Package ‘clustComp’

October 12, 2016

Version 1.0.0

Date 2016-01-30

Title Clustering Comparison Package

Author Aurora Torrente and Alvis Brazma.
Maintainer Aurora Torrente <aurora@ebi.ac.uk>
Depends R (>=3.3)

Imports sm, stats, graphics

Suggests Biobase, colonCA, RUnit, BiocGenerics
biocViews GeneExpression, Clustering, Visualization

Description clustComp is a package that implements several techniques
for the comparison and visualisation of relationships between
different clustering results, either flat versus flat or
hierarchical versus flat. These relationships among clusters
are displayed using a weighted bi-graph, in which the nodes
represent the clusters and the edges connect pairs of nodes
with non-empty intersection; the weight of each edge is the
number of elements in that intersection and is displayed
through the edge thickness. The best layout of the bi-graph is
provided by the barycentre algorithm, which minimises the
weighted number of crossings. In the case of comparing a
hierarchical and a non-hierarchical clustering, the dendrogram
is pruned at different heights, selected by exploring the tree
by depth-first search, starting at the root. Branches are
decided to be split according to the value of a scoring
function, that can be based either on the aesthetics of the
bi-graph or on the mutual information between the hierarchical
and the flat clusterings. A mapping between groups of clusters
from each side is constructed with a greedy algorithm, and can
be additionally visualised.

License GPL (>=2)

NeedsCompilation no

2 barycentre

R topics documented:

barycentre e e e e e e 2
drawTreeGraph e 3
dyn.cross e e e e 5
flatVSflat 6
flatVShier e 9
INSEIt . . . o e e e 11
SCMapping o e e e e e e e e 12
SCOTE.CIOSSING . » « v v v v v v i et e e e e e e e e e e e e e e e 14
SCOTE.AL . . v v v i o i et e e 16
Index 18
barycentre Computation of the barycentre-coordinate of a node connected to oth-

ers in a bigraph

Description

barycentre provides an updated coordinate value for a node that is connected to nodes in a different
layer of a bigraph. It is computed as the average of coordinates of the adjacent nodes, where
weighted edges are considered as multi-edges collapsed into one.

Usage

barycentre(edge.weight, coordinates = NULL)

Arguments
edge.weight a vector containing the intersection sizes (edge weights) between a given node
(from one of the partitionings) and all nodes in the other.
coordinates a vector indicating the coordinates of the adjacent nodes. If it is not provided,
then they are evenly spaced assuming a layout from top downwards.
Details

The node under consideration, from a given partitioning, is assigned a new position using the
barycentre algorithm. The coordinates of the incident nodes are considered as many times as the
corresponding edge weights indicate, and the new position for the node is given by the average over
this set of coordinates.

Value

position a nsumber indicating the barycentre-coordinate of the node under consideration.

Author(s)

Aurora Torrente <aurora@ebi.ac.uk> and Alvis Brazma <brazma@ebi.ac.uk>

drawTreeGraph 3

References

Torrente, A. et al. (2005). A new algorithm for comparing and visualizing relationships between
hierarchical and flat gene expression data clusterings. Bioinformatics, 21 (21), 3993-3999.

See Also
flatV Sflat, flatVShier

Examples

simulated data

clusteringl <- c(rep(1, 5), rep(2, 10), rep(3, 10))
clustering2 <- c(rep(1, 6), rep(2, 6), rep(3, 4), rep(4, 9))
weights <- table(clusteringl, clustering2)
barycentre(weights[1, 1, 1:4)

barycentre(weights[1, 1)

barycentre(weights[2, 1, 1:4)

apply(weights, 1, barycentre, 1:4)

drawTreeGraph Plot the bi-graph determined by the branches in the tree and the flat
clusters

Description

drawTreeGraph plots both a hierarchical tree, either complete or pruned, and a flat clustering,
connected with edges whose thickness is proportional to the number of elements shared by branches
and clusters, to form a weighted bi-graph. Its usage is mainly internal, as part of the visualisation
of the hierarchical.look. ahead function. The size of each cluster is also displayed.

