
An Introduction to the GenomicRanges Package

Marc Carlson Patrick Aboyoun Hervé Pagès

September 10, 2016

Contents

1 Introduction 1

2 GRanges: Genomic Ranges 2
2.1 Splitting and combining GRanges objects . 4
2.2 Subsetting GRanges objects . 4
2.3 Basic interval operations for GRanges objects . 7
2.4 Interval set operations for GRanges objects . 10

3 GRangesList: Groups of Genomic Ranges 11
3.1 Basic GRangesList accessors . 12
3.2 Combining GRangesList objects . 14
3.3 Basic interval operations for GRangesList objects . 14
3.4 Subsetting GRangesList objects . 15
3.5 Looping over GRangesList objects . 17

4 Interval overlaps involving GRanges and GRangesList objects 20

5 Session Information 21

1 Introduction

The GenomicRanges package serves as the foundation for representing genomic locations within the Biocon-
ductor project. In the Bioconductor package hierarchy, it builds upon the IRanges (infrastructure) package
and provides support for the BSgenome (infrastructure), Rsamtools (I/O), ShortRead (I/O & QA), rtrack-
layer (I/O), and GenomicFeatures (infrastructure) packages, and many other Bioconductor packages.

This package lays a foundation for genomic analysis by introducing three classes (GRanges, GPos, and
GRangesList), which are used to represent genomic ranges, genomic positions, and groups of genomic ranges.
This vignette focuses on the GRanges and GRangesList classes and their associated methods.

The GenomicRanges package is available at bioconductor.org and can be downloaded via biocLite:

> source("https://bioconductor.org/biocLite.R")

> biocLite("GenomicRanges")

> library(GenomicRanges)

1

2 GRanges: Genomic Ranges

The GRanges class represents a collection of genomic ranges that each have a single start and end location
on the genome. It can be used to store the location of genomic features such as contiguous binding sites,
transcripts, and exons. These objects can be created by using the GRanges constructor function. For example,

> gr <-

+ GRanges(seqnames =

+ Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),

+ ranges =

+ IRanges(1:10, end = 7:16, names = head(letters, 10)),

+ strand =

+ Rle(strand(c("-", "+", "*", "+", "-")),

+ c(1, 2, 2, 3, 2)),

+ score = 1:10,

+ GC = seq(1, 0, length=10))

> gr

GRanges object with 10 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 [1, 7] - | 1 1

b chr2 [2, 8] + | 2 0.888888888888889

c chr2 [3, 9] + | 3 0.777777777777778

.

h chr3 [8, 14] + | 8 0.222222222222222

i chr3 [9, 15] - | 9 0.111111111111111

j chr3 [10, 16] - | 10 0

seqinfo: 3 sequences from an unspecified genome; no seqlengths

creates a GRanges object with 10 genomic ranges. The output of the GRanges show method separates the
information into a left and right hand region that are separated by | symbols. The genomic coordinates
(seqnames, ranges, and strand) are located on the left-hand side and the metadata columns (annotation) are
located on the right. For this example, the metadata is comprised of score and GC information, but almost
anything can be stored in the metadata portion of a GRanges object.

The components of the genomic coordinates within a GRanges object can be extracted using the seq-

names, ranges, and strand accessor functions.

> seqnames(gr)

factor-Rle of length 10 with 4 runs

Lengths: 1 3 2 4

Values : chr1 chr2 chr1 chr3

Levels(3): chr1 chr2 chr3

> ranges(gr)

IRanges object with 10 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

a 1 7 7

b 2 8 7

2

c 3 9 7

.

h 8 14 7

i 9 15 7

j 10 16 7

> strand(gr)

factor-Rle of length 10 with 5 runs

Lengths: 1 2 2 3 2

Values : - + * + -

Levels(3): + - *

Stored annotations for these coordinates can be extracted as a DataFrame object using the mcols accessor.

> mcols(gr)

DataFrame with 10 rows and 2 columns

score GC

<integer> <numeric>

1 1 1.0000000

2 2 0.8888889

3 3 0.7777778

...

8 8 0.2222222

9 9 0.1111111

10 10 0.0000000

> mcols(gr)$score

[1] 1 2 3 4 5 6 7 8 9 10

Finally, the total lengths of the various sequences that the ranges are aligned to can also be stored in the
GRanges object. So if this is data from Homo sapiens, we can set the values as:

> seqlengths(gr) <- c(249250621,243199373,198022430)

And then retrieves as:

> seqlengths(gr)

chr1 chr2 chr3

249250621 243199373 198022430

Methods for accessing the length and names have also been defined.

