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1 Overview

The JunctionSeq R package offers a powerful tool for detecting, identifying, and characterizing differ-
ential usage of transcript exons and/or splice junctions in next-generation, high-throughput RNA-Seq
experiments.

”Differential usage” is defined as a differential expression of a particular feature or sub-unit of a gene
(such as an exon or spice junction) relative to the overall expression of the gene as a whole (which may
or may not itself be differentially expressed). The term was originally used by Anders et.al. [1] for their
tool, DEXSeq, which is designed to detect differential usage of exonic sub-regions in RNA-Seq data.
Tests for differential usage can be used as a proxy for detecting alternative isoform regulation (AIR).

Although many tools already exist to detect alternative isoform regulation, the results of these tools are
almost universally resistant to interpretation. Alternative isoform regulation is a broad and diverse class
of phenomena which may involve alternative splicing, alternative promoting, nucleosome occupancy, long
non coding RNAs, alternative polyadenylation, or any number of these factors occurring simultaneously.
Unlike simple gene-level differential expression, such regulation cannot be represented by a single p-value
and fold-change. The results are often complex and counterintuitive, and effective interpretation is both
crucial and non-trivial.

JunctionSeq provides a powerful and comprehensive automated visualization toolset to assist in this
interpretation process. This includes gene profile plots (see Section 6.2.1), as well as genome-wide
browser tracks for use with IGV or the UCSC genome browser (see Section 6.3). Together, these
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visualizations allow the user to quickly and intuitively interpret and understand the underlying regulatory
phenomena that are taking place.

This visualization toolset is the core advantage to JunctionSeq over similar methods like DEXSeq. In
fact, using a specific set of parameters (outlined in Section 8.1), you can replicate a DEXSeq analysis
in JunctionSeq, and thus use the JunctionSeq visualization tools along with the standard DEXSeq
methodology.

Under the default parameterization, JunctionSeq also builds upon and expands the basic design put
forth by DEXSeq, providing (among other things) the ability to test for both differential exon usage and
differential splice junction usage. These two types of analyses are complementary: Exons represent a
broad region on the transcripts and thus tend to have higher counts than the individual splice junctions
(particularly for large exons) and as such tests for differential exon usage will often have higher power
under ideal conditions. However, certain combinations of isoform differentials may not result in strong
observed differentials in the individual exons, and up- or down-regulation in unannotated isoforms may
not be detectable at all. The addition of splice junction usage analysis makes it possible to detect a
broader array of isoform-regulation phenomena, as well as vastly improving the detection of differentials
in unannotated isoforms.

JunctionSeq is not designed to detect changes in overall gene expression. Gene-level differential expres-
sion is best detected with tools designed specifically for that purpose such as DESeq2 [2] or edgeR [3].

Additional help and documentation is available online. There is also a comprehensive walkthrough of
the entire analysis pipeline, along with a full example dataset with example bam files.

You can cite JunctionSeq by citing the preprint on arxiv.org:

Hartley SW, Mullikin JC. Detection and Visualization of Differential Exon and Splice Junction Usage
in RNA-Seq Data with JunctionSeq. arXiv preprint arXiv:1512.06038. 2015 Dec 18.

2 Requirements

JunctionSeq requires R v3.2.2 as well as a number of R packages. See the JunctionSeq website for
more detailed and updated information on JunctionSeq installation.

JunctionSeq is now part of Bioconductor, and will be included in the next release. If you are on the
Devel branch of R (currently v3.3), then you can install JunctionSeq as part of the Devel branch of
Bioconductor, using the commands (in R):

source("http://bioconductor.org/biocLite.R")

biocLite("JunctionSeq")

If you do not wish to work in the (often unstable) devel Bioconductor branch, you can install JunctionSeq
now using a custom install script, available online. Use the commands (in R):

source("http://hartleys.github.io/JunctionSeq/install/JS.install.R");

JS.install();

http://hartleys.github.io/JunctionSeq/index.html
http://hartleys.github.io/JunctionSeq/doc/example-walkthrough.pdf
https://dl.dropboxusercontent.com/u/103621176/pipelineWalkthrough/QoRTsPipelineWalkthrough.zip
https://dl.dropboxusercontent.com/u/103621176/pipelineWalkthrough/bamfiles.zip
http://arxiv.org/abs/1512.06038
http://arxiv.org/abs/1512.06038
http://arxiv.org
http://arxiv.org/abs/1512.06038
http://hartleys.github.io/JunctionSeq/
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Alternatively, JunctionSeq can be installed manually:

#CRAN package dependencies:

install.packages("statmod");

install.packages("plotrix");

install.packages("stringr");

install.packages("Rcpp");

install.packages("RcppArmadillo");

install.packages("locfit");

install.packages("Hmisc");

#Bioconductor dependencies:

source("http://bioconductor.org/biocLite.R");

biocLite();

biocLite("Biobase");

biocLite("BiocGenerics");

biocLite("BiocParallel");

biocLite("GenomicRanges");

biocLite("IRanges");

biocLite("S4Vectors");

biocLite("genefilter");

biocLite("geneplotter");

biocLite("SummarizedExperiment");

biocLite("DESeq2");

install.packages("http://hartleys.github.io/JunctionSeq/install/JunctionSeq_LATEST.tar.gz",

repos = NULL,

type = "source");

Generating splice junction counts: The easiest way to generate the counts for JunctionSeq is via the
QoRTs [4] software package. The QoRTs software package requires R version 3.0.2 or higher, as well
as (64-bit) java 6 or higher. QoRTs can be found online here.

Hardware: Both the JunctionSeq and QoRTs [4] software packages will generally require at least 2-10
gigabytes of RAM to run. In general at least 4gb is recommended when available for the QoRTs runs,
and at least 10gb for the JunctionSeq runs. R multicore functionality usually involves duplicating the
R environment, so memory usage may be higher if multicore options are used.

Annotation: JunctionSeq requires a transcript annotation in the form of a gtf file. If you are using a
annotation guided aligner (which is STRONGLY recommended) it is likely you already have a transcript
gtf file for your reference genome. We recommend you use the same annotation gtf for alignment, QC,
and downstream analysis. We have found the Ensembl ”Gene Sets” gtf1 suitable for these purposes.
However, any format that adheres to the gtf file specification2 will work.

Dataset: JunctionSeq requires aligned RNA-Seq data. Data can be paired-end or single-end, unstranded

1Which can be acquired from the Ensembl website
2See the gtf file specification here

http://hartleys.github.io/QoRTs/index.html
http://www.ensembl.org
http://genome.ucsc.edu/FAQ/FAQformat.html
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or stranded. For paired-end data it is strongly recommended (but not explicitly required) that the
SAM/BAM files be sorted either by name or position (it does not matter which).

2.1 Alignment

QoRTs [4], which is used to generate read counts, is designed to run on paired-end or single-end next-
gen RNA-Seq data. The data must first be aligned (or ”mapped”) to a reference genome. RNA-Star [5],
GSNAP [6], and TopHat2 [7] are all popular and effective aligners for use with RNA-Seq data. The use
of short-read or unspliced aligners such as BowTie, ELAND, BWA, or Novoalign is NOT recommended.

2.2 Recommendations

Using barcoding, it is possible to build a combined library of multiple distinct samples which can be run
together on the sequencing machine and then demultiplexed afterward. In general, it is recommended
that samples for a particular study be multiplexed and merged into ”balanced” combined libraries, each
containing equal numbers of each biological condition. If necessary, these combined libraries can be run
across multiple sequencer lanes or runs to achieve the desired read depth on each sample.

This reduces ”batch effects”, reducing the chances of false discoveries being driven by sequencer artifacts
or biases.

It is also recommended that the data be thoroughly examined and checked for artifacts, biases, or errors
using the QoRTs [4] quality control package.

3 Example Dataset

To allow users to test JunctionSeq and experiment with its functionality, an example dataset is available
online here. It can be installed with the command:

install.packages("http://hartleys.github.io/JunctionSeq/install/JctSeqData_LATEST.tar.gz", repos=FALSE, type = "source");

A more complete walkthrough using this same dataset is available here. The bam files are available
here.

