Package 'SC3'

October 12, 2016

Type Package

Title Single-Cell Consensus Clustering

Version 1.1.4

Date 2016-05-06

Author Vladimir Kiselev

Maintainer Vladimir Kiselev <vladimir.yu.kiselev@gmail.com>

Description Interactive tool for clustering and analysis of single cell RNA-Seq data.

License GPL-3

Imports graphics, stats, utils, methods, RSelenium, e1071, parallel, foreach, doParallel, doRNG, shiny, ggplot2, pheatmap (>= 1.0.8), RColorBrewer, colorspace, ROCR, robustbase, rrcov, cluster, WriteXLS, Rtsne

Depends R(>= 3.3)

LazyData TRUE

RoxygenNote 5.0.1

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

biocViews Classification, Clustering, DimensionReduction, SupportVectorMachine, RNASeq, Visualization, Transcriptomics, DataRepresentation, GUI, DifferentialExpression, GeneSetEnrichment, Transcription

NeedsCompilation no

URL https://github.com/hemberg-lab/SC3

BugReports https://github.com/hemberg-lab/SC3/issues

R topics documented:

calculate_	dist	tan	ce																			•	•		•						2	2
cell_filter				•	•	•		•	•	•	•	•	•	•	•	•	•			•	•	•	•	 	•	•		•	•	•	1	3

calculate_distance

14

consensus_matrix	3
gene_filter	4
get_data	4
get_de_genes	5
get_marker_genes	5
get_outl_cells	6
iwanthue	7
norm_laplacian	8
sc3	8
sc3_interactive	10
StabilityIndex	10
support_vector_machines	11
swatch	11
transformation	12
treutlein	13

Index

calculate_distance Calculate a distance matrix

Description

Distance between the cells, i.e. columns, in the input expression matrix are calculated using the Euclidean, Pearson and Spearman metrics to construct distance matrices.

Usage

calculate_distance(data, method)

Arguments

data	expression matrix
method	one of the distance metrics: "spearman", "pearson", "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski"

Value

distance matrix

cell_filter

Description

The cell filter should be used if the quality of data is low, i.e. if one suspects that some of the cells may be technical outliers with poor coverage. The cell filter removes cells containing fewer than cell.filter.genes.

Usage

cell_filter(data, cell.filter.genes)

Arguments

data expression matrix cell.filter.genes minimum number of genes that must be expressed in each cell, default is 2,000.

Value

Filtered expression matrix

consensus_matrix Calculate consensus matrix

Description

Consensus matrix is calculated using the Cluster-based Similarity Partitioning Algorithm (CSPA). For each clustering result a binary similarity matrix is constructed from the corresponding cell labels: if two cells belong to the same cluster, their similarity is 1, otherwise the similarity is 0. A consensus matrix is calculated by averaging all similarity matrices.

Usage

```
consensus_matrix(clusts)
```

Arguments

clusts a list clustering labels (separated by a space)

Value

consensus matrix

gene_filter

Description

The gene filter removes genes that are either expressed or absent (expression value is less than 2) in at least X The motivation for the gene filter is that ubiquitous and rare genes most often are not informative for the clustering.

Usage

gene_filter(data, fraction)

Arguments

data	expression matrix
fraction	fraction of cells (1 - X/100), default is 0.06.

Value

filtered expression matrix some genes were removed.

get_data

Import expression matrix

Description

Import an input expression matrix.

Usage

get_data(name)

Arguments

name name of an R object or a text file

Value

expression matrix

get_de_genes

Description

If the cell labels are available this functions allows a user to calculate differentially expressed genes manually.

Usage

```
get_de_genes(dataset, labels, p.val = 0.01)
```

Arguments

dataset	expression matrix
labels	cell labels corresponding to the columns of the expression matrix
p.val	p-value threshold, by default it is 0.01

Value

a numeric vector containing the differentially expressed genes and correspoding p-values

Examples

```
d <- get_de_genes(treutlein, colnames(treutlein))
head(d)</pre>
```

get_marker_genes Find marker genes

Description

If the cell labels are available this functions allows a user to calculate marker genes manually.

Usage

```
get_marker_genes(dataset, labels, auroc.threshold = 0.85, p.val = 0.01)
```

Arguments

dataset	expression matrix
labels	cell labels corresponding to the columns of the expression matrix
auroc.threshold	
	area under the ROC curve threshold, by default it is 0.85. Values close to 0.5 will include very weak marker genes, values close to 1 will only include very strong marker genes.
p.val	p-value threshold, by default it is 0.01

Value

data.frame containing the marker genes

Examples

```
d <- get_marker_genes(treutlein, colnames(treutlein))
head(d)</pre>
```

get_outl_cells Find cell outliers

Description

If the cell labels are available this functions allows a user to calculate cell outlier scores manually.

