Package 'soGGi'

October 12, 2016

Type Package

Title Visualise ChIP-seq, MNase-seq and motif occurrence as aggregate plots Summarised Over Grouped Genomic Intervals

Version 1.4.4 **Date** 2015-12-02

Author Gopuraja Dharmalingam, Tom Carroll

Maintainer Tom Carroll <tc.infomatics@gmail.com>

Description The soGGi package provides a toolset to create genomic interval aggregate/summary plots of signal or motif occurence from BAM and bigWig files as well as PWM, rlelist, GRanges and GAlignments Bioconductor objects. soGGi allows for normalisation, transformation and arithmetic operation on and between summary plot objects as well as grouping and subsetting of plots by GRanges objects and user supplied metadata. Plots are created using the GGplot2 libary to allow user defined manipulation of the returned plot object. Coupled together, soGGi features a broad set of methods to visualise genomics data in the context of groups of genomic intervals such as genes, superenhancers and transcription factor binding events.

biocViews Sequencing, ChIPSeq, Coverage

License GPL (>= 3)

LazyLoad yes

Depends R (>= 3.2.0), BiocGenerics, SummarizedExperiment

Imports methods, reshape2, ggplot2, S4Vectors, IRanges, GenomeInfoDb, GenomicRanges, Biostrings, Rsamtools, GenomicAlignments, rtracklayer, preprocessCore, chipseq, BiocParallel

Collate 'allClasses.r' 'motifTools.R' 'peakTransforms.r' 'plots.R' 'soggi.R'

VignetteBuilder knitr

Suggests testthat, BiocStyle, knitr

NeedsCompilation no RoxygenNote 5.0.1

c,ChIPprofile-method

R topics documented:

	c,ChIPprofile-method	2
	chipExampleBig	
	ChIPprofile-class	1
	findconsensusRegions	4
	groupByOverlaps	(
		(
	ik_Profiles	-
	normalise	
	normaliseQuantiles	
	Ops,ChIPprofile,ChIPprofile-method	
	orientBy	
	plotHeatmap	
	plotRegion	
	pwmCov	
	pwmToCoverage	
	singleGRange	
T., J.,		
Index		L:

 ${\tt c,ChIPprofile-method} \quad \textit{Join, subset and manipulate ChIPprofile objects}$

Description

Join, subset and manipulate ChIPprofile objects

Usage

```
## S4 method for signature 'ChIPprofile'
c(x, ..., recursive = FALSE)

## S4 method for signature 'ChIPprofile'
rbind(x, ..., deparse.level = 1)

## S4 method for signature 'ChIPprofile'
cbind(x, ..., deparse.level = 1)

## S4 method for signature 'ChIPprofile,ANY,missing'
x[[i, j, ...]]

## S4 method for signature 'ChIPprofile'
x$name
```

Arguments

Should be missing

chipExampleBig 3

Value

A ChIPprofile object

Examples

```
data(chipExampleBig)
x <- c(chipExampleBig[[1]],chipExampleBig[[2]])
y <- rbind(chipExampleBig[[1]],chipExampleBig[[2]])</pre>
```

chipExampleBig

Example ChIPprofiles

Description

This dataset contains peaks from ChIP-signal over genes

Usage

```
data(chipExampleBig)
```

Details

• ChIPprofiles

Value

A ChIPprofile object

ChIPprofile-class

The soggi function and ChIPprofile object.

Description

Manual for soggi and ChIPprofile object

The soggi function is the constructor for ChIPprofile objects.