The example dataset was taken from rat pineal glands. Sequence data from six samples (aka ”biological
replicates”) are included, three harvested during the day, three at night. To reduce the file sizes to a
more managable level, this dataset used only 3 out of the 6 sequencing lanes, and only the reads aligning
to chromosome 14 were included. This yielded roughly 750,000 reads per sample. The example dataset,
including aligned reads, QC data, example scripts, splice junction counts, and JunctionSeq results, is
available online (see the JunctionSeq github page). Information on the original dataset from which the
example data was derived is described elsewhere [8].

http://hartleys.github.io/JunctionSeq/install/JctSeqData_LATEST.tar.gz
https://dl.dropboxusercontent.com/u/103621176/pipelineWalkthrough/QoRTsPipelineWalkthrough.zip
https://dl.dropboxusercontent.com/u/103621176/pipelineWalkthrough/bamfiles.zip
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THIS EXAMPLE DATASET IS INTENDED FOR TESTING PURPOSES ONLY! The original complete
dataset can be downloaded from GEO (the National Center for Biotechnology Information Gene Ex-
pression Omnibus), GEO series accession number GSE63309. The test dataset has been cut down
to reduce file sizes and processing time, and a number of artificial ”edge cases” were introduced for
testing purposes. For example: in the gene annotation, one gene has an artificial transcript that lies on
the opposite strand from the other transcripts, to ensure that JunctionSeq deals with that (unlikely)
possibility in a sensible way. The results from this test analysis are not appropriate for anything other
than testing!

Splice junction counts and annotation files generated from this example dataset are included in the
JcnSeqExData R package, available online (see the JunctionSeq github page), which is what will be
used by this vignette.

The annotation files can be accessed with the commands:

decoder.file <- system.file("extdata/annoFiles/decoder.bySample.txt",

package="JctSeqData",

mustWork=TRUE);

decoder <- read.table(decoder.file,

header=TRUE,

stringsAsFactors=FALSE);

gff.file <- system.file(

"extdata/cts/withNovel.forJunctionSeq.gff.gz",

package="JctSeqData",

mustWork=TRUE);

The count files can be accessed with the commands:

countFiles.noNovel <- system.file(paste0("extdata/cts/",

decoder$sample.ID,

"/QC.spliceJunctionAndExonCounts.forJunctionSeq.txt.gz"),

package="JctSeqData", mustWork=TRUE);

countFiles <- system.file(paste0("extdata/cts/",

decoder$sample.ID,

"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),

package="JctSeqData", mustWork=TRUE);

There is also a smaller subset dataset, intended for rapid testing purposes. This is the dataset we will
use in this vignette, to reduce build times to within the Bioconductor limitations.

The annotation gtf file can be accessed with the command:

gff.file <- system.file(

"extdata/tiny/withNovel.forJunctionSeq.gff.gz",

package="JctSeqData",

mustWork=TRUE);

The count files can be accessed with the commands:

http://www.ncbi.nlm.nih.gov/geo/
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countFiles <- system.file(paste0("extdata/tiny/",

decoder$sample.ID,

"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),

package="JctSeqData", mustWork=TRUE);

4 Preparations

Once alignment and quality control has been completed on the study dataset, the splice-junction and
gene counts must be generated via QoRTs [4].

To reduce batch effects, the RNA samples used for the example dataset were barcoded and merged
together into a single combined library. This combined library was run on three HiSeq 2000 sequencer
lanes. Thus, after demultiplexing each sample consisted of three ”technical replicates”. JunctionSeq
is only designed to compare biological replicates, so QoRTs includes functions for generating counts
for each technical replicate and then combining the counts across the technical replicates from each
biological sample.

4.1 Generating raw counts via QoRTs

To generate read counts, you must run QoRTs [4] on each aligned bam file. QoRTs includes a basic
function that calculates a variety of QC metrics along with gene-level and splice-junction-level counts.
All these functions can be performed in a single step and a single pass through the input alignment file,
greatly simplifying the analysis pipeline.

For example, to run QoRTs on the first read-group of replicate SHAM1_RG1 from the example dataset:

java -jar /path/to/jarfile/QoRTs.jar QC \

--stranded \

inputData/bamFiles/SHAM1_RG1.bam \

inputData/annoFiles/anno.gtf.gz \

rawCts/SHAM1_RG1/

Note that the --stranded option is required because this example dataset is strand-specific. Also note
that QoRTs uses the original gtf annotation file, NOT the flattened gff file produced in section 4.3.
More information on this command and on the available options can be found online here.

For more information about the quality control metrics provided by QoRTs and how to visualize,
organize, and view them, see the QoRTs github page and documentation, available online here.

Certain datasets may require additional options. For example: by default, QoRTs assumes the ”MAPQ”
rules used by the RNA-STAR aligner and the TopHat 1 aligner. If you use other aligners (TopHat2,
GSNAP, etc.) you may need to specify the ”–minMAPQ” parameter. See the QoRTs QC command
documentation.

https://dl.dropboxusercontent.com/u/103621176/QoRTs/helpDocs/jarHtml/index.html
http://hartleys.github.io/QoRTs/index.html
http://hartleys.github.io/QoRTs/jarHtml/QC.html
http://hartleys.github.io/QoRTs/jarHtml/QC.html
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If Quality Control is being done seperately by other software packages or collaborators, the JunctionSeq
counts can be generated without the rest of the QC data by setting the --runFunctions option:

java -jar /path/to/jarfile/QoRTs.jar QC \

--stranded \

--runFunctions writeKnownSplices,writeNovelSplices,writeSpliceExon \

inputData/bamFiles/SHAM1_RG1.bam \

inputData/annoFiles/anno.gtf.gz \

rawCts/SHAM1_RG1/

This will take much less time to run, as it does not generate the full battery of quality control metrics.

The above command will generate a count file rawCts/SHAM1_RG1/QC.spliceJunctionAndExonCounts.forJunctionSeq.txt.gz.
This file contains both gene-level coverage counts, as well as coverage counts for transcript subunits
such as exons and splice junction loci. It will also generate two additional secondary count files (one
with all known splice counts, the other with all novel splice counts) which may be needed if you wish
to add novel splice junctions to your analysis (see Section 4.4).

4.2 Merging Counts from Technical Replicates (If Needed)

QoRTs [4] includes functions for merging all count data from various technical replicates. If your dataset
does not include technical replicates, or if technical replicates have already been merged prior to the
count-generation step then this step is unnecessary.

The example dataset has three such technical replicates per sample, which were aligned separately and
counted separately. For the purposes of quality control QoRTs was run separately on each of these bam
files (making it easier to discern any lane or run specific artifacts that might have occurred). It is then
necessary to combine the read counts from each of these bam files.

QoRTs includes an automated utility for performing this merge. For the example dataset, the command
would be:

java -jar /path/to/jarfile/QoRTs.jar \

mergeAllCounts \

rawCts/ \

annoFiles/decoder.byUID.txt \

cts/

The ”rawCts/” and ”cts/” directories are the relative paths to the input and output data, respectively.
The ”decoder” file should be a tab-delimited text file with column titles in the first row. One of the
columns must be titled ”sample.ID”, and one must be labelled ”unique.ID”. The unique.ID must be
unique and refers to the specific technical replicate, the sample.ID column indicates which biological
sample each technical replicate belongs to.
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4.3 (Option 1) Including Only Annotated Splice Junction Loci

If you wish to only test annotated splice junctions, then a simple flat annotation file can be generated
for use by JunctionSeq. This file parses the input gtf annotation and assigns unique identifiers to each
feature (exon or splice junction) belonging to each gene. These identifiers will match the identifiers
listed in the count files produced by QoRTs in the count-generation step (see Section 4.1).

java -jar /path/to/jarfile/QoRTs.jar makeFlatGff \

--stranded \

annoFiles/anno.gtf.gz \

annoFiles/JunctionSeq.flat.gff.gz

Note it is vitally important that the flat gff file and the read-counts be run using the same ”strandedness”
options (as described in Section 4.1). If the counts are generated in stranded mode, the gff file must
also be generated in stranded mode.

4.4 (Option 2) Including Novel Splice Junction Loci

One of the core advantages of JunctionSeq over similar tools such as DEXSeq is the ability to test
for differential usage of previously-undiscovered transcripts via novel splice junctions. Most advanced
aligners have the ability to align read-pairs to both known and unknown splice junctions. QoRTs [4] can
produce counts for these novel splice junctions, and JunctionSeq can test them for differential usage.

Because many splice junctions that appear in the mapped file may only have a tiny number of mapped
reads, it is generally desirable to filter out low-coverage splice junctions. Many such splice junctions
may simply be errors, and in any case their coverage counts will be too low to detect differential effects.

In order to properly filter by read depth, size factors are needed. These can be generated by JunctionSeq
(see Section 5.1.1), or generated from gene-level read counts using DESeq2, edgeR, or QoRTs. See
the QoRTs vignette for more information on how to generate these size factors.

