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1 Running QDNAseq

This is a short tutorial on how to use the QDNAseq package. It covers an example run using the included data set of
chromosomes 7–10 of a low grade glioma (LGG) sample. First step is naturally to load the package.

> library(QDNAseq)

1.1 Bin annotations

Then we need to obtain bin annotations. These are available pre-calculated for genome build hg19 and bin sizes 1, 5,
10, 15, 30, 50, 100, 500, and 1000 kbp. They can be downloaded for example with:

> bins <- getBinAnnotations(binSize=15)

Downloading bin annotations for genome hg19, bin size 15kbp,

and experiment type SR50 ...

> bins

QDNAseq bin annotations for Hsapiens, build hg19.

Created by Ilari Scheinin with QDNAseq 0.7.5, 2014-02-06 12:48:04.

An object of class 'AnnotatedDataFrame'

rowNames: 1:1-15000 1:15001-30000 ... Y:59370001-59373566 (206391

total)

1

http://bioconductor.org/packages/QDNAseq
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varLabels: chromosome start ... use (9 total)

varMetadata: labelDescription

After downloading, the bin annotations can be saved locally with saveRDS(), and in the future be read from the local
file with loadRDS() instead of relying on downloading.

If you are working with another genome build (or another species), see the section on generating the bin annotations.

1.2 Processing bam files

Next step is to load the sequencing data from bam files. This can be done for example with one of the commands below.

> readCounts <- binReadCounts(bins)

> # all files ending in .bam from the current working directory

>

> # or

>

> readCounts <- binReadCounts(bins, bamfiles='tumor.bam')

> # file 'tumor.bam' from the current working directory

>

> # or

>

> readCounts <- binReadCounts(bins, path='tumors')

> # all files ending in .bam from the subdirectory 'tumors'

This will return an object of class QDNAseqReadCounts. If the same bam files will be used as input in future R sessions,
option cache=TRUE can be used to cache intermediate files, which will speed up future analyses. Caching is done with
package R.cache.

For the purpose of this tutorial, we load an example data set of chromosomes 7–10 of low grade glioma sample LGG150.

> data(LGG150)

> readCounts <- LGG150

> readCounts

QDNAseqReadCounts (storageMode: lockedEnvironment)

assayData: 38819 features, 1 samples

element names: counts

protocolData: none

phenoData

sampleNames: LGG150

varLabels: name reads used.reads

expected.variance

varMetadata: labelDescription

featureData

featureNames: 7:1-15000

7:15001-30000 ...

10:135525001-135534747 (38819

total)

fvarLabels: chromosome start ...

use (9 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

Plot a raw copy number profile (read counts across the genome), and highlight bins that will be removed with default
filtering (Figure 1).

http://cran.fhcrc.org/web/packages/R.cache/index.html


Introduction to QDNAseq 3

> plot(readCounts, logTransform=FALSE, ylim=c(-50, 200))

Plotting sample LGG150 (1 of 1) ...

> highlightFilters(readCounts, logTransform=FALSE,

+ residual=TRUE, blacklist=TRUE)

Highlighted 3,375 bins.

Figure 1: Read counts per bins. Highlighted with red are bins that will be filtered out.

Apply filters and plot median read counts as a function of GC content and mappability (Figure 2). As the example data
set only contains a subset of the chromosomes, the distribution looks slithly less smooth than expected for the entire
genome.

> readCountsFiltered <- applyFilters(readCounts,

+ residual=TRUE, blacklist=TRUE)

38,819 total bins

38,819 of which in selected chromosomes

36,722 of which with reference sequence

33,347 final bins



Introduction to QDNAseq 4

> isobarPlot(readCountsFiltered)

Plotting sample LGG150 median read counts

Figure 2: Median read counts per bin shown as a function of GC content and mappability.

