  0
                          44
                                 18
                                                  0
gene_4
           98
                          17
                                                  5
```

216

48

282

296

gene_5

gene_6

This count data consists of three individuals (or sibships), dogA, dogB, and dogC. "T" and "N" indicate tumor and normal tissues, respectively.

69

8

62

edgeR coupled with iDEGES/edgeR normalization 4.3.1

1

86

We give a procedure for DE analysis using the likelihood ratio test for GLMs implemented in edgeR together with iDEGES/edgeR normalization factors (i.e., the iDEGES/edgeRedgeR combination) for the paired two-group count data without replicates (i.e., the above hypoData object). If the user wants to determine the genes having an FDR threshold of < 10% as DEGs, one can do as follows.

```
> library(TCC)
> data(hypoData)
> colnames(hypoData) <- c("T_dogA", "T_dogB", "T_dogC",</pre>
                            "N_dogA", "N_dogB", "N_dogC")
> group <- c(1, 1, 1, 2, 2, 2)
> pair <- c(1, 2, 3, 1, 2, 3)
> cl <- data.frame(group = group, pair = pair)</pre>
> tcc <- new("TCC", hypoData, cl)</pre>
>
 tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",</pre>
                          iteration = 3, FDR = 0.1, floorPDEG = 0.05, paired = TRUE)
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1, paired = TRUE)
```

The results of the DE analysis are stored in the TCC class object. The summary statistics for top-ranked genes can be retrieved by using the getResult function.

1

1

1

1

1

1

```
> result <- getResult(tcc, sort = TRUE)</pre>
> head(result)
                                   p.value
   gene_id
           a.value
                      m.value
                                                 q.value rank estimatedDEG
1 gene_151 9.736839 -2.749249 1.316409e-11 1.316409e-08
                                                         1
2
  gene_68 6.210147 -2.863522 4.914946e-10 2.457473e-07
                                                            2
  gene_63 12.402077 -2.174899 8.944147e-10 2.981382e-07
3
                                                            3
4 gene_599 5.928373 -3.275968 1.665714e-09 4.164286e-07
                                                            4
5
           7.346808 -2.338247 1.221793e-08 2.443586e-06
                                                            5
  gene 16
  gene_39 7.111195 -2.456853 2.447019e-08 4.078365e-06
6
                                                            6
```

The DE results can be broken down as follows.

```
> table(tcc$estimatedDEG)
```

0 1 845 155

This means 845 non-DEGs and 155 DEGs satisfy FDR < 0.1. The plot function generates an M-A plot, where "M" indicates the log-ratio (i.e., $M = \log_2 G2 - \log_2 G1$) and "A" indicates average read count (i.e., $A = (\log_2 G2 + \log_2 G1)/2$), from the normalized count data. The magenta points indicate the identified DEGs at FDR < 0.1.

> plot(tcc)

MA plot

Since we know the true information for hypoData (i.e., 200 DEGs and 800 non-DEGs), we can calculate the area under the ROC curve (i.e., AUC; $0 \le AUC \le 1$) between the ranked gene list and the truth and thereby evaluate the sensitivity and specificity simultaneously. A well-ranked gene list should have a high AUC value (i.e., high sensitivity and specificity).

```
> library(ROC)
> truth <- c(rep(1, 200), rep(0, 800))</pre>
```

> AUC(rocdemo.sca(truth = truth, data = -tcc\$stat\$rank))

[1] 0.8911

For comparison, the DE results from the original procedure in **edgeR** can be obtained as follows.

```
> library(TCC)
> data(hypoData)
> colnames(hypoData) <- c("T_dogA", "T_dogB", "T_dogC",</pre>
                           "N_dogA", "N_dogB", "N_dogC")
> group <- factor(c(1, 1, 1, 2, 2, 2))
> pair <- factor(c(1, 2, 3, 1, 2, 3))
> design <- model.matrix(~ group + pair)</pre>
> coef <- 2
> d <- DGEList(counts = hypoData, group = group)</pre>
> d <- calcNormFactors(d)</pre>
> d <- estimateGLMCommonDisp(d, design)</pre>
> d <- estimateGLMTrendedDisp(d, design)</pre>
> d <- estimateGLMTagwiseDisp(d, design)</pre>
> fit <- glmFit(d, design)</pre>
> lrt <- glmLRT(fit, coef = coef)</pre>
> topTags(lrt, n = 6)
Coefficient: group2
             logFC
                       logCPM
                                    LR
                                              PValue
                                                               FDR
gene_151 -2.572264 13.268839 39.25039 3.727942e-10 3.727942e-07
gene_68 -2.765787 9.808741 34.63674 3.973365e-09 1.986682e-06
gene_599 -3.263841 9.689350 32.19168 1.396877e-08 4.656257e-06
gene_196 2.506113 9.964254 30.95263 2.644032e-08 5.926853e-06
gene_181 2.325840 11.288036 30.73132 2.963426e-08 5.926853e-06
gene_16 -2.302696 10.748397 29.93142 4.476004e-08 7.460006e-06
> p.value <- lrt$table$PValue</pre>
> library(ROC)
> truth <- c(rep(1, 200), rep(0, 800))
> AUC(rocdemo.sca(truth = truth, data = -rank(p.value)))
[1] 0.8760375
   This is the same as
> library(TCC)
> data(hypoData)
> colnames(hypoData) <- c("T_dogA", "T_dogB", "T_dogC",
+ "N_dogA", "N_dogB", "N_dogC")
> group <- c(1, 1, 1, 2, 2, 2)
> pair <- c(1, 2, 3, 1, 2, 3)
> cl <- data.frame(group = group, pair = pair)</pre>
> tcc <- new("TCC", hypoData, cl)</pre>
> tcc <- calcNormFactors(tcc, norm.method = "tmm", iteration = 0, paired = TRUE)
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1, paired = TRUE)
> result <- getResult(tcc, sort = TRUE)</pre>
> head(result)
                                                  q.value rank estimatedDEG
   gene_id a.value
                      m.value
                                    p.value
1 gene_151 9.740529 -2.600366 3.728166e-10 3.728166e-07
                                                           1
                                                                            1
2 gene_68 6.209636 -2.723799 3.973477e-09 1.986739e-06
                                                              2
                                                                            1
3 gene_599 5.937099 -3.116273 1.396914e-08 4.656380e-06
                                                            3
                                                                            1
4 gene_196 6.461462 2.475704 2.644079e-08 5.926559e-06
                                                            4
                                                                           1
5 gene_181 7.853250 2.312820 2.963280e-08 5.926559e-06
                                                            5
                                                                            1
6 gene_16 7.346399 -2.192904 4.475819e-08 7.459698e-06
                                                              6
                                                                            1
> library(ROC)
> truth <- c(rep(1, 200), rep(0, 800))
> AUC(rocdemo.sca(truth = truth, data = -tcc$stat$rank))
[1] 0.8760375
```

4.4 DE analysis for multi-group data with replicates

Here, we give three examples of DE analysis coupled with DEGES/edgeR normalization for the hypothetical three-group data with replicates, i.e., the hypoData_mg object. The use of the DEGES/edgeR normalization factors is simply for reducing the computation time.

4.4.1 baySeq coupled with DEGES/edgeR normalization

The empirical Bayesian method implemented in **baySeq** after executing the DEGES/edgeR normalization (i.e., the DEGES/edgeR-baySeq combination) can be performed as follows.