Usage

drawTreeGraph(weight, current.order, coordinates, tree, dot = TRUE,
line.wd = 3, main = NULL, expanded = FALSE, hclust.obj = NULL,
labels = NULL, cex.labels = 1)

Arguments

weight a contingency matrix containing the intersection sizes (edge weights) between
branches in the tree and clusters from the flat partitioning.

current.order alist of two components; the first one is a vector with the branches (rows of the
matrix weight) in the ordering in which they are drawn; the second one provides
the ordering for flat clusters (columns of weight). Both are drawn from bottom
upwards.

coordinates a list of two components; the first one is a vector providing the Y-coordinates,
from bottom upwards, for the branches, whereas the second one provides the
Y-coordinates, from bottom upwards, for the flat clusters.

tree

dot

line.wd
main

expanded

hclust.obj

labels

cex.labels

Details

drawTreeGraph

a list with two components: $heights, a vector describing the heights at which
the different branches in the tree are agglomerated, and $branches, a matrix
of 3 columns; the i-th row contains as first element the branch split at the i-th
allowed splitting, and as second and third elements, the corresponding children.

a Boolean parameter; if TRUE then the last split in the children-tree is shown
with a red open circle.

a number indicating the width of the thickest edge(s) in the bigraph.
a character string for the plot title.

a Boolean parameter indicating whether the hierarchical tree should be plotted
complete or with its branches collapsed.

an hclust object describing the how the leaves are merged and the ordering of
the branches, which might have been changed by the gravity-centre algorithm.

a vector indicating the labels for the leaves in the expanded tree.

a number indicating the magnification used for the labels of the leaves.

The drawTreeGraph allows visualising the comparison of a hierarchical clustering, drawn on the
left hand side of the plot, and a flat clustering, represented on the right hand side. The tree
branches are labelled by their original labels preceded by 'B’; if the function is called as part of
the flatVShier algorithm, then the standard notation for initial branch labels is that of hclust
objects: if the label is a negative integer it corresponds to a leaf; if it is a positive integer, then it
corresponds to a branch that agglomerates at least two elements, and the number represent the stage
at which the branch was formed. The last splitting can be optionally highlighted with a red open
circle upon the parent-node. The flat clusters are labelled by their original labels preceded by "F’.

Value

a list of components including:

b.coord

f.coord

X.coords

Author(s)

a vector indicating the Y coordinates of the nodes in the bi-graph representing
the branches of the hierarchical tree.

a vector indicating the Y coordinates of the nodes in the bi-graph representing
the flat clusters.

a vector of two components indicating the X coordinates at which each layer of
the bi-graph is represented.

Aurora Torrente <aurora@ebi.ac.uk> and Alvis Brazma <brazma@ebi.ac.uk>

References

Torrente, A. et al. (2005). A new algorithm for comparing and visualizing relationships between
hierarchical and flat gene expression data clusterings. Bioinformatics, 21 (21), 3993-3999.

dyn.cross 5

See Also

flatVShier

Examples

simulated data

parent.clustering <- c(rep(1, 15), rep(2, 10))

replace the branch '2' by its children '3' and '4'
children.clustering <- c(rep(1, 15), rep(3, 5), rep(4, 5))
flat.clustering <- c(rep(1, 6), rep(2, 6), rep(3, 4), rep(4, 9))
split <- rbind(c(0, 1, 2), c(2, 3, 4))

weight <- table(children.clustering, flat.clustering)
current.order <- list(c(3, 4, 1), 1:4)

coordinates <- list(c(-1, @, 1), c(-1.5, -0.5, 0.5, 1.5))
tree<-list(heights = c(1, 0.8), branches = split)
drawTreeGraph(weight, current.order, coordinates, tree)

expanded tree

set.seed(0)

