
Making and Utilizing TxDb Objects

Marc Carlson, Patrick Aboyoun, Herv Pags, Seth Falcon, Martin Morgan

July 23, 2016

1 Introduction

The GenomicFeatures package retrieves and manages transcript-related features from the UCSC Genome
Bioinformatics1 and BioMart2 data resources. The package is useful for ChIP-chip, ChIP-seq, and RNA-seq
analyses.

library("GenomicFeatures")

Loading required package: BiocGenerics

Loading required package: parallel

##

Attaching package: ’BiocGenerics’

The following objects are masked from ’package:parallel’:

##

clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport,

clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply,

parSapply, parSapplyLB

The following objects are masked from ’package:stats’:

##

IQR, mad, xtabs

The following objects are masked from ’package:base’:

##

Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame,

cbind, colnames, do.call, duplicated, eval, evalq, get, grep, grepl,

intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste,

pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff,

sort, table, tapply, union, unique, unsplit

Loading required package: S4Vectors

Loading required package: stats4

##

Attaching package: ’S4Vectors’

1http://genome.ucsc.edu/
2http://www.biomart.org/

1

http://genome.ucsc.edu/
http://www.biomart.org/

Making and Utilizing TxDb Objects 2

The following objects are masked from ’package:base’:

##

colMeans, colSums, expand.grid, rowMeans, rowSums

Loading required package: IRanges

Loading required package: GenomeInfoDb

Loading required package: GenomicRanges

Loading required package: AnnotationDbi

Loading required package: Biobase

Welcome to Bioconductor

##

Vignettes contain introductory material; view with ’browseVignettes()’. To

cite Bioconductor, see ’citation("Biobase")’, and for packages

’citation("pkgname")’.

2 TxDb Objects

The GenomicFeatures package uses TxDb objects to store transcript metadata. This class maps the 5’ and
3’ untranslated regions (UTRs), protein coding sequences (CDSs) and exons for a set of mRNA transcripts
to their associated genome. TxDb objects have numerous accessors functions to allow such features to be
retrieved individually or grouped together in a way that reflects the underlying biology.

All TxDb objects are backed by a SQLite database that manages genomic locations and the relationships
between pre-processed mRNA transcripts, exons, protein coding sequences, and their related gene identifiers.

3 Retrieving Data from TxDb objects

3.1 Loading Transcript Data

There are two ways that users can load pre-existing data to generate a TxDb object. One method is to use
the loadDb method to load the object directly from an appropriate .sqlite database file.

Here we are loading a previously created TxDb object based on UCSC known gene data. This database only
contains a small subset of the possible annotations for human and is only included to demonstrate and test
the functionality of the GenomicFeatures packageas a demonstration.

samplefile <- system.file("extdata", "hg19_knownGene_sample.sqlite",

package="GenomicFeatures")

txdb <- loadDb(samplefile)

txdb

TxDb object:

Db type: TxDb

Supporting package: GenomicFeatures

Making and Utilizing TxDb Objects 3

Data source: UCSC

Genome: hg19

Organism: Homo sapiens

UCSC Table: knownGene

Resource URL: http://genome.ucsc.edu/

Type of Gene ID: Entrez Gene ID

Full dataset: no

miRBase build ID: NA

transcript_nrow: 178

exon_nrow: 620

cds_nrow: 523

Db created by: GenomicFeatures package from Bioconductor

Creation time: 2014-10-08 10:31:15 -0700 (Wed, 08 Oct 2014)

GenomicFeatures version at creation time: 1.17.21

RSQLite version at creation time: 0.11.4

DBSCHEMAVERSION: 1.0

In this case, the TxDb object has been returned by the loadDb method.

More commonly however, we expect that users will just load a TxDb annotation package like this:

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene #shorthand (for convenience)

txdb

TxDb object:

Db type: TxDb

Supporting package: GenomicFeatures

Data source: UCSC

Genome: hg19

Organism: Homo sapiens

Taxonomy ID: 9606

UCSC Table: knownGene

Resource URL: http://genome.ucsc.edu/

Type of Gene ID: Entrez Gene ID

Full dataset: yes

miRBase build ID: GRCh37

transcript_nrow: 82960

exon_nrow: 289969

cds_nrow: 237533

Db created by: GenomicFeatures package from Bioconductor

Creation time: 2015-10-07 18:11:28 +0000 (Wed, 07 Oct 2015)

GenomicFeatures version at creation time: 1.21.30

RSQLite version at creation time: 1.0.0

DBSCHEMAVERSION: 1.1

Loading the package like this will also create a TxDb object, and by default that object will have the same
name as the package itself.