```
> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)</pre>
> ### Normalization ###
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",</pre>
                       iteration = 1)
+
> ### DE analysis ###
> set.seed(1000)
> samplesize <- 100
> tcc <- estimateDE(tcc, test.method = "bayseq",</pre>
                FDR = 0.1, samplesize = samplesize)
+
> result <- getResult(tcc, sort = TRUE)</pre>
> head(result)
  gene_id a.value m.value
                               p.value
                                           q.value rank estimatedDEG
1 gene_150 NA NA 8.907364e-11 8.907364e-11 1
                                                                   1
2 gene_134
              NA
                     NA 2.932055e-10 1.466027e-10
                                                     2
                                                                   1
3 gene_121
              NA
                     NA 8.742504e-09 2.914168e-09 3
                                                                   1
                                                    4
              NA
                      NA 1.165839e-07 2.914599e-08
4 gene_27
                                                                   1
               NA
5 gene_179
                       NA 2.528698e-07 5.057397e-08
                                                     5
                                                                   1
6 gene_194
               NA
                       NA 5.768721e-07 9.614537e-08
                                                      6
                                                                   1
```

> table(tcc\$estimatedDEG)

```
0 1
894 106
```

It can be seen that the **baySeq** method identified 106 DEGs having FDR < 0.1. One can obtain the number of DEGs with another threshold (e.g., FDR < 0.2) from the result object as follows.

```
> sum(result$q.value < 0.2)</pre>
```

[1] 133

For **baySeq** users, we provide commands, consisting of functions in **baySeq**, to perform the DEG identification without the function in **TCC**. The **estimateDE** function with **test.method = "bayseq"** can be regarded as a wrapper function for the following commands after the DEGES/edgeR normalization.

```
> set.seed(1000)
> samplesize <- 100
> effective.libsizes <- colSums(tcc$count) * tcc$norm.factors</pre>
> groups <- list(NDE = rep(1, length(group)), DE = group)</pre>
> cD <- new("countData", data = tcc$count, replicates = group,</pre>
+
             libsizes = effective.libsizes, groups = groups)
> cD <- getPriors.NB(cD, samplesize = samplesize,</pre>
                       estimation = "QL", cl = NULL)
+
> cD <- getLikelihoods(cD, pET = "BIC", cl = NULL)</pre>
> tmp <- topCounts(cD, group = "DE", number = nrow(tcc$count))</pre>
> tmp <- tmp[rownames(tcc$count), ]</pre>
> p.value <- 1 - tmp$Likelihood
> q.value <- tmp$FDR
> result <- cbind(p.value, q.value)</pre>
> rownames(result) <- rownames(tmp)</pre>
> head(result)
           p.value
                      q.value
gene_1 0.22093873 0.04185759
gene_2 0.97539305 0.62476502
gene_3 0.06959714 0.01488980
gene_4 0.94655148 0.50586944
gene_5 0.99228238 0.76949245
gene_6 0.11715510 0.02845741
> sum(q.value < 0.1)</pre>
[1] 106
> sum(q.value < 0.2)</pre>
[1] 133
```

4.4.2 edgeR coupled with DEGES/edgeR normalization

The exact test implemented in **edgeR** after executing the DEGES/edgeR normalization (i.e., the DEGES/edgeR-edgeR combination) can be performed as follows.