> names(gr)

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

> length(gr)

[1] 10

3

2.1 Splitting and combining GRanges objects

GRanges objects can be devided into groups using the split method. This produces a GRangesList object,
a class that will be discussed in detail in the next section.

> sp <- split(gr, rep(1:2, each=5))

> sp

GRangesList object of length 2:

$1

GRanges object with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 [1, 7] - | 1 1

b chr2 [2, 8] + | 2 0.888888888888889

c chr2 [3, 9] + | 3 0.777777777777778

d chr2 [4, 10] * | 4 0.666666666666667

e chr1 [5, 11] * | 5 0.555555555555556

$2

GRanges object with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

f chr1 [6, 12] + | 6 0.444444444444444

g chr3 [7, 13] + | 7 0.333333333333333

h chr3 [8, 14] + | 8 0.222222222222222

i chr3 [9, 15] - | 9 0.111111111111111

j chr3 [10, 16] - | 10 0

seqinfo: 3 sequences from an unspecified genome

If you then grab the components of this list, they can also be merged by using the c and append methods.

> c(sp[[1]], sp[[2]])

GRanges object with 10 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 [1, 7] - | 1 1

b chr2 [2, 8] + | 2 0.888888888888889

c chr2 [3, 9] + | 3 0.777777777777778

.

h chr3 [8, 14] + | 8 0.222222222222222

i chr3 [9, 15] - | 9 0.111111111111111

j chr3 [10, 16] - | 10 0

seqinfo: 3 sequences from an unspecified genome

2.2 Subsetting GRanges objects

The expected subsetting operations are also available for GRanges objects.

> gr[2:3]

4

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

b chr2 [2, 8] + | 2 0.888888888888889

c chr2 [3, 9] + | 3 0.777777777777778

seqinfo: 3 sequences from an unspecified genome

A second argument to the [subset operator can be used to specify which metadata columns to extract
from the GRanges object. For example,

> gr[2:3, "GC"]

GRanges object with 2 ranges and 1 metadata column:

seqnames ranges strand | GC

<Rle> <IRanges> <Rle> | <numeric>

b chr2 [2, 8] + | 0.888888888888889

c chr2 [3, 9] + | 0.777777777777778

seqinfo: 3 sequences from an unspecified genome

You can also assign into elements of the GRanges object. Here is an example where the 2nd row of a
GRanges object is replaced with the 1st row of gr.

> singles <- split(gr, names(gr))

> grMod <- gr

> grMod[2] <- singles[[1]]

> head(grMod, n=3)

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 [1, 7] - | 1 1

b chr1 [1, 7] - | 1 1

c chr2 [3, 9] + | 3 0.777777777777778

seqinfo: 3 sequences from an unspecified genome

Here is a second example where the metadata for score from the 3rd element is replaced with the score
from the 2nd row etc.

> grMod[2,1] <- singles[[3]][,1]

> head(grMod, n=3)

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 [1, 7] - | 1 1

b chr2 [3, 9] + | 3 1

c chr2 [3, 9] + | 3 0.777777777777778

seqinfo: 3 sequences from an unspecified genome

There are also methods to repeat, reverse, or select specific portions of GRanges objects.

5

> rep(singles[[2]], times = 3)

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

b chr2 [2, 8] + | 2 0.888888888888889

b chr2 [2, 8] + | 2 0.888888888888889

b chr2 [2, 8] + | 2 0.888888888888889

seqinfo: 3 sequences from an unspecified genome

> rev(gr)

GRanges object with 10 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

j chr3 [10, 16] - | 10 0

i chr3 [9, 15] - | 9 0.111111111111111

h chr3 [8, 14] + | 8 0.222222222222222

.

c chr2 [3, 9] + | 3 0.777777777777778

b chr2 [2, 8] + | 2 0.888888888888889

a chr1 [1, 7] - | 1 1

seqinfo: 3 sequences from an unspecified genome

> head(gr,n=2)

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 [1, 7] - | 1 1

b chr2 [2, 8] + | 2 0.888888888888889

seqinfo: 3 sequences from an unspecified genome

> tail(gr,n=2)

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

i chr3 [9, 15] - | 9 0.111111111111111

j chr3 [10, 16] - | 10 0

seqinfo: 3 sequences from an unspecified genome

> window(gr, start=2,end=4)