Making and Utilizing TxDb Objects 4

3.2 Pre-filtering data based on Chromosomes

It is possible to filter the data that is returned from a TxDb object based on it’s chromosome. This can be a
useful way to limit the things that are returned if you are only interested in studying a handful of chromosomes.

To determine which chromosomes are currently active, use the seqlevels method. For example:

head(seqlevels(txdb))

[1] "chr1" "chr2" "chr3" "chr4" "chr5" "chr6"

Will tell you all the chromosomes that are active for the TxDb.Hsapiens.UCSC.hg19.knownGene TxDb object
(by default it will be all of them).

If you then wanted to only set Chromosome 1 to be active you could do it like this:

seqlevels(txdb) <- "chr1"

So if you ran this, then from this point on in your R session only chromosome 1 would be consulted when you
call the various retrieval methods... If you need to reset back to the original seqlevels (i.e. to the seqlevels
stored in the db), then set the seqlevels to seqlevels0(txdb).

seqlevels(txdb) <- seqlevels0(txdb)

Exercise 1
Use seqlevels to set only chromsome 15 to be active. BTW, the rest of this vignette will assume you have
succeeded at this.

Solution:

seqlevels(txdb) <- "chr15"

3.3 Retrieving data using the select method

The TxDb objects inherit from AnnotationDb objects (just as the ChipDb and OrgDb objects do). One of the
implications of this relationship is that these object ought to be used in similar ways to each other. Therefore
we have written supporting columns, keytypes, keys and select methods for TxDb objects.

These methods can be a useful way of extracting data from a TxDb object. And they are used in the same
way that they would be used to extract information about a ChipDb or an OrgDb object. Here is a simple
example of how to find the UCSC transcript names that match with a set of gene IDs.

keys <- c("100033416", "100033417", "100033420")

columns(txdb)

[1] "CDSCHROM" "CDSEND" "CDSID" "CDSNAME" "CDSSTART" "CDSSTRAND"

[7] "EXONCHROM" "EXONEND" "EXONID" "EXONNAME" "EXONRANK" "EXONSTART"

[13] "EXONSTRAND" "GENEID" "TXCHROM" "TXEND" "TXID" "TXNAME"

[19] "TXSTART" "TXSTRAND" "TXTYPE"

keytypes(txdb)

[1] "CDSID" "CDSNAME" "EXONID" "EXONNAME" "GENEID" "TXID" "TXNAME"

Making and Utilizing TxDb Objects 5

select(txdb, keys = keys, columns="TXNAME", keytype="GENEID")

’select()’ returned 1:1 mapping between keys and columns

GENEID TXNAME

1 100033416 uc001yxl.4

2 100033417 uc001yxo.3

3 100033420 uc001yxr.3

Exercise 2
For the genes in the example above, find the chromosome and strand information that will go with each of the
transcript names.

Solution:

columns(txdb)

[1] "CDSCHROM" "CDSEND" "CDSID" "CDSNAME" "CDSSTART" "CDSSTRAND"

[7] "EXONCHROM" "EXONEND" "EXONID" "EXONNAME" "EXONRANK" "EXONSTART"

[13] "EXONSTRAND" "GENEID" "TXCHROM" "TXEND" "TXID" "TXNAME"

[19] "TXSTART" "TXSTRAND" "TXTYPE"

cols <- c("TXNAME", "TXSTRAND", "TXCHROM")

select(txdb, keys=keys, columns=cols, keytype="GENEID")

’select()’ returned 1:1 mapping between keys and columns

GENEID TXNAME TXCHROM TXSTRAND

1 100033416 uc001yxl.4 chr15 +

2 100033417 uc001yxo.3 chr15 +

3 100033420 uc001yxr.3 chr15 +

3.4 Methods for returning GRanges objects

Retrieving data with select is useful, but sometimes it is more convenient to extract the result as GRanges
objects. This is often the case when you are doing counting or specialized overlap operations downstream. For
these use cases there is another family of methods available.

