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1 Introduction

Numerous approaches are available for parallel computing in R. The CRAN Task View for high performance and par-
allel computing provides useful high-level summaries and package categorization. http://cran.r-project.org/web/views/
HighPerformanceComputing.html Most Task View packages cite or identify one or more of snow, Rmpi, multicore or
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foreach as relevant parallelization infrastructure. Direct support in R for parallel computing started with release 2.14.0
with inclusion of the parallel package which contains modified versions of multicore and snow.

A basic objective of BiocParallel is to reduce the complexity faced when developing and using software that per-
forms parallel computations. With the introduction of the BiocParallelParam object, BiocParallel aims to provide
a unified interface to existing parallel infrastructure where code can be easily executed in different environments. The
BiocParallelParam specifies the environment of choice as well as computing resources and is invoked by ‘registration’
or passed as an argument to the BiocParallel functions.

BiocParallel offers the following conveniences over the ‘roll your own' approach to parallel programming.

e unified interface: BiocParallelParam instances define the method of parallel evaluation (multi-core, snow cluster,
etc.) and computing resources (number of workers, error handling, cleanup, etc.).

e parallel iteration over lists, files and vectorized operations: bplapply, bpmapply and bpvec provide parallel list
iteration and vectorized operations. bpiterate iterates through files distributing chunks to parallel workers.

e cluster scheduling: When the parallel environment is managed by a cluster scheduler through BatchJobs, job
management and result retrieval are considerably simplified.

e support of foreach: The foreach and iterators packages are fully supported. Registration of the parallel back end
uses BiocParallelParam instances.

2 Quick start

The BiocParallel package is available at bioconductor.org and can be downloaded via biocLite:

source ("http://bioconductor.org/biocLite.R")
biocLite("BiocParallel")

Load BiocParallel.
library(BiocParallel)

The test function simply returns the square root of “x”.

FUN <- function(x) { round(sqrt(x), 4) }

Functions in BiocParalleluse the registered back-ends for parallel evaluation. The default is the top entry of the registry
list.

registered()

## $MulticoreParam

## class: MulticoreParam

##  bpisup: FALSE; bpworkers: 4; bptasks: O; bpjobname: BPJOB
##  Dbplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

##  bptimeout: 2592000; bpprogressbar: FALSE

##  bpRNGseed:

##  bplogdir: NA

##  bpresultdir: NA

##  cluster type: FORK

##

## $SnowParam

## class: SnowParam

##  bpisup: FALSE; bpworkers: 4; bptasks: O; bpjobname: BPJOB
##  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

##  bptimeout: 2592000; bpprogressbar: FALSE

##  bpRNGseed:
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##  bplogdir: NA

##  bpresultdir: NA

##  cluster type: SOCK

##

## $SerialParam

## class: SerialParam

##  bpisup: TRUE; bpworkers: 1; bptasks: 0; bpjobname: BPJOB
##  Dbplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

##  bptimeout: 2592000; bpprogressbar: FALSE

##  bplogdir: NA

Configure your R session to always use a particular back-end configure by setting options named after the back ends in
an .Rprofile file, e.g.,

options (MulticoreParam=quote (MulticoreParam(workers=4)))

When a BiocParallel function is invoked with no BPPARAM argument the default back-end is used.
bplapply(1:4, FUN)

Environment specific back-ends can be defined for any of the registry entries. This example uses a 2-worker SOCK
cluster.

param <- SnowParam(workers
bplapply(1:4, FUN, BPPARAM

## [[1]]

## [1] 1

#it

## [[2]]

## [1] 1.4142
#it

## [[3]]

# [1] 1.7321
#it

## [[4]]

## [1] 2

2, type = "SOCK")
param)

3 The BiocParallel Interface

3.1 Classes
3.1.1 BiocParallelParam

BiocParallelParam instances configure different parallel evaluation environments. Creating or register()ing a
‘Param’ allows the same code to be used in different parallel environments without a code re-write. Params listed
are supported on all of Unix, Mac and Windows except MulticoreParam which is Unix and Mac only.

e SerialParam:
Supported on all platforms.
Evaluate BiocParallel-enabled code with parallel evaluation disabled. This approach is useful when writing new
scripts and trying to debug code.