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

b chr2 [2, 8] + | 2 0.888888888888889

c chr2 [3, 9] + | 3 0.777777777777778

6

d chr2 [4, 10] * | 4 0.666666666666667

seqinfo: 3 sequences from an unspecified genome

> gr[IRanges(start=c(2,7), end=c(3,9))]

GRanges object with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

b chr2 [2, 8] + | 2 0.888888888888889

c chr2 [3, 9] + | 3 0.777777777777778

g chr3 [7, 13] + | 7 0.333333333333333

h chr3 [8, 14] + | 8 0.222222222222222

i chr3 [9, 15] - | 9 0.111111111111111

seqinfo: 3 sequences from an unspecified genome

2.3 Basic interval operations for GRanges objects

Basic interval characteristics of GRanges objects can be extracted using the start, end, width, and range

methods.

> g <- gr[1:3]

> g <- append(g, singles[[10]])

> start(g)

[1] 1 2 3 10

> end(g)

[1] 7 8 9 16

> width(g)

[1] 7 7 7 7

> range(g)

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 7] -

[2] chr2 [2, 9] +

[3] chr3 [10, 16] -

seqinfo: 3 sequences from an unspecified genome

The GRanges class also has many methods for manipulating the intervals. For example, the flank

method can be used to recover regions flanking the set of ranges represented by the GRanges object. So to
get a GRanges object containing the ranges that include the 10 bases upstream of the ranges:

> flank(g, 10)

7

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 [8, 17] - | 1 1

b chr2 [-8, 1] + | 2 0.888888888888889

c chr2 [-7, 2] + | 3 0.777777777777778

j chr3 [17, 26] - | 10 0

seqinfo: 3 sequences from an unspecified genome

And to include the downstream bases:

> flank(g, 10, start=FALSE)

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 [-9, 0] - | 1 1

b chr2 [9, 18] + | 2 0.888888888888889

c chr2 [10, 19] + | 3 0.777777777777778

j chr3 [0, 9] - | 10 0

seqinfo: 3 sequences from an unspecified genome

Similar to flank, there are also operations to resize and shift our GRanges object. The shift method
will move the ranges by a specific number of base pairs, and the resize method will extend the ranges by
a specified width.

> shift(g, 5)

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 [6, 12] - | 1 1

b chr2 [7, 13] + | 2 0.888888888888889

c chr2 [8, 14] + | 3 0.777777777777778

j chr3 [15, 21] - | 10 0

seqinfo: 3 sequences from an unspecified genome

> resize(g, 30)

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 [-22, 7] - | 1 1

b chr2 [2, 31] + | 2 0.888888888888889

c chr2 [3, 32] + | 3 0.777777777777778

j chr3 [-13, 16] - | 10 0

seqinfo: 3 sequences from an unspecified genome

The reduce will align the ranges and merge overlapping ranges to produce a simplified set.

8

> reduce(g)

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 7] -

[2] chr2 [2, 9] +

[3] chr3 [10, 16] -

seqinfo: 3 sequences from an unspecified genome

Sometimes you may be interested in the spaces or the qualities of the spaces between the ranges rep-
resented by your GRanges object. The gaps method will help you calculate the spaces between a reduced
version of your ranges:

> gaps(g)

GRanges object with 11 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 249250621] +

[2] chr1 [8, 249250621] -

[3] chr1 [1, 249250621] *

...

[9] chr3 [1, 9] -

[10] chr3 [17, 198022430] -

[11] chr3 [1, 198022430] *

seqinfo: 3 sequences from an unspecified genome

And sometimes you also may want to know how many quantitatively unique fragments your ranges could
possibly represent. For this task there is the disjoin method.

> disjoin(g)

GRanges object with 5 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 7] -

[2] chr2 [2, 2] +

[3] chr2 [3, 8] +

[4] chr2 [9, 9] +

[5] chr3 [10, 16] -

seqinfo: 3 sequences from an unspecified genome

One of the most powerful methods for looking at GRanges objects is the coverage method. The coverage
method quantifies the degree of overlap for all the ranges in a GRanges object.