myData <- matrix(rnorm(50), 10, 5)

myData[1:5,] <- myData[1:5,] + 2 # two groups

flat.clustering <- kmeans(myData, 2)$cluster

hierar.clustering <- hclust(dist(myData))

weight <- matrix(c(5, @, @, 5), 2, 2)

colnames(weight) <- 1:2; rownames(weight) <- c(6,8)

current.order <- list(c(6, 8), 1:2)

coordinates <- list(c(@.25, 0.75), c(0.25, 0.75))

tree <- list(heights = hierar.clustering$height[9],
branches = matrix(c(9, 6, 8), 1, 3))

drawTreeGraph(weight, current.order, coordinates, tree,
expanded = TRUE, hclust.obj = hierar.clustering,
dot = FALSE)

dyn.cross Computation of the number of crossings in the bi-graph in a particular
layout

Description

dyn.cross dynamically computes the number of edge crossings for a given node ordering of both
layers of the bi-graph. This ordering is given by the rownames and colnames of the matrix of
weights provided as argument. The use of this function is mainly internal.

Usage

dyn.cross(weights)

6 flatVSflat

Arguments
weights a matrix containing the intersection sizes (edge weights) between clusters (nodes)
from the first partitioning (left or top layer of the bi-graph) and the second par-
titioning (right or bottom layer of the bi-graph). The rownames and colnames
of the matrix provide the ordering of the nodes in the first and second layer,
respectively.
Details

The number of crossings in the weighted bigraph is computed by considering multiedges between
connected nodes. The specific implementation uses a modification, adapted to the case of having
multiple edges, of the dynamic programming algorithm developed by Nagamochi and Yamada for
counting the number of crossings in non-weighted graphs, which has reduced computational cost.

Value

crossings the number of weighted crossings in the layout provided as argument.

Author(s)

Aurora Torrente <aurora@ebi.ac.uk> and Alvis Brazma <brazma@ebi.ac.uk>

References

Nagamochi H. and Yamada N. (2004) Counting edge crossings in a 2-layered drawing. Information
Processing Letters. 91, 221-225.

See Also
barycentre, flatV Sflat, flatV Shier

Examples

simulated data
clusteringl <- c(rep(1, 5), rep(2, 10), rep(3, 10))
clustering2 <- c(rep(1, 6), rep(2, 6), rep(3, 4), rep(4, 9))
dyn.cross(table(clusteringl, clustering2)) # no crossings
dyn.cross(table(clusteringl, clustering2)[c(2, 1, 3), 1)

flatvsflat Comparison of two flat clusterings

Description

flatVSflat carries out the comparison and visualisation of two flat clusterings. The nodes in each
partitioning are represented as nodes in the two layers of a bi-graph. The sizes of the intersection
between clusters are reflected in the edge thickness. The number of edge crossings is minimised
heuristically using the barycentre algorithm alternatively on each side.

flatVStiat

Usage

flatVSflat(weights, coordl = NULL, coord2 = NULL, max.iter = 24, h.min = 0.1,
plotting = TRUE, horiz = FALSE, offset = 0.1, line.wd = 3, point.sz = 2,

evenly = FALSE, main = "", xlab = "", ylab = "", col = NULL, ...)
Arguments

weights a matrix containing the weights of the edges in the bigraph, which represent the
overlaps between clusters in the two partitions.

coord1 a vector indicating the coordinates of the nodes in the first layer of the bi-graph.
If not provided, then the nodes are initially equally spaced.

coord?2 a vector indicating the coordinates of the nodes in the second layer of the bi-
graph. If not provided, then the nodes are initially equally spaced.

max.iter an integer stating the maximum number of runs of the barycentre heuristic on
both layers of the bi-graph.

h.min minimum separation between nodes in the same layer; if the barycentre algo-
rithm sets two nodes to be less than this distance apart, then the second node
and the following ones are shifted (downwards, in the vertical layout, and to the
right, in the horizontal layout).