e MulticoreParam:
Supported on Unix and Mac. On Windows, MulticoreParam dispatches to SerialParam.
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Evaluate BiocParallel-enabled code using multiple cores on a single computer. When available, this is the most
efficient and least troublesome way to parallelize code. Windows does not support multi-core evaluation (the
MulticoreParam object can be used, but evaluation is serial). On other operating systems, the default number
of workers equals the value of the global option mc.cores (e.g., getOption("mc.cores")) or, if that is not set,
the number of cores returned by parallel::detectCores(). Based on facilities originally implemented in the
multicore package and subsequently the parallel package in base R.

SnowParam:

Supported on all platforms.

Evaluate BiocParallel-enabled code across several distinct R instances, on one or several computers. This is
a straightforward approach for executing parallel code on one or several computers, and is based on facilities
originally implemented in the snow package. Different types of snow ‘back-ends’ are supported, including socket
and MPI clusters.

BatchJobsParam:
Applicable to clusters with formal schedulers.
Evaluate BiocParallel-enabled code by submitting to a cluster scheduler like SGE.

DoparParam:
Supported on all platforms.
Register a parallel back-end supported by the foreach package for use with BiocParallel.

The simplest illustration of creating BiocParallelParam is

serialParam <- SerialParam()

serialParam

## class: SerialParam

##
#it
#Hit
##

Most

bpisup: TRUE; bpworkers: 1; bptasks: O; bpjobname: BPJOB
bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE
bptimeout: 2592000; bpprogressbar: FALSE

bplogdir: NA

parameters have additional arguments influencing behavior, e.g., specifying the number of ‘cores’ to use when

creating a MulticoreParam instance

multicoreParam <- MulticoreParam(workers = 8)
multicoreParam

## class: MulticoreParam

##
##
#it
#Hit
##
##
##

bpisup: FALSE; bpworkers: 8; bptasks: 0; bpjobname: BPJOB
bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE
bptimeout: 2592000; bpprogressbar: FALSE

bpRNGseed:

bplogdir: NA

bpresultdir: NA

cluster type: FORK

Arguments are described on the corresponding help page, e.g., 7MulticoreParam.

3.1.2

register()ing BiocParallelParam instances

The list of registered BiocParallelParam instances represents the user’s preferences for different types of back-ends.
Individual algorithms may specify a preferred back-end, and different back-ends maybe chosen when parallel evaluation
is nested.

The registry behaves like a ‘stack’ in that the last entry registered is added to the top of the list and becomes the “next

used

(i-e., the default).
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registered invoked with no arguments lists all back-ends.

registered()

## $MulticoreParam

## class: MulticoreParam

##  bpisup: FALSE; bpworkers: 4; bptasks: O; bpjobname: BPJOB
##  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

##  bptimeout: 2592000; bpprogressbar: FALSE

##  bpRNGseed:

##  bplogdir: NA

##  bpresultdir: NA

##  cluster type: FORK

##

## $SnowParam

## class: SnowParam

##  bpisup: FALSE; bpworkers: 4; bptasks: 0; bpjobname: BPJOB
##  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

##  bptimeout: 2592000; bpprogressbar: FALSE

##  bpRNGseed:

##  bplogdir: NA

##  bpresultdir: NA

##  cluster type: SOCK

##

## $SerialParam

## class: SerialParam

##  bpisup: TRUE; bpworkers: 1; bptasks: 0; bpjobname: BPJOB
##  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

##  bptimeout: 2592000; bpprogressbar: FALSE

##  bplogdir: NA

bpparam returns the default from the top of the list.

bpparam()

## class: MulticoreParam

##  bpisup: FALSE; bpworkers: 4; bptasks: O; bpjobname: BPJOB
##  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

##  bptimeout: 2592000; bpprogressbar: FALSE

##  bpRNGseed:

##  bplogdir: NA

##  bpresultdir: NA

##  cluster type: FORK

Add a specialized instance with register. When default is TRUE, the new instance becomes the default.

register (BatchJobsParam(workers = 10), default = TRUE)