Usage

```
regionPlot(bamFile, testRanges, samplename = NULL, nOfWindows = 100,
   FragmentLength = 150, style = "point", distanceAround = NULL,
   distanceUp = NULL, distanceDown = NULL, distanceInRegionStart = NULL,
   distanceOutRegionStart = NULL, distanceInRegionEnd = NULL,
   distanceOutRegionEnd = NULL, paired = FALSE, normalize = "RPM",
   plotBy = "coverage", removeDup = FALSE, verbose = TRUE,
   format = "bam", seqlengths = NULL, forceFragment = NULL,
   method = "bin", genome = NULL, cutoff = 80, downSample = NULL,
   minFragmentLength = NULL, maxFragmentLength = NULL)
```

4 ChIPprofile-class

Arguments

bamFile Character vector for location of BAM file or bigWig, an rleList or PWM matrix. testRanges GRanges object or character vector of BED file location of regions to plot.

samplename Character vector of sample name. Default is NULL.

nOfWindows Number of windows to bin regions into for coverage calculations (Default 100)

FragmentLength Integer vector Predicted or expected fragment length.

style "Point" for per base pair plot, "percentOfRegion" for normalised length and "re-

gion" for combined plot

distanceAround Distance around centre of region to be used for plotting

distanceUp Distance upstream from centre of region to be used for plotting distanceDown Distance downstream from centre of region to be used for plotting

distanceInRegionStart

Distance into region start (5' for Watson/positive strand or notspecified strand

Regions,3' for Crick/negatie strand regions) for plotting.

distanceOutRegionStart

Distance out from region start (5' for Watson/positive strand or notspecified

strand Regions,3' for Crick/negatie strand regions) for plotting.

distanceInRegionEnd

Distance into region end (3' for Watson/positive strand or notspecified strand

Regions,5' for Crick/negatie strand regions) for plotting.

distanceOutRegionEnd

Distance out from region end (3' for Watson/positive strand or notspecified

strand Regions,5' for Crick/negatie strand regions) for plotting.

paired Is data paired end

normalize Calculate coverage as RPM. Presently only RPM available. plotBy Score to be used for plotting. Presently only coverage.

removeDup Remove duplicates before calculating coverage.

verbose TRUE or FALSE

format character vector of "bam", "bigwig", "RleList" or "PWM"

seqlengths Chromosomes to be used. If missing will report all.

forceFragment Centre fragment and force consistent fragment width.

method Character vector of value "bp", "bin" or "spline". The bin method divides a re-

gion of interest into equal sized bins of number specified in nOfWindows. Coverage or counts are then summarised within these windows. The spline method creates a spline with the number of spline points as specified in nOfWindows

argument.

genome BSGenome object to be used when using PWM input.

cutoff Cut-off for idnetifying motifs when using PWM input.

downSample Down sample BAM reads to this proportion of orginal.

minFragmentLength

Remove fragments smaller than this.

maxFragmentLength

Remove fragments larger than this.

findconsensusRegions 5

Value

ChIPprofile A ChIPprofile object.

References

See http://bioinformatics.csc.mrc.ac.uk for more details on soGGi workflows

Examples

```
data(chipExampleBig)
chipExampleBig
```

findconsensusRegions

Plot coverage of points or regions.

Description

Plot coverage of points or regions.

Returns summits and summmit scores after optional fragment length prediction and read extension

Usage

```
findconsensusRegions(testRanges, bamFiles = NULL, method = "majority",
   summit = "mean", resizepeak = "asw", overlap = "any",
   fragmentLength = NULL, NonPrimaryPeaks = list(withinsample = "drop",
   betweensample = "mean"))
summitPipeline(reads, peakfile, fragmentLength, readlength)
```

Arguments

testRanges Named character vector of region locations
bamFiles Named character vector of bamFile locations
method Method to select reproducible summits to merge.

summit Only mean available resizepeak Only asw available

overlap Type of overlap to consider for finding consensus sites fragmentLength Predicted fragment length. Set to NULL to auto-calculate

NonPrimaryPeaks

A list of parameters to deal with non primary peaks in consensus regions.

reads Character vector of bamFile location or GAlignments object

peakfile GRanges of genomic intervals to summit.

readlength Read length of alignments.

