
Package ‘ClassifyR’
October 12, 2016

Type Package

Title A framework for two-class classification problems, with
applications to differential variability and differential
distribution testing

Version 1.6.2

Date 2016-03-08

Author Dario Strbenac, John Ormerod, Graham Mann, Jean Yang

Maintainer Dario Strbenac <dario.strbenac@sydney.edu.au>

VignetteBuilder knitr

biocViews Classification, Survival

Depends R (>= 3.0.3), methods, Biobase, BiocParallel

Imports locfit, ROCR, grid

Suggests limma, edgeR, car, Rmixmod, ggplot2 (>= 2.0.0), gridExtra (>=
2.0.0), BiocStyle, pamr, sparsediscrim, PoiClaClu,
curatedOvarianData, parathyroidSE, knitr, klaR, gtable, scales,
e1071, rmarkdown, IRanges

Description The software formalises a framework for classification in R.
There are four stages; Data transformation, feature selection, classifier training,
and prediction. The requirements of variable types and names are
fixed, but specialised variables for functions can also be provided.
The classification framework is wrapped in a driver loop, that
reproducibly carries out a number of cross-validation schemes.
Functions for differential expression, differential variability,
and differential distribution are included. Additional functions
may be developed by the user, by creating an interface to the framework.

Collate bartlettSelection.R classes.R utilities.R calcPerformance.R
classifyInterface.R DMDselection.R edgeRselection.R errorMap.R
fisherDiscriminant.R distribution.R getLocationsAndScales.R
KolmogorovSmirnovSelection.R KullbackLeiblerSelection.R
leveneSelection.R likelihoodRatioSelection.R limmaSelection.R
mixmodels.R naiveBayesKernel.R
nearestShrunkenCentroidSelectionInterface.R

1

2 R topics documented:

nearestShrunkenCentroidTrainInterface.R
nearestShrunkenCentroidPredictInterface.R performancePlot.R
plotFeatureClasses.R previousSelection.R rankingPlot.R
ROCplot.R runTest.R runTests.R selectionPlot.R
subtractFromLocation.R

License GPL-3

NeedsCompilation no

R topics documented:
bartlettSelection . 3
calcPerformance . 4
classifyInterface . 5
ClassifyResult . 6
distribution . 7
DMDselection . 9
edgeRselection . 10
errorMap . 12
fisherDiscriminant . 13
functionOrList . 15
getLocationsAndScales . 15
KolmogorovSmirnovSelection . 16
KullbackLeiblerSelection . 17
leveneSelection . 19
likelihoodRatioSelection . 20
limmaSelection . 22
mixmodels . 23
naiveBayesKernel . 25
nearestShrunkenCentroidPredictInterface . 27
nearestShrunkenCentroidSelectionInterface . 28
nearestShrunkenCentroidTrainInterface . 29
pamrtrained . 30
performancePlot . 31
plotFeatureClasses . 33
PredictParams . 34
previousSelection . 35
rankingPlot . 37
ResubstituteParams . 40
ROCplot . 41
runTest . 42
runTests . 44
selectionPlot . 45
SelectParams . 48
SelectResult . 49
subtractFromLocation . 50
TrainParams . 51
TransformParams . 52

bartlettSelection 3

Index 53

bartlettSelection Selection of Differential Variability with Bartlett Statistic

Description

Ranks features by largest Bartlett statistic and chooses the features which have best resubstitution
performance.

Usage

S4 method for signature 'matrix'
bartlettSelection(expression, classes, ...)
S4 method for signature 'ExpressionSet'

bartlettSelection(expression, datasetName,
trainParams, predictParams, resubstituteParams,
selectionName = "Bartlett Test", verbose = 3)

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector of class labels.

... For the matrix method, variables passed to the ExpressionSet method.

datasetName A name for the dataset used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose A number between 0 and 3 for the amount of progress messages to give. This
function only prints progress messages if the value is 3.

Details

The calculation of the test statistic is performed by the bartlett.test function from the stats
package.

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining resubstitution error rate made a number of prediction varieties.

4 calcPerformance

Author(s)

Dario Strbenac

Examples

if(require(sparsediscrim))
{

Samples in one class with differential variability to other class.
First 20 genes are DV.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 1)))
genesMatrix <- cbind(genesMatrix, rbind(sapply(1:25, function(sample) rnorm(20, 9, 5)),

sapply(1:25, function(sample) rnorm(80, 9, 1))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
genesMatrix <- exprs(subtractFromLocation(genesMatrix, 1:ncol(genesMatrix)))
bartlettSelection(genesMatrix, classes, datasetName = "Example",

trainParams = TrainParams(fisherDiscriminant, FALSE, TRUE),
predictParams = PredictParams(function(){}, FALSE, getClasses = function(result) result),

resubstituteParams = ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced", better = "lower"))

}

calcPerformance Add Performance Calculations to a ClassifyResult object

Description

Annotates the results of calling runTests with different kinds of performance measures.

Usage

S4 method for signature 'ClassifyResult'
calcPerformance(result, performanceType, ...)

Arguments

result An object of class ClassifyResult.
performanceType

Either "balanced" or one of the options provided by performance.

... Further arguments that may be used by performance.

Details

If runTests was run in resampling mode, one performance measure is produced for every resam-
pling. If the leave-out mode was used, then the predictions are concatenated, and one performance
measure is calcuated for all predictions.