Perhaps the most common operations for a TxDb object is to retrieve the genomic coordinates or ranges for
exons, transcripts or coding sequences. The functions transcripts, exons, and cds return the coordinate
information as a GRanges object.

As an example, all transcripts present in a TxDb object can be obtained as follows:

GR <- transcripts(txdb)

GR[1:3]

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr15 [20362688, 20364420] + | 53552 uc001yte.1

Making and Utilizing TxDb Objects 6

[2] chr15 [20487997, 20496811] + | 53553 uc001ytf.1

[3] chr15 [20723929, 20727150] + | 53554 uc001ytj.3

seqinfo: 1 sequence from hg19 genome

The transcripts function returns a GRanges class object. You can learn a lot more about the manipulation
of these objects by reading the GenomicRanges introductory vignette. The show method for a GRanges object
will display the ranges, seqnames (a chromosome or a contig), and strand on the left side and then present
related metadata on the right side. At the bottom, the seqlengths display all the possible seqnames along with
the length of each sequence.

In addition, the transcripts function can also be used to retrieve a subset of the transcripts available such
as those on the +-strand of chromosome 1.

GR <- transcripts(txdb, filter=list(tx_chrom = "chr15", tx_strand = "+"))

length(GR)

[1] 1732

unique(strand(GR))

[1] +

Levels: + - *

The exons and cds functions can also be used in a similar fashion to retrive genomic coordinates for exons
and coding sequences.

Exercise 3
Use exons to retrieve all the exons from chromosome 15. How does the length of this compare to the value
returned by transcripts?

Solution:

EX <- exons(txdb)

EX[1:4]

GRanges object with 4 ranges and 1 metadata column:

seqnames ranges strand | exon_id

<Rle> <IRanges> <Rle> | <integer>

[1] chr15 [20362688, 20362858] + | 192986

[2] chr15 [20362943, 20363123] + | 192987

[3] chr15 [20364397, 20364420] + | 192988

[4] chr15 [20487997, 20488227] + | 192989

seqinfo: 1 sequence from hg19 genome

length(EX)

[1] 10771

length(GR)

[1] 1732

Making and Utilizing TxDb Objects 7

3.5 Working with Grouped Features

Often one is interested in how particular genomic features relate to each other, and not just their location. For
example, it might be of interest to group transcripts by gene or to group exons by transcript. Such groupings
are supported by the transcriptsBy, exonsBy, and cdsBy functions.

The following call can be used to group transcripts by genes:

GRList <- transcriptsBy(txdb, by = "gene")

length(GRList)

[1] 799

names(GRList)[10:13]

[1] "100033424" "100033425" "100033427" "100033428"

GRList[11:12]

GRangesList object of length 2:

$100033425

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr15 [25324204, 25325381] + | 53638 uc001yxw.4

##

$100033427

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

[1] chr15 [25326433, 25326526] + | 53640 uc001yxz.3

##

seqinfo: 1 sequence from hg19 genome

The transcriptsBy function returns a GRangesList class object. As with GRanges objects, you can learn more
about these objects by reading the GenomicRanges introductory vignette. The show method for a GRangesList
object will display as a list of GRanges objects. And, at the bottom the seqlengths will be displayed once for
the entire list.

For each of these three functions, there is a limited set of options that can be passed into the by argument
to allow grouping. For the transcriptsBy function, you can group by gene, exon or cds, whereas for the
exonsBy and cdsBy functions can only be grouped by transcript (tx) or gene.

So as a further example, to extract all the exons for each transcript you can call:

GRList <- exonsBy(txdb, by = "tx")

length(GRList)

[1] 3337

names(GRList)[10:13]

[1] "53561" "53562" "53563" "53564"

GRList[[12]]

Making and Utilizing TxDb Objects 8

GRanges object with 1 range and 3 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank

<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr15 [22043463, 22043502] + | 193028 <NA> 1

seqinfo: 1 sequence from hg19 genome

As you can see, the GRangesList objects returned from each function contain locations and identifiers grouped
into a list like object according to the type of feature specified in the by argument. The object returned can
then be used by functions like findOverlaps to contextualize alignments from high-throughput sequencing.