Once size factors have been generated, novel splice junctions can be selected and counted using the
command:

java -jar /path/to/jarfile/QoRTs.jar \

mergeNovelSplices \

--minCount 6 \

--stranded \

cts/ \

annoFiles/decoder.bySample.txt \

annoFiles/anno.gtf.gz \

cts/

Note: The decoder file must have a column titled ”sample.ID”. Optionally, it can also include size factors
for each sample (generated by external tools) in a column labelled ’size.factor’. All other columns will
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be ignored. If no size factors are specified, then size factors will automatically be calculated using the
DESeq ”geometric” normalization method, based on the gene-level counts for all non-aggregate (ie.
non-overlapping) genes. The absence of the overlapping genes may cause these size factors to differ
slightly from the DESeq-calculated size-factors.

Note: In older versions of QoRts (v1.0.20 and below) the size.factor column was required. If you
encounter errors, upgrade to the newest version of QoRTs.

This utility finds all splice junctions that fall inside the bounds of any known gene. It then filters this
set of splice junctions, selecting only the junction loci with mean normalized read-pair counts of greater
than the assigned threshold (set to 6 read-pairs in the example above). It then gives each splice junction
that passes this filter a unique identifier.

This utility produces two sets of output files. First it writes a .gff file containing the unique identifiers
for each annotated and novel-and-passed-filter splice locus. Secondly, for each sample it produces a
count file that includes these additional splice junctions (along with the original counts as well).
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5 Differential Usage Analysis via JunctionSeq

5.1 Simple analysis pipeline

JunctionSeq includes a single function that loads the count data and performs a full analysis auto-
matically. This function internally calls a number of sub-functions and returns a JunctionSeqCountSet
object that holds the analysis results, dispersions, parameter estimates, and size factor data.

jscs <- runJunctionSeqAnalyses(sample.files = countFiles,

sample.names = decoder$sample.ID,

condition=factor(decoder$group.ID),

flat.gff.file = gff.file,

nCores = 1,

analysis.type = "junctionsAndExons"

);

The default analysis type, which is explicitly set in the above command, performs a ”hybrid” analysis
that tests for differential usage of both exons and splice junctions simultaniously. The methods used
to test for differential splice junction usage are extremely similar to the methods used for differential
exon usage other than the fact that the counts are derived from splice sites rather than exonic regions.
These methods are based on the methods used by the DEXSeq package [1, 2].

The advantage to our method is that reads (or read-pairs) are never counted more than once in any
given statistical test. This is not true in DEXSeq, as the long paired-end reads produced by current
sequencers may span several exons and splice junctions and thus be counted several times. Our method
also produces estimates that are more intuitive to interpret: our fold change estimates are defined as
the fold difference between two conditions across a transcript sub-feature relative to the fold change
between the same two conditions for the gene as a whole. The DEXSeq method instead calculates a
fold change relative to the sum of the other sub-features, which may change depending on the analysis
inclusion parameters.

The above function has a number of optional parameters, which may be relevant to some analyses:

analysis.type : By default JunctionSeq simultaniously tests both splice junction loci and exonic regions
for differential usage (a ”hybrid” analysis). This parameter can be used to limit analyses specifically to
either splice junction loci or exonic regions.

nCores : The number of cores to use (note: this will only work when package BiocParallel is used on a
Linux-based machine. Unfortunately R cannot run multiple threads on windows at this time).

meanCountTestableThreshold : The minimum normalized-read-count threshold used for filtering out low-
coverage features.

test.formula0 : The model formula used for the null hypothesis in the ANODEV analysis.
test.formula1 : The model formula used for the alternative hypothesis in the ANODEV analysis.
effect.formula : The model formula used for estimating the effect size and parameter estimates.
geneLevel.formula : The model formula used for estimating the gene-level expression.
gene.names : A text file or data.frame that contains two columns: first the geneID then the gene name.

Many annotations do not use common gene symbols as the primary identifier for genes. However, full
ensembl ID’s (for example) are not suited to easy recognition or conversation. Thus, you can use this
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additional parameter to tell JunctionSeq to use the common gene names in tables and plots (while still
using the geneIDs for identification purposes).

A full description of all these options and how they are used can be accessed using the command:

help(runJunctionSeqAnalyses);

5.1.1 Exporting size factors (optional)

As part of the analysis pipeline, JunctionSeq produces size factors which can be used to ”normalize”
all samples’ read counts to a common scale. These can be accessed using the command:

writeSizeFactors(jscs, file = "sizeFactors.txt");

## sample.ID size.factor sizeFactors.byGenes sizeFactors.byCountbins

## SAMP1 SAMP1 1.033 1.033 1.029

## SAMP2 SAMP2 0.977 0.977 0.997

## SAMP3 SAMP3 0.976 0.976 0.941

## SAMP4 SAMP4 0.950 0.950 1.009

## SAMP5 SAMP5 1.141 1.141 1.189

## SAMP6 SAMP6 0.985 0.985 0.933

These size factors are sometimes needed for various purposes, such as the generation of summary wiggle
tracks (see 6.3).

5.2 Advanced Analysis Pipeline

Some advanced users may need to deviate from the standard analysis pipeline. They may want to use
different size factors, apply multiple different models without having to reload the data from file each
time, or use other advanced features offered by JunctionSeq.

First you must create a ”design” data frame:

design <- data.frame(condition = factor(decoder$group.ID));

Note: the experimental condition variable MUST be named ”condition”.

Just to demonstrate one advanced feature: We can include the gene names file. This text file contains
two columns: first the geneID then the gene name. Many annotations do not use common gene
symbols as the primary identifier for genes. However, full ensembl ID’s (for example) are not suited to
easy recognition or conversation. Thus, you can use this additional parameter to tell JunctionSeq to use
the common gene names in tables and plots (while still using the geneIDs for identification purposes).

geneID.to.symbol.file <- system.file(

"extdata/annoFiles/ensid.2.symbol.txt",

package="JctSeqData",

mustWork=TRUE);
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Next, the data must be loaded into a JunctionSeqCountSet:

jscs = readJunctionSeqCounts(countfiles = countFiles,

samplenames = decoder$sample.ID,

design = design,

flat.gff.file = gff.file,

gene.names = geneID.to.symbol.file

);

Next, size factors must be created and loaded into the dataset:

#Generate the size factors and load them into the JunctionSeqCountSet:

jscs <- estimateJunctionSeqSizeFactors(jscs);

Next, we generate test-specific dispersion estimates:

jscs <- estimateJunctionSeqDispersions(jscs, nCores = 1);

Next, we fit these observed dispersions to a regression to create fitted dispersions:

jscs <- fitJunctionSeqDispersionFunction(jscs);

Next, we perform the hypothesis tests for differential splice junction usage:

jscs <- testForDiffUsage(jscs, nCores = 1);

Finally, we calculate effect sizes and parameter estimates:

jscs <- estimateEffectSizes( jscs, nCores = 1);

All these steps simply duplicates the behavior of the runJunctionSeqAnalyses function. However, far
more options are available when run in this way. Full documentation of the various options for these
commands:

help(readJunctionSeqCounts);

help(estimateJunctionSeqSizeFactors);

help(estimateJunctionSeqDispersions);

help(fitJunctionSeqDispersionFunction);

help(testForDiffUsage);

help(estimateEffectSizes);

5.3 Extracting test results

Once the differential splice junction usage analysis has been run, the results, including model fits, fold
changes, p-values, and coverage estimates can all be written to file using the command:

writeCompleteResults(jscs,

outfile.prefix="./test",

save.jscs = TRUE
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);

This produces a series of output files. The main results files are allGenes.results.txt.gz and sigGenes.results.txt.gz.
The former includes rows for all genes, whereas the latter includes only genes that have one or more
statistically significant differentially used splice junction locus. The columns for both are:

• featureID: The unique ID of the exon or splice junction locus.
• geneID: The unique ID of the gene.
• countbinID: The sub-ID of the exon or splice junction locus.
• testable: Whether the locus has sufficient coverage to test.
• dispBeforeSharing : The locus-specific dispersion estimate.
• dispFitted : The the fitted dispersion.
• dispersion: The final dispersion used for the hypothesis tests.
• pvalue: The raw p-value of the test for differential usage.
• padjust: The adjusted p-value, adjusted using the ”FDR” method.
• chr, start, end, strand : The (1-based) positon of the exonic region or splice junction.
• transcripts: The list of known transcripts that contain this splice junction. Novel splice junctions

will be listed as ”UNKNOWN TX”.
• featureType: The type of the feature (exonic region, novel splice junction or known splice junction)
• baseMean: The base mean normalized coverage counts for the locus across all conditions.
• HtestCoef(A/B): The interaction coefficient from the alternate hypothesis model fit used in the

hypothesis tests. This is generally not used for anything but may be useful for certain testing
diagnostics.
• log2FC(A/B): The estimated log2 fold change found using the effect-size model fit. This is

calculated using a different model than the model used for the hypothesis tests.
• log2FCvst(A/B): The estimated log2 fold change between the vst-transformed estimates. This

can be superior to simple fold-change estimates for the purposes of ranking effects by their effect
size. Simple fold-change estimates can be deceptively high when expression levels are low.
• expr A: The estimate for the mean normalized counts of the feature in group A.
• expr B : The estimate for the mean normalized counts of the feature in group B.
• geneWisePadj : The gene-level q-value, for the hypothesis that one or more features belonging

to this gene are differentially used. This value will be the same for all features belonging to the
same gene. In many studies this may actually be what you want to report.