Because ROCR only provides calculations for two-class classification, this function is only suitable
for two-class classification performance measures.

classifyInterface 5

Value

An updated ClassifyResult object, with new information in the performance slot.

Author(s)

Dario Strbenac

Examples

predictTable <- data.frame(sample = 1:5,
label = factor(sample(LETTERS[1:2], 50, replace = TRUE)))

actual <- factor(sample(LETTERS[1:2], 50, replace = TRUE))
result <- ClassifyResult("Example", "Differential Expression", "A Selection",

paste("A", 1:10, sep = ''), paste("Gene", 1:50, sep = ''),
list(1:100, 1:100), list(1:5, 6:15),
list(predictTable), actual, list("leave", 2))

result <- calcPerformance(result, "balanced")
performance(result)

classifyInterface Interface for PoiClaClu Package’s Classify Function

Description

Passes along all parameters except verbose, from the framework to Classify.

Usage

classifyInterface(..., verbose = 3)

Arguments

... All parameters that Classify can accept and also verbose.

verbose A number between 0 and 3 for the amount of progress messages to give. This
function only prints a progress message if the value is 3.

Value

A result list, the same as is returned by Classify.

Author(s)

Dario Strbenac

6 ClassifyResult

Examples

if(require(PoiClaClu))
{

readCounts <- CountDataSet(n = 100, p = 1000, 2, 5, 1)
classifyInterface(readCounts[["x"]], readCounts[["y"]], readCounts[["xte"]], verbose = TRUE)

}

ClassifyResult Container for Storing Classification Results

Description

Contains a table of actual sample classes and predicted classes, the indices of features selected for
each fold of each bootstrap resampling or each hold-out classification, and error rates. This class
is not intended to be created by the user, but could be used in another package. It is created by
runTests.

Constructor

ClassifyResult(datasetName, classificationName, originalNames, originalFeatures, rankedFeatures, chosenFeatures, predictions, actualClasses, validation, tune = list(NULL))

datasetName A name associated with the dataset used.

classificationName A name associated with the classification.

originalNames Sample names.

originalFeatures Feature names.

rankedFeatures Indices or names of all features, from most to least important.

chosenFeatures Indices or names of features selected at each fold.

predictions A list of data.frame containing information about samples, their actual class and
predicted class.

actualClasses Factor of class of each sample.

validation List with first elment being name of the validation scheme, and other elements pro-
viding details about scehme.

tune A description of the tuning parameters, and the value chosen of each parameter.

Summary

A method which summarises the results is available. result is a ClassifyResult object.

show(result)Prints a short summary of what result contains.

totalPredictions(ClassifyResult)Calculates the sum of the number of predictions.

distribution 7

Accessors

result is a ClassifyResult object.

predictions(result) Returns a list of data.frame. Each data.frame contains columns sample,
predicted, and actual. For hold-out validation, only one data.frame is returned of all of the
concatenated predictions.

actualClasses(result) Returns a factor class labels, one for each sample.

features(result) A list of the features selected for each training.

performance(result) Returns a list of performance measures. This is empty until calcPerformance
has been used.

tunedParameters(result) Returns a list of tuned parameter values. If cross-validation is used,
this list will be large, as it stores chosen values for every validation.

names(result) Returns a character vector of sample names.

Author(s)

Dario Strbenac

Examples

if(require(curatedOvarianData) && require(sparsediscrim))
{

data(TCGA_eset)
badOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "deceased" & pData(TCGA_eset)[, "days_to_death"] <= 365)
goodOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "living" & pData(TCGA_eset)[, "days_to_death"] >= 365 * 5)
TCGA_eset <- TCGA_eset[, c(badOutcome, goodOutcome)]
classes <- factor(rep(c("Poor", "Good"), c(length(badOutcome), length(goodOutcome))))
pData(TCGA_eset)[, "class"] <- classes
results <- runTests(TCGA_eset, "Ovarian Cancer", "Differential Expression", resamples = 2, folds = 2)
show(results)
predictions(results)
actualClasses(results)

}

distribution Get Frequencies of Feature Selection and Sample Errors

Description

There are two modes. For aggregating feature selection results, the function counts the number of
times each feature was selected in all cross validations. For aggregating classification results, the
error rate for each sample is calculated. This is useful in identifying outlier samples that are difficult
to classify.

8 distribution

Usage

S4 method for signature 'ClassifyResult'
distribution(result, dataType = c("features", "samples"),

plotType = c("density", "histogram"), summaryType = c("percentage", "count"),
plot = TRUE, xMax = NULL, xLabel = "Percentage of Cross-validations",
yLabel = "Density", title = "Distribution of Feature Selections",

fontSizes = c(24, 16, 12), ...)

Arguments

result An object of class ClassifyResult.

dataType Whether to calculate sample-wise error rate or the number of times a feature
was selected.

plotType Whether to draw a probability density curve or a histogram.

summaryType Whether to summarise the feature selections as a percentage or count.

plot Whether to draw a plot of the frequency of selection or error rate.

xMax Maximum data value to show in plot.

xLabel The label for the x-axis of the plot.

yLabel The label for the y-axis of the plot.

title An overall title for the plot.

fontSizes A vector of length 3. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values.

... Further parameters, such as colour and fill, passed to geom_histogram or
stat_density, depending on the value of plotType.