The identifiers used to label the GRanges objects depend upon the data source used to create the TxDb object.
So the list identifiers will not always be Entrez Gene IDs, as they were in the first example. Furthermore, some
data sources do not provide a unique identifier for all features. In this situation, the group label will be a
synthetic ID created by GenomicFeatures to keep the relations between features consistent in the database
this was the case in the 2nd example. Even though the results will sometimes have to come back to you as
synthetic IDs, you can still always retrieve the original IDs.

Exercise 4
Starting with the tx ids that are the names of the GRList object we just made, use select to retrieve that
matching transcript names. Remember that the list used a by argument = ”tx”, so the list is grouped by
transcript IDs.

Solution:

GRList <- exonsBy(txdb, by = "tx")

tx_ids <- names(GRList)

head(select(txdb, keys=tx_ids, columns="TXNAME", keytype="TXID"))

’select()’ returned 1:1 mapping between keys and columns

TXID TXNAME

1 53552 uc001yte.1

2 53553 uc001ytf.1

3 53554 uc001ytj.3

4 53555 uc021sex.1

5 53556 uc010tzb.1

6 53557 uc021sey.1

Finally, the order of the results in a GRangesList object can vary with the way in which things were grouped.
In most cases the grouped elements of the GRangesList object will be listed in the order that they occurred
along the chromosome. However, when exons or CDS are grouped by transcript, they will instead be grouped
according to their position along the transcript itself. This is important because alternative splicing can mean
that the order along the transcript can be different from that along the chromosome.

3.6 Predefined grouping functions

The intronsByTranscript, fiveUTRsByTranscript and threeUTRsByTranscript are convenience func-
tions that provide behavior equivalent to the grouping functions, but in prespecified form. These functions

Making and Utilizing TxDb Objects 9

return a GRangesList object grouped by transcript for introns, 5’ UTR’s, and 3’ UTR’s, respectively. Below
are examples of how you can call these methods.

length(intronsByTranscript(txdb))

[1] 3337

length(fiveUTRsByTranscript(txdb))

[1] 1825

length(threeUTRsByTranscript(txdb))

[1] 1803

3.7 Getting the actual sequence data

The GenomicFeatures package also provides provides functions for converting from ranges to actual sequence
(when paired with an appropriate BSgenome package).

library(BSgenome.Hsapiens.UCSC.hg19)

Loading required package: BSgenome

Loading required package: Biostrings

Loading required package: XVector

Loading required package: rtracklayer

tx_seqs1 <- extractTranscriptSeqs(Hsapiens, TxDb.Hsapiens.UCSC.hg19.knownGene,

use.names=TRUE)

And, once these sequences have been extracted, you can translate them into proteins with translate:

suppressWarnings(translate(tx_seqs1))

A AAStringSet instance of length 3337

width seq names

[1] 125 EDQDDEARVQYEGFRPGMYVRVEIENV...QRLLKYTPQHMHCGAAFWA*FSDSCH uc001yte.1

[2] 288 RIAS*GRAEFSSAQTSEIQRRRSSVLL...IFLFFESVFYSVYFNYGNNCFFTVTD uc001ytf.1

[3] 588 RSGQRLPEQPEAEGGDPGKQRRRAEHR...KVICERDLLENETHLYLCSIKICFSS uc001ytj.3

[4] 10 HHLNCRPQTG uc021sex.1

[5] 9 STVTLPHSQ uc010tzb.1

...

[3333] 10 QVPMRVQVGQ uc021syy.1

[3334] 306 MVTEFIFLGLSDSQELQTFLFMLFFVF...TLRNKDMKTAIRRLRKWDAHSSVKF* uc002cdf.1

[3335] 550 LAVSLFFDLFFLFMCICCLLAQTSRVL...RRQSLTPRRLHPAQLEILY*KHTVGF uc002cds.2

[3336] 496 LAVSLFFDLFFLFMCICCLLAQTSRVL...EAVTDPETFASCTARDPLLKAHCWFL uc010utv.1

[3337] 531 LAVSLFFDLFFLFMCICCLLAQTSRVL...RRQSLTPRRLHPAQLEILY*KHTVGF uc010utw.1

Exercise 5
But of course this is not a meaningful translation, because the call to extractTranscriptSeqs will have
extracted all the transcribed regions of the genome regardless of whether or not they are translated. Look

Making and Utilizing TxDb Objects 10

at the manual page for extractTranscriptSeqs and see how you can use cdsBy to only translate only the
coding regions.