Note: If the biological condition has more than 2 categories then there will be multiple columns for the
HtestCoef and log2FC. Each group will be compared with the reference group. If the supplied condition
variable is supplied as a factor then the first ”level” will be used as the reference group.

There will also be a file labelled ”sigGenes.genewiseResults.txt.gz”, which includes summary information
for all statistically-significant genes:

• geneID: The unique ID of the gene.
• chr, start, end, strand : The (1-based) positon of the gene.
• baseMean: The base mean normalized coverage counts for the gene across all conditions.
• geneWisePadj : The gene-level q-value, for the hypothesis that one or more features belonging

to this gene are differentially used. This value will be the same for all features belonging to the
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same gene.
• mostSigID: The sub-feature ID for the most significant exon or splice-junction belonging to the

gene.
• mostSigPadjust: The adjusted p-value for the most significant exon or splice-junction belonging

to the gene.
• numExons: The number of (known) non-overlapping exonic regions belonging to the gene.
• numKnown: The number of known splice junctions belonging to the gene.
• numNovel : The number of novel splice junctions belonging to the gene.
• exonsSig : The number of statistically significant non-overlapping exonic regions belonging to the

gene.
• knownSig : The number of statistically significant known splice junctions belonging to the gene.
• novelSig : The number of statistically significant novel splice junctions belonging to the gene.
• numFeatures: The columns numExons, numKnown, and numNovel, separated by slashes.
• numSig : The columns exonsSig, knownSig, and novelSig, separated by slashes.

The writeCompleteResults function also writes a file: allGenes.expression.data.txt.gz. This file contains
the raw counts, normalized counts, expression-level estimates by condition value (as normalized read
counts), and relative expression estimates by condition value. These are the same values that are plotted
in Section 6.2.

Finally, this function also produces splice junction track files suitable for use with the UCSC genome
browser or the IGV genome browser. These files are described in detail in Section 6.3.3. If the save.jscs
parameter is set to TRUE, then it will also save a binary representation of the JunctionSeqCountSet
object.
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6 Visualization and Interpretation

The interpretation of the results is almost as important as the actual analysis itself. Differential splice
junction usage is an observed phenomenon, not an actual defined biological process. It can be caused
by a number of underlying regulatory processes including alternative start sites, alternative end sites,
transcript truncation, mRNA destabilization, alternative splicing, or mRNA editing. Depending on the
quality of the transcript annotation, apparent differential splice junction usage can even be caused by
simple gene-level differential expression, if (for example) a known gene and an unannotated gene overlap
with one another but are independently regulated.

Many of these processes can be difficult to discern and differentiate. Therefore, it is imperative that
the results generated by JunctionSeq be made as easy to interpret as possible.

JunctionSeq, especially when used in conjunction with the QoRTs [4] software package, contains a
number of tools for visualizing the results and the patterns of expression observed in the dataset.

A comprehensive battery of plots, along with a set of html files for easy navigation, can be generated
with the command:

buildAllPlots(jscs=jscs,

outfile.prefix = "./plots/",

use.plotting.device = "png",

FDR.threshold = 0.01

);

This produces a number of sub-directories, and includes analysis-wide summary plots along with plots
for every gene with one or more statistically significant exons or splice junctions. Alternatively, plots
for a manually-specified gene list can be generated using the gene.list parameter. Other parameters
include:

• colorRed.FDR.threshold: The adjusted-p-value threshold to use to determine when features should
be colored as significant.

• plot.gene.level.expression: If FALSE, do not include the gene-level expression plot on the right
side.

• sequencing.type: ”paired-end” or ”single-end”. This option is purely cosmetic, and simply determines
whether the y-axes will be labelled as ”read-pairs” or ”reads”.

• par.cex, anno.cex.text, anno.cex.axis, anno.cex.main: The character expansions for various
purposes. par.cex determines the cex value passed to par, which expands all other text, margins, etc.
The other three parameters determine the size of text for the various labels.

• plot.lwd, axes.lwd, anno.lwd, gene.lwd: Line width variables for various lines.
• base.plot.height, base.plot.width, base.plot.units: The ”base” width and height for all

plots. Plots with transcripts drawn will be expanded vertically to fit the transcripts, plots with a large
number of exons or junctions will be likewise be expanded horizontally. This functionality can be deacti-
vated by setting autoscale.height.to.fit.TX.annotation to FALSE and autoscale.width.to.fit.bins

to Inf.
• writeHTMLresults: If TRUE, create a navigable HTML page (default: TRUE).
• html.compare.results.list: If you have multiple studies that you want to directly compare, you

can use this parameter to allow cross-linking between analyses from the html navigation pages. The
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results from each analysis must be placed in the same parent directory, and this parameter must be
set to a named list of subdirectory names, corresponding to the outfile.prefix for each run of
buildAllPlots. In general you should also set the gene.list parameter, or else cross-links will fail
if a gene is significant in one analysis but not the other. This parameter can also be used to cross-link
different runs of buildAllPlots on the same dataset, to easily compare different parameter settings.
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6.1 Summary Plots

JunctionSeq provides functions for two basic summary plots, used to display experiment-wide results.
The first is the dispersion plot, which displays the dispersion estimates (y-axis) as a function of the base
mean normalized counts (x-axis). The test-specific dispersions are displayed as blue density shading,
and the ”fitted” dispersion is displayed as a red line. JunctionSeq can also produce an ”MA” plot,
which displays the fold change(”M”) on the y-axis as a function of the overall mean normalized counts
(”A”) on the x-axis.

These plots can be generated with the command:

plotDispEsts(jscs);

plotMA(jscs, FDR.threshold=0.05);

Figure 1: Summary Plots
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6.2 Gene Profile plots

Generally it is desired to print plots for all genes that have one or more splice junctions with statistically
significant differential splice junction usage. By default, JunctionSeq uses an FDR-adjusted p-value
threshold of 0.01.

For each selected gene, the buildAllPlots function will yield 6 plots:

• geneID-expr.png : Estimates of average coverage count over each feature, for each value of the biological
condition. See Section 6.2.1.

• geneID-expr-TX.png : as above, but with the transcript annotation displayed.
• geneID-normCts.png : Normalized read counts for each sample, colored by biological condition. See

Section 6.2.2.
• geneID-normCts-TX.png : as above, but with the transcript annotation displayed.
• geneID-rExpr.png : Expression levels relative to the overall gene-level expression. See Section 6.2.3.
• geneID-rExpr-TX.png : as above, but with the transcript annotation displayed.

Note: If the writeHTMLresults option is TRUE, JunctionSeq will also generate an html index file for
easy browsing of these output files. By default, if this option is not deactivated, the ’geneID’ will be
replaced with a number to reduce the length of the filename (some web servers will have issues if image
file names are too long). This behavior can be turned off by setting the minimalImageFilenames

option to FALSE.
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6.2.1 Coverage/Expression Profile Plots

Figure 2 displays the model estimates of the mean normalized exonic-region/splice-junction coverage
counts for each biological condition (in this example: DAY vs NIGHT). Note that these values are not
equal to the simple mean normalized read counts across all samples. Rather, these estimates are derived
from the GLM parameter estimates (via linear contrasts).