> coverage(g)

RleList of length 3

$chr1

9

integer-Rle of length 249250621 with 2 runs

Lengths: 7 249250614

Values : 1 0

$chr2

integer-Rle of length 243199373 with 5 runs

Lengths: 1 1 6 1 243199364

Values : 0 1 2 1 0

$chr3

integer-Rle of length 198022430 with 3 runs

Lengths: 9 7 198022414

Values : 0 1 0

2.4 Interval set operations for GRanges objects

There are also operations for calculating relationships between different GRanges objects. Here are some
examples for how you can calculate the union, the intersect and the asymmetric difference (using setdiff).

> g2 <- head(gr, n=2)

> union(g, g2)

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 7] -

[2] chr2 [2, 9] +

[3] chr3 [10, 16] -

seqinfo: 3 sequences from an unspecified genome

> intersect(g, g2)

GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 7] -

[2] chr2 [2, 8] +

seqinfo: 3 sequences from an unspecified genome

> setdiff(g, g2)

GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr2 [9, 9] +

[2] chr3 [10, 16] -

seqinfo: 3 sequences from an unspecified genome

In addition, there is similar set of operations that act at the level of the individual ranges within each
GRanges. These operations all begin with a “p”, which is short for parallel. A requirement for this set of
operations is that the number of elements in each GRanges object has to be the same, and that both of the
objects have to have the same seqnames and strand assignments throughout.

10

> g3 <- g[1:2]

> ranges(g3[1]) <- IRanges(start=5, end=12)

> punion(g2, g3)

GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

a chr1 [1, 12] -

b chr2 [2, 8] +

seqinfo: 3 sequences from an unspecified genome

> pintersect(g2, g3)

GRanges object with 2 ranges and 3 metadata columns:

seqnames ranges strand | score GC hit

<Rle> <IRanges> <Rle> | <integer> <numeric> <logical>

a chr1 [5, 7] - | 1 1 1

b chr2 [2, 8] + | 2 0.888888888888889 1

seqinfo: 3 sequences from an unspecified genome

> psetdiff(g2, g3)

GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

a chr1 [1, 4] -

b chr2 [2, 1] +

seqinfo: 3 sequences from an unspecified genome

For even more information on the GRanges classes be sure to consult the manual page.

> ?GRanges

3 GRangesList : Groups of Genomic Ranges

Some important genomic features, such as spliced transcripts that are are comprised of exons, are inherently
compound structures. Such a feature makes much more sense when expressed as a compound object such
as a GRangesList . Whenever genomic features consist of multiple ranges that are grouped by a parent
feature, they can be represented as a GRangesList object. Consider the simple example of the two transcript
GRangesList below created using the GRangesList constructor.

> gr1 <-

+ GRanges(seqnames = "chr2", ranges = IRanges(3, 6),

+ strand = "+", score = 5L, GC = 0.45)

> gr2 <-

+ GRanges(seqnames = c("chr1", "chr1"),

+ ranges = IRanges(c(7,13), width = 3),

+ strand = c("+", "-"), score = 3:4, GC = c(0.3, 0.5))

> grl <- GRangesList("txA" = gr1, "txB" = gr2)

> grl

11

GRangesList object of length 2:

$txA

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 [3, 6] + | 5 0.45

$txB

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

[1] chr1 [7, 9] + | 3 0.3

[2] chr1 [13, 15] - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

The show method for a GRangesList object displays it as a named list of GRanges objects, where the
names of this list are considered to be the names of the grouping feature. In the example above, the groups
of individual exon ranges are represented as separate GRanges objects which are further organized into a list
structure where each element name is a transcript name. Many other combinations of grouped and labeled
GRanges objects are possible of course, but this example is expected to be a common arrangement.

3.1 Basic GRangesList accessors

Just as with GRanges object, the components of the genomic coordinates within a GRangesList object can
be extracted using simple accessor methods. Not surprisingly, the GRangesList objects have many of the
same accessors as GRanges objects. The difference is that many of these methods return a list since the
input is now essentially a list of GRanges objects. Here are a few examples:

> seqnames(grl)

RleList of length 2

$txA

factor-Rle of length 1 with 1 run

Lengths: 1

Values : chr2

Levels(2): chr2 chr1

$txB

factor-Rle of length 2 with 1 run

Lengths: 2

Values : chr1

Levels(2): chr2 chr1

> ranges(grl)

IRangesList of length 2

$txA

IRanges object with 1 range and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 3 6 4

12

$txB

IRanges object with 2 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 7 9 3

[2] 13 15 3

> strand(grl)

RleList of length 2

$txA

factor-Rle of length 1 with 1 run

Lengths: 1

Values : +

Levels(3): + - *

$txB

factor-Rle of length 2 with 2 runs

Lengths: 1 1

Values : + -

Levels(3): + - *

The length and names methods will return the length or names of the list and the seqlengths method
will return the set of sequence lengths.