Estimate the correction for GC content and mappability, and make a plot for the relationship between the observed
standard deviation in the data and its read depth (Figure 3). The theoretical expectation is a linear relationship, which
is shown in the plot with a black line. Samples with low-quality DNA will be noisier than expected and appear further
above the line than good-quality samples.

> readCountsFiltered <- estimateCorrection(readCountsFiltered)

Calculating correction for GC content and mappability

Calculating fit for sample LGG150 (1 of 1) ...

Done.

> noisePlot(readCountsFiltered)

Next, we apply the correction for GC content and mappability. This will return a QDNAseqCopyNumbers object, which
we then normalize, smooth outliers, and plot the copy number profile (Figure 4).



Introduction to QDNAseq 5

Figure 3: The relationship between sequence depth and noise.

> copyNumbers <- correctBins(readCountsFiltered)

> copyNumbers

QDNAseqCopyNumbers (storageMode: lockedEnvironment)

assayData: 38819 features, 1 samples

element names: copynumber

protocolData: none

phenoData

sampleNames: LGG150

varLabels: name reads ...

loess.family (6 total)

varMetadata: labelDescription

featureData

featureNames: 7:1-15000

7:15001-30000 ...

10:135525001-135534747 (38819

total)

fvarLabels: chromosome start ...
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use (9 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

> copyNumbersNormalized <- normalizeBins(copyNumbers)

Applying median normalization ...

> copyNumbersSmooth <- smoothOutlierBins(copyNumbersNormalized)

Smoothing outliers ...

> plot(copyNumbersSmooth)

Plotting sample LGG150 (1 of 1) ...

Figure 4: Copy number profile after correcting for GC content and mappability.

Data is now ready to be analyzed with a downstream package of choice. For analysis with an external program or for
visualizations in IGV, the data can be exported to a file.

> exportBins(copyNumbersSmooth, file="LGG150.txt")

> exportBins(copyNumbersSmooth, file="LGG150.igv", format="igv")
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> exportBins(copyNumbersSmooth, file="LGG150.bed", format="bed")

1.3 Downstream analyses

Segmentation with the CBS algorithm from DNAcopy , and calling copy number aberrations with CGHcall or cutoffs
have been implemented for convenience.

By default, segmentation uses a log2-transformation, but a sqrt(x + 3/8) can also be used as it stabilizes the variance
of a Poisson distribution (Anscombe transform):

> copyNumbersSegmented <- segmentBins(copyNumbersSmooth, transformFun="sqrt")

Performing segmentation:

Segmenting: LGG150 (1 of 1) ...

> copyNumbersSegmented <- normalizeSegmentedBins(copyNumbersSegmented)

> plot(copyNumbersSegmented)

Plotting sample LGG150 (1 of 1) ...

Figure 5: Copy number profile after segmenting.

http://bioconductor.org/packages/DNAcopy
http://bioconductor.org/packages/CGHcall
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Tune segmentation parameters and iterate until satisfied. Next, call aberrations, and plot the final results.

> copyNumbersCalled <- callBins(copyNumbersSegmented)

[1] "Total number of segments present in the data: 14"

[1] "Number of segments used for fitting the model: 11"

> plot(copyNumbersCalled)

Plotting sample LGG150 (1 of 1) ...

Figure 6: Copy number profile after calling gains and losses.

It should be noted that CGHcall (which callBins() uses by default) was developed for the analysis of sets of cancer
samples. It is based on a mixture model, and when there are not enough aberrations present in the data, model fitting
can fail. This can happen especially with non-cancer samples, and/or when analyzing individual cases instead of larger
data sets.

If CGHcall fails, callBins() can also perform simple cutoff-based calling by setting parameter method="cutoff". The
default cutoff values are based on the assumption of uniform cell populations, and in case of cancer samples will most
likely need calibration by adjusting parameter cutoffs.