Figure 2: Feature coverage by biological condition. The plot includes 3 major frames. The top-left frame graphs
the expression levels for each tested splice junction (aka the model estimates for the normalized read-pair counts). On
the top-right is a box containing the estimates for the overall expression of the gene as a whole (plotted on a distinct
y-axis scale). Junctions or exonic regions that are statisically significant are marked with vertical pink lines, and the
significant p-values are displayed along the top of the plot. The bottom frame is a line drawing of the known exons for
the given gene, as well as all splice junction. Known junctions are drawn with solid lines, novel junctions are dashed, and
”untestable” junctions are drawn in grey. Additionally, statistically significant loci are colored pink. Between the two
frames a set of lines connect the gene drawing to the expression plots.
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There are a few things to note about this plot:

• The y-axis is log-transformed, except for the area between 0 and 1 which is plotted on a simple
linear scale.
• In the line drawing at the bottom, the exons and introns are not drawn to a common scale.

The exons are enlarged to improve readability. Each exon or intron is rescaled proportionately
to the square-root of their width, then the exons are scaled up to take up 30 percent of the
horizontal space. This can be adjusted via the ”exon.rescale.factor” parameter (the default is
0.3), or turned off entirely by setting this parameter to -1. The proportionality function can also
be changed using the exonRescaleFunction parameter. For mammalian genomes at least, we
have found square-root-proportional function to be a good trade-off between making sure that
features are distinct while still being able to visually identify which features are larger or smaller.
• Note that the rightmost junction (J005) is marked as significantly differentially used, even though

it is NOT differentially expressed. This is because JunctionSeq does not test for simple differential
expression. It tests for differential splice junction coverage relative to gene-wide expression.
Therefore, if (as in this case) the gene as a whole is strongly differentially expressed, then a splice
junction that is NOT differentially expressed is the one that is being differentially used.
• Similarly the second junction from the right (N008), which is novel, is differentially used in the

opposite way: while the gene itself is somewhat differentially expressed (at a fold change of
roughly 3-4x overall), this particular junction has a massive differential, far beyond that found in
the gene as a whole (at 45x fold change). Thus, it is being differentially used.
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Figure 3 displays the same information found in Figure 2, except with all known transcripts plotted
beneath the main plot.

Figure 3: Feature coverage by biological condition, with annotated transcripts displayed. This plot is identical to the
previous, except all annotated transcripts are displayed below the standard plot.
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6.2.2 Normalized Count Plots

Figure 4: Normalized counts for each sample

Figure 4 displays the normalized coverage counts for each sample over each splice junction or exonic
region. This will be identical to the counts displayed in Section 6.4.1 except that each read count will
be normalized by the sample size factors so that the samples can be compared directly.
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6.2.3 Relative Expression Plots

Figure 5: Relative splice junction coverage by biological condition.

Figure 5 displays the ”relative” coverage for each splice junction or exonic region, relative to gene-wide
expression (which is itself plotted in the right panel).

JunctionSeq is designed to detect differential expression even in the presence of gene-wide, multi-
transcript differential expression. However it can be difficult to visually assess differential usage on
differentially exprssed genes. This plot displays the coverage relative to the gene-wide expression.
These estimates are derived from the GLM parameter estimates (via linear contrasts). The reported
”fold changes” are ratios of these relative expression estimates.
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6.3 Generating Genome Browser Tracks

Once potential genes of interest have been identified via JunctionSeq, it can be helpful to examine these
genes manually on a genome browser (such as the UCSC genome browser or the IGV browser). This
can assist in the identification of potential sources of artifacts or errors (such as repetitive regions or
the presence of unannotated overlapping features) that may underlie false discoveries. To this end, the
QoRTs [4] and JunctionSeq software packages include a number of tools designed to assist in generating
simple and powerful browser tracks designed to aid in the interpretation of the data and results.

Figure 6: An example of the browser tracks that can be generated using QoRTs and JunctionSeq. The top two
”MultiWig” tracks display the mean normalized coverage for 100-base-pair windows across the genome, by biological
group (DAY or NIGHT). The top track displays the coverage across the forward (genomic) strand, and the second track
displays the coverage across the reverse strand. In both tracks the mean normalized coverage depth across the three
NIGHT samples is displayed in blue and the mean normalized coverage depth across the three DAY samples is displayed
in red. The overlap is colored black. The third track displays the mean normalized coverage across all testable splice
junction loci for each biological condition. Each junction is labelled with the condition ID (DAY or NIGHT), the splice
junction ID (J for annotated, N for novel), followed by the mean normalized coverage across that junction and biological
condition, in parentheses. Once again, DAY samples are displayed in red and NIGHT samples are displayed in blue. The
final bottom track displays the splice junctions that exhibit statistically significant differential usage. Each junction is
labelled with the splice junction ID and the p-value. These images were produced by the UCSC genome browser, and a
browser session containing these tracks in this configuration is available online here

Advanced tracks like those displayed in Figure 6 can be used to visualize the data and can aid in de-
termining the form of regulatory activity that underlies any apparent differential splice junction usage.

https://genome.ucsc.edu/
https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=stephen.hartley&hgS_otherUserSessionName=JunctionSeqExample_Full
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The wiggle files needed to produce such tracks can be generated via QoRTs and JunctionSeq. Con-
figuring the multi-colored ”MultiWig” tracks in the UCSC browser require the use of track hubs, the
configuration of which is beyond the scope of this manual. More information on track hubs can be
found on the UCSC browser documentation.

6.3.1 Wiggle Tracks

Both IGV and the UCSC browser can display ”wiggle” tracks, which can be used to display coverage
depth across the genome. QoRTs [4] includes functions for generating these wiggle files for each
sample/replicate, merging across technical replicates, and computing mean normalized coverages across
multiple samples for each biological condition.

Figure 7: Two ”wiggle” tracks displaying the forward- and reverse-strand coverage for replicate SHAM1 RG1. These
tracks display the read-pair mean coverage depth for each 100-base-pair window across the whole genome. The reverse
strand is displayed as negative values. These tracks have been loaded into the UCSC genome browser, and a browser
session containing these tracks in this configuration is available online here

Figure 7 shows an example pair of ”wiggle” files produced by QoRTs for replicate SHAM1 RG1. QoRTs
includes two ways to generate such wiggle files from a sam/bam file:

The first way is to create these files at the same time as the read counts. To do this, simply add the
”–chromSizes” parameter like so:

java -jar /path/to/jarfile/QoRTs.jar \

--stranded \

--chromSizes inputData/annoFiles/chrom.sizes \

inputData/bamFiles/SHAM1_RG1.chr14.bam \

inputData/annoFiles/rn4.anno.chr14.gtf.gz \

outputData/qortsData/SHAM1_RG1/

By default this will cause QoRTs to generate the wiggle file(s) for this sample. Note that if the
–runFunctions parameter is being included, you must also include in the function list the function

https://genome.ucsc.edu/goldenPath/help/hgTrackHubHelp.html
https://genome.ucsc.edu/goldenPath/help/hgTrackHubHelp.html
https://genome.ucsc.edu/
https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=stephen.hartley&hgS_otherUserSessionName=JunctionSeqExample_SHAM1_RG1wiggle
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”makeWiggles”. Note that if the data is stranded (as in the example dataset), then two wiggle files
will be generated, one for each strand.

Alternatively, the wiggle file(s) can be generated manually using the command:

java -jar /path/to/jarfile/QoRTs.jar \

bamToWiggle \

--stranded \

--negativeReverseStrand \

--includeTrackDefLine \

inputData/bamFiles/SHAM1_RG1.chr14.bam \

SHAM1_RG1 \

inputData/annoFiles/rn4.chr14.chrom.sizes \

outputData/qortsData/SHAM1_RG1/QC.wiggle

If this step is performed prior to merging technical replicates (see Section 4.2), and if the standard file-
name conventions are followed (as displayed in the examples above), then the technical-replicate wiggle
files will automatically be merged along with the other count information in by the QoRTs technical
replicate merge utility.
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6.3.2 Merging Wiggle Tracks

Figure 8: Two ”wiggle” tracks displaying the forward- and reverse-strand coverage for the three ”DAY” samples. These
tracks display the mean normalized read-pair coverage depth for each 100-base-pair window across the whole genome.
The reverse strand is displayed as negative values. These tracks have been loaded into the UCSC genome browser, and
a browser session containing these tracks in this configuration is available online here.