BatchJobsParam has been moved to the top of the list and is now the default.

names (registered())
## [1] "BatchJobsParam" "MulticoreParam" "SnowParam" "SerialParam"
bpparam()

## class: BatchJobsParam
##  bpisup: TRUE; bpworkers: 10; bptasks: O; bpjobname: BPJOB
##  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE


http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel 6

##  bptimeout: 2592000; bpprogressbar: TRUE
##  cleanup: TRUE

3.2 Functions
3.2.1 Parallel looping, vectorized and aggregate operations

These are used in common functions, implemented as much as possible for all back-ends. The functions (see the help
pages, e.g., ?bplapply for a full definition) include

bplapply (X, FUN, ...):
Apply in parallel a function FUN to each element of X. bplapply invokes FUN length(X) times, each time with a
single element of X.
bpmapply (FUN, ...):
Apply in parallel a function FUN to the first, second, etc., elements of each argument in ....
bpiterate(ITER, FUN, ...):
Apply in parallel a function FUN to the output of function ITER. Data chunks are returned by ITER and distributed
to parallel workers along with FUN. Intended for iteration though an undefined number of data chunks (i.e., records
in a file).
bpvec(X, FUN, ...):
Apply in parallel a function FUN to subsets of X. bpvec invokes function FUN as many times as there are cores or
cluster nodes, with FUN receiving a subset (typically more than 1 element, in contrast to bplapply) of X.
bpaggregate(x, data, FUN, ...):
Use the formula in x to aggregate data using FUN.

3.2.2 Parallel evaluation environment

These functions query and control the state of the parallel evaluation environment.

bpisup(x): Query a BiocParallelParam back-end x for its status.

bpworkers; bpnworkers: Query a BiocParallelParam back-end for the number of workers available for parallel
evaluation.

bptasks: Divides a job (e.g., single call to *lapply function) into tasks. Applicable to MulticoreParam only;
DoparParam and BatchJobsParam have their own approach to dividing a job among workers.

bpstart(x): Start a parallel back end specified by BiocParallelParam x, if possible.

bpstop(x): Stop a parallel back end specified by BiocParallelParam x.

3.2.3 Error handling and logging

Logging and advanced error recovery is available in BiocParallel 1.1.25 and later. For a more details see the vignette
titled " Error Handling and Logging":

browseVignettes("BiocParallel")

4 Use cases

Sample data are BAM files from a transcription profiling experiment available in the RNAseqData. HNRNPC.bam.chr14
package.

library(RNAsegData.HNRNPC.bam.chri4)
fls <- RNAseqgData.HNRNPC.bam.chr14_ BAMFILES
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4.1 Single machine
4.1.1 Multi-core

There are substantial benefits, such as shared memory, to be had using multiple cores on a single machine. On a single
non-Windows machine the recommended approach is multi-core, or forked processes.

This example counts overlaps between BAM files and a defined set of ranges. First create a GRanges with regions of
interest (in practice this could be large).

library (GenomicAlignments)
gr <- GRanges("chr14", IRanges((1000:3999)*5000, width=1000))

A ScanBamParam defines regions to extract from the files.

param <- ScanBamParam(which=range(gr))

FUN counts overlaps between the ranges in ‘gr' and the files.

FUN <- function(fl, param) {
gal <- readGAlignments(fl, param = param)
sum(countOverlaps(gr, gal))

}

All parameters necessary for running a job in a multi-core environment are specified in the MulticoreParam instance.

MulticoreParam()

## class: MulticoreParam

##  bpisup: FALSE; bpworkers: 4; bptasks: O; bpjobname: BPJOB
##  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

##  bptimeout: 2592000; bpprogressbar: FALSE

##  bpRNGseed:

##  bplogdir: NA

##  bpresultdir: NA

##  cluster type: FORK

The BiocParallel functions, such as bplapply, use information in the MulticoreParam to set up the appropriate back-end
and pass relevant arguments to low-level functions.

> bplapply(f1ls[1:3], FUN, BPPARAM = MulticoreParam(), param = param)
$ERR127306
[1] 1185

$ERR127307
[1] 1123

$ERR127308
[1] 1241

Shared memory environments eliminate the need to pass large data between workers or load common packages. Note
that in this code the GRanges data was not passed to all workers in bplapply and FUN did not need to load Genomi-
cAlignments for access to the readGAlignments function.