Solution:

cds_seqs <- extractTranscriptSeqs(Hsapiens,

cdsBy(txdb, by="tx", use.names=TRUE))

translate(cds_seqs)

A AAStringSet instance of length 1875

width seq names

[1] 102 MYVRVEIENVPCEFVQNIDPHYPIILG...EDHNGRQRLLKYTPQHMHCGAAFWA* uc001yte.1

[2] 435 MEWKLEQSMREQALLKAQLTQLKESLK...QEHPGLGSNCCVPFFCWAWPPRRRR* uc010tzc.1

[3] 317 MKIANNTVVTEFILLGLTQSQDIQLLV...QEVKTSMKRLLSRHVVCQVDFIIRN* uc001yuc.1

[4] 314 METANYTKVTEFVLTGLSQTPEVQLVL...YTLRNKEVKAAMRKLVTKYILCKEK* uc010tzu.2

[5] 317 MKIANNTVVTEFILLGLTQSQDIQLLV...QEVKTSMKRLLSRHVVCQVDFIIRN* uc010tzv.2

...

[1871] 186 MAGGVLPLRGLRALCRVLLFLSQFCIL...RDHVHCLGRSEFKDICQQNVFLQVY* uc010ush.1

[1872] 258 MYNSKLWEASGHWQHYSENMFTFEIEK...GGKWYPVNFLKKDLWLTLTWITVVH* uc002bxl.3

[1873] 803 MAAEALAAEAVASRLERQEEDIRWLWS...ILVTSAIDKLKNLRKTRTLNAEEAF* uc002bxm.3

[1874] 306 MVTEFIFLGLSDSQELQTFLFMLFFVF...TLRNKDMKTAIRRLRKWDAHSSVKF* uc002cdf.1

[1875] 134 MSESINFSHNLGQLLSPPRCVVMPGMP...QGSCYKGETQESVESRVLPGPRHRH* uc010utv.1

4 Creating New TxDb Objects or Packages

The GenomicFeatures package provides functions to create TxDb objects based on data downloaded from
UCSC Genome Bioinformatics or BioMart. The following subsections demonstrate the use of these functions.
There is also support for creating TxDb objects from custom data sources using makeTxDb; see the help page
for this function for details.

4.1 Using makeTxDbFromUCSC

The function makeTxDbFromUCSC downloads UCSC Genome Bioinformatics transcript tables (e.g. "knownGene",
"refGene", "ensGene") for a genome build (e.g. "mm9", "hg19"). Use the supportedUCSCtables utility
function to get the list of supported tables.

supportedUCSCtables()[1:4,]

track subtrack

knownGene UCSC Genes <NA>

knownGeneOld3 Old UCSC Genes <NA>

ccdsGene CCDS <NA>

refGene RefSeq Genes <NA>

mm9KG <- makeTxDbFromUCSC(genome = "mm9", tablename = "knownGene")

Making and Utilizing TxDb Objects 11

The function makeTxDbFromUCSC also takes an important argument called circ seqs to label which chromo-
somes are circular. The argument is a character vector of strings that correspond to the circular chromosomes
(as labeled by the source). To discover what the source calls their chromosomes, use the getChromInfoFromUCSC
function to list them. By default, there is a supplied character vector that will attempt to label all the mito-
chondrial chromosomes as circular by matching to them. This is the DEFAULT CIRC SEQS vector. It contains
strings that usually correspond to mitochondrial chromosomes. Once the database has been generated with
the circular chromosomes tagged in this way, all subsequent analysis of these chromosomes will be able to
consider their circularity for analysis. So it is important for the user to make sure that they pass in the correct
strings to the circ seqs argument to ensure that the correct sequences are tagged as circular by the database.

head(getChromInfoFromUCSC("hg19"))

Download and preprocess the ’chrominfo’ data frame ...