QoRTs [4] can generate wiggle files containing mean normalized coverage counts across a group of
samples, as shown in Figure 8. These can be generated using the command:

java -jar /path/to/jarfile/QoRTs.jar \

mergeWig \

--calcMean \

--trackTitle DAY_FWD \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.wiggle.fwd.wig.gz \

--sizeFactorFile sizeFactors.GEO.txt \

--sampleList SHAM1,SHAM2,SHAM3 \

outputData/DAY.fwd.wig.gz

The ”–sampleList” parameter can also accept data from standard input (”-”), or a text file (which must
end ”.txt”) containing a list of sample ID’s, one on each line.

https://genome.ucsc.edu/
https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=stephen.hartley&hgS_otherUserSessionName=JunctionSeqExample_DAYwiggle
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6.3.3 Splice Junction Tracks

Figure 9: The first track displays the mean-normalized coverage for each splice junction for DAY (blue) and NIGHT
(red) conditions. Each splice junction is marked with the condition ID (DAY or NIGHT), followed by the splice junction
ID (J for annotated, N for novel), followed by the mean normalized read count in parentheses. The second track displays
the splice junctions that display statistically-significant differential usage, along with the junction ID and the adjusted
p-value in parentheses (rounded to 4 digits). This track has been loaded into the UCSC genome browser, and a browser
session containing these tracks in this configuration is available online here.

Splice Junction Tracks are generated automatically by the writeCompleteResults function, assuming
the write.bedTracks parameter has not been set to FALSE. By default, five bed tracks are generated:

• allGenes.junctionCoverage.bed.gz : A track that lists the mean normalized read (or read-pair) coverage
for each splice junction and for each biological condition. These are not equal to the actual mean
normalized counts, rather these are derived from the parameter estimates.

• sigGenes.junctionCoverage.bed.gz : Identical to the previous, but only for genes with statistically signif-
icant features.

• allGenes.exonCoverage.bed.gz : Similar to the Junction Coverage plots, but displaying coverage across
exonic regions.

• sigGenes.exonCoverage.bed.gz : Identical to the previous, but only for genes with statistically significant
features.

• sigGenes.pvalues.bed.gz : This track displays all statistically-significant loci (both exonic regions and
splice junctions), with the adjusted p-value listed in parentheses.

These five files can be generated via the writeCompleteResults command (see Section 5.3)

Individual-sample or individual-replicate junction coverage tracks can also be generated via QoRTs. See
the QoRTs [4] documentation available online.

https://genome.ucsc.edu/
https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=stephen.hartley&hgS_otherUserSessionName=JunctionSeqExample_BEDs
http://hartleys.github.io/QoRTs/index.html
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6.4 Additional Plotting Options

6.4.1 Raw Count Plots

Raw expression plots can be added using the command:

buildAllPlots(jscs=jscs,

outfile.prefix = "./plots2/",

use.plotting.device = "png",

FDR.threshold = 0.01,

expr.plot = FALSE, normCounts.plot = FALSE,

rExpr.plot = FALSE, rawCounts.plot = TRUE

);

Figure 10: Raw counts for each sample

Figure 10 displays the raw (un-normalized) coverage counts for each sample over each splice junction
or exonic region. This is equal to the number of reads (or read-pairs, for paired-end data) that bridge
each junction. Note that these counts are not normalized, and are generally not directly comparable.
Note that by default this plot is NOT generated by buildAllPlots. Generation of these plots must
be turned on by adding the parameter: ”rawCounts.plot=TRUE”.
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6.4.2 Additional Optional Parameters

By setting the plot.exon.results and plot.junction.results parameters to FALSE, we can ex-
clude exons or junctions from the plots, respectively. There are numerous other options that can be
used to generate plots either individually or in groups.

Just a few examples:

#Make a battery of exon-only plots for one gene only:

buildAllPlotsForGene(jscs=jscs, geneID = "ENSRNOG00000009281",

outfile.prefix = "./plots/",

use.plotting.device = "png",

colorRed.FDR.threshold = 0.01,

#Limit plotting to exons only:

plot.junction.results = FALSE,

#Change the fill color of significant exons:

colorList = list(SIG.FEATURE.FILL.COLOR = "red"),

);

#Make a set of Junction-Only Plots for a specific list of interesting genes:

buildAllPlots(jscs=jscs,

gene.list = c("ENSRNOG00000009281"),

outfile.prefix = "./plotsJCT/",

use.plotting.device = "png",

FDR.threshold = 0.01,

#Do not graph exonic regions:

plot.exon.results = FALSE,

);

See Figure 11 and Figure 12.

For more information, use the help documentation:

help(buildAllPlots);

help(buildAllPlotsForGene);

help(plotJunctionSeqResultsForGene);
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Figure 11: Exon expression plots. Note the altered fill color of the significant exon.
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Figure 12: Splice Junction expression plots.

7 Statistical Methodology

The statistical methods are based on those described in (S. Anders et al., 2012), as implemented in the
DEXSeq Bioconductor package. However these methods have been expanded, adapted, and altered in
a number of ways in order to accurately and efficiently test for differential junction usage.
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7.1 Preliminary Definitions

The methods used to generate exonic segment counting bins is idential to the methods used in DEXSeq.
Briefly: for each gene the set of all transcripts are combined and exons are broken up into mutually-
exclusive sub-segments.

Using the transcript annotation we generate a list of ”features” for each gene. These features include
all the mutually-exclusive exonic segments, along with all the splice junctions (both annotated splice
junctions and novel splice junctions that pass the coverage thresholds).

For each sample i and feature j on gene g we define the counts:

kFeatureji = # reads/pairs covering feature j in sample i (1a)

and

kGenegi = # reads/pairs covering gene g in sample i (1b)

Reads are counted towards an exonic segment feature if they overlap with any portion of that exonic
segment. Reads are counted towards a splice junction feature if they map across the splice junction.
Paired-end reads in which the two mates lie on opposite sides of a junction are NOT counted, as the
specific splice junction between them cannot be reliably identified.

The count kGenegi is calculated using the same methods already in general use for gene-level differential
expression analysis (using the ”union” rule). Briefly: any reads or read-pairs that cover any part of any
of the exons of any one unique gene are counted towards that gene. Purely-intronic reads are ignored.

It should be noted that the QoRTs script that produces the exonic segments differs slightly in its output
from the DEXSeq script prepare_annotation.py. This is because the DEXSeq script uses unordered
data structures and thus the order in which elements appear is not defined. Additionally, for unstranded
data QoRTs version operates in a slightly-different ”unstranded” mode, in which genes that overlap
across opposite strands are counted as overlapping.

7.2 Model Framework

Each feature is fitted to a separate statistical model. For a given feature j located on gene g, we define
two counting bins: covering the feature j, and covering the gene g, but NOT covering the feature j.
Thus we define y1i and y0i for each sample i ∈ {1, 2, . . . , n}:

y1i = kFeatureji (2a)

and

y0i = kGenegi − kFeatureji (2b)

Thus, y1i is simply equal to the number of reads covering the feature in sample i, and y0i is equal to
the number of reads covering the gene but NOT covering the feature.
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Note that while JunctionSeq generally uses methods similar to those used by DEXSeq, this framework
differs from that used by DEXSeq on exon counting bins.

In the framework used by DEXSeq, the feature count (i.e. kFeatureji ) is compared with the sum of all other
feature counts for the given gene. This means that some reads may be counted more than once if they
span multiple features. When reads are relatively short (as was typical when DEXSeq was designed)
this effect is minimal, but it becomes more problematic as reads become longer. This problem is also
exacerbated in genes with a large number of features in close succession. Under our framework, no
read-pair is ever counted more than once in a given model.

As in DEXSeq, we assume that the count ybi is a realization of a negative-binomial random variable
Ybi:

Ybi ∼ NegBin(mean = siµbi, dispersion = αj) (3)

Where αj is the dispersion parameter for the current splice junction j, si is the normalization size factor
for each sample i, and µbi is the mean for sample i and counting-bin b. Size factors si are estimated
using the ”geometric” normalization method, which is the default method used by DESeq, DESeq2,
DEXSeq, and CuffDiff. Unlike with DEXSeq, these size factors are calculated using the gene-level counts
kGenegi , and thus does not implicitly assign excess weight to genes with a large number of features.

7.3 Dispersion Estimation

In many high-throughput sequencing experiments there are too few replicates to directly estimate the
locus-specific dispersion term αj for each splice junction j. This problem is well-characterized, and a
number of different solutions have been proposed, the vast majority of which involve sharing information
between loci across the genome. By default JunctionSeq uses the exact same method for dispersion
estimation used by the more recent versions of the DEXSeq package (v1.14.0 and above) and by the
DESeq2 package. This method is described at length in the DESeq2 methods paper [2].