Value

If type is "features", a vector as long as the number of features that were chosen at least once
containing the number of times the feature was chosen in cross validations or the percentage of
times chosen. If type is "samples", a vector as long as the number of samples, containing the cross-
validation error rate of the sample. If plot is TRUE, then a plot is also made on the current graphics
device.

Author(s)

Dario Strbenac

Examples

if(require(curatedOvarianData) && require(sparsediscrim))
{

data(TCGA_eset)
badOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "deceased" & pData(TCGA_eset)[, "days_to_death"] <= 365)
goodOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "living" & pData(TCGA_eset)[, "days_to_death"] >= 365 * 5)
TCGA_eset <- TCGA_eset[, c(badOutcome, goodOutcome)]
classes <- factor(rep(c("Poor", "Good"), c(length(badOutcome), length(goodOutcome))))

DMDselection 9

pData(TCGA_eset)[, "class"] <- classes
result <- runTests(TCGA_eset, "Ovarian Cancer", "Differential Expression", resamples = 2, fold = 2)
sampleDistribution <- distribution(result, "samples", xLabel = "Sample Error Rate",

title = "Distribution of Error Rates")
featureDistribution <- distribution(result, "features", summaryType = "count", plotType = "histogram",

xLabel = "Number of Cross-validations", yLabel = "Count",
binwidth = 1)

print(head(sampleDistribution))
print(head(featureDistribution))

}

DMDselection Selection of Differential Distributions with Differences in Means or
Medians and a Deviation Measure

Description

Ranks features by largest Differences in Means/Medians and Deviations and chooses the features
which have best resubstitution performance.

Usage

S4 method for signature 'matrix'
DMDselection(expression, classes, ...)
S4 method for signature 'ExpressionSet'

DMDselection(expression, datasetName,
trainParams, predictParams, resubstituteParams, ...,

selectionName, verbose = 3)

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector of class labels.

datasetName A name for the dataset used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

... Either variables passed from the matrix method to the ExpressionSet method
or variables passed to getLocationsAndScales from the ExpressionSet method.

selectionName A name to identify this selection method by. Stored in the result.

verbose A number between 0 and 3 for the amount of progress messages to give. This
function only prints progress messages if the value is 3.

10 edgeRselection

Details

DMD is defined as |location1 − location2|+ |scale1 − scale2|.

The subscripts denote the group which the parameter is calculated for.

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining resubstitution error rate made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

if(require(sparsediscrim))
{
First 20 features have bimodal distribution for Poor class. Other 80 features have normal distribution for
both classes.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(20, sample(c(8, 12), 20, replace = TRUE), 1), rnorm(80, 10, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
classes <- factor(rep(c("Poor", "Good"), each = 25))
DMDselection(genesMatrix, classes, datasetName = "Example",

trainParams = TrainParams(naiveBayesKernel, FALSE, doesTests = TRUE),
predictParams = PredictParams(function(){}, FALSE, getClasses = function(result) result),
resubstituteParams = ResubstituteParams(nFeatures = seq(10, 100, 10), performanceType = "balanced", better = "lower"))

}

edgeRselection Feature Selection Based on Differential Expression for RNA-seq

Description

Performs a differential expression analysis between classes and chooses the features which have
best resubstitution performance.

Usage

S4 method for signature 'matrix'
edgeRselection(expression, classes, ...)
S4 method for signature 'ExpressionSet'

edgeRselection(expression, datasetName, normFactorsOptions = NULL,
dispOptions = NULL, fitOptions = NULL, trainParams,

predictParams, resubstituteParams, selectionName = "edgeR LRT", verbose = 3)

edgeRselection 11

Arguments

expression Either a matrix or ExpressionSet containing the expression values.

classes A vector of class labels.

... Unused variables from the matrix method passed to the ExpressionSet method.

datasetName A name for the dataset used. Stored in the result.
normFactorsOptions

A named list of any options to be passed to calcNormFactors.

dispOptions A named list of any options to be passed to estimateDisp.

fitOptions A named list of any options to be passed to glmFit.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose A number between 0 and 3 for the amount of progress messages to give. This
function only prints progress messages if the value is 3.

Details

The differential expression analysis follows the standard edgeR steps of estimating library size
normalisation factors, calculating dispersion, in this case robustly, and then fitting a generalised
linear model followed by a likelihood ratio test.

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining resubstitution error rate made a number of prediction varieties.

Author(s)

Dario Strbenac

References

edgeR: a Bioconductor package for differential expression analysis of digital gene expression data,
Mark D. Robinson, Davis McCarthy, and Gordon Smyth, 2010, Bioinformatics, Volume 26 Issue 1,
bioinformatics.oxfordjournals.org/content/26/1/139.

Examples

if(require(parathyroidSE) && require(sparsediscrim) && require(PoiClaClu))
{

data(parathyroidGenesSE)
expression <- assays(parathyroidGenesSE)[[1]]
DPN <- which(colData(parathyroidGenesSE)[, "treatment"] == "DPN")

bioinformatics.oxfordjournals.org/content/26/1/139

12 errorMap

control <- which(colData(parathyroidGenesSE)[, "treatment"] == "Control")
expression <- expression[, c(control, DPN)]
classes <- rep(c("Contol", "DPN"), c(length(control), length(DPN)))
expression <- expression[rowSums(expression > 1000) > 8,] # Make small dataset.
edgeRselection(expression, classes, "DPN Treatment",

trainParams = TrainParams(classifyInterface, TRUE, TRUE),
predictParams = PredictParams(function(){}, TRUE, getClasses = function(result) result[["ytehat"]]),

resubstituteParams = ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced", better = "lower"))

}

errorMap Plot a Grid of Sample Error Rates

Description

A grid of coloured tiles is drawn. There is one column for each sample and one row for each
classification result.