4.1.2 Clusters

Both Windows and non-Windows machines can use the cluster approach to spawn processes. BiocParallel back-end
choices for clusters on a single machine are SnowParam for configuring a Snow cluster or the DoparParam for use with
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the foreach package.

To re-run the counting example, FUN needs to modified such that ‘gr' is passed as a formal argument and required
libraries are loaded on each worker.

FUN <- function(fl, param, gr) {
library(GenomicAlignments)
gal <- readGAlignments(fl, param = param)
sum(countOverlaps(gr, gal))

}

Define a 2-worker SOCK Snow cluster.

snow <- SnowParam(workers = 2, type = "SOCK")

A call to bplapply with the SnowParam creates the cluster and distributes the work.
bplapply(f1s[1:3], FUN, BPPARAM = snow, param = param, gr = gr)

## Loading required package: BiocGenerics
## Loading required package: parallel

##

## Attaching package: BiocGenerics

##

## The following objects are masked from package:parallel:
##

## clusterdpply, clusterApplylB, clusterCall, clusterEval(,
## clusterEzport, clusterMap, pardpply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB

##

## The following objects are masked from package:stats:

##

## IQR, mad, ztabs

##

## The following objects are masked from package:base:

##

## Filter, Find, Map, Position, Reduce, anyDuplicated, append,

## as.data. frame, cbind, colnames, do.call, duplicated, eval, evalg,
## get, grep, grepl, intersect, ts.unsorted, lapply, lengths, mapply,
## match, mget, order, paste, pmaz, pmazx.int, pmin, pmin.int, rank,
## rbind, rownames, sapply, setdiff, sort, table, tapply, union,

## unique, unsplit

##

## Loading required package: S4Vectors

## Loading required package: stats4

##

## Attaching package: S4Vectors

##

## The following objects are masked from package:base:
##

## colMeans, colSums, expand.grid, rowMeans, rowSums
##

## Loading required package: IRanges

## Loading required package: GenomeInfoDb

## Loading required package: GenomicRanges

## Loading required package: SummarizedErperiment

## Loading required package: Biobase
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Welcome to Bioconductor

Vignettes contain introductory material; view with
’browseVignettes()’. To ctite Bioconductor, see
’citation("Biobase")’, and for packages ’ctitation("pkgname")’.

Loading required package: Biostrings
Loading required package: XVector
Loading required package: Rsamtools
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: BiocGenerics
The following objects are masked from package:parallel:

clusterdpply, clusterApplyLB, clusterCall, clusterEval(,
clusterEzport, clusterMap, pardpply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from package:stats:
IQR, mad, xztabs
The following objects are masked from package:base:

Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data. frame, cbind, colnames, do.call, duplicated, eval, evalgq,
get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply,
match, mget, order, paste, pmaz, pmazx.int, pmin, pmin.int, rank,
rbind, rownames, sapply, setdiff, sort, table, tapply, union,
untque, unsplit

Loading required package: S4Vectors
Loading required package: stats4

Attaching package: S4Vectors
The following objects are masked from package:base:
colMeans, colSums, expand.grid, rowMeans, rowSums

Loading required package: IRanges

Loading required package: GenomelnfoDb

Loading required package: GenomicRanges
Loading required package: SummarizedEzperiment
Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with
’browseVignettes()’. To cite Bioconductor, see

’citation("Biobase")’, and for packages ’ctitation("pkgname")’.

Loading required package: Biostrings
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## Loading required package: XVector
## Loading required package: Rsamtools

The FUN written for the cluster adds some overhead due to the passing of the GRanges and the loading of Genomi-
cAlignments on each worker. This approach, however, has the advantage that it works on most platforms and does not
require a coding change when switching between windows and non-windows machines.

4.2 Ad hoc cluster of multiple machines

We use the term ad hoc cluster to define a group of machines that can communicate with each other and to which the
user has password-less log-in access. This example uses a group of compute machines ("the rhinos") on the FHCRC
network.