OK

chrom length

1 chr1 249250621

2 chr2 243199373

3 chr3 198022430

4 chr4 191154276

5 chr5 180915260

6 chr6 171115067

4.2 Using makeTxDbFromBiomart

Retrieve data from BioMart by specifying the mart and the data set to the makeTxDbFromBiomart function
(not all BioMart data sets are currently supported):

mmusculusEnsembl <- makeTxDbFromBiomart(dataset="mmusculus_gene_ensembl")

As with the makeTxDbFromUCSC function, the makeTxDbFromBiomart function also has a circ seqs argu-
ment that will default to using the contents of the DEFAULT CIRC SEQS vector. And just like those UCSC
sources, there is also a helper function called getChromInfoFromBiomart that can show what the different
chromosomes are called for a given source.

Using the makeTxDbFromBiomart makeTxDbFromUCSC functions can take a while and may also require some
bandwidth as these methods have to download and then assemble a database from their respective sources. It
is not expected that most users will want to do this step every time. Instead, we suggest that you save your
annotation objects and label them with an appropriate time stamp so as to facilitate reproducible research.

4.3 Using makeTxDbFromGFF

You can also extract transcript information from either GFF3 or GTF files by using the makeTxDbFromGFF

function. Usage is similar to makeTxDbFromBiomart and makeTxDbFromUCSC.

Making and Utilizing TxDb Objects 12

4.4 Saving and Loading a TxDb Object

Once a TxDb object has been created, it can be saved to avoid the time and bandwidth costs of recreating it
and to make it possible to reproduce results with identical genomic feature data at a later date. Since TxDb
objects are backed by a SQLite database, the save format is a SQLite database file (which could be accessed
from programs other than R if desired). Note that it is not possible to serialize a TxDb object using R’s save
function.

saveDb(mm9KG, file="fileName.sqlite")

And as was mentioned earlier, a saved TxDb object can be initialized from a .sqlite file by simply using loadDb.

mm9KG <- loadDb("fileName.sqlite")

4.5 Using makeTxDbPackageFromUCSC and makeTxDbPackageFromBiomart

It is often much more convenient to just make an annotation package out of your annotations. If you are find-
ing that this is the case, then you should consider the convenience functions: makeTxDbPackageFromUCSC and
makeTxDbPackageFromBiomart. These functions are similar to makeTxDbFromUCSC and makeTxDbFromBiomart

except that they will take the extra step of actually wrapping the database up into an annotation package
for you. This package can then be installed and used as of the standard TxDb packages found on in the
Bioconductor repository.

5 Session Information

R version 3.3.1 (2016-06-21)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.4 LTS

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets methods

[9] base

##

other attached packages:

[1] BSgenome.Hsapiens.UCSC.hg19_1.4.0 BSgenome_1.40.1

[3] rtracklayer_1.32.1 Biostrings_2.40.2

[5] XVector_0.12.1 TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2

[7] GenomicFeatures_1.24.5 AnnotationDbi_1.34.4

[9] Biobase_2.32.0 GenomicRanges_1.24.2

[11] GenomeInfoDb_1.8.3 IRanges_2.6.1

[13] S4Vectors_0.10.2 BiocGenerics_0.18.0

Making and Utilizing TxDb Objects 13

##

loaded via a namespace (and not attached):

[1] knitr_1.13 magrittr_1.5 GenomicAlignments_1.8.4

[4] zlibbioc_1.18.0 BiocParallel_1.6.3 highr_0.6

[7] stringr_1.0.0 tools_3.3.1 SummarizedExperiment_1.2.3

[10] DBI_0.4-1 formatR_1.4 bitops_1.0-6

[13] RCurl_1.95-4.8 biomaRt_2.28.0 evaluate_0.9

[16] RSQLite_1.0.0 stringi_1.1.1 Rsamtools_1.24.0

[19] XML_3.98-1.4 BiocStyle_2.0.2

	1 Introduction
	2 TxDb Objects
	3 Retrieving Data from TxDb objects
	3.1 Loading Transcript Data
	3.2 Pre-filtering data based on Chromosomes
	3.3 Retrieving data using the select method
	3.4 Methods for returning GRanges objects
	3.5 Working with Grouped Features
	3.6 Predefined grouping functions
	3.7 Getting the actual sequence data

	4 Creating New TxDb Objects or Packages
	4.1 Using makeTxDbFromUCSC
	4.2 Using makeTxDbFromBiomart
	4.3 Using makeTxDbFromGFF
	4.4 Saving and Loading a TxDb Object
	4.5 Using makeTxDbPackageFromUCSC and makeTxDbPackageFromBiomart

	5 Session Information