> length(grl)

[1] 2

> names(grl)

[1] "txA" "txB"

> seqlengths(grl)

chr2 chr1

NA NA

The elementNROWS method returns a list of integers corresponding to the result of calling NROW on each
individual GRanges object contained by the GRangesList . This is a faster alternative to calling lapply on
the GRangesList .

> elementNROWS(grl)

txA txB

1 2

You can also use isEmpty to test if a GRangesList object contains anything.

> isEmpty(grl)

[1] FALSE

13

Finally, in the context of a GRangesList object, the mcols method performs a similar operation to what
it does on a GRanges object. However, this metadata now refers to information at the list level instead of
the level of the individual GRanges objects.

> mcols(grl) <- c("Transcript A","Transcript B")

> mcols(grl)

DataFrame with 2 rows and 1 column

value

<character>

1 Transcript A

2 Transcript B

3.2 Combining GRangesList objects

GRangesList objects can be unlisted to combine the separate GRanges objects that they contain as an
expanded GRanges.

> ul <- unlist(grl)

You can also append values together useing append or c.

3.3 Basic interval operations for GRangesList objects

For interval operations, many of the same methods exist for GRangesList objects that exist for GRanges
objects.

> start(grl)

IntegerList of length 2

[["txA"]] 3

[["txB"]] 7 13

> end(grl)

IntegerList of length 2

[["txA"]] 6

[["txB"]] 9 15

> width(grl)

IntegerList of length 2

[["txA"]] 4

[["txB"]] 3 3

And as with GRanges objects, you can also shift all the GRanges objects in a GRangesList object, or
calculate the coverage. Both of these operations are also carried out across each GRanges list member.

> shift(grl, 20)

GRangesList object of length 2:

$txA

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

14

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 [23, 26] + | 5 0.45

$txB

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

[1] chr1 [27, 29] + | 3 0.3

[2] chr1 [33, 35] - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> coverage(grl)

RleList of length 2

$chr2

integer-Rle of length 6 with 2 runs

Lengths: 2 4

Values : 0 1

$chr1

integer-Rle of length 15 with 4 runs

Lengths: 6 3 3 3

Values : 0 1 0 1

3.4 Subsetting GRangesList objects

As you might guess, the subsetting of a GRangesList object is quite different from subsetting on a GRanges
object in that it acts as if you are subseting a list. If you try out the following you will notice that the
standard conventions have been followed.

> grl[1]

> grl[[1]]

> grl["txA"]

> grl$txB

But in addition to this, when subsetting a GRangesList , you can also pass in a second parameter (as
with a GRanges object) to again specify which of the metadata columns you wish to select.

> grl[1, "score"]

GRangesList object of length 1:

$txA

GRanges object with 1 range and 1 metadata column:

seqnames ranges strand | score

<Rle> <IRanges> <Rle> | <integer>

[1] chr2 [3, 6] + | 5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> grl["txB", "GC"]

15

GRangesList object of length 1:

$txB

GRanges object with 2 ranges and 1 metadata column:

seqnames ranges strand | GC

<Rle> <IRanges> <Rle> | <numeric>

[1] chr1 [7, 9] + | 0.3

[2] chr1 [13, 15] - | 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

The head, tail, rep, rev, and window methods all behave as you would expect them to for a list object.
For example, the elements referred to by window are now list elements instead of GRanges elements.

> rep(grl[[1]], times = 3)

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 [3, 6] + | 5 0.45

[2] chr2 [3, 6] + | 5 0.45

[3] chr2 [3, 6] + | 5 0.45

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> rev(grl)

GRangesList object of length 2:

$txB

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 [7, 9] + | 3 0.3

[2] chr1 [13, 15] - | 4 0.5

$txA

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

[1] chr2 [3, 6] + | 5 0.45

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> head(grl, n=1)

GRangesList object of length 1:

$txA

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 [3, 6] + | 5 0.45

seqinfo: 2 sequences from an unspecified genome; no seqlengths

16

> tail(grl, n=1)

GRangesList object of length 1:

$txB

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 [7, 9] + | 3 0.3

[2] chr1 [13, 15] - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> window(grl, start=1, end=1)

GRangesList object of length 1:

$txA

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 [3, 6] + | 5 0.45

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> grl[IRanges(start=2, end=2)]

GRangesList object of length 1:

$txB

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 [7, 9] + | 3 0.3

[2] chr1 [13, 15] - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

3.5 Looping over GRangesList objects

For GRangesList objects there is also a family of apply methods. These include lapply, sapply, mapply,
endoapply, mendoapply, Map, and Reduce.