4.2.1 Sockets

On Linux and Mac OS X, a socket cluster is created across machines by supplying machine names as the workers
argument to a BiocParallelParam instance instead of a number. Each name represents an R process; repeat names
indicate multiple workers on the same machine.

Create a SnowParam with 2 cpus from ‘rhino01‘ and 1 from ‘rhino02".

hosts <- c("rhinoO1", "rhinoO1", "rhino02")
param <- SnowParam(workers = hosts, type = "SOCK")

Execute FUN 4 times across the workers.

> FUN <- function(i) system("hostname", intern=TRUE)
> bplapply(1:4, FUN, BPPARAM = param)

(111

[1] "rhinoO1"

[[211]
[1] "rhinoO1"

[[3]]
[1] "rhino02"

[[4]1]
[1] "rhinoO1"

When creating a cluster across Windows machines workers must be IP addresses (e.g., "140.107.218.57") instead of
machine names.
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4.2.2 MPI

11

An MPI cluster across machines is created with mpirun or mpiexec from the command line or a script. A list of machine
names provided as the -hostfile argument defines the mpi universe.

The hostfile requests 2 processors on 3 different machines.

rhino0O1
rhino02
rhino03

From the

mpiexec

slots=2
slots=2
slots=2

command line, start a single interactive R process on the current machine.

--np 1 —-hostfile hostfile R --vanilla

Load BiocParallel and create an MPI Snow cluster. The number of workers in SnowParam should match the number

of slots requested in the hostfile. Using a smaller number of workers uses a subset of the slots.

> library(BiocParallel)

> param

<- SnowParam(workers = 6, type = "MPI")

Execute FUN 6 times across the workers.

> FUN <- function(i) system("hostname", intern=TRUE)
> bplapply(1:6, FUN, BPPARAM = param)
bplapply(1:6, FUN, BPPARAM = param)

[[111]

6 slaves are spawned successfully. O failed.

[1] "rhinoO1"

[[211

[1] "rhino02"

(31l

[1] "rhino02"

[[4]1]

[1] "rhinoO3"

(511

[1] "rhino03"

[[6]1]

[1] "rhinoO1"

Batch jobs can be launched with mpiexec and R CMD BATCH. Code to be executed is in ‘Rcode.R".

mpiexec

—-hostfile hostfile R CMD BATCH Rcode.R

4.3 Clusters with schedulers

Computer clusters are far from standardized, so the following may require significant adaptation; it is written from
experience here at FHCRC, where we have a large cluster managed via SLURM. Nodes on the cluster have shared disks
and common system images, minimizing complexity about making data resources available to individual nodes. There
are two simple models for use of the cluster, Cluster-centric and R-centric.
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4.3.1 Cluster-centric

The idea is to use cluster management software to allocate resources, and then arrange for an R script to be evaluated
in the context of allocated resources. NOTE: Depending on your cluster configuration it may be necessary to add a line
to the template file instructing workers to use the version of R on the master / head node. Otherwise the default R on
the worker nodes will be used.

For SLURM, we might request space for 4 tasks (with salloc or sbatch), arrange to start the MPI environment (with
orterun) and on a single node in that universe run an R script BiocParallel-MPI.R. The command is

$ salloc -N 4 orterun -n 1 R -f BiocParallel-MPI.R

The R script might do the following, using MPI for parallel evaluation. Start by loading necessary packages and defining
FUN work to be done

library(BiocParallel)
library (Rmpi)
FUN <- function(i) system("hostname", intern=TRUE)

Create a SnowParam instance with the number of nodes equal to the size of the MPI universe minus 1 (let one node
dispatch jobs to workers), and register this instance as the default

param <- SnowParam(mpi.universe.size() - 1, "MPI")
register (param)

Evaluate the work in parallel, process the results, clean up, and quit

xx <- bplapply(1:100, FUN)
table(unlist (xx))
mpi.quit()

The entire session is as follows:

$ salloc -N 4 orterun -n 1 R --vanilla -f BiocParallel-MPI.R
salloc: Job is in held state, pending scheduler release
salloc: Pending job allocation 6762292
salloc: job 6762292 queued and waiting for resources
salloc: job 6762292 has been allocated resources
salloc: Granted job allocation 6762292
##o...
FUN <- function(i) system("hostname", intern=TRUE)