plotting a Boolean parameter which yields the bi-graph if TRUE.

horiz a Boolean argument for displaying a vertical (default) or horizontal layout.

offset a numerical parameter that sets the separation between the nodes and their la-
bels. It is set to 0.1 by default.

line.wd a numerical parameter that fixes the width of the thickest edge(s); the rest are
drawn proportionally to their weights; 3 by default.

point.sz a numerical parameter that fixes the size of the nodes in the bigraph; 2 by default.

evenly a Boolean parameter; if TRUE the coordinate values are ignored, and the nodes
are drawn evenly spaced, according to the ordering obtained by the algorithm.
It is set to FALSE by default.

main graphical parameter as in plot.

x1lab graphical parameter as in plot.

ylab graphical parameters as in plot.

col graphical parameters as in plot.
further graphical parameters.

Details

As the iterations of the algorithm run the coordinates of the nodes in a single layer are updated.
For a given partition, each node is assigned a new position, the gravity-centre, using the barycentre
algorithm; then, the nodes in the corresponding layer are reordered according to the new positions.
If the gravity-centres cause two consecutive nodes to be less than h.min apart, the coordinates of the
second and all the following ones are shifted. Additionally, to improve the results of the algorithm
the following strategy is also used after running the barycentre algorithm on each side: consecutive
nodes are swapped if this transposition leads to a reduction in the number of edge crossings. The

8 flatVSflat

algorithm runs until there is no improvement in the number of crossings or until the maximum
number of iterations is reached. The rownames and colnames of matrix weights contain the cluster
labels. The ordering in the layout is over-imposed by the coordinate values, therefore, the names
(in the coordinates) and row-/col-names (in the contingency table) should coincide.

Value

a list of components including:

icross the number of edge crossings before running the barycentre algorithm.

fcross the number of edge crossings after running the barycentre algorithm.

coord1 a vector containing the coordinates for each node in the first layer.

coord?2 a vector containing the coordinates for each node in the second layer.
Author(s)

Aurora Torrente <aurora@ebi.ac.uk> and Alvis Brazma <brazma@ebi .ac.uk>

References

Eades, P. et al. (1986). On an edge crossing problem. Proc. of 9th Australian Computer Science
Conference, pp. 327-334.

Gansner, E.R. ef al. (1993). A technique for drawing directed graphs. IEEE Trans. on Software
Engineering, 19 (3), 214-230.

Garey, M.R. er al. (1983). Crossing number in NP complete. STAM J. Algebraic Discrete Methods,
4,312-316.

Torrente, A. et al. (2005). A new algorithm for comparing and visualizing relationships between
hierarchical and flat gene expression data clusterings. Bioinformatics, 21 (21), 3993-3999.

See Also

flatV Shier, barycentre

Examples

simulated data

clusteringl <- c(rep(1, 5), rep(2, 10), rep(3, 10))
clustering2 <- c(rep(1:4, 5), rep(1, 5))

weights <- table(clusteringl, clustering2)
flatVSflat(table(clusteringl, clustering2))

flatVShier 9

flatVShier Comparison of a hierarchical and a flat clusterings

Description

flatVShier carries out the comparison and visualisation of the relationships between a hierarchical
and a flat clusterings. The hierarchical one is shown either as a complete or pruned tree, whose col-
lapsed branches are nodes on the left hand side layer of a bi-graph. The flat clusters are represented
on the right hand side. Branches and flat clusters are connected with edges, whose thickness rep-
resents the number of elements common to both sets. The number of edge crossings is minimised
using the barycentre algorithm on the right hand side; also, the children corresponding to the last
split in the dendrogram when exploring it by depth-first search are swapped if this decreases the
number of crossings.