Usage

S4 method for signature 'list'
errorMap(results,

comparison = c("classificationName", "datasetName", "selectionName", "validation"),
errorColours = list(c("#0000FF", "#3F3FFF", "#7F7FFF", "#BFBFFF", "#FFFFFF"),

c("#FF0000", "#FF3F3F", "#FF7F7F", "#FFBFBF", "#FFFFFF")),
classColours = c("blue", "red"), fontSizes = c(24, 16, 12, 12, 12),
mapHeight = 4, title = "Error Comparison", showLegends = TRUE, xAxisLabel = "Sample Name",
showXtickLabels = TRUE, showYtickLabels = TRUE, yAxisLabel = "Analysis",

legendSize = grid::unit(1, "lines"), plot = TRUE)

Arguments

results A list of ClassifyResult objects.

comparison The aspect of the experimental design to compare.

errorColours A vector of colours for error levels.

classColours Either a vector of colours for class levels if both classes should have same colour,
or a list of length 2, with each component being a vector of the same length. The
vector has the colour gradient for each class.

fontSizes A vector of length 5. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the size of the legends’ titles. The fifth number is the font size
of the legend labels.

mapHeight Height of the map, relative to the height of the class colour bar.

title The title to place above the plot.

showLegends Logical. IF FALSE, the legend is not drawn.

fisherDiscriminant 13

xAxisLabel The name plotted for the x-axis. NULL suppresses label.
showXtickLabels

Logical. IF FALSE, the x-axis labels are hidden.
showYtickLabels

Logical. IF FALSE, the y-axis labels are hidden.

yAxisLabel The name plotted for the y-axis. NULL suppresses label.

legendSize The size of the boxes in the legends.

plot Logical. IF TRUE, a plot is produced on the current graphics device.

Details

The names of results determine the row names that will be in the plot. The length of errorColours
determines how many bins the error rates will be discretised to.

Value

A plot is produced and a grob is returned that can be saved to a graphics device.

Author(s)

Dario Strbenac

Examples

predicted <- data.frame(sample = sample(10, 100, replace = TRUE),
label = rep(c("Healthy", "Cancer"), each = 50))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
result1 <- ClassifyResult("Example", "Differential Expression", "t-test",

LETTERS[1:10], LETTERS[10:1], list(1:100), list(sample(10, 10)),
list(predicted), actual, list("fold", 100, 5))

predicted[, "label"] <- sample(predicted[, "label"])
result2 <- ClassifyResult("Example", "Differential Variability", "F-test",

LETTERS[1:10], LETTERS[10:1], list(1:100), list(sample(10, 10)),
list(predicted), actual, validation = list("leave", 1))

wholePlot <- errorMap(list(Gene = result1, Protein = result2))
if(require(ggplot2))

ggsave("wholePlot.png", wholePlot)

fisherDiscriminant Classification Using Fisher’s LDA

Description

Finds the decision boundary using the training set, and gives predictions for the test set.

14 fisherDiscriminant

Usage

S4 method for signature 'matrix'
fisherDiscriminant(expression, classes, ...)
S4 method for signature 'ExpressionSet'

fisherDiscriminant(expression, test, returnType = c("label", "score", "both"), verbose = 3)

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector of class labels.

... Unused variables from the matrix method passed to the ExpressionSet method.

test Either a matrix or ExpressionSet containing the test data.

returnType Either "label", "score", or "both". Sets the return value from the prediction
to either a vector of class labels, score for a sample belonging to the second class,
as determined by the factor levels, or both labels and scores in a data.frame.

verbose A number between 0 and 3 for the amount of progress messages to give. This
function only prints progress messages if the value is 3.

Details

Unlike ordinary LDA, Fisher’s version does not have assumptions about the normality of the fea-
tures.

Value

A vector or data.frame of class prediction information, as long as the number of samples in the
test data.

Author(s)

Dario Strbenac

Examples

trainMatrix <- matrix(rnorm(1000, 8, 2), ncol = 10)
trainMatrix[1:30, 1:5] <- trainMatrix[1:30, 1:5] + 5 # Make first 30 genes D.E.
testMatrix <- matrix(rnorm(1000, 8, 2), ncol = 10)
testMatrix[1:30, 6:10] <- testMatrix[1:30, 6:10] + 5 # Make first 30 genes D.E.
classes <- factor(rep(c("Poor", "Good"), each = 5))
fisherDiscriminant(trainMatrix, classes, testMatrix)

functionOrList 15

functionOrList Union of Functions and List of Functions

Description

Allows a slot to be either a function or a list of functions.

Author(s)

Dario Strbenac

Examples

SelectParams(limmaSelection)
SelectParams(list(limmaSelection, leveneSelection), "Ensemble Selection")

getLocationsAndScales Calculate Location and Scale

Description

Calculates the location and scale for each feature.