6 ik_Example

Value

Consensus A GRanges object of consensus regions with consensus summits. Summits A GRanges object of summits and summit scores.

groupByOverlaps

Create GRangeslist from all combinations of GRanges

Description

Create GRangeslist from all combinations of GRanges

Usage

```
groupByOverlaps(testRanges)
```

Arguments

testRanges

A named list of GRanges or a named GRangesList

Value

groupedGRanges A named GRangesList object.

Examples

```
data(ik_Example)
  gts <- groupByOverlaps(ik_Example)</pre>
```

ik_Example

Example Ikaros peaksets

Description

This dataset contains peaks from Ikaros ChIP by two antibodies

Usage

```
data(ik_Example)
```

Details

• Ikpeaksets

Value

A list containing two GRanges objects

ik_Profiles 7

	- 0.17	
ik	Profiles	

Example Ikaros signal over peaksets

Description

This dataset contains signal over peaks from Ikaros ChIP by two antibodies

Usage

```
data(ik_Profiles)
```

Details

• ik_Profiles

Value

A ChIPprofile object

normalise

Normalise ChIPprofiles

Description

Various normalisation methods for ChIPprofile objects

Usage

```
## S4 method for signature 'ChIPprofile'
normalise(object)

## S4 method for signature 'ChIPprofile, character, numeric'
normalise(object = "ChIPprofile",
    method = "rpm", normFactors = NULL)
```

Arguments

object A ChIPprofile object

method A character vector specifying normalisation method. Currently "rpm" for nor-

malising signal for BAM to total reads, "quantile" to quantile normalise across samples, "signalInRegion" to normalise to proportion of signal within intervals, "normaliseSample" to normalise across samples and "normaliseRegions" to ap-

ply a normalisation across intervals.

normFactors A numeric vector used to scale columns or rows.

8 normaliseQuantiles

Value

A ChIPprofile object

Author(s)

Thomas Carroll

Examples

```
data(chipExampleBig)
normalise(chipExampleBig,method="quantile",normFactors=1)
```

normaliseQuantiles

Normalise quantile

Description

Quantile normalisation across bins/regions.

Usage

```
## S4 method for signature 'ChIPprofile'
normaliseQuantiles(object)

## S4 method for signature 'ChIPprofile'
normaliseQuantiles(object = "ChIPprofile")
```

Arguments

object

A ChIPprofile object

Value

A ChIPprofile object containing normalised data

Author(s)

Thomas Carroll

Examples

```
data(chipExampleBig)
normaliseQuantiles(chipExampleBig)
```

 ${\it Ops, ChIPprofile, ChIPprofile-method} \\ {\it Arithmetic operations}$

Description

Arithmetic operations

Usage

```
## S4 method for signature 'ChIPprofile, ChIPprofile'
Ops(e1, e2)

## S4 method for signature 'ChIPprofile, numeric'
Ops(e1, e2)

## S4 method for signature 'numeric, ChIPprofile'
Ops(e1, e2)

## S4 method for signature 'ChIPprofile'
mean(x, ...)

## S4 method for signature 'ChIPprofile'
log2(x)

## S4 method for signature 'ChIPprofile'
log(x, base = exp(1))
```

Arguments

e1 ChIPprofile object e2 ChIPprofile object

Value

A ChIPprofile object of result of arithmetic operation.

Examples

```
data(chipExampleBig)
chipExampleBig[[1]] + chipExampleBig[[2]]
```

10 plotHeatmap

orientBy

Set strand by overlapping or nearest anchor GRanges

Description

Set strand by overlapping or nearest anchor GRanges

Usage

```
orientBy(testRanges, anchorRanges)
```

Arguments

testRanges The G

The GRanges object to anchor.

anchorRanges

A GRanges object by which to anchor strand orientation.

Value

newRanges A GRanges object.