The different looping methods defined for GRangesList objects are useful for returning different kinds
of results. The standard lapply and sapply behave according to convention, with the lapply method
returning a list and sapply returning a more simplified output.

> lapply(grl, length)

$txA

[1] 1

$txB

[1] 2

17

> sapply(grl, length)

txA txB

1 2

As with IRanges objects, there is also a multivariate version of sapply, called mapply, defined for
GRangesList objects. And, if you don’t want the results simplified, you can call the Map method, which does
the same things as mapply but without simplifying the output.

> grl2 <- shift(grl, 10)

> names(grl2) <- c("shiftTxA", "shiftTxB")

> mapply(c, grl, grl2)

$txA

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 [3, 6] + | 5 0.45

[2] chr2 [13, 16] + | 5 0.45

seqinfo: 2 sequences from an unspecified genome; no seqlengths

$txB

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 [7, 9] + | 3 0.3

[2] chr1 [13, 15] - | 4 0.5

[3] chr1 [17, 19] + | 3 0.3

[4] chr1 [23, 25] - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> Map(c, grl, grl2)

$txA

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 [3, 6] + | 5 0.45

[2] chr2 [13, 16] + | 5 0.45

seqinfo: 2 sequences from an unspecified genome; no seqlengths

$txB

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 [7, 9] + | 3 0.3

[2] chr1 [13, 15] - | 4 0.5

[3] chr1 [17, 19] + | 3 0.3

[4] chr1 [23, 25] - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

18

Sometimes, you may not want to get back a simplified output or a list. Sometimes you will want to get
back a modified version of the GRangesList that you originally passed in. This is conceptually similar to the
mathematical notion of an endomorphism. This is achieved using the endoapply method, which will return
the results as a GRangesList object.

> endoapply(grl,rev)

GRangesList object of length 2:

$txA

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 [3, 6] + | 5 0.45

$txB

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

[1] chr1 [13, 15] - | 4 0.5

[2] chr1 [7, 9] + | 3 0.3

seqinfo: 2 sequences from an unspecified genome; no seqlengths

And, there is also a multivariate version of the endoapply method in the form of the mendoapply method.

> mendoapply(c,grl,grl2)

GRangesList object of length 2:

$txA

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 [3, 6] + | 5 0.45

[2] chr2 [13, 16] + | 5 0.45

$txB

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | score GC

[1] chr1 [7, 9] + | 3 0.3

[2] chr1 [13, 15] - | 4 0.5

[3] chr1 [17, 19] + | 3 0.3

[4] chr1 [23, 25] - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

Finally, the Reduce method will allow the GRanges objects to be collapsed across the whole of the
GRangesList object.

> Reduce(c,grl)

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

19

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 [3, 6] + | 5 0.45

[2] chr1 [7, 9] + | 3 0.3

[3] chr1 [13, 15] - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

For even more information on the GRangesList classes be sure to consult the manual page.

> ?GRangesList

4 Interval overlaps involving GRanges and GRangesList objects

Interval overlapping is the process of comparing the ranges in two objects to determine if and when they
overlap. As such, it is perhaps the most common operation performed on GRanges and GRangesList objects.
To this end, the GenomicRanges package provides a family of interval overlap functions. The most general
of these functions is findOverlaps, which takes a query and a subject as inputs and returns a Hits object
containing the index pairings for the overlapping elements.

> mtch <- findOverlaps(gr, grl)

> as.matrix(mtch)

queryHits subjectHits

[1,] 2 1

[2,] 3 1

[3,] 4 1

[4,] 5 2

[5,] 6 2

As suggested in the sections discussing the nature of the GRanges and GRangesList classes, the index in the
above matrix of hits for a GRanges object is a single range while for a GRangesList object it is the set of
ranges that define a ”feature”.

Another function in the overlaps family is countOverlaps, which tabulates the number of overlaps for
each element in the query.

> countOverlaps(gr, grl)

a b c d e f g h i j

0 1 1 1 1 1 0 0 0 0

A third function in this family is subsetByOverlaps, which extracts the elements in the query that
overlap at least one element in the subject.