Usage

S4 method for signature 'matrix'
getLocationsAndScales(expression, ...)
S4 method for signature 'ExpressionSet'

getLocationsAndScales(expression, location = c("mean", "median"),
scale = c("SD", "MAD", "Qn"))

Arguments

expression Either a matrix or ExpressionSet containing data. For a matrix, the rows are
features, and the columns are samples.

... Unused variables from the matrix method passed to the ExpressionSet method.

location The location to be calculated.

scale The scale to be calculated.

Details

Location can be either "mean" or "median". Scale can be standard deviation, median absolute
deviation, or Qn.

16 KolmogorovSmirnovSelection

Value

A list of length 2. The first element contains the location for every feature. The second element
contains the scale for every feature.

Author(s)

Dario Strbenac

References

Qn: http://www.tandfonline.com/doi/pdf/10.1080/01621459.1993.10476408

Examples

genesMatrix <- matrix(rnorm(1000, 8, 4), ncol = 10)
getLocationsAndScales(genesMatrix, "median", "MAD")

KolmogorovSmirnovSelection

Selection of Differential Distributions with Kolmogorov-Smirnov Dis-
tance

Description

Ranks features by largest Kolmogorov-Smirnov distance and chooses the features which have best
resubstitution performance.

Usage

S4 method for signature 'matrix'
KolmogorovSmirnovSelection(expression, classes, ...)
S4 method for signature 'ExpressionSet'

KolmogorovSmirnovSelection(expression, datasetName, trainParams,
predictParams, resubstituteParams, ...,
selectionName, verbose = 3)

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector of class labels.

datasetName A name for the dataset used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

http://www.tandfonline.com/doi/pdf/10.1080/01621459.1993.10476408

KullbackLeiblerSelection 17

... For the matrix method, variables passed to the ExpressionSet method. For
the ExpressionSet method, the options to be passed to function ks.test.

selectionName A name to identify this selection method by. Stored in the result.

verbose A number between 0 and 3 for the amount of progress messages to give. This
function only prints progress messages if the value is 3.

Details

Features are sorted in order of biggest distance to smallest. The top number of features is used in a
classifier, to determine which number of features has the best resubstitution performance.

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining resubstitution error rate made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

if(require(sparsediscrim))
{
First 20 features have bimodal distribution for Poor class. Other 80 features have normal distribution for
both classes.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(20, sample(c(8, 12), 20, replace = TRUE), 1), rnorm(80, 10, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
classes <- factor(rep(c("Poor", "Good"), each = 25))
KolmogorovSmirnovSelection(genesMatrix, classes, "Example",

trainParams = TrainParams(naiveBayesKernel, FALSE, doesTests = TRUE),
predictParams = PredictParams(function(){}, FALSE, getClasses = function(result) result),
resubstituteParams = ResubstituteParams(nFeatures = seq(10, 100, 10), performanceType = "balanced", better = "lower"))

}

KullbackLeiblerSelection

Selection of Differential Distributions with Kullback Leibler Distance

Description

Ranks features by largest Kullback-Leibler distance and chooses the features which have best re-
substitution performance.

18 KullbackLeiblerSelection

Usage

S4 method for signature 'matrix'
KullbackLeiblerSelection(expression, classes, ...)
S4 method for signature 'ExpressionSet'

KullbackLeiblerSelection(expression, datasetName,
trainParams, predictParams, resubstituteParams, ...,

selectionName, verbose = 3)

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector of class labels.

datasetName A name for the dataset used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

... Variables passed to getLocationsAndScales.

selectionName A name to identify this selection method by. Stored in the result.

verbose A number between 0 and 3 for the amount of progress messages to give. This
function only prints progress messages if the value is 3.

Details

The distance is defined as 1/2 ∗ (location1 − location2)
2

The subscripts denote the group which the parameter is calculated for.

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining resubstitution error rate made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

if(require(sparsediscrim))
{
First 20 features have bimodal distribution for Poor class. Other 80 features have normal distribution for
both classes.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(20, sample(c(8, 12), 20, replace = TRUE), 1), rnorm(80, 10, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
classes <- factor(rep(c("Poor", "Good"), each = 25))

leveneSelection 19

KullbackLeiblerSelection(genesMatrix, classes, "Example",
trainParams = TrainParams(naiveBayesKernel, FALSE, doesTests = TRUE),
predictParams = PredictParams(function(){}, FALSE, getClasses = function(result) result),
resubstituteParams = ResubstituteParams(nFeatures = seq(10, 100, 10), performanceType = "balanced", better = "lower")

)
}

leveneSelection Selection of Differential Variability with Levene Statistic

Description

Ranks features by largest Levene statistic and chooses the features which have best resubstitution
performance.

Usage

S4 method for signature 'matrix'
leveneSelection(expression, classes, ...)
S4 method for signature 'ExpressionSet'

leveneSelection(expression, datasetName,
trainParams, predictParams, resubstituteParams, selectionName = "Levene Test",

verbose = 3)

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector of class labels.

... For the matrix method, variables passed to the ExpressionSet method.

datasetName A name for the dataset used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose A number between 0 and 3 for the amount of progress messages to give. This
function only prints progress messages if the value is 3.

Details

Levene’s statistic for unequal variance between groups is a robust version of Bartlett’s statistic.