Usage

```
get_outl_cells(dataset, labels, chisq.quantile = 0.9999)
```

Arguments

dataset	expression matrix
labels	cell labels corresponding to the columns of the expression matrix
chisq.quantile	a threshold of the chi-squared distribution used for cell outliers detection, default is 0.9999

Value

a numeric vector containing the cell labels and correspoding outlier scores ordered by the labels

Examples

```
d <- get_outl_cells(treutlein, colnames(treutlein))
head(d)</pre>
```

iwanthue

Description

Generate a palette of distinct colours through k-means clustering of LAB colour space.

Usage

```
iwanthue(n, hmin = 0, hmax = 360, cmin = 0, cmax = 180, lmin = 0,
lmax = 100, plot = FALSE, random = FALSE)
```

Arguments

n	Numeric. The number of colours to generate.
hmin	Numeric, in the range [0, 360]. The lower limit of the hue range to be clustered.
hmax	Numeric, in the range [0, 360]. The upper limit of the hue range to be clustered.
cmin	Numeric, in the range [0, 180]. The lower limit of the chroma range to be clustered.
cmax	Numeric, in the range [0, 180]. The upper limit of the chroma range to be clustered.
lmin	Numeric, in the range [0, 100]. The lower limit of the luminance range to be clustered.
lmax	Numeric, in the range [0, 100]. The upper limit of the luminance range to be clustered.
plot	Logical. Should the colour swatches be plotted (using swatch)?
random	Logical. If TRUE, clustering will be determined by the existing RNG state. If FALSE, the seed will be set to 1 for clustering, and on exit, the function will restore the pre-existing RNG state.

Details

Note that iwanthue currently doesn't support hmin greater than hmax (which should be allowed, since hue is circular).

Value

A vector of n colours (as hexadecimal strings), representing centers of clusters determined through k-means clustering of the LAB colour space delimited by hmin, hmax, cmin, cmax, lmin and lmax.

References

- R implementation of iwanthue by John Baumgartner
- iwanthue colors for data scientists
- iwanthue on GitHub

See Also

swatch

norm_laplacian Graph Laplacian calculation

Description

Calculate graph Laplacian of a distance matrix

Usage

norm_laplacian(x, tau)

Arguments

х	adjacency/distance matrix
tau	regularization term

Value

graph Laplacian of the adjacency/distance matrix

sc3

SC3 main function

Description

Run SC3 clustering pipeline and starts an interactive session in a web browser.

Usage

```
sc3(filename, ks = 3:7, cell.filter = FALSE, cell.filter.genes = 2000,
gene.filter = TRUE, gene.filter.fraction = 0.06, log.scale = TRUE,
d.region.min = 0.04, d.region.max = 0.07, interactivity = TRUE,
show.original.labels = FALSE, svm = FALSE, svm.num.cells = NA,
n.cores = NA, seed = 1)
```

filename	either an R matrix / data.frame object OR a path to your input file containing an input expression matrix. The expression matrix must contain both colnames (cell IDs) and rownames (gene IDs).								
ks	a range of the number of clusters that needs to be tested. k.min is the minimum number of clusters (default is 3). k.max is the maximum number of clusters (default is 7).								
cell.filter	defines whether to filter cells that express less than cell.filter.genes genes (lowly expressed cells). By default it is FALSE. The cell filter should be used if the quality of data is low, i.e. if one suspects that some of the cells may be technical outliers with poor coverage. Filtering of lowly expressed cells usually improves clustering.								
cell.filter.genes									
	if cell.filter is used then this parameter defines the minimum number of genes that have to be expressed in each cell (expression value > $1e-2$). If there are fewer, the cell will be removed from the analysis. The default is 2000.								
gene.filter gene.filter.fra	defines whether to perform gene filtering or not. Boolean, default is TRUE.								
80.000 12000 000	fraction of cells (1 - X/100), default is 0.06. The gene filter removes genes that								
	are either expressed or absent (expression value is less than 2) in at least X The motivation for the gene filter is that ubiquitous and rare genes most often are not informative for the clustering.								
log.scale	defines whether to perform log2 scaling or not. Boolean, default is TRUE.								
d.region.min	the lower boundary of the optimum region of d, default is 0.04.								
d.region.max	the upper boundary of the optimum region of d, default is 0.07.								
interactivity	defines whether a browser interactive window should be open after all computa- tion is done. By default it is TRUE. This option can be used to separate cluster- ing calculations from visualisation, e.g. long and time-consuming clustering of really big datasets can be run on a farm cluster and visualisations can be done using a personal laptop afterwards. If interactivity is FALSE then all clustering results will be saved as "sc3.interactive.arg" list. To run interactive visulisation with the precomputed clustering results please use sc3_interactive(sc3.interactive.arg).								
show.original.									
	if cell labels in the dataset are not unique, but represent clusters expected from the experiment, they can be visualised by setting this parameter to TRUE. The default is FALSE.								
s∨m	if TRUE then an SVM prediction will be used. The default is FALSE.								
svm.num.cells	number of training cells to be used for SVM prediction. The default is NA. If the svm parameter is TRUE and svn.num.cells is not provided, then the defaults of SC3 will be used: if number of cells is more than 5000, then svn.num.cells = 1000, otherwise svn.num.cells = 20 percent of the total number of cells								
n.cores	defines the number of cores to be used on the user's machine. Default is NA.								
seed	sets seed for the random number generator, default is 1. Can be used to check the stability of clustering results: if the results are the same after changing the seed several time, then the clustering solution is stable.								