Examples

```
data(ik_Example)
strand(ik_Example[[1]]) <- "+"
anchoredGRanges <- orientBy(ik_Example[[2]],ik_Example[[1]])</pre>
```

plotHeatmap

Plot heatmaps

Description

A function to plot heatmaps

Usage

```
## S4 method for signature 'ChIPprofile'
plotHeatmap(object,bins=100,col=heat.colors(100),
rowScale=TRUE,orderPosition=NULL,orderBy="maxAtPosition",...)
## S4 method for signature 'ChIPprofile'
plotHeatmap(object = "ChIPprofile", bins = 100,
    col = heat.colors(100), rowScale = TRUE, orderPosition = NULL,
    orderBy = "maxAtPosition", ...)
```

plotRegion 11

Arguments

object A ChIPprofile object

bins Numeric vector of number of bins to summarise columns over (Useful for full

resolution "profile" styles). Default is 100. Set to NULL for no binning to be performed Useful for comparing multiple samples of differing depths without

normalisation. Default is FALSE.

col Colour scale to use for heatmap.

rowScale TRUE or FALSE. Perform row centering and scaling. Default is TRUE.

orderPosition Numeric vector of positions used for sorting when orderBy is set to "maxAtPo-

sition". May be single value specifying index for ordering or vector of numeric values where maximum and minimum index positions specify an index range

used for sorting.

orderBy Character specifing method for heatmap row ordering. At present only "maxAt-

Position".

. . Additional arguments passed to image() maxAtPosition method - Order heatmap

by score at index specified in orderPosition. Ordered from maximum to mini-

mum.

Value

A matrix of values displayed in heatmap

Author(s)

Thomas Carroll

Examples

```
data(chipExampleBig)
plotHeatmap(log(chipExampleBig),orderPosition=c(100:200),bins=NULL,col=topo.colors(100))
```

plotRegion Plot regions

Description

A function to plot regions

Usage

```
## S4 method for signature 'ChIPprofile'
plotRegion(object,
gts,sampleData,groupData,summariseBy,
colourBy,lineBy,groupBy,
plotregion,outliers,freeScale)
```

12 plotRegion

```
## S4 method for signature 'ChIPprofile'
plotRegion(object = "ChIPprofile", gts = NULL,
  sampleData = NULL, groupData = NULL, summariseBy = NULL,
  colourBy = NULL, lineBy = NULL, groupBy = NULL, plotregion = "full",
  outliers = NULL, freeScale = FALSE)
```

Arguments

object A ChIPprofile object

gts A list of character vectors or GRangesList

sampleData Dataframe of metadata for sample groupData Dataframe of metadata for groups

summariseBy Column names from GRanges elementmetadata. Formula or character vector

of column names to use to collapse genomic ranges to summarised profiles. summariseBy can not be used injustion with groups specified by gts argument.

colourBy Character vector or formula of either column names from colData(object) con-

taining sample metadata or character vector "group" to colour by groups in gts

lineBy Character vector or formula of either column names from colData(object) con-

taining sample metadata or character vector "group" to set line type by groups

in gts

groupBy Character vector or formula of either column names from colData(object) con-

taining sample metadata or character "group" to colour by groups in gts

plotregion region to plot. For combined plots with style "region", may be "start" or "end"

to show full resolution of plot of edges.

outliers A numeric vector of length 1 containing proportion from limits to windsorise.]

freeScale TRUE or FALSE to set whether ggplot 2 facets have their own scales. Useful for

comparing multiple samples of differing depths without normalisation. Default

is FALSE.

Value

A gg object from ggplot2

Author(s)

Thomas Carroll

Examples

```
data(chipExampleBig)
plotRegion(chipExampleBig[[2]])
```

pwmCov 13

pwmCov

Example motif coverage

Description

This dataset contains an rlelist of motif coverage

Usage

```
data(pwmCov)
```

Details

• pwmCov

Value

A rlelist of motif coverage

pwmToCoverage

PWM hits and motif scores as an RLElist

Description

Creates rlelist of pwm hits.