```
> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)
> ### Normalization ###
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 1)
> ### DE analysis ###
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)
> result <- getResult(tcc, sort = TRUE)
> head(result)
```

```
gene_id a.value m.value
                                                    q.value rank estimatedDEG
                                     p.value
               NA NA 2.196725e-13 6.570341e-11 1
1
  gene_56
                                                                                 1
2 gene_27
                 NA
                          NA 2.440668e-13 6.570341e-11 2
                                                                                 1
3 gene_64
                  NA
                          NA 2.493287e-13 6.570341e-11 3
                                                                                 1

        NA
        NA 2.628137e-13
        6.570341e-11
        4

        NA
        NA 2.628137e-13
        6.570341e-11
        4

4 gene_121
                                                                                 1
                           NA 6.515512e-13 1.303102e-10 5
5 gene_126
                  NA
                                                                                 1
                  NA
                          NA 7.632880e-12 1.272147e-09
                                                               6
6
  gene_83
                                                                                 1
```

```
> table(tcc$estimatedDEG)
```

```
0 1
829 171
```

Note that these DEGs having FDR < 0.1 display DE between any of the groups because the two arguments indicated here (design and coef) correspond to an AVOVA-like test for any differences provided in edgeR, i.e.,

```
> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> design <- model.matrix(~ as.factor(group))</pre>
> coef <- 2:length(unique(group))</pre>
> tcc <- new("TCC", hypoData_mg, group)</pre>
> ### Normalization ###
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",</pre>
                            iteration = 1)
> ### DE analysis ###
> d <- DGEList(tcc$count, group = group)</pre>
> d$samples$norm.factors <- tcc$norm.factors</pre>
> d <- estimateGLMCommonDisp(d, design)</pre>
> d <- estimateGLMTrendedDisp(d, design)</pre>
> d <- estimateGLMTagwiseDisp(d, design)</pre>
> fit <- glmFit(d, design)</pre>
> lrt <- glmLRT(fit, coef = coef)</pre>
> tmp <- as.data.frame(topTags(lrt, n = nrow(tcc$count)))</pre>
> p.value <- tmp$table$PValue</pre>
> q.value <- tmp$table$FDR</pre>
> result <- cbind(p.value, q.value)</pre>
> head(result)
NULL
> sum(q.value < 0.1)
```

[1] 0

```
> sum(q.value < 0.2)</pre>
```

[1] 0

As described in the **edgeR** manual, the second and third columns in the design object are relative to the baseline (i.e., Group 1 or G1): coef = 2 means G2 vs. G1 and coef = 3 means G3 vs. G1. The above procedure with the coef object (i.e., 2:length(unique(group))) indicates the both comparisons (i.e., G2 vs. G1 and G3 vs. G1) and identifies DEGs between any of the three groups. In other words, one can do any two-group comparison of interest from multi-group data with replicates. For example, the DE analysis for G3 vs. G1 together with DEGES/edgeR normalization can be performed as follows.

```
> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)</pre>
> ### Normalization ###
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
                             iteration = 1)
> ### DE analysis ###
> coef <- 3
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1, coef = coef)
> result <- getResult(tcc, sort = TRUE)</pre>
> head(result)
                                     p.value
    gene_id a.value m.value
                                                    q.value rank estimatedDEG
1 gene_12
2 gene_56
3 gene_121
4 gene_27
5 gene_64
2 mone_112
1 gene_126 NA NA 1.855707e-10 1.855707e-07 1 1
                  NANA 5.795956e-102.897978e-072NANA 1.121390e-093.082653e-073NANA 1.233061e-093.082653e-074NANA 2.960706e-095.921411e-075NANA 8.457521e-091.409587e-066
                   NA
                            NA 5.795956e-10 2.897978e-07
                                                                   2
                                                                                   1
                                                                                   1
                                                                                  1
                                                                                  1
                                                                                  1
> table(tcc$estimatedDEG)
  0
      1
```

```
884 116
```

4.4.3 DESeq coupled with DEGES/edgeR normalization

The NB test implemented in **DESeq** after executing the DEGES/edgeR normalization (i.e., the DEGES/edgeR-DESeq combination) can be performed as follows.

```
> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)</pre>
> ### Normalization ###
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
                                      iteration = 1)
> ### DE analysis ###
> full <- count ~ condition
> reducced <- count ~ 1
> tcc <- estimateDE(tcc, test.method = "deseq",</pre>
                              FDR = 0.1, full = full, reduced = reduced)
> result <- getResult(tcc, sort = TRUE)</pre>
> head(result)
     gene_id a.value m.value
                                                                     q.value rank estimatedDEG
                                                p.value
1 gene_126 NA NA 2.338130e-13 2.338130e-10 1 1
2 gene_63
                       NA
                                  NA 1.410762e-10 7.053808e-08 2
                                                                                                          1

      2
      gene_63
      NA
      NA 1.410762e-107.053808e-08
      2

      3
      gene_27
      NA
      NA 2.279517e-08
      7.598390e-06
      3

      4
      gene_176
      NA
      NA 4.695739e-08
      1.173935e-05
      4

      5
      gene_121
      NA
      NA 7.462291e-08
      1.492458e-05
      5

      6
      gene_64
      NA
      NA 1.096310e-07
      1.793916e-05
      6

                                                                                                         1
                                                                                                         1
                                                                                                         1
                                                                                                         1
```

```
> table(tcc$estimatedDEG)
```

0 1 871 129

For **DESeq** users, we provide commands, consisting of functions in **DESeq**, to perform the DEG identification without the function in **TCC**. The estimateDE function with test.method = "deseq" can be regarded as a wrapper function for the following commands after the DEGES/edgeR normalization.