> subsetByOverlaps(gr,grl)

GRanges object with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

b chr2 [2, 8] + | 2 0.888888888888889

c chr2 [3, 9] + | 3 0.777777777777778

d chr2 [4, 10] * | 4 0.666666666666667

e chr1 [5, 11] * | 5 0.555555555555556

f chr1 [6, 12] + | 6 0.444444444444444

seqinfo: 3 sequences from an unspecified genome

20

Finally, you can use the select argument to get the index of the first overlapping element in the subject
for each element in the query.

> findOverlaps(gr, grl, select="first")

[1] NA 1 1 1 2 2 NA NA NA NA

> findOverlaps(grl, gr, select="first")

[1] 2 5

5 Session Information

All of the output in this vignette was produced under the following conditions:

> sessionInfo()

R version 3.3.1 (2016-06-21)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.4 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 parallel stats graphics grDevices utils

[7] datasets methods base

other attached packages:

[1] BSgenome.Scerevisiae.UCSC.sacCer2_1.4.0

[2] KEGGgraph_1.30.0

[3] KEGG.db_3.2.3

[4] BSgenome.Hsapiens.UCSC.hg19_1.4.0

[5] BSgenome_1.40.1

[6] rtracklayer_1.32.2

[7] edgeR_3.14.0

[8] limma_3.28.21

[9] DESeq2_1.12.4

[10] AnnotationHub_2.4.2

[11] TxDb.Athaliana.BioMart.plantsmart22_3.0.1

[12] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2

[13] TxDb.Dmelanogaster.UCSC.dm3.ensGene_3.2.2

[14] GenomicFeatures_1.24.5

[15] AnnotationDbi_1.34.4

[16] GenomicAlignments_1.8.4

[17] Rsamtools_1.24.0

[18] Biostrings_2.40.2

[19] XVector_0.12.1

[20] SummarizedExperiment_1.2.3

[21] Biobase_2.32.0

[22] pasillaBamSubset_0.10.0

21

[23] GenomicRanges_1.24.3

[24] GenomeInfoDb_1.8.7

[25] IRanges_2.6.1

[26] S4Vectors_0.10.3

[27] BiocGenerics_0.18.0

loaded via a namespace (and not attached):

[1] locfit_1.5-9.1 Rcpp_0.12.7

[3] lattice_0.20-34 digest_0.6.10

[5] mime_0.5 R6_2.1.3

[7] plyr_1.8.4 chron_2.3-47

[9] acepack_1.3-3.3 RSQLite_1.0.0

[11] httr_1.2.1 ggplot2_2.1.0

[13] BiocInstaller_1.22.3 zlibbioc_1.18.0

[15] curl_1.2 data.table_1.9.6

[17] annotate_1.50.0 rpart_4.1-10

[19] Matrix_1.2-7.1 splines_3.3.1

[21] BiocParallel_1.6.6 geneplotter_1.50.0

[23] foreign_0.8-66 RCurl_1.95-4.8

[25] biomaRt_2.28.0 munsell_0.4.3

[27] shiny_0.14 httpuv_1.3.3

[29] htmltools_0.3.5 nnet_7.3-12

[31] gridExtra_2.2.1 interactiveDisplayBase_1.10.3

[33] Hmisc_3.17-4 XML_3.98-1.4

[35] bitops_1.0-6 grid_3.3.1

[37] xtable_1.8-2 gtable_0.2.0

[39] DBI_0.5-1 scales_0.4.0

[41] graph_1.50.0 genefilter_1.54.2

[43] latticeExtra_0.6-28 Formula_1.2-1

[45] BiocStyle_2.0.3 RColorBrewer_1.1-2

[47] tools_3.3.1 survival_2.39-5

[49] colorspace_1.2-6 cluster_2.0.4

[51] VariantAnnotation_1.18.7

22

	Introduction
	GRanges: Genomic Ranges
	Splitting and combining GRanges objects
	Subsetting GRanges objects
	Basic interval operations for GRanges objects
	Interval set operations for GRanges objects

	GRangesList: Groups of Genomic Ranges
	Basic GRangesList accessors
	Combining GRangesList objects
	Basic interval operations for GRangesList objects
	Subsetting GRangesList objects
	Looping over GRangesList objects

	Interval overlaps involving GRanges and GRangesList objects
	Session Information