Motif score as an RLElist

Usage

```
pwmToCoverage(pwm, genome, min = "70%", removeRand = FALSE,
    chrsOfInterest = NULL)

makeMotifScoreRle(pwm, regions, genome, extend, removeRand = FALSE,
    strandScore = "mean", atCentre = FALSE)
```

Arguments

pwm A PWM matrix object. genome A BSgenome object

min pwm score (as percentage of maximum score) cutoff

removeRand Remove contigs with rand string

chrsOfInterest Chromosomes to use

regions GRanges object to include in pwm rlelist

extend bps to extend regions by

14 singleGRange

strandScore Method for averaging strand. Options are max, mean, sum, bothstrands

atCentre TRUE/FALSE. TRUE assigns score onto 1bp position at centre of motif. FALSE

assigns every basepair the sum of scores of all overlapping motifs.

Value

A RLElist of motif density per base pair to be used as input to main soggi function.

Author(s)

Thomas Carroll

Examples

```
data(pwmCov)
data(singleGRange)
```

singleGRange

A single GRange

Description

This dataset contains an rlelist of motif coverage

Usage

data(singleGRange)

Details

• singleGRange

Value

A single GRanges used in motif coverage example/

Index

*Topic datasets	normalise, ChIPprofile, character, numeric-method		
chipExampleBig, 3	(normalise), 7		
ik_Example, 6	normalise,ChIPprofile-method		
ik_Profiles, 7	(normalise), 7		
pwmCov, 13	normalise.ChIPprofile(normalise),7		
singleGRange, 14	normaliseQuantiles, 8		
[[,ChIPprofile,ANY,missing-method	normaliseQuantiles,ChIPprofile-method		
(c,ChIPprofile-method),2	(normaliseQuantiles), 8		
<pre>\$,ChIPprofile-method</pre>	normaliseQuantiles.ChIPprofile		
(c,ChIPprofile-method),2	(normaliseQuantiles), 8		
c,ChIPprofile-method,2	${\tt Ops,ChIPprofile,ChIPprofile-method}, 9$		
cbind,ChIPprofile-method	Ops,ChIPprofile,numeric-method		
<pre>(c,ChIPprofile-method), 2 chipExampleBig, 3</pre>	<pre>(Ops,ChIPprofile,ChIPprofile-method), 9</pre>		
Chipprofile (Chipprofile-class), 3	Ops, numeric, ChIPprofile-method		
Chipprofile-Chipprofile	(Ops,ChIPprofile,ChIPprofile-method),		
(Chirprofile-class), 3	9		
ChiPprofile-class, 3	orientBy, 10		
findconsensusRegions, 5	plotHeatmap, 10		
Timeonsensuskegions, 5	plotHeatmap,ChIPprofile-method		
groupByOverlaps, 6	(plotHeatmap), 10		
8. 046270.0. 1460, 0	<pre>plotHeatmap.ChIPprofile(plotHeatmap),</pre>		
ik_Example, 6	10		
ik_Profiles, 7	plotRegion, 11		
_ ,	plotRegion,ChIPprofile-method		
log,ChIPprofile-method	(plotRegion), 11		
(Ops,ChIPprofile,ChIPprofile-method),	plotRegion.ChIPprofile(plotRegion), 11		
9	pwmCov, 13		
log2,ChIPprofile-method	pwmToCoverage, 13		
(Ops, ChIPprofile, ChIPprofile-method),	L' LOLTD C'I		
9	rbind, ChIPprofile-method		
	(c,ChIPprofile-method), 2		
<pre>makeMotifScoreRle (pwmToCoverage), 13</pre>	regionPlot (ChIPprofile-class), 3		
mean,ChIPprofile-method	singleGRange, 14		
(Ops,ChIPprofile,ChIPprofile-method),	soggi (ChIPprofile-class), 3		
9	summitPipeline (findconsensusRegions), 5		
normalise. 7			