```
> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)</pre>
> ### Normalization ###
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
                           iteration = 1)
+
> ### DE analysis ###
> full <- count ~ condition
> reduced <- count ~ 1
> cds <- newCountDataSet(tcc$count, group)</pre>
> cds <- estimateSizeFactors(cds)</pre>
> sizeFactors(cds) <- sizeFactors(cds) / mean(sizeFactors(cds))</pre>
> cds <- estimateDispersions(cds)</pre>
> full.model <- fitNbinomGLMs(cds, full)</pre>
.
> reduced.model <- fitNbinomGLMs(cds, reduced)</pre>
.
> p.value <- nbinomGLMTest(full.model, reduced.model)</pre>
> p.value[is.na(p.value)] <- 1</pre>
> q.value <- p.adjust(p.value, method = "BH")</pre>
> tmp <- cbind(p.value, q.value)</pre>
> rownames(tmp) <- tcc$gene_id</pre>
> result <- tmp[order(p.value), ]</pre>
> head(result)
               p.value
                             q.value
gene 126 2.116085e-12 2.116085e-09
gene_63 9.589219e-10 4.794610e-07
gene_176 1.975102e-08 6.583673e-06
gene_83 6.667874e-08 1.666968e-05
gene_27 1.369475e-07 2.738951e-05
gene_56 2.202473e-07 3.482671e-05
> sum(q.value < 0.1)</pre>
[1] 123
> sum(q.value < 0.2)</pre>
[1] 142
```

5 Generation of simulation data

5.1 Introduction and basic usage

As demonstrated in our previous study (Kadota et al., 2012), the DEGES-based normalization methods implemented in **TCC** theoretically outperform the other normalization methods when the numbers of DEGs (G1 vs. G2) in the tag count data are biased. However, it is difficult to determine whether the up- and down-regulated DEGs in one of the groups are actually biased in their number when analyzing real data (Dillies et al., 2012). This means we have to evaluate the potential performance of our DEGES-based methods using mainly simulation data. The simulateReadCounts function generates simulation data under various conditions. This function can generate simulation data analyzed in the TbT paper (Kadota et al., 2012), and that means it enables other researchers to compare the methods they develop with our DEGES-based methods. For example, the hypoData object, a hypothetical count dataset provided in **TCC**, was generated by using this function. The output of the simulateReadCounts function is stored as a **TCC** class object and is therefore ready-to-analyze.

Note that different trials of simulation analysis generally yield different count data even under the same simulation conditions. We can call the set.seed function in order to obtain reproducible results (i.e., the tcc\$count) with the simulateReadCounts function.

```
> set.seed(1000)
> library(TCC)
>
 tcc <- simulateReadCounts(Ngene = 1000, PDEG = 0.2,</pre>
                                  DEG.assign = c(0.9, 0.1),
                                  DEG.foldchange = c(4, 4),
                                  replicates = c(3, 3))
> dim(tcc$count)
[1] 1000
             6
> head(tcc$count)
       G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3
                    104
                              62
gene_1
           168
                                       38
                                               24
                                                        35
gene_2
                              27
            10
                      8
                                       4
                                                5
                                                         4
gene_3
            64
                     94
                              81
                                               57
                                                        12
                                       15
            350
                    443
                             472
                                      116
                                               135
                                                       108
gene_4
gene_5
            92
                    263
                              60
                                        7
                                               15
                                                        22
gene_6
            561
                    682
                             591
                                       19
                                                65
                                                       179
```

> tcc\$group

	group
G1_rep1	1
G1_rep2	1
G1_rep3	1
G2_rep1	2
G2_rep2	2
G2_rep3	2

The simulation conditions for comparing two groups (G1 vs. G2) with biological replicates are as follows: (i) the number of genes is 1,000 (i.e., Ngene = 1000), (ii) the first 20% of genes are DEGs (PDEG = 0.2), (iii) the first 90% of the DEGs are up-regulated in G1, and the remaining 10% are up-regulated in G2 (DEG.assign = c(0.9, 0.1)), (iv) the levels of DE are four-fold in both groups (DEG.foldchange = c(4, 4)), and (v) there are a total of six samples (three biological replicates for G1 and three biological replicates for G2) (replicates = c(3, 3)). The variance of the NB distribution can be modeled as $V = \mu + \phi \mu^2$. The empirical distribution of the read counts for producing the mean (μ) and dispersion (ϕ) parameters of the model was obtained from *Arabidopsis* data (three biological replicates for each of the treated and non-treated groups) in NBPSeq (Di et al., 2011).

The tcc\$count object is essentially the same as the hypoData object of TCC. The information about the simulation conditions can be viewed as follows.

```
> str(tcc$simulation)
```

```
List of 4

$ trueDEG : Named num [1:1000] 1 1 1 1 1 1 1 1 1 1 1 1 ...

..- attr(*, "names")= chr [1:1000] "gene_1" "gene_2" "gene_3" "gene_4" ...

$ DEG.foldchange: num [1:1000, 1:6] 4 4 4 4 4 4 4 4 4 4 4 ...

..- attr(*, "dimnames")=List of 2

....$ : chr [1:1000] "gene_1" "gene_2" "gene_3" "gene_4" ...

$ : ...$ : chr [1:6] "G1_rep1" "G1_rep2" "G1_rep3" "G2_rep1" ...

$ PDEG : num [1:2] 0.18 0.02

$ params :'data.frame': 1000 obs. of 2 variables:

...$ mean: num [1:1000] 32.99 4.13 16.73 103.14 15.57 ...

...$ disp: num [1:1000] 0.3868 0.0915 0.1835 0.0503 0.6416 ...
```

Specifically, the entries for 0 and 1 in the tcc\$simulation\$trueDEG object are for non-DEGs and DEGs respectively. The breakdowns for individual entries are the same as stated above: 800 entries are non-DEGs, 200 entries are DEGs.