Usage

flatVShier(tree, flat.clustering, flat.order = NULL, max.branches = 100,
look.ahead = 2, pausing = TRUE, verbose = TRUE, h.min = 0.04, line.wd = 3,
greedy = TRUE, greedy.colours = NULL, score.function = "crossing”,
expanded = FALSE, labels = NULL, cex.labels = 1, main = NULL)

Arguments
tree an hclust object, or structure that can be converted to hclust object, correspond-
ing to a data set of size N.

flat.clustering
a vector of length N containing the labels for each of the N objects clustered.

flat.order an optional vector containing the initial ordering for the flat clusters (from bot-
tom upward).

max.branches an integer stating the maximum number of branches allowed in the dendogram.

look. ahead the number of steps allowed to look further after finding a parent-node whose
score is better that that of its children.

pausing a Boolean argument; if TRUE, each step in the comparison is plotted and fol-
lowed by a pause.

verbose a Boolean argument; if TRUE, the situation in each iteration is described.

h.min minimum separation between nodes in the flat layer; if the barycentre algorithm

sets two nodes to be less than this distance apart, then the second node and the
following ones are shifted (upwards).

line.wd a numerical parameter that fixes the width of the thickest edge(s); the rest are
drawn proportionally to their weights; 3 by default.

greedy a Boolean argument; if TRUE, the branches produced by the optimal cutoffs are
used to construct superclusters that will be mapped to superclusters on the flat
side with the greedy algorithm in SCmapping.

10 flatVShier

greedy.colours an optional vector containing the colours for each of the superclusters if the
greedy algorithm is used; if the length of this vector is smaller than that of the
number of resulting superclusters p, then it is recycled.

score.function a string specifying whether the decision to split a given branch is based on the
aesthetics ("crossing’) or on the information theory (’it’).

expanded a Boolean parameter to state whether the hierarchical tree is displayed complete
or pruned.
labels an optional vector containing labels for the leaves of the tree.
cex.labels a number indicating the magnification for the labels of the flat clusters and the
branches in the hierarchical tree.
main an optional character string for the title of the plot.
Details

The method cuts different branches of the tree at *optimal’ levels, which may be different at different
branches, to find the best matches with the flat clustering. The method explores the tree depth-first,
starting from the root. In each iteration the goal is to decide whether the branch under consideration
(the parent node) is to be split. To that end, the user selects a scoring function based on the bi-
graph aesthetics ("crossing’) or an alternative based on mutual information between the flat and
hierarchical clusterings (’it’). The selected score is first computed for the parent-node. Next it
is replaced by its children; the barycentre algorithm, with the swapping strategy, is used on the
flat side of the bi- graph. Later, the children in the tree are swapped and the positions on the flat
side are likewise updated. The best score obtained by any of these layouts in the children tree is
compared to the score of the parent-tree, sp. If it is better, then the splitting is allowed and the
tree is subsequently explored. Otherwise, the splitting is discarded, unless it is allowed to look
ahead. In that case, the score for the tree with one of the children of the parent-node replaced by
its own children is compared to sp; this is repeated until we get a better score for the children or
until the maximum number of looking-ahead steps is reached. After the optimal cut-offs are found,
it is possible to run a greedy algorithm to determine sets of clusters from each side which have
a large overlap. These sets, referred to as superclusters, determine the mapping between the two
clusterings.

Value

a list of components including:

tree.partition a vector of length N stating the branch each element belongs to.

tree.s.clustering
a vector of length N stating the supercluster on the tree side each element be-
longs to. If greedy=FALSE this component is not returned.
flat.s.clustering

a vector of length N stating the supercluster on the flat side each element belongs
to. If greedy=FALSE this component is not returned.

tree.merging alist of p components; the j-th element contains the labels of the tree that have
been merged to produce the j-th supercluster. If greedy=FALSE this component
is not returned.

insert 11

flat.merging a list of p components; the j-th element contains the labels of the flat clusters
that have been merged to produce the j-th supercluster. If greedy=FALSE this
component is not returned.

dendrogram an hclust object with the appropriate ordering of the branches to minimise the
number of crossings.