Briefly: ”feature-specific” estimates of dispersion are generated via a Cox-Reid adjusted-log-likelihood-
based method, and these dispersions are fitted to a parametric trend. These ”fitted” and ”feature-
specific” estimates of dispersion are combined, and we use the maximum a posteriori estimate as the
final dispersion for each feature.

It is currently unclear whether splice junction loci and exonic segment loci can be reasonably expected
to follow the same trend for dispersion. By default JunctionSeq fits the two types of features separately.
For most datasets the difference appears to be negligible.

JunctionSeq offers a number of alternatives to this methodology, and can calculate dispersions using
the methods of older versios of DEXSeq (v1.8.0 and earlier). See Section 8 for more information.

7.4 Hypothesis Testing

Other than our use of overall-gene counts and our use of splice junction counts, the methods used in
the hypothesis test are identical to those used by the more recent versions of DEXSeq (v1.12.0 and
higher).
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”Differential usage” is not in and of itself a biological process. Rather, it is a symptom of transcript-
specific differential regulation, which can take many forms.

Put simply: we are attempting to test whether the fold-change for the biological condition across feature
j is the same as the fold-change for the biological condition across the gene g as a whole.

This can occur both with and without overall gene-level differential expression. Some features marked
as ”differentially used” might show a strong differential and be part of a gene that is not, as a whole,
differentially expressed. Alternatively, a feature might be marked as ”differentially used” if it displays
flat expression but is part of a gene that otherwise shows extreme differentials. In both cases, the
feature does not show the same pattern of expression relative to the gene as a whole. Thus, some form
of transcript-specific differential regulation must be taking place.

In statistical terms: we are attempting to detect ”interaction” between the counting-bin variable B and
the experimental-condition variable C. Thus, two models are fitted to the mean µbi:

H0 : log(µbi) = β + βBb + βSi (4a)

H1 : log(µbi) = β + βBb + βSi + βCBρib (4b)

Where ρj is the biological condition (eg case/control status) of sample j.

Note that the bin-condition interaction term (βCBρib ) is included, but the condition main-effect term (βCρi)
is absent. This term can be omitted is because JunctionSeq is not designed to detect or assess gene-
level differential expression. Thus there are two components that can be treated as ”noise”: variation
in junction-level expression and variation in gene-level expression. As proposed by Anders et. al., we
use a main-effects term for the sample ID (βSi ), which subsumes the condition main-effect term. This
subsumes both the differential trends and the random variations (noise) in the gene-level expression,
improving the power towards detecting differential interaction between the count-bin term and the
experimental-condition term.

These models can easily be extended to include confounding variables: For confounding variable τ ,
define the value of τ for each sample i as τi. Then we can define our null and alternative hypotheses:

H0 : log(µbi) = β + βBb + βSi + βTBτib (5a)

H1 : log(µbi) = β + βBb + βSi + βTBτib + βCBρib (5b)

7.5 Parameter Estimation

While the described statistical model is robust, efficient, and powerful, it cannot be used to effectively
estimate the size of the differential effect or to produce informative parameter estimates.

For the purposes of estimating expression levels and the strength of differential effects, we create an
entirely separate set of generalized linear models. For the purposes of hypothesis testing this model
would be less powerful than the model used in section 7.4, but has the advantage of producing more
intuitive and interpretable parameter estimates and fitted values. As before, we generate one set of
generalized linear models per splice junction locus:

HE : log(µbi) = β + βBb + βCρi + βCBρib (6)
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These models appear similar to the models used for parameter estimation used by DEXSeq, however
they differ considerably in that JunctionSeq models each feature separately, rather than attempting to
include all features for a given gene in a single model. This ”big model” method was originally used for
both hypothesis tests and parameter estimation in DEXSeq, but later versions only use this framework
for parameter estimation, as the ”big model” was found to be less efficient and less consistent. This
”big model” methodology also has a number of other weaknesses, including over-weighting of loci with
a large number of alternative exonic regions. Reads covering such regions will be ”double counted”
several times over as they cover multiple regions. For all intents and purposes, DEXSeq counts such
double counts as independent observations. JunctionSeq does not count any read or read-pair more
than once in any model (unless alternative methodologies are selected, see Section 8).

Using linear contrasts, the parameter estimates β̂, β̂Bb , β̂Cρi, and β̂CBρib can be used to calculate estimates
of the effect size (fold change), as well as the mean normalized coverage over the sfeature for each
condition. Additionally, the ”relative” expression levels can be calculated for each condition, which
indicates the expression of the splice junction, normalized relative to the overall gene-wide expression
(which may be differentially expressed).

This model can be extended to include confounding variables in a manner similar to how the hypothesis
test models can be extended (as in Equation 5).

HE : log(µbi) = β + βBb + βCρi + βTBτib + βCBρib (7)

8 For Advanced Users: Optional Alternative Methodologies

Since development began on JunctionSeq, a number of new methods have been developed for mod-
elling expression in RNA-Seq data. Many of these more-advanced methods have been integrated into
JunctionSeq. However, some advanced users with strong statistical backgrounds may prefer the older,
more proven methods. Thus, the legacy methods are still optionally available to JunctionSeq users.

In addition, JunctionSeq includes a number of small methodological changes relative to the DEXSeq
software upon which it was based. Any or all of these changes can be reverted as well, if desired.

All of these optional alternatives can be selected using the ”method” parameters passed to runJunctionSeqAnalyses

and its sub-functions (see Section 5.2). These optional parameters are:

Additionally, there are a number of options that alter the fundamental methodology to be used. In
general the defaults are sufficient, but advanced users may prefer alternative methods.

• method.GLM The default is ”advanced” or, equivalently, ”DESeq2-style”. This uses the disper-
sion estimation methodology used by DESeq2 and DEXSeq v1.12.0 or higher to generate the
initial (feature-specific) dispersion estimates. The alternative method is ”simpleML” or, equiv-
alently, ”DEXSeq-v1.8.0-style”. This uses a simpler maximum-likelihood-based method used by
the original DESeq and by DEXSeq v1.8.0 or less.
• method.dispFit Determines the method used to generated ”fitted” dispersion estimates. One

of ”parametric” (the default), ”local”, or ”mean”. See the DESeq2 documentation for more
information.
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• method.dispFinal Determines the method used to arrive at a ”final” dispersion estimate. The
default, ”shrink” uses the maximum a posteriori estimate, combining information from both the
fitted and feature-specific dispersion estimates. This is the method used by DESeq2 and DEXSeq
v1.12.0 and above.
• method.sizeFactors Determines the method used to calculate normalization size factors. By

default JunctionSeq uses gene-level expression. As an alternative, feature-level counts can be
used as they are in DEXSeq. In practice the difference is almost always negligible.
• method.countVectors Determines the type of count vectors to be used in the model framework.

By default JunctionSeq compares the counts for a specific feature against the counts across the
rest of the gene minus the counts for the specific feature. Alternatively, the sum of all other
features on the gene can be used, like in DEXSeq. The advantage to the default JunctionSeq
behavior is that no read or read-pair is ever counted more than once in any model. Under DEXSeq,
some reads may cover many exonic segments and thus be counted repeatedly.
• method.expressionEstimation Determines the methodology used to generate feature expres-

sion estimates and relative fold changes. By default each feature is modeled separately. Under
the default count-vector method, this means that the resultant relative fold changes will be a
measure of the relative fold change between the feature and the gene as a whole.
Alternatively, the ”feature-vs-otherFeatures” method builds a large, complex model containing all
features belonging to the gene. The coefficients for each feature are then ”balanced” using linear
contrasts weighted by the inverse of their variance. In general we have found this method to
produce very similar results but less efficiently and less consistently. Additionally, this alternative
method ”multi-counts” reads that cover more than one feature. This can result in over-weighting
of exonic regions with a large number of annotated variations in a small genomic area, as each
individual read or read-pair may be counted many times in the model.
Under the default option, no read or read-pair is ever counted more than once in a given model.
• fitDispersionsForExonsAndJunctionsSeparately When running a junctionsAndExons-type

analysis in which both exons and splice junctions are being tested simultaniously, this parameter
determines whether a single fitted dispersion model should be fitted for both exons and splice
junctions, or if separate fitted dispersions should be calculated for each. By default the dispersion
fits are run separately.