20 likelihoodRatioSelection

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining resubstitution error rate made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

if(require(sparsediscrim))
{

Samples in one class with differential variability to other class.
First 20 genes are DV.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 1)))
genesMatrix <- cbind(genesMatrix, rbind(sapply(1:25, function(sample) rnorm(20, 9, 5)),

sapply(1:25, function(sample) rnorm(80, 9, 1))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
genesMatrix <- exprs(subtractFromLocation(genesMatrix, 1:ncol(genesMatrix)))
leveneSelection(genesMatrix, classes, "Example",

trainParams = TrainParams(fisherDiscriminant, FALSE, TRUE),
predictParams = PredictParams(function(){}, FALSE, getClasses = function(result) result),

resubstituteParams = ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced", better = "lower"))

}

likelihoodRatioSelection

Selection of Differential Distributions with Likelihood Ratio Statistic

Description

Ranks features by largest ratio and chooses the features which have the best resubstitution perfor-
mance.

Usage

S4 method for signature 'matrix'
likelihoodRatioSelection(expression, classes, ...)
S4 method for signature 'ExpressionSet'

likelihoodRatioSelection(expression, datasetName, trainParams, predictParams,
resubstituteParams, alternative = c(location = "different", scale = "different"),
..., selectionName = "Likelihood Ratio Test (Normal)", verbose = 3)

likelihoodRatioSelection 21

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector of class labels.
datasetName A name for the dataset used. Stored in the result.
trainParams A container of class TrainParams describing the classifier to use for training.
predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

alternative A vector of length 2. The first element specifies the location of the alternate
hypothesis. The second element specifies the scale of the alternate hypothesis.
Acceptable values are "same" or "different".

... Either variables passed from the matrix method to the ExpressionSet method
or variables passed to getLocationsAndScales from the ExpressionSet method.

selectionName A name to identify this selection method by. Stored in the result.
verbose A number between 0 and 3 for the amount of progress messages to give. This

function only prints progress messages if the value is 3.

Details

Likelihood ratio test of null hypothesis that the location and scale are the same for both groups,
and an alternate hypothesis that is specified by parameters. The location and scale of features is
calucated by getLocationsAndScales. The distribution fitted in the normal distribution.

Value

A list of length 2. The first element has the features ranked from most important to least important.
The second element has the features that were selected to be used for classification.

Author(s)

Dario Strbenac

Examples

if(require(sparsediscrim))
{
First 20 features have bimodal distribution for Poor class. Other 80 features have normal distribution for
both classes.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(20, sample(c(8, 12), 20, replace = TRUE), 1), rnorm(80, 10, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
classes <- factor(rep(c("Poor", "Good"), each = 25))
likelihoodRatioSelection(genesMatrix, classes, "Example",

trainParams = TrainParams(naiveBayesKernel, FALSE, TRUE),
predictParams = PredictParams(function(){}, FALSE, getClasses = function(result) result),
resubstituteParams = ResubstituteParams(nFeatures = seq(10, 100, 10), performanceType = "balanced", better = "lower"))

}

22 limmaSelection

limmaSelection Selection of Differentially Expressed Features

Description

Uses a moderated t-test with empirical Bayes shrinkage to select differentially expressed features.

Usage

S4 method for signature 'matrix'
limmaSelection(expression, classes, ...)
S4 method for signature 'ExpressionSet'

limmaSelection(expression, datasetName, trainParams, predictParams,
resubstituteParams, ..., selectionName = "Moderated t-test", verbose = 3)

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector of class labels.

datasetName A name for the dataset used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

... For the matrix method, variables passed to the ExpressionSet method. For
the ExpressionSet method, extra parameters that are passed to lmFit.

selectionName A name to identify this selection method by. Stored in the result.

verbose A number between 0 and 3 for the amount of progress messages to give. This
function only prints progress messages if the value is 3.

Details

This selection method looks for differential expression. It uses a moderated t-test.

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining resubstitution error rate made a number of prediction varieties.

Author(s)

Dario Strbenac

mixmodels 23

References

Limma: linear models for microarray data, Gordon Smyth, 2005, In: Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor, Springer, New York, pages 397-420.

Examples

if(require(sparsediscrim))
{

Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))

limmaSelection(genesMatrix, classes, "Example",
trainParams = TrainParams(), predictParams = PredictParams(),

resubstituteParams = ResubstituteParams(nFeatures = seq(10, 100, 10), performanceType = "balanced", better = "lower"))
}

mixmodels Selection of Differential Distributions with Mixtures of Normals

Description

Fits mixtures of normals for every gene, separately for each class.

Usage

S4 method for signature 'matrix'
mixModelsTrain(expression, classes, ...)
S4 method for signature 'ExpressionSet'

mixModelsTrain(expression, ..., verbose = 3)
S4 method for signature 'list,matrix'

mixModelsTest(models, test, ...)
S4 method for signature 'list,ExpressionSet'

mixModelsTest(models, test,
weighted = c("both", "unweighted", "weighted"),

weight = c("all", "height difference", "crossover distance", "sum differences"),
densityXvalues = 1024, minDifference = 0,
returnType = c("label", "score", "both"), verbose = 3)

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

test Either a matrix or ExpressionSet containing the test data. For a matrix, the
rows are features, and the columns are samples.