Value

Opens a browser window with an interactive shine app and visualize all precomputed clusterings.

Examples

```
sc3(treutlein, 3:7, interactivity = FALSE, n.cores = 2)
```

sc3_interactive SC3 interactive function

Description

Runs interactive session of SC3 based on precomputed objects

Usage

sc3_interactive(input.param)

Arguments

input.param parameters precomputed by sc3() with interactivity = FALSE (sc3.interactive.arg).

Value

Opens a browser window with an interactive shiny app and visualize all precomputed clusterings.

StabilityIndex Calculate the stability index of the obtained clusters when changing k

Description

Stability index shows how stable each cluster is accross the selected range of k. The stability index varies between 0 and 1, where 1 means that the same cluster appears in every solution for different k.

Usage

StabilityIndex(stab.res, k)

Arguments

stab.res	internal matrix of precomputed clustering results
k	current value of the number of clusters k

Details

Formula (imagine a given cluster with is split into N clusters when k is changed, and in each of the new clusters there are given_cells of the given cluster and also some extra_cells from other clusters): SI = sum_over_ks(sum_over_clusters_N(given_cells/(given_cells + extra_cells)))/N(corrects for stability of each cluster)/N(corrects for the number of clusters)/length(ks)

Value

a numeric vector containing a stability index of each cluster

support_vector_machines

Run support vector machines (SVM) prediction

Description

Train an SVM classifier on training cells and then classify study cells using the classifier.

Usage

```
support_vector_machines(train, study, kern)
```

Arguments

train	expression matrix with training cells
study	expression matrix with study cells
kern	kernel to be used with SVM

Value

classification of study cells

swatch Plot of	olour swatches for a vector of colours
----------------	--

Description

Plot named colour swatches for a vector of colours.

Usage

swatch(x)

Arguments

a vector of colours, specified as: colour names (i.e. colour names returned by colors()); numeric indices into palette(), or hexadecimal strings in the form "#RRGGBB", where RR, GG, and BB are pairs of hexadecimal digits representing red, green, and blue components, in the range 00 to FF.

Value

NULL. The colour swatch is plotted to the active plotting device.

See Also

iwanthue

transformation

Distance matrix transformation

Description

All distance matrices are transformed using either principal component analysis (PCA), multidimensional scaling (MDS) or by calculating the eigenvectors of the graph Laplacian (Spectral). The columns of the resulting matrices are then sorted in descending order by their corresponding eigenvalues.

Usage

transformation(dists, method)

Arguments

dists	distance matrix
method	transformation method: either "pca", "mds", "spectral" or "spectral_reg", where "spectral_reg" calculates graph Laplacian with regularization (tau = 1000)

Value

transformed distance matrix

х

treutlein

Description

Single cell RNA-Seq data extracted from a publication by Treutlein et al.

Usage

treutlein

Format

An object of class matrix with 23271 rows and 80 columns.

Value

blah blah

Source

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52583

Columns represent cells, rows represent genes expression values. Colnames respresent indexes of cell clusters (known information based on the experimental protocol). There are 80 cells and 5 clusters in this dataset.

Index

*Topic datasets
 treutlein, 13
calculate_distance, 2
cell_filter, 3
consensus_matrix, 3

gene_filter, 4
get_data, 4
get_de_genes, 5
get_marker_genes, 5
get_outl_cells, 6

iwanthue, 7, 12

 $\texttt{norm_laplacian}, 8$

sc3, 8
sc3_interactive, 10
StabilityIndex, 10
support_vector_machines, 11
swatch, 7, 8, 11

transformation, 12 treutlein, 13