Author(s)

Aurora Torrente <aurora@ebi.ac.uk> and Alvis Brazma <brazma@ebi .ac.uk>

References

Torrente, A. et al. (2005). A new algorithm for comparing and visualizing relationships between
hierarchical and flat gene expression data clusterings. Bioinformatics, 21 (21), 3993-3999.

See Also

flatVSflat, barycentre, score.crossing, score.it, SCmapping

Examples

simulated data

set.seed(0)

dataset <- rbind(matrix(rnorm(20), 5, 4), sweep(matrix(rnorm(24), 6, 4),
2, 1:4, "+"))

tree <- hclust(dist(dataset))

two clusters

flat <- kmeans(dataset,2)$cluster

collapsedl <- flatVShier(tree, flat, pausing = FALSE)

four clusters

flat<-kmeans(dataset, 4)$cluster

collapsed2 <- flatVShier(tree, flat)

expanded tree
expandedl <- flatVShier(tree, flat, pausing = FALSE, score.function = "it",
expanded = TRUE)

insert Insert a set of values at a given position of a vector

Description
insert introduces a vector at a given position of another vector, displacing to the right all values
from that position onwards.

Usage

insert(vect, position, value)

12 SCmapping

Arguments
vect the vector in which to insert additional values.
position the position of vector vect at which to insert additional values.
value the values to be inserted in the vector vect.

Details

The value of position does not need to be a number smaller than or equal to the length of vect, as
the missing values will be denoted as NA.

Value

new.vector the vector resulting after inserting value at the position determined by position.

Author(s)

Aurora Torrente <aurora@ebi.ac.uk> and Alvis Brazma <brazma@ebi.ac.uk>

Examples

simulated data

vl <- 1:10

v2 <- insert(vl, 4, 0)

v2 <- insert(vl, 1, rep(@, 5))
v2 <- insert(vl, 11, "A")

v2 <- insert(vl, 12, "A")

SCmapping Construction of the superclusters and the one-to-one mapping be-
tween them

Description

SPmapping identifies groups of clusters from two flat partitionings that have the largest common
intersections. These groups are found by following a greedy strategy: all edges incident to each
cluster are removed except for the one(s) with highest weight; then the connected components in
the resulting bi-graph define the correspondences of superclusters.

Usage

SCmapping(clusteringl, clustering2, plotting = TRUE, h.min = 0.1, line.wd = 3,
point.sz = 3, offset = 0.1, evenly = TRUE, horiz = FALSE, max.iter =24,
node.col = NULL, edge.col = NULL,...)

SCmapping

Arguments

clusteringl

clustering?2

plotting

h.min

line.wd

point.sz

offset

evenly

horiz

max.iter

node.col

edge.col

Details

13

a vector indicating the cluster in which each point is allocated in the first flat
partitioning.

a vector indicating the cluster in which each point is allocated in the second flat
partitioning.

a Boolean parameter which leads to the representation of the bi-graph if TRUE.

the minimum separation between nodes in the same layer; if the barycentre al-
gorithm sets two nodes to be less than this distance apart, then the second node
and the following ones are shifted (downwards, in the vertical layout, and to the
right, in the horizontal layout).

a numerical parameter that fixes the width of the thickest edge, according to the
weights; 3 by default.

a numerical parameter that fixes the size of the nodes in the bi-graph; 2 by
default.

a numerical parameter that sets the separation between the nodes and their la-
bels. It is set to 0.1 by default.

a Boolean parameter; if TRUE the coordinate values are ignored, and the nodes
are drawn evenly spaced, according to the ordering obtained by the barycentre
algorithm. It is set to FALSE by default.

a Boolean argument for vertical (default) or horizontal layout.

an integer stating the maximum number of runs of the barycentre heuristic on
both layers of the bi-graph.

defines the colour of nodes from both layers.
sets the colour of the edges.

further graphical parameters can be passed to the function.