```
> table(tcc$simulation$trueDEG)
```

0 1 800 200

This information can be used to evaluate the performance of the DEGES-based normalization methods in terms of the sensitivity and specificity of the results of their DE analysis. A good normalization method coupled with a DE method such as the exact test (Robinson and Smyth, 2008) and the empirical Bayes (Hardcastle and Kelly, 2010) should produce well-ranked gene lists in which the true DEGs are top-ranked and non-DEGs are bottomranked when all genes are ranked according to the degree of DE. The ranked gene list after performing the DEGES/edgeR-edgeR combination can be obtained as follows.

```
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
                        iteration = 1, FDR = 0.1, floorPDEG = 0.05)
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)</pre>
> result <- getResult(tcc, sort = TRUE)</pre>
> head(result)
                                    p.value
  gene_id
           a.value
                      m.value
                                                 q.value rank estimatedDEG
  gene_74 8.095342 -2.542249 1.632082e-10 1.286725e-07
1
                                                          1
                                                                         1
2 gene_185 7.177367 2.407113 4.534724e-10 1.286725e-07
                                                            2
                                                                         1
3 gene_181 7.861230 2.425154 5.023663e-10 1.286725e-07
                                                            3
                                                                         1
4 gene_11 7.145969 -2.471502 5.786031e-10 1.286725e-07
                                                            4
                                                                         1
5 gene_113 12.197408 -2.233912 6.433626e-10 1.286725e-07
                                                            5
                                                                         1
6 gene_138 9.397467 -2.232690 1.118318e-09 1.863863e-07
                                                            6
                                                                         1
```

We can now calculate the area under the **ROC** curve (i.e., AUC; $0 \leq AUC \leq 1$) between the ranked gene list and the truth (i.e., DEGs or non-DEGs) and thereby evaluate the sensitivity and specificity simultaneously. A well-ranked gene list should have a high AUC value (i.e., high sensitivity and specificity). The calcAUCValue function calculates the AUC value based on the information stored in the **TCC** class object.

> calcAUCValue(tcc)

[1] 0.8925063

This is essentially the same as

[1] 0.8925063

The following classic **edgeR** procedure (i.e., the TMM-edgeR combination) make it clear that the DEGES-based normalization method (i.e., the DEGES/edgeR pipeline) outperforms the default normalization method (i.e., TMM) implemented in **edgeR**.

```
> tcc <- calcNormFactors(tcc, norm.method = "tmm", iteration = 0)
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)
> calcAUCValue(tcc)
```

[1] 0.8775812

The following is an alternative procedure for **edgeR** users.

[1] 0.8775812

As can be expected from the similarity of the normalization factors of DEGES/TbT (3.1.1) and DEGES/edgeR (3.1.2), the AUC value (0.8925063) of DEGES/edgeR is quite similar to the AUC value (0.8941281) of the original TbT method (i.e., DEGES/TbT):

[1] 0.8941281

5.2 Two-group data without replicates

Let us generate tag count data without replicates, such as those used in section 3.2 For simplicity, we first generate simulation data whose conditions are essentially the same as those in the previous section (i.e., 5.1), except for the number of replicates in each group: (i) the number of genes is 1,000 (i.e., Ngene = 1000), (ii) the first 20% of genes are DEGs (PDEG = 0.2), (iii) the first 90% of the DEGs are up-regulated in G1, and the remaining 10% are up-regulated in G2 (DEG.assign = c(0.9, 0.1)), (iv) the levels of DE are four-fold in both groups (DEG.foldchange = c(4, 4)), and (v) there are a total of two samples (one from G1 and the other from G2) (replicates = c(1, 1)).

```
> set.seed(1000)
> library(TCC)
> tcc <- simulateReadCounts(Ngene = 1000, PDEG = 0.2,</pre>
                                  DEG.assign = c(0.9, 0.1),
+
                                  DEG.foldchange = c(4, 4),
                                  replicates = c(1, 1))
+
> dim(tcc$count)
[1] 1000
            2
> head(tcc$count)
       G1_rep1 G2_rep1
gene_1
           168
                     29
gene_2
            10
                      2
                      2
gene_3
            64
            350
                     90
gene_4
                      5
            92
gene_5
            561
                     74
gene_6
> tcc$group
        group
G1_rep1
             1
G2_rep1
             2
```

Now let us see how the DEGES/DESeq-DESeq combination with the original DESeq-DESeq combination performs. First, we calculate the AUC value for the ranked gene list obtained from the DEGES/DESeq-DESeq combination.

```
> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)
> tcc <- estimateDE(tcc, test.method = "deseq")
> calcAUCValue(tcc)
```

[1] 0.7846313

Next, we calculate the corresponding value using the original **DESeq** procedure (i.e., the DESeq-DESeq combination).

```
> tcc <- calcNormFactors(tcc, norm.method = "deseq", iteration = 0)
> tcc <- estimateDE(tcc, test.method = "deseq")
> calcAUCValue(tcc)
```

[1] 0.78265

It can be seen that the DEGES/DESeq-DESeq combination outperforms the original procedure under the given simulation conditions. The following is an alternative approach for **DESeq** users.