24 mixmodels

classes A vector of class labels.

weighted In weighted mode, the difference in densities is summed over all features. If
unweighted mode, each features’s vote is worth the same. To save computational
time, both can be calculated simultaneously.

weight The type of weight to calculate. For "height difference", the weight of
each prediction is equal to the sum of the verical distances for all of the mixture
components within one class subtracted from the sum of the components of the
other class, summed for each value of x. For "crossover distance", the x
positions where two mixture densities cross is firstly calculated. The predicted
class is the class with the highest mixture sum at the particular value of x and
the weight is the distance of x from the nearest density crossover point.

densityXvalues Only relevant when weight is "crossover distance". The number of equally-
spaced locations at which to calculate y values for each mixture density.

minDifference The minimum difference in sums of mixture densities within each class for a
feature to be allowed to vote. Can be a vector of cutoffs. If no features for a
particular sample have a difference large enough, the class predicted is simply
the largest class.

... For the training or testing function with matrix dispatch, arguments passed
to the function with ExpressionSet dispatch. For the training function with
ExpressionSet dispatch, extra arguments passed to mixmodCluster. The ar-
gument nbCluster is mandatory.

models A list of length 2 of models generated by the training function. The first element
has mixture models the same length as the number of features in the expression
data for one class. The second element has the same information for the other
class.

returnType Either "label", "score", or "both". Sets the return value from the prediction
to either a vector of class labels, score for a sample belonging to the second class,
as determined by the factor levels, or both labels and scores in a data.frame.

verbose A number between 0 and 3 for the amount of progress messages to give. A
higher number will produce more messages.

Details

If weighted is TRUE, then a sample’s predicted class is the class with the largest sum of weights,
scaled for the number of samples in the training data of each class. Otherwise, when weighted is
FALSE, each feature has an equal vote, and votes for the class with the largest weight, scaled for
class sizes in the training set.

If weight is "crossover distance", the crossover points are computed by considering the dis-
tance between y values of the two densities at every x value. x values for which the sign of the dif-
ference changes compared to the difference of the closest lower value of x are used as the crossover
points. Setting weight to "sum differences" is intended to find a mix of features which are
strongly differentially expressed and differentially variable.

Value

For mixModelsTrain, a list of trained models of class MixmodCluster. A vector or list of class
prediction information, as long as the number of samples in the test data, or lists of such information,

naiveBayesKernel 25

if both weighted and unweighted voting or a range of minDifference values was provided.

Author(s)

Dario Strbenac

Examples

First 25 samples are mixtures of two normals. Last 25 samples are one normal.
genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(50, 5, 1), rnorm(50, 15, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn) rnorm(100, 9, 3)))
classes <- factor(rep(c("Poor", "Good"), each = 25))
trained <- mixModelsTrain(genesMatrix, classes, nbCluster = 1:3)
mixModelsTest(trained, genesMatrix, minDifference = 1:3)

naiveBayesKernel Classification Using A Bayes Classifier with Kernel Density Estimates

Description

Kernel density estimates are fitted to the training data and a naive Bayes classifier is used to classify
samples in the test data.

Usage

S4 method for signature 'matrix'
naiveBayesKernel(expression, classes, ...)
S4 method for signature 'ExpressionSet'

naiveBayesKernel(expression, test, densityFunction = density,
densityParameters = list(bw = "nrd0", n = 1024, from = expression(min(featureValues)),

to = expression(max(featureValues))),
weighted = c("both", "unweighted", "weighted"),

weight = c("all", "height difference", "crossover distance", "sum differences"),
minDifference = 0, returnType = c("label", "score", "both"), verbose = 3)

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector of class labels.

... Unused variables from the matrix method passed to the ExpressionSet method.

test Either a matrix or ExpressionSet containing the test data.
densityFunction

A function which will return a probability density, which is essentially a list with
x and y coordinates.

densityParameters

A list of options for densityFunction.

26 naiveBayesKernel

weighted In weighted mode, the difference in densities is summed over all features. If
unweighted mode, each feature’s vote is worth the same. To save computational
time, both can be calculated simultaneously.

weight The type of weight to calculate. For "height difference", the weight of each
prediction is equal to the verical distance between two densities, for a particular
value of x. For "crossover distance", the x positions where two densities
cross is firstly calculated. The predicted class is the class with the highest density
at the particular value of x and the weight is the distance of x from the nearest
density crossover point. For "sum differences", the weight is the sum of the
weights calculated by both types of distances.

minDifference The minimum difference in densities for a feature to be allowed to vote. Can be
a vector of cutoffs. If no features for a particular sample have a difference large
enough, the class predicted is simply the largest class.

returnType Either "label", "score", or "both". Sets the return value from the prediction
to either a vector of class labels, score for a sample belonging to the second class,
as determined by the factor levels, or both labels and scores in a data.frame.

verbose A number between 0 and 3 for the amount of progress messages to give. This
function only prints progress messages if the value is 3.

Details

If weighted is TRUE, then a sample’s predicted class is the class with the largest sum of weights,
scaled for the number of samples in the training data of each class. Otherwise, when weighted is
FALSE, each feature has an equal vote, and votes for the class with the largest weight, scaled for
class sizes in the training set.

The variable name of each feature’s measurements in the iteration over all features is featureValues.
This is important to know if each feature’s measurements need to be referred to in the specification
of densityParameters, such as for specifying the range of x values of the density function to be
computed.

If weight is "crossover distance", the crossover points are computed by considering the dis-
tance between y values of the two densities at every x value. x values for which the sign of the dif-
ference changes compared to the difference of the closest lower value of x are used as the crossover
points.