The one-to-one mapping between groups of clusters from two different flat partitionings is com-
puted with a greedy algorithm: firstly, for each node the edge with the highest weight is taken, and
secondly, the connected components in the edge-reduced bi-graph are found, so that each connected
component corresponds to a pair of superclusters with a large overlap.

Value

a list containing:

s.clustering1

s.clustering?

mergingl

a vector indicating the supercluster in which each point is allocated in the first
superclustering.

a vector indicating the supercluster in which each point is allocated in the second
superclustering.

a list of p elements, whose j-th component contains the labels of the initial clus-
ters from the first partitioning that have been merged to produce the j-th super-
cluster in the left layer of the bi- graph.

14 score.crossing

merging?2 a list of p elements, whose j-th component contains the labels of the initial clus-
ters from the second partitioning that have been merged to produce the j-th su-
percluster in the right layer of the bi- graph.

weights a pxp matrix containing the size of the intersections between the superclusters.

Author(s)

Aurora Torrente <aurora@ebi.ac.uk> and Alvis Brazma <brazma@ebi.ac.uk>

References

Torrente, A. et al. (2005). A new algorithm for comparing and visualizing relationships between
hierarchical and flat gene expression data clusterings. Bioinformatics, 21 (21), 3993-3999.

See Also
barycentre, flatVSflat, flatVShier

Examples

computation and visualisation of superclusters
simulated data
clusteringl <- c(rep(1, 5), rep(2, 10), rep(3, 10))
clustering2 <- c(rep(1, 6), rep(2, 6), rep(3, 4), rep(4, 9))
mapping <- SCmapping(clusteringl, clustering2)

score.crossing Computation of the aesthetics-based score of the parent and the chil-
dren trees

Description

score.crossing computes the value of the scoring function based on the aesthetics of the bi-
graph formed when comparing a dendrogram and a flat clustering, for both the parent-tree and the
children-tree; the children-tree consists of the same branches as the parent-tree, except for the parent
node, that has been split and replaced by some of its descendants.

Usage

score.crossing(weight.1, weight.2, N.cross)

Arguments

weight.1 a matrix of dimension (m-1)xn containing the intersection sizes (edge weights)
between branches in the parent-tree and clusters from the flat partitioning. The
ordering of the rows and columns is irrelevant for the computation of the score.

score.crossing 15

weight.2 a matrix of dimension (m+k)xn containing the intersection sizes (edge weights)
between branches in the children-tree and clusters from the flat partitioning. k
takes on values in 0,1,...,.L, where L is the maximum number of steps that the
comparison algorithm is allowed to look ahead. The ordering of the rows corre-
sponding to branches that are not descendants of the parent node must coincide
with that of the matrix weight. 1 after discarding the parent node. The ordering
of the columns is irrelevant for the computation of the score.

N.cross the number of edge crossings induced in the subtree formed by the descendants
of the parent-node.

Details

The decision to split a given parent-node is based on achieving a better score for the children-tree
than for the parent-tree. In the case of score.crossing, a better score is reflected by a larger
value of the scoring function, which rewards few thicker edges, penalises many smaller edges, and
accounts for the number of edge crossings in the resulting bigraph. The descendants of the parent-
node considered in the children-tree are its two children if no look-ahead is carried out; otherwise,
the descendants will reach subsequent generations and their number will increase by one at each
look-ahead step.

Value

a list containing the following components:

scl the value of the scoring function for the parent-tree.
sc2 the value of the scoring function for the children-tree.
Author(s)

Aurora Torrente <aurora@ebi.ac.uk> and Alvis Brazma <brazma@ebi.ac.uk>

References

Torrente, A. et al. (2005). A new algorithm for comparing and visualizing relationships between
hierarchical and flat gene expression data clusterings. Bioinformatics, 21 (21), 3993-3999.