```
> cds <- newCountDataSet(tcc$count, tcc$group$group)
> cds <- estimateSizeFactors(cds)
> sizeFactors(cds) <- sizeFactors(cds) / mean(sizeFactors(cds))
> cds <- estimateDispersions(cds, method = "blind", sharingMode = "fit-only")
> result <- nbinomTest(cds, 1, 2)
> result$pval[is.na(result$pval)] <- 1
> AUC(rocdemo.sca(truth = as.numeric(tcc$simulation$trueDEG != 0),
+ data = -rank(result$pval)))
```

[1] 0.78265

This procedure is completely the same as the one in **TCC** that gives normalization factors corresponding to those in **edgeR** for different packages. However, the following commands from the **DESeq** manual are of practical value because they give approximately the same AUC value as above.

```
> cds <- newCountDataSet(tcc$count, tcc$group$group)
> cds <- estimateSizeFactors(cds)
> cds <- estimateDispersions(cds, method = "blind", sharingMode = "fit-only")
> result <- nbinomTest(cds, 1, 2)
> result$pval[is.na(result$pval)] <- 1
> AUC(rocdemo.sca(truth = as.numeric(tcc$simulation$trueDEG != 0),
+ data = -rank(result$pval)))
```

[1] 0.78265

5.3 Multi-group data with and without replicates

The simulateReadCounts function can generate simulation data with a more complex design. First, we generate a dataset consisting of three groups. The simulation conditions for this dataset are as follows: (i) the number of genes is 1,000 (i.e., Ngene = 1000), (ii) the first 30% of genes are DEGs (PDEG = 0.3), (iii) the breakdowns of the up-regulated DEGs are respectively 70%, 20%, and 10% in Groups 1-3 (DEG.assign = c(0.7, 0.2, 0.1)), (iv) the levels of DE are 3-, 10-, and 6-fold in individual groups (DEG.foldchange = c(3, 10, 6)), and (v) there are a total of nine libraries (2, 4, and 3 replicates for Groups 1-3) (replicates = c(2, 4, 3)).

```
[1] 1000 9
```

> tcc\$group

group G1_rep1 1 G1_rep2 1 G2_rep1 2 G2_rep2 2 G2_rep3 2 G2_rep4 2 G3_rep1 3 3 G3_rep2 G3_rep3 3

> head(tcc\$count)

	G1_rep1	G1_rep2	G2_rep1	G2_rep2	G2_rep3	G2_rep4	G3_rep1	G3_rep2	G3_rep3
gene_1	126	86	17	38	24	35	4	19	71
gene_2	7	3	5	4	5	4	1	7	3
gene_3	48	17	3	15	57	12	4	9	10
gene_4	264	331	122	116	135	108	97	83	84
gene_5	69	51	32	7	15	22	4	33	11
gene_6	426	211	58	19	65	179	20	115	88

The pseudo-color image for the generated simulation data regarding the DEGs can be obtained from the plotFCPseudocolor function. The right bar (from white to magenta) indicates the degree of fold-change (FC). As expected, it can be seen that the first 210, 60, and 30 genes are up-regulated in G1, G2, and G3, respectively.

> plotFCPseudocolor(tcc)

Now let us see how the DEGES/edgeR-edgeR combination with the original edgeR-edgeR combination performs. First we calculate the AUC value for the ranked gene list obtained from the DEGES/edgeR-edgeR combination.

```
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 1)
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)
> calcAUCValue(tcc)
```

[1] 0.8747643

Next, we calculate the corresponding value using the original **edgeR** procedure for single factor experimental design (i.e., the edgeR-edgeR combination).

```
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 0)
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)
> calcAUCValue(tcc)
```

[1] 0.86905

It can be seen that the DEGES/edgeR-edgeR combination outperforms the original edgeR procedure under the given simulation conditions. Note that the test.method argument will be ignored when iteration = 0 is specified.

Next, let us generate another dataset consisting of a total of eight groups. The simulation conditions for this dataset are as follows: (i) the number of genes is 10,000 (i.e., Ngene = 10000), (ii) the first 34% of genes are DEGs (PDEG = 0.34), (iii) the breakdowns of the up-regulated DEGs are respectively 10%, 30%, 5%, 10%, 5%, 21%, 9%, and 10% in Groups 1-8 (DEG.assign = c(0.1, 0.3, 0.05, 0.1, 0.05, 0.21, 0.09, 0.1)), (iv) the levels of DE are 3.1-, 13-, 2-, 1.5-, 9-, 5.6-, 4-, and 2-fold in individual groups (DEG.foldchange = c(3.1, 13, 2, 1.5, 9, 5.6, 4, 2)), and (v) there are a total of nine libraries (except for G3, none of the groups have replicates) (replicates = c(1, 1, 2, 1, 1, 1, 1)).