Finally, for other downstream analyses, such as running CGHregions, it might be useful to convert to a cghCall object.

http://bioconductor.org/packages/CGHcall
http://bioconductor.org/packages/CGHcall
http://bioconductor.org/packages/CGHregions
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> cgh <- makeCgh(copyNumbersCalled)

> cgh

cghCall (storageMode: lockedEnvironment)

assayData: 33347 features, 1 samples

element names: calls, copynumber, probamp, probdloss, probgain, probloss, probnorm, segmented

protocolData: none

phenoData

sampleNames: LGG150

varLabels: name reads ...

loess.family (6 total)

varMetadata: labelDescription

featureData

featureNames: 7:45001-60000

7:60001-75000 ...

10:135420001-135435000 (33347

total)

fvarLabels: Chromosome Start ...

use (9 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

This command can also be used to generate cghRaw or cghSeg objects by running it before segmentation or calling.
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2 Parallel computation

QDNAseq supports parallel computing via the future package. After installing it with install.packages("future"),
all that is required is to select an appropriate plan. The recommended way to do that is to include it in your ’∼/.Rprofile’.

The instructions below apply to all of QDNAseq’s own functions that support parallel processing. At the moment these
include estimateCorrection(), segmentBins(), createBins(), and calculateBlacklist().

However, when argument method="CGHcall" (which is the default), function callBins() calls function CGHcall()

from package CGHcall , which uses another mechanism for parallel computation. For that, the number of processes to
use should be specified with argument ncpus, with something along the lines of:

> copyNumbers <- callBins(..., ncpus=4L)

2.1 Non-parallel processing

The default is to use single-core processing via “eager” futures. This can be set explicitly with:

> future::plan("eager")

2.2 Parallel processing on the current machine

To process data in parallel using multiple processes on the current machine, use the following:

> future::plan("multiprocess")

After that, all functions that support parallel processing will automatically use it.

On Mac OS X and Linux, this will use multiple forked R processes ("multicore"). On Windows, which does not
support forking, multiple background R processes ("multisession") will be used instead.

The number of parallel processes to use can be defined via option mc.cores, for example with:

> options(mc.cores=4L)

2.3 Parallel processing on a cluster

To process data using multiple R sessions running on different machines, use something along the lines of:

> cl <- parallel::makeCluster(...)

> future::plan("cluster", cluster=cl)

See package parallel for more details.

http://bioconductor.org/packages/QDNAseq
http://cran.fhcrc.org/web/packages/future/index.html
http://bioconductor.org/packages/QDNAseq
http://bioconductor.org/packages/CGHcall
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3 Sex chromosomes

By default, QDNAseq ignores sex chromosomes. In order to include them in the analysis, function applyFilters()

should be run with argument chromosomes=NA to include both X and Y, or chromosomes="Y" to include X only.

However, this will also affect which chromosomes are used when calculating the loess correction with estimateCorrec-

tion(). Unless the data set consists of only females, this could be undesirable. The solution is to first filter out the sex
chromosomes, run estimateCorrection(), and then reverse the filtering of sex chromosomes:

> readCounts <- binReadCounts(getBinAnnotations(15))

> readCounts <- applyFilters(readCounts)

> readCounts <- estimateCorrection(readCounts)

> readCounts <- applyFilters(readCounts, chromosomes=NA)

> copyNumbers <- correctBins(readCounts)

Running estimateCorrection() and correctBins() with a different set of bins can have one side effect. This is
caused by the fact that there can be bins in the sex chromosomes with a combination of GC content and mappability
that is not found anywhere else in the genome. This will cause those bins to miss a correction estimate altogether, and
these bins will be filtered out from subsequent steps by correctBins(). If this happens, it will print out a message
speficying the number of bins affected.

Another possible approach is to allow extrapolation while calculating the loess correction. But please do note that the
effect of extrapolation has not been properly evaluated.