See Also

score.it, dyn.cross, flatVShier

Examples

simulated data

parent.clustering <- c(rep("B1", 5), rep("B2", 10), rep(”"B3", 10))

replace the branch 'B2' by its children 'B4' and 'B5'

children.clustering <- c(rep("B1", 5), rep("B4", 3), rep("B5", 7),
rep("B3", 10))

flat.clustering <- c(rep(1, 6), rep(2, 6), rep(3, 4), rep(4, 9))

the ordering of flat clusters is '1','2','3"' and '4'.

parent.weights <- table(parent.clustering, flat.clustering)

16 score.it

children.weights <- table(children.clustering, flat.clustering)
descendant.cross <- dyn.cross(children.weights[c('B4', 'B5'), 1)
score.crossing(parent.weights, children.weights, descendant.cross)
better score for the parent.tree

score.it Computation of the information theoretic-based score of the parent
and the children trees

Description

score. it computes the value of the scoring function based on information theory and the mutual
information shared by a dendrogram and the flat clustering which is compared to, for both the
parent-tree and the children-tree; the children-tree consists of the same branches as the parent-tree,
except for the parent node, that has been split and replaced by some of its descendants.

Usage

score.it(weight.1, weight.2)

Arguments

weight.1 a matrix of dimension (m-1)xn containing the intersection sizes (edge weights)
between branches in the parent-tree and clusters from the flat partitioning. The
ordering of the rows and columns is irrelevant for the computation of the score.

weight.2 a matrix of dimension (m+k)xn containing the intersection sizes (edge weights)
between branches in the children-tree and clusters from the flat partitioning. k
takes on values in 0,1,...,.L, where L is the maximum number of steps that the
comparison algorithm is allowed to look ahead. The ordering of the rows corre-
sponding to branches that are not descendants of the parent node must coincide
with that of the matrix weight. 1 after discarding the parent node. The ordering
of the columns is irrelevant for the computation of the score.

Details

The decision to split a given parent-node is based on achieving a better score for the children-tree
than for the parent-tree. In the case of score.it, a better score is reflected by a smaller value of the
scoring function, which is related to the average length of the messages that encode the information
about one clustering contained in the other. The descendants of the parent-node considered in the
children-tree are its two children if no look-ahead is carried out; otherwise, the descendants will
reach subsequent generations and their number will increase by one at each look-ahead step.

Value
a list containing the following components:

scl the value of the scoring function for the parent-tree.

sc2 the value of the scoring function for the children-tree.

score.it 17

Author(s)

Aurora Torrente <aurora@ebi.ac.uk> and Alvis Brazma <brazma@ebi.ac.uk>

References

Torrente, A. et al. (2005). A new algorithm for comparing and visualising relationships between
hierarchical and flat gene expression data clusterings. Bioinformatics, 21 (21), 3993-3999.

See Also

score.crossing, flatVShier

Examples

simulated data

parent.clustering <- c(rep(1, 5), rep(2, 10), rep(3, 10))

replace the branch '2' by children '4' and '5'

children.clustering<-c(rep(1,5),rep(4,3),rep(5,7),rep(3,10))

flat.clustering <- c(rep(1, 6), rep(2, 6), rep(3, 4), rep(4, 9))

score.it(table(parent.clustering, flat.clustering),
table(children.clustering, flat.clustering))

better score for the parent.tree

Index

+Topic branch split
insert, 11
score.crossing, 14
score.it, 16

+Topic clustering comparison
drawTreeGraph, 3
flatVsflat, 6
flatVShier, 9
SCmapping, 12

+Topic edge crossing
barycentre, 2
dyn.cross, 5

barycentre, 2

drawTreeGraph, 3
dyn.cross, 5

flatVSflat, 6
flatVShier, 9

insert, 11
SCmapping, 12

score.crossing, 14
score.it, 16

18

	barycentre
	drawTreeGraph
	dyn.cross
	flatVSflat
	flatVShier
	insert
	SCmapping
	score.crossing
	score.it
	Index