```
> set.seed(1000)
> library(TCC)
> tcc <- simulateReadCounts(Ngene = 10000, PDEG = 0.34,
+ DEG.assign = c(0.1, 0.3, 0.05, 0.1, 0.05, 0.21, 0.09, 0.1),
+ DEG.foldchange = c(3.1, 13, 2, 1.5, 9, 5.6, 4, 2),
+ replicates = c(1, 1, 2, 1, 1, 1, 1))
> dim(tcc$count)
```

[1] 10000 9

> tcc\$group

group G1_rep1 1 G2_rep1 2 3 G3_rep1 G3_rep2 3 G4_rep1 4 G5_rep1 5 G6_rep1 6 G7_rep1 7 G8_rep1 8

> head(tcc\$count)

	G1_rep1	G2_rep1	G3_rep1	G3_rep2	G4_rep1	G5_rep1	G6_rep1	G7_rep1	G8_rep1
gene_1	253	32	16	14	27	93	25	17	26
gene_2	17	3	4	4	6	7	9	2	2
gene_3	51	17	10	9	9	4	15	10	9
gene_4	289	83	105	84	121	78	76	126	99
gene_5	43	4	4	11	0	19	34	42	15
gene_6	491	99	137	101	55	104	224	105	86

> plotFCPseudocolor(tcc)

This kind of simulation data may be useful for evaluating methods aimed at identifying tissue-specific (or tissue-selective) genes.

5.4 Multi-factor data

The simulateReadCounts function can also generate simulation data in multi-factor experimental design. Different from above single-factor experimental design, the group argument should be used instead of replicates for specifying sample conditions (or factors) when generating simulation data in multi-factor design. In relation to the group specification, the DEG.foldchange argument should also be specified as a data frame object. We generate a dataset consisting of two factors for comparing (i) two Groups (i.e., "WT" vs. "KO") as the first factor, at (ii) two time points (i.e., "1d" vs. "2d") as the second factor, with all samples obtained from independent subjects. There are a total of four conditions ("WT_1d", "WT_2d", "KO_1d", and "KO_2d") each of which has two biological replicates, comprising a total of eight samples. The group argument for this experimental design can be described as follows:

```
> group <- data.frame(
+ GROUP = c("WT", "WT", "WT", "KO", "KO", "KO", "KO", "KO"),
+ TIME = c("1d", "1d", "2d", "2d", "1d", "1d", "2d", "2d")
+ )</pre>
```

Next, we design the number of types of DEGs and the levels of fold-change by the DEG.foldchange argument. We here introduce three types of DEGs: (a) 2-fold up-regulation in the first four samples (i.e., "WT"), (b) 3-fold up-regulation in the last four samples (i.e., "KO"), and (c) 2-fold down-regulation at "2d" in "WT" and 4-fold up-regulation at "2d" in "KO". This implies that the first two types of DEGs are related to the first factor (i.e., "WT" vs. "KO") and the third type of DEG is related to the second factor (i.e., "1d" vs. "2d").

```
> DEG.foldchange <- data.frame(
+ FACTOR1.1 = c(2, 2, 2, 2, 1, 1, 1, 1),
+ FACTOR1.2 = c(1, 1, 1, 1, 3, 3, 3, 3),
+ FACTOR2 = c(1, 1, 0.5, 0.5, 1, 1, 4, 4)
+ )
```

The other simulation conditions for this dataset are as follows: (1) the number of gene is 1,000 (i.e., Ngene = 1000), (2) the first 20% of genes are DEGs (i.e., PDEG = 0.2), and (3) the breakdowns of the three types of DEGs are 50%, 20%, and 30% (i.e., DEG.assign = c(0.5, 0.2, 0.3)).

Since the first six rows in the dataset corresponds to the first type of DEGs, we can see the 2-fold up-regulation in the first four columns (i.e., WT-related samples) compared to the last four columns (i.e., KO-related samples).

```
> head(tcc$count)
```

	WT1d_rep1	WT1d_rep2	WT2d_rep1	WT2d_rep2	KO1d_rep1	KO1d_rep2	KO2d_rep1
gene_1	162	70	32	31	27	93	25
gene_2	12	5	7	7	6	7	11
gene_3	40	34	20	20	9	4	18
gene_4	210	141	286	163	121	78	52
gene_5	37	8	9	22	0	19	0
gene_6	205	204	43	216	55	104	123
	KO2d_rep2						
gene_1	49						
gene_2	3						
gene_3	10						
gene_4	113						
gene_5	3						
gene_6	39						

> tcc\$group

	GROUP	TIME
WT1d_rep1	WT	1d
WT1d_rep2	WT	1d
WT2d_rep1	WT	2d
WT2d_rep2	WT	2d
KO1d_rep1	KO	1d
KO1d_rep2	KO	1d
KO2d_rep1	KO	2d
KO2d rep2	KO	2d

> plotFCPseudocolor(tcc)

5.5 Other utilities

Recall that the simulation framework can handle different levels of DE for DEGs in individual groups, and the shape of the distribution for these DEGs is the same as that of non-DEGs. Let us confirm those distributions by introducing more drastic simulation conditions for comparing two groups (G1 vs. G2) with biological replicates; i.e., (i) the number of genes is 20,000 (i.e., Ngene = 20000), (ii) the first 30% of genes are DEGs (PDEG = 0.30), (iii) the first 85% of the DEGs are up-regulated in G1 and the remaining 15% are up-regulated in

G2 (DEG.assign = c(0.85, 0.15)), (iv) the levels of DE are eight-fold in G1 and sixteenfold in G2 (DEG.foldchange = c(8, 16)), and (v) there are a total of four samples (two biological replicates for G1 and two biological replicates for G2) (replicates = c(2, 2)).