Setting weight to "sum differences" is intended to find a mix of features which are strongly
differentially expressed and differentially variable.

Value

A vector or list of class prediction information, as long as the number of samples in the test data, or
lists of such information, if a variety of predictions is generated.

Author(s)

Dario Strbenac, John Ormerod

nearestShrunkenCentroidPredictInterface 27

Examples

trainMatrix <- matrix(rnorm(1000, 8, 2), ncol = 10)
trainMatrix[1:30, 1:5] <- trainMatrix[1:30, 1:5] + 5 # Make first 30 genes D.E.
testMatrix <- matrix(rnorm(1000, 8, 2), ncol = 10)
testMatrix[1:30, 6:10] <- testMatrix[1:30, 6:10] + 5 # Make first 30 genes D.E.
classes <- factor(rep(c("Poor", "Good"), each = 5))
Expected: Good Good Good Good Good Poor Poor Poor Poor Poor
naiveBayesKernel(trainMatrix, classes, testMatrix)

nearestShrunkenCentroidPredictInterface

Interface for pamr.predict Function from pamr CRAN Package

Description

Restructures variables from ClassifyR framework to be compatible with pamr.predict definition.

Usage

S4 method for signature 'pamrtrained,matrix'
nearestShrunkenCentroidPredictInterface(trained, test, ...)
S4 method for signature 'pamrtrained,ExpressionSet'

nearestShrunkenCentroidPredictInterface(trained, test, ..., verbose = 3)

Arguments

trained An object of class pamrtrained.

test Either a matrix or ExpressionSet containing the test data. For a matrix, the
rows are features, and the columns are samples.

... For the function with matrix dispatch, arguments passed to the function with
ExpressionSet dispatch. For the function with ExpressionSet dispatch, ar-
guemnts passed to pamr.predict.

verbose A number between 0 and 3 for the amount of progress messages to give. This
function only prints progress messages if the value is 3.

Details

This function is an interface between the ClassifyR framework and pamr.predict.

Value

A factor of predicted classes for the test data.

Author(s)

Dario Strbenac

28 nearestShrunkenCentroidSelectionInterface

See Also

pamr.predict for the function that was interfaced to.

Examples

if(require(pamr))
{

Samples in one class with differential expression to other class.
genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(100, 9, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn)

c(rnorm(75, 9, 1), rnorm(25, 14, 1))))
classes <- factor(rep(c("Poor", "Good"), each = 25))

fit <- nearestShrunkenCentroidTrainInterface(genesMatrix[, c(1:20, 26:45)], classes[c(1:20, 26:45)])
nearestShrunkenCentroidPredictInterface(fit, genesMatrix[, c(21:25, 46:50)])

}

nearestShrunkenCentroidSelectionInterface

Interface for pamr.listgenes Function from pamr CRAN Package

Description

Restructures variables from ClassifyR framework to be compatible with pamr.listgenes defini-
tion.

Usage

S4 method for signature 'matrix'
nearestShrunkenCentroidSelectionInterface(expression, classes, ...)
S4 method for signature 'ExpressionSet'

nearestShrunkenCentroidSelectionInterface(expression, datasetName, trained, ...,
selectionName = "Shrunken Centroids", verbose = 3)

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

datasetName A name for the dataset used. Stored in the result.
classes A vector of class labels.
trained The output of nearestShrunkenCentroidTrainInterface, which is identical

to the output of pamr.listgenes.
... Extra arguments passed to pamr.listgenes or parameters not used by the matrix

method that are passed to the ExpressionSet method.
selectionName A name to identify this selection method by. Stored in the result.
verbose A number between 0 and 3 for the amount of progress messages to give. This

function only prints progress messages if the value is 3.

nearestShrunkenCentroidTrainInterface 29

Details

This function is an interface between the ClassifyR framework and pamr.listgenes.

The set of features chosen is the obtained by considering the range of thresholds provided to
nearestShrunkenCentroidTrainInterface and using the threshold that obtains the lowest cross-
validation error rate on the training set.

Value

An object of class SelectResult. The rankedFeatures slot will be empty.

Author(s)

Dario Strbenac

See Also

pamr.listgenes for the function that was interfaced to.

Examples

if(require(pamr))
{

Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(100, 9, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn)

c(rnorm(75, 9, 1), rnorm(25, 14, 1))))
classes <- factor(rep(c("Poor", "Good"), each = 25))

trained <- nearestShrunkenCentroidTrainInterface(genesMatrix, classes)
nearestShrunkenCentroidSelectionInterface(genesMatrix, classes, "Example", trained)

}

nearestShrunkenCentroidTrainInterface

Interface for pamr.train Function from pamr CRAN Package

Description

Restructures variables from ClassifyR framework to be compatible with pamr.train definition.

Usage

S4 method for signature 'matrix'
nearestShrunkenCentroidTrainInterface(expression, classes, ...)
S4 method for signature 'ExpressionSet'

nearestShrunkenCentroidTrainInterface(expression, ..., verbose = 3)

30 pamrtrained

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector of class labels.
... Extra arguments passed to pamr.train.
verbose A number between 0 and 3 for the amount of progress messages to give. This

function only prints progress messages if the value is 3.

Details

This function is an interface between the ClassifyR framework and pamr.train.

Value

A list with elements as described in pamr.train.

Author(s)

Dario Strbenac

See Also

pamr.train for the