>
>
> library(BiocParallel)
> library(Rmpi)
> param <- SnowParam(mpi.universe.size() - 1, "MPI")
> register (param)
> xx <- bplapply(1:100, FUN)
4 slaves are spawned successfully. O failed.
> table(unlist(xx))

gizmof1l3 gizmof71 gizmof86 gizmof88
25 25 25 25
>
> mpi.quit()
salloc: Relinquishing job allocation 6762292
salloc: Job allocation 6762292 has been revoked.

One advantage of this approach is that the responsibility for managing the cluster lies firmly with the cluster management
software — if one wants more nodes, or needs special resources, then adjust parameters to salloc (or sbatch).
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Notice that workers are spawned within the bplapply function; it might often make sense to more explicitly manage
workers with bpstart and bpstop, e.g.,

param <- bpstart(SnowParam(mpi.universe.size() - 1, "MPI"))
register (param)

xx <- bplapply(1:100, FUN)

bpstop (param)

mpi.quit()

4.3.2 R-centric

A more R-centric approach might start an R script on the head node, and use BatchJobs to submit jobs from within the
R session. One way of doing this is to create a file containing a template for the job submission step, e.g., for SLURM!

#!/bin/bash

#i#

## file: slurm.tmpl

## Job Resource Interface Definition

##t

## ntasks [integer(1)]: Number of required tasks.

## ncpus [integer(1)]: Number of required cpus per task.

## walltime [integer(1)]: Walltime for this job, in minutes.
##

## 'resources' is an argument provided to BatchJobsParam()

#SBATCH --job-name=<Y= job.name %>

#SBATCH --output=<%= log.file %>

#SBATCH --error=<J= log.file %>

#SBATCH --ntasks=<J= resources$ntasks %>
#SBATCH --cpus-per-task=<},= resources$ncpus %>
#SBATCH --time=0:10:0

## Run R: we merge R output with stdout from SLURM, which gets then
## logged via --output option
R CMD BATCH --no-save --no-restore "<J= rscript %>" /dev/stdout

The R script, run interactively or from the command line, might then look like

## define work to be done
FUN <- function(i) system("hostname", intern=TRUE)

library(BiocParallel)
library(BatchJobs)

## register SLURM cluster instructions from the template file

funs <- makeClusterFunctionsSLURM("slurm.tmpl")

param <- BatchJobsParam(4, resources=list(ncpus=1),
cluster.functions=funs)

register(param)

## do work
xx <- bplapply(1:100, FUN)
table(unlist (xx))

Isee https://github.com/tudo-r/BatchJobs/tree/master/examples/cfSLURM
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The code runs on the head node until bplapply, where the R script interacts with the SLURM scheduler to request a
SLURM allocation, run jobs, and retrieve results. The argument 4 to BatchJobsParam specifies the number of workers
to request from the scheduler; bplapply divides the 100 jobs among the 4 workers. If BatchJobsParam had been
created without specifying any workers, then 100 jobs implied by the argument to bplapply would be associated with
100 tasks submitted to the scheduler.

Because cluster tasks are running in independent R instances, and often on physically separate machines, a convenient
‘best practice’ is to write FUN in a ‘functional programming’ manner, such that all data required for the function is passed
in as arguments or (for large data) loaded implicitly or explicitly (e.g., via an R library) from disk.

4.4 Bioconductor Amazon Machine Image (AMI)

An AMI for running Bioconductor in the Elastic Compute Cloud (EC2) is available at http://www.bioconductor.org/help/
bioconductor-cloud-ami/. The documentation provides detailed instructions for setting up accounts, launching instances
and starting sessions via RStudio or SSH.

Motivation for running jobs in the cloud may be access to additional CPUs and / or memory. Amazon Web Services
(AWS) has a variety of instances ranging from general purpose to those optimized for compute, memory or |/O intensive
jobs. See http://aws.amazon.com/ec2/instance-types/ for a full listing of instances.