8.1 Replicating DEXSeq Analysis via JunctionSeq

Using the alternative methods options described in Section 8, it is possible to run a standard DEXSeq
analysis in JunctionSeq, replicating precisely the output that would be produced by DEXSeq on the
given dataset.

jscs.DEX <- runJunctionSeqAnalyses(sample.files = countFiles,

sample.names = decoder$sample.ID,

condition = factor(decoder$group.ID),

flat.gff.file = gff.file,

nCores = 1,

analysis.type = "exonsOnly",

method.countVectors = "sumOfAllBinsForGene",
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method.sizeFactors = "byCountbins",

method.expressionEstimation = "feature-vs-otherFeatures",

meanCountTestableThreshold = "auto",

use.multigene.aggregates = TRUE,

method.cooksFilter = TRUE,

optimizeFilteringForAlpha = 0.1

);

Output files and plotting can be generated using the normal syntax.

writeCompleteResults(jscs.DEX,

outfile.prefix="./testDEX",

save.jscs = TRUE

);

buildAllPlots(jscs=jscs.DEX,

outfile.prefix = "./plotsDEX/",

use.plotting.device = "png",

FDR.threshold = 0.01

);

Note that these will be formatted and organized in the JunctionSeq style, including the numerous
improvements to the plots, along with the browser tracks designed for use with IGC or the UCSC
genome browser.

Using the above method, we can precisely reproduce the exact analyses that would be generated by the
following commands in DEXSeq v1.12.1:

library("DEXSeq");

countFiles.dexseq <- system.file(paste0("extdata/cts/",

decoder$sample.ID,

"/QC.exonCounts.formatted.for.DEXSeq.txt.gz"),

package="JctSeqData", mustWork=TRUE);

gff.dexseq <- system.file("extdata/annoFiles/DEXSeq.flat.gff.gz",

package="JctSeqData", mustWork=TRUE);

dxd <- DEXSeqDataSetFromHTSeq(

countFiles.dexseq,

sampleData = design,

design = ~sample + exon + condition:exon,

flattenedfile = gff.dexseq

);

dxd <- estimateSizeFactors(dxd);

dxd <- estimateDispersions(dxd);

dxd <- testForDEU( dxd);

dxd <- estimateExonFoldChanges(dxd, fitExpToVar = "condition");

dxr <- results(dxd);

write.table(dxr,file="dxr.out.txt");
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These options allow standard DEXSeq methods to be applied while still providing access to the improved
output plots and tables generated by JunctionSeq.

Also note: the above analyses use the DEXSeq-formatted counts generated by QoRTs [4]. The python
scripts provided with DEXSeq produce very similar counts, but with a few very minor differences.
Firstly: some elements will appear in a different order, as DEXSeq uses unsorted collections and thus
the ordering cannot be externally reproduced. This includes the ordering of gene names in ”aggregate
genes”, and the ordering of transcripts in the flattened gff file.

Additionally, for un-stranded data DEXSeq does not ”flatten” genes that appear in overlapping regions
on opposite strands. This only affects a very small number of genes, but can produce unusual results
under these rare circumstances, and thus has not been reproduced. For un-stranded data QoRTs
aggregates any genes that overlap on opposite strands.

8.2 Advanced generalized linear modelling

Since JunctionSeq uses generalized linear modelling, the experimental condition variable need not have
only two values. Any categorical variable will do. For example:

threeLevelVariable <- c("GroupA","GroupA",

"GroupB","GroupB",

"GroupC","GroupC");

We can then carry out analysis normally:

jscs <- runJunctionSeqAnalyses(sample.files = countFiles,

sample.names = decoder$sample.ID,

condition=factor(threeLevelVariable),

flat.gff.file = gff.file,

nCores = 1,

analysis.type = "junctionsAndExons"

);

Similarly, we could theoretically add additional covariates to our analysis. Note that it is vitally important
that every class have replicates, or else JunctionSeq will be unable to accurately assess the biological
variance. As a result, any analysis involving covariates should have at least 8 samples.

#Artificially adding additional samples by using two of the samples twice:

# (Note: this is purely for use as an example. Never do this.)

countFiles.8 <- c(countFiles, countFiles[3],countFiles[6]);

#Make up some sample names, conditions, and covariates for these samples:

decoder.8 <- data.frame(

sample.names = factor(paste0("SAMP",1:8)),

condition = factor(rep(c("CASE","CTRL"),each=4)),

smokeStatus = factor(rep(c("Smoker","Nonsmoker"),4))

)

print(decoder.8);
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## sample.names condition smokeStatus

## 1 SAMP1 CASE Smoker

## 2 SAMP2 CASE Nonsmoker

## 3 SAMP3 CASE Smoker

## 4 SAMP4 CASE Nonsmoker

## 5 SAMP5 CTRL Smoker

## 6 SAMP6 CTRL Nonsmoker

## 7 SAMP7 CTRL Smoker

## 8 SAMP8 CTRL Nonsmoker

To include covariates in the analysis, you will need to modify the various model formulae used by
JunctionSeq:

jscs <- runJunctionSeqAnalyses(sample.files = countFiles.8,

sample.names = decoder.8$sample.names,

condition= decoder.8$condition,

use.covars = decoder.8[,"smokeStatus",drop=F],

flat.gff.file = gff.file,

nCores = 1,

analysis.type = "junctionsAndExons",

test.formula0 = ~ sample + countbin + smokeStatus : countbin,

test.formula1 = ~ sample + countbin + smokeStatus : countbin + condition : countbin,

effect.formula = ~ condition + smokeStatus + countbin +

smokeStatus : countbin + condition : countbin,

geneLevel.formula = ~ smokeStatus + condition

);

Warning: multivariate analysis using GLMs is an advanced task, and JunctionSeq modelling is already
fairly complex. Multivariate GLMs are intended for use by advanced users only. It’s quite easy to
misunderstand what the models are doing, to do something wrong, or to misinterpret the results.
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9 Session Information

The session information records the versions of all the packages used in the generation of the present
document.

sessionInfo()

## R version 3.3.0 (2016-05-03)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 14.04.4 LTS

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] stats4 parallel stats graphics grDevices utils datasets
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## [8] methods base

##

## other attached packages:

## [1] JctSeqData_1.2.0 JunctionSeq_1.2.4

## [3] SummarizedExperiment_1.2.2 Biobase_2.32.0

## [5] GenomicRanges_1.24.0 GenomeInfoDb_1.8.2

## [7] IRanges_2.6.0 S4Vectors_0.10.1

## [9] BiocGenerics_0.18.0 knitr_1.13

##

## loaded via a namespace (and not attached):

## [1] Rcpp_0.12.5 highr_0.6 formatR_1.4

## [4] RColorBrewer_1.1-2 plyr_1.8.3 XVector_0.12.0

## [7] tools_3.3.0 zlibbioc_1.18.0 rpart_4.1-10

## [10] statmod_1.4.24 RSQLite_1.0.0 annotate_1.50.0

## [13] evaluate_0.9 gtable_0.2.0 lattice_0.20-33

## [16] Matrix_1.2-6 DBI_0.4-1 gridExtra_2.2.1

## [19] genefilter_1.54.2 stringr_1.0.0 cluster_2.0.4

## [22] locfit_1.5-9.1 nnet_7.3-12 grid_3.3.0

## [25] data.table_1.9.6 plotrix_3.6-2 AnnotationDbi_1.34.3

## [28] XML_3.98-1.4 survival_2.39-4 BiocParallel_1.6.2

## [31] foreign_0.8-66 latticeExtra_0.6-28 Formula_1.2-1

## [34] geneplotter_1.50.0 DESeq2_1.12.3 ggplot2_2.1.0

## [37] magrittr_1.5 Hmisc_3.17-4 scales_0.4.0

## [40] splines_3.3.0 xtable_1.8-2 BiocStyle_2.0.2

## [43] colorspace_1.2-6 KernSmooth_2.23-15 stringi_1.0-1

## [46] acepack_1.3-3.3 munsell_0.4.3 chron_2.3-47

10 Legal

This software package is licensed under the GNU-GPL v3. A full copy of the GPL v3 can be found in
at inst/doc/gpl.v3.txt

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see http://www.gnu.org/licenses/.

Portions of this software (and this vignette) are ”United States Government Work” under the terms of

http://www.gnu.org/licenses/
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the United States Copyright Act. It was written as part of the authors’ official duties for the United
States Government and thus those portions cannot be copyrighted. Those portions of this software are
freely available to the public for use without a copyright notice. Restrictions cannot be placed on its
present or future use.

Although all reasonable efforts have been taken to ensure the accuracy and reliability of the software
and data, the National Human Genome Research Institute (NHGRI) and the U.S. Government does not
and cannot warrant the performance or results that may be obtained by using this software or data.
NHGRI and the U.S. Government disclaims all warranties as to performance, merchantability or fitness
for any particular purpose.
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