> readCounts <- estimateCorrection(readCounts,

+ control=loess.control(surface="direct"))

http://bioconductor.org/packages/QDNAseq
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4 Generating bin annotations

This section describes how bin annotations have been created for the hg19 build of the human reference genome, and
can be applied for other genome builds and species. The first step is to create the bins based on chromosome sizes, and
calculate their GC content and proportion of characterized nucletodies (non-N bases in the reference sequence). For this,
the corresponding BSgenome package is needed.

> # load required packages for human reference genome build hg19

> library(QDNAseq)

> library(Biobase)

> library(BSgenome.Hsapiens.UCSC.hg19)

> # set the bin size

> binSize <- 15

> # create bins from the reference genome

> bins <- createBins(bsgenome=BSgenome.Hsapiens.UCSC.hg19, binSize=binSize)

The result is a data.frame with columns chromosome, start, end, gc, and bases. Next step is to calculate the
average mappabilities, which requires a mappability file in the bigWig format and the bigWigAverageOverBed binary.
The mappability file can be generated with GEM library from the reference genome sequence. Or it might be available
directly, as was the case for hg19, and file ’wgEncodeCrgMapabilityAlign50mer.bigWig’ downloaded from ENCODE’s
download section of the UCSC Genome Browser. The bigWigAverageOverBed binary can also be downloaded from
UCSC Genome Browser’s Other utilities section.

> # calculate mappabilites per bin from ENCODE mapability tracks

> bins$mappability <- calculateMappability(bins,

+ bigWigFile='/path/to/wgEncodeCrgMapabilityAlign50mer.bigWig',

+ bigWigAverageOverBed='/path/to/bigWigAverageOverBed')

If there are genomic regions that should excluded from analyses, such as ENCODE’s Blacklisted Regions, the percent-
age overlap between the generated bins and these regions can be calculated as follows. The regions to be excluded
need to be in the BED format, like files ’wgEncodeDacMapabilityConsensusExcludable.bed’ and ’wgEncodeDukeMapabil-
ityRegionsExcludable.bed’ that were downloaded from ENCODE’s download section of the UCSC Genome Browser for
hg19.

> # calculate overlap with ENCODE blacklisted regions

> bins$blacklist <- calculateBlacklist(bins,

+ bedFiles=c('/path/to/wgEncodeDacMapabilityConsensusExcludable.bed',

+ '/path/to/wgEncodeDukeMapabilityRegionsExcludable.bed'))

To calculate median residuals of the LOESS fit from a control dataset, the following command can be used. For the
pre-generated annotations, the control set used is 38 samples from the 1000 Genomes project. See the next section on
how those were downloaded.

> # load data for the 1000 Genomes (or similar) data set, and generate residuals

> ctrl <- binReadCounts(bins,

+ path='/path/to/control-set/bam/files')

> ctrl <- applyFilters(ctrl, residual=FALSE, blacklist=FALSE,

+ mappability=FALSE, bases=FALSE)

> bins$residual <- iterateResiduals(ctrl)

The column use specifies whether each bin should be used for subsequent analyses by default. The command apply-

Filters() will change its value accordingly. By default, bins in the sex chromosomes, or with only uncharacterized
nucleotides (N’s) in their reference sequence, are flagged for exlusion.

> # by default, use all autosomal bins that have a reference sequence

> # (i.e. not only N's)

> bins$use <- bins$chromosome %in% as.character(1:22) & bins$bases > 0

Optionally, the resulting data.frame can be converted to an AnnotateDataFrame and metadata added for the columns.

http://bioconductor.org/packages/BSgenome
http://gemlibrary.sourceforge.net/
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
http://hgdownload.soe.ucsc.edu/admin/exe/
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
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> # convert to AnnotatedDataFrame and add metadata

> bins <- AnnotatedDataFrame(bins,

+ varMetadata=data.frame(labelDescription=c(

+ 'Chromosome name',

+ 'Base pair start position',

+ 'Base pair end position',

+ 'Percentage of non-N nucleotides (of full bin size)',

+ 'Percentage of C and G nucleotides (of non-N nucleotides)',

+ 'Average mappability of 50mers with a maximum of 2 mismatches',

+ 'Percent overlap with ENCODE blacklisted regions',

+ 'Median loess residual from 1000 Genomes (50mers)',

+ 'Whether the bin should be used in subsequent analysis steps'),

+ row.names=colnames(bins)))

For the pre-generated annotations, some additional descriptive metadata has also been added.