Single or multiple instances can be requested when starting up the AMI. When a single instance is requested, interaction
with the resource is the same as described in the ‘Single Machine' section above. Requesting multiple instances is
essentially creating a cluster. To do this with the Bioconductor AMI the StarCluster toolkit must be installed and a
config file must be modified to specify the number and type of instances. Walk- through examples are provided in the
Bioconductor AMI web documentation http://www.bioconductor.org/help/bioconductor-cloud-ami/.

This example uses a cluster of three m3.large instances each of which has 2 virtual CPUs. The name of the cluster in
the config file is ‘smallcluster’ and can be started with the ‘start’ command:

starcluster start smallcluster
List the cluster nodes:

” >starcluster listclusters

StarCluster - (http://star.mit.edu/cluster) (v. 0.95.5)
Software Tools for Academics and Researchers (STAR)
Please submit bug reports to starcluster@mit.edu

Launch time: 2014-07-21 08:44:11

Uptime: O days, 00:09:30

Zone: us-east-1b

Keypair: bioc-keypair-vobencha

EBS volumes: N/A

Cluster nodes:
smallcluster-master running i-1£757234 ec2-54-91-126-83.compute-1.amazonaws.com
smallcluster-node0O1 running i-1e757235 ec2-50-16-135-207.compute-1.amazonaws.com
smallcluster-node002 running i-19757232 ec2-54-89-112-24.compute-1.amazonaws.com

Total nodes: 3

Use the hostname for the master node to connect to the cluster via RStudio or SSH.

The AMI cluster workers can communicate via SSH, SunGrid Engine (SGE) or MPI. For MPI, a SnowParam should be
configured with type = MPI.

> library(BiocParallel}
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> param <- SnowParam(workers=3, type = "MPI")
Both SSH and SunGrid Engine require a BatchJobsParam but differ slightly in the set-up.

For SSH, the nodes are registered as SSH workers. The ‘workers' argument to BatchJobsParam should be the number
of nodes and ‘ncpus’ the number of processors per node.

> library(BiocParallel}

> library(BatchJobs)

> funs <- makeClusterFunctionsSSH(

+ makeSSHWorker (nodename="smallcluster-master"),
+ makeSSHWorker (nodename="smallcluster-node001"),
+ makeSSHWorker (nodename="smallcluster-node002")
> )

> param <- BatchJobsParam(workers=3,

+ resources=list(ncpus=2),

+ cluster.functions=funs)

SunGrid Engine only needs the number of ‘workers' and ‘ncpus'.

> library(BiocParallel}
> library(BatchJobs)
> param <- BatchJobsParam(3, resources=list(ncpus=2))

This example uses 8 paired-end RNA-Seq BAM files, 1 per sequencing run, subset on chromosome 14 only.

> library(BiocParallel)
> library(RNAsegData.HNRNPC.bam.chri4)
> fls <- RNAsegData.HNRNPC.bam.chri14_BAMFILES

Reads with more than 2 gaps in the CIGAR are isolated and locateVariants is used to identify where these multi-gap
reads fall with respect to the UCSC hgl9 known gene model.

> FUN <- function(file, ...) {

library(GenomicAlignments)

library(VariantAnnotation)
library(TxDb.Hsapiens.UCSC.hgl9.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hgl9.knownGene

gal <- readGAlignmentPairs(file)

gal_with_gaps <- gallnjunc(gal) > 2L]
locateVariants(granges(gal_with_gaps), txdb, AllVariants())

V o+ o+ o+ + + 4+ 4+

}

Define a BatchJobsParam with 3 workers, 2 processors each.

> param <- BatchJobsParam(3, resources=(list(ncpus=2)))

Execute in parallel over the 8 files.

> res <- bplapply(fls, FUN, BPPARAM=param)

The return value is a list of GRanges, one for each file. The length of each GRanges will vary.

> lengths(res)
ERR127306 ERR127307 ERR127308 ERR127309 ERR127302 ERR127303 ERR127304 ERR127305
5228 5202 5721 4326 4494 4909 4636 4538

Summarize the LOCATION and TXID output of locateVariants with xtabs.