```
> set.seed(1000)
>
 library(TCC)
>
  tcc <- simulateReadCounts(Ngene = 20000, PDEG = 0.30,</pre>
                  DEG.assign = c(0.85, 0.15),
+
                  DEG.foldchange = c(8, 16),
                  replicates = c(2, 2))
+
>
 head(tcc$count)
       G1_rep1 G1_rep2 G2_rep1 G2_rep2
gene_1
            368
                    243
                              67
                                       39
gene_2
             56
                      23
                               9
                                        3
                     147
gene_3
            140
                              11
                                       18
            720
                    932
                             167
                                       83
gene_4
                    165
                              50
            56
                                       11
gene_5
                              80
gene_6
            504
                    487
                                      133
```

An M-A plot for the simulation data can be viewed as follows; the points for DEGs are colored red and the non-DEGs are colored black:

> plot(tcc)

This plot is generated from simulation data that has been scaled in such a way that the library sizes of each sample are the same as the mean library size of the original data. That is,

```
> normalized.count <- getNormalizedData(tcc)
> colSums(normalized.count)
G1_rep1 G1_rep2 G2_rep1 G2_rep2
4474229 4474229 4474229
> colSums(tcc$count)
G1_rep1 G1_rep2 G2_rep1 G2_rep2
5704644 5813812 3108335 3270126
> mean(colSums(tcc$count))
```

[1] 4474229

The summary statistics for non-DEGs and up-regulated DEGs in G1 and G2 are upshifted compared with the original intentions of the user (i.e., respective M values of 0, -3, and 4 for non-DEGs and up-regulated DEGs in G1 and G2). Indeed, the median values, indicated as horizontal lines, are respectively 0.865, -2.165, and 4.612 for non-DEGs and up-regulated DEGs in G1 and G2.

> plot(tcc, median.lines = TRUE)

MA plot

These upshifted M values for non-DEGs can be modified after performing the iDEGES/edgeR normalization, e.g., the median M value (= 0.033) for non-DEGs based on the iDEGES/edgeR-normalized data is nearly zero.

```
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)
> plot(tcc, median.line = TRUE)
```


MA plot

The comparison of those values obtained from different normalization methods might be another evaluation metric.

6 Session info

> sessionInfo()

R version 3.3.0 (2016-05-03) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 14.04.4 LTS locale: LC_NUMERIC=C [1] LC_CTYPE=en_US.UTF-8 [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] stats4 parallel stats graphics grDevices utils datasets [8] methods base other attached packages: [1] TCC_1.12.1 ROC_1.48.0 [3] baySeq_2.6.0 perm_1.0-0.0 [5] abind_1.4-3 edgeR_3.14.0 [7] limma_3.28.5 DESeq2_1.12.3 [9] SummarizedExperiment_1.2.2 GenomicRanges_1.24.0 [11] GenomeInfoDb_1.8.2 IRanges_2.6.0 [13] S4Vectors_0.10.1 DESeq_1.24.0 [15] lattice_0.20-33 locfit_1.5-9.1 [17] Biobase_2.32.0 BiocGenerics_0.18.0 loaded via a namespace (and not attached):

 [1] Rcpp_0.12.5
 RColorBrewer_1.1-2
 plyr_1.8.3

 [4] XVector_0.12.0
 tools_3.3.0
 zlibbioc_1.18.0

 [7] rpart_4.1-10
 annotate_1.50.0
 RSQLite_1.0.0

 [10] gtable_0.2.0
 Matrix_1.2-6
 DBI_0.4-1

 [13] gridExtra_2.2.1
 samr_2.0
 genefilter_1.54

 [16] cluster_2.0.4
 nnet_7.3-12
 grid_3.3.0

 [19] data.table_1.9.6
 AnnotationDbi_1.34.3
 XML_3.98-1.4

 [22] survival_2.39-4
 BiocParallel_1.6.2
 foreign_0.8-66

 zlibbioc_1.18.0 genefilter_1.54.2

 [25] latticeExtra_0.6-28
 Formula_1.2-1
 geneplotter_1.50.0

 [28] ggplot2_2.1.0
 Hmisc_3.17-4
 scales_0.4.0

 [31] splines_3.3.0
 xtable_1.8-2
 colorspace_1.2-6

 [34] acepack_1.3-3.3
 munsell_0.4.3
 chron_2.3-47

7 References

- Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol 11: R106.
- [2] Di Y, Schafer DW, Cumbie JS, Chang JH. 2011. The NBP negative binomial model for assessing differential gene expression from RNA-Seq. Stat Appl Genet Mol Biol 10.
- [3] Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J, Guernec G, Jagla B, Jouneau L, Laloë D, Le Gall C, Schaëffer B, Le Crom S, Guedj M, Jaffrézic F; French StatOmique Consortium. 2013. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 14: 671-683.
- [4] Glaus P, Honkela A, and Rattray M. 2012. Identifying differentially expressed transcripts from RNA-seq data with biological variation. Bioinformatics 28: 1721-1728.
- [5] Hardcastle TJ and Kelly KA. 2010. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11: 422.
- [6] Kadota K, Nakai Y, Shimizu K. 2008. A weighted average difference method for detecting differentially expressed genes from microarray data. Algorithms Mol Biol 3: 8.
- [7] Kadota K, Nishimura SI, Bono H, Nakamura S, Hayashizaki Y, Okazaki Y, Takahashi K. 2003. Detection of genes with tissue-specific expression patterns using Akaike's Information Criterion (AIC) procedure. Physiol Genomics 12: 251-259.
- [8] Kadota K, Nishiyama T, and Shimizu K. 2012. A normalization strategy for comparing tag count data. Algorithms Mol Biol 7: 5.
- [9] Kadota K, Ye J, Nakai Y, Terada T, Shimizu K. 2006. ROKU: a novel method for identification of tissue-specific genes. BMC Bioinformatics 7: 294.
- [10] McCarthy DJ, Chen Y, Smyth GK. 2012. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40: 4288-4297.
- [11] Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140.
- [12] Robinson MD and Oshlack A. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11: R25.
- [13] Robinson MD and Smyth GK. 2008. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9: 321-332.
- [14] Sun J, Nishiyama T, Shimizu K, and Kadota K. TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 14: 219.
- [15] Ueda T. 1996. Simple method for the detection of outliers. Japanese J Appl Stat 25: 17-26.