> attr(bins, "QDNAseq") <- list(

+ author="Ilari Scheinin",

+ date=Sys.time(),

+ organism="Hsapiens",

+ build="hg19",

+ version=packageVersion("QDNAseq"),

+ md5=digest::digest(bins@data),

+ sessionInfo=sessionInfo())
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5 Downloading 1000 Genomes samples

This section defines the criteria that were used to download samples from the 1000 Genomes project for the pre-generated
bin annotations.

> # download table of samples

> server <- "ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/"

> g1k <- read.table(paste0(server, "sequence.index"),

+ header=TRUE, sep="\t", as.is=TRUE, fill=TRUE)

> # keep cases that are Illumina, low coverage, single-read, and not withdrawn

> g1k <- g1k[g1k$INSTRUMENT_PLATFORM == 'ILLUMINA', ]

> g1k <- g1k[g1k$ANALYSIS_GROUP == 'low coverage', ]

> g1k <- g1k[g1k$LIBRARY_LAYOUT == 'SINGLE', ]

> g1k <- g1k[g1k$WITHDRAWN == 0, ]

> # keep cases with read lengths of at least 50 bp

> g1k <- g1k[!g1k$BASE_COUNT %in% c("not available", ""), ]

> g1k$BASE_COUNT <- as.numeric(g1k$BASE_COUNT)

> g1k$READ_COUNT <- as.integer(g1k$READ_COUNT)

> g1k$readLength <- g1k$BASE_COUNT / g1k$READ_COUNT

> g1k <- g1k[g1k$readLength > 50, ]

> # keep samples with a minimum of one million reads

> readCountPerSample <- aggregate(g1k$READ_COUNT,

+ by=list(sample=g1k$SAMPLE_NAME), sum)

> g1k <- g1k[g1k$SAMPLE_NAME %in%

+ readCountPerSample$sample[readCountPerSample$x >= 1e6], ]

> g1k$fileName <- basename(g1k$FASTQ_FILE)

> # download fastq files

> for (i in rownames(g1k)) {

+ sourceFile <- paste0(server, g1k[i, "FASTQ_FILE"])

+ destFile <- g1k[i, "fileName"]

+ if (!file.exists(destFile))

+ download.file(sourceFile, destFile)

+ }

Next, reads were trimmed to 50 bp, and the multiple files for each sample (as defined by column SAMPLE NAME) were
combined by concatenating the FASTQ files together. Finally, they were aligned with BWA allowing two mismatches and
end-trimming of bases with qualities below 40 (options -n 2 -q 40).
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6 Session information

The version number of R and packages loaded for generating the vignette were:

� R version 3.3.1 (2016-06-21), x86_64-pc-linux-gnu
� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils
� Other packages: QDNAseq 1.8.1
� Loaded via a namespace (and not attached): Biobase 2.32.0, BiocGenerics 0.18.0, BiocParallel 1.6.6,

BiocStyle 2.0.3, Biostrings 2.40.2, CGHbase 1.32.0, CGHcall 2.34.1, DNAcopy 1.46.0, GenomeInfoDb 1.8.7,
GenomicRanges 1.24.3, IRanges 2.6.1, R.methodsS3 1.7.1, R.oo 1.20.0, R.utils 2.4.0, Rsamtools 1.24.0,
S4Vectors 0.10.3, XVector 0.12.1, bitops 1.0-6, impute 1.46.0, limma 3.28.21, marray 1.50.0, matrixStats 0.50.2,
parallel 3.3.1, stats4 3.3.1, tools 3.3.1, zlibbioc 1.18.0
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