> mdat <- lapply(res, function(x) mcols(x) [c("LOCATION", "TXID")])
> xtab <- xtabs(~ LOCATION + TXID, do.call(rbind, mdat))
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The xtab object can be subset to isolate transcripts that meet a criteria. These are the top 5 transcripts hit by the
multi-gap reads.

> xtab[,xtab["spliceSite", ] > 500]

TXID
LOCATION 51581 51582 53506 53507 53508
spliceSite 994 994 520 548 548
intron 0 0 0 0 0
fiveUTR 0 0 0 0 0
threeUTR 0 0 0 0 0
coding 0 0 0 0 0
intergenic 0 0 0 0 0
promoter 0 0 0 0 0

Extract the transcripts with multi-gap reads in promoter regions:

> xtab[,xtab["promoter", ] > 0]

TXID
LOCATION 51495 52270 52272 52273 52528 52538 52540 52541 52716
spliceSite 152 0 1 1 52 0 0 0 46
intron 0 0 0 0 0 0 0 0 0
fiveUTR 0 0 0 0 0 0 0 0 0
threeUTR 0 0 0 0 0 0 0 0 0
coding 0 0 0 0 0 0 0 0 0
intergenic 0 0 0 0 0 0 0 0 0
promoter 38 31 314 314 54 3 3 3 7

5 Analyzing genomic data in Bioconductor

General strategies exist for handling large genomic data that are well suited to R programs. A manuscript titled Scalable
Genomics with R and Bioconductor (http://arxiv.org/abs/1409.2864) by Michael Lawrence and Martin Morgan, reviews
several of these approaches and demonstrate implementation with Bioconductor packages. Problem areas include scalable
processing, summarization and visualization. The techniques presented include restricting queries, compressing data,
iterating, and parallel computing.

Ideas are presented in an approachable fashion within a framework of common use cases. This is a benificial read for
anyone anyone tackling genomics problems in R.

6 For developers

Developers wishing to use BiocParallel in their own packages should include BiocParallel in the DESCRIPTION file
Imports: BiocParallel

and import the functions they wish to use in the NAMESPACE file, e.g.,
importFrom(BiocParallel, bplapply)

Then invoke the desired function in the code, e.g.,

system.time(x <- bplapply(1:3, function(i) { Sys.sleep(i); i }))

## user system elapsed
## 1.933 0.016 8.016

unlist(x)
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## [1] 1 2 3

This will use the back-end returned by bpparam(), by default a MulticoreParam() instance or the user's preferred
back-end if they have used register(). The MulticoreParam back-end does not require any special configuration or
set-up and is therefore the safest option for developers. Unfortunately, MulticoreParam provides only serial evaluation
on Windows.

Developers should document that their function uses BiocParallel functions on the man page, and should perhaps include
in their function signature an argument BPPARAM=bpparam().

Developers wishing to invoke back-ends other than MulticoreParam need to take special care to ensure that required
packages, data, and functions are available and loaded on the remote nodes.

7

sessionInfo()

toLatex(sessionInfo())

R version 3.3.1 (2016-06-21), x86_64-pc-linux-gnu

e locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C

LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils
e Other packages: BBmisc 1.10, BatchJobs 1.6, Biobase 2.32.0, BiocGenerics 0.18.0, BiocParallel 1.6.6,

Biostrings 2.40.2, GenomelnfoDb 1.8.3, GenomicAlignments 1.8.4, GenomicRanges 1.24.2, IRanges 2.6.1,
RNAseqData.HNRNPC.bam.chr14 0.10.0, Rsamtools 1.24.0, S4Vectors 0.10.2, SummarizedExperiment 1.2.3,
XVector 0.12.1, checkmate 1.8.1

Loaded via a namespace (and not attached): BiocStyle 2.0.3, DBI 0.5, RSQLite 1.0.0, backports 1.0.3,
base64enc 0.1-3, bitops 1.0-6, brew 1.0-6, digest 0.6.10, evaluate 0.9, fail 1.3, formatR 1.4, highr 0.6, knitr 1.14,
magrittr 1.5, sendmailR 1.2-1, snow 0.4-1, stringi 1.1.1, stringr 1.0.0, tools 3.3.1, zlibbioc 1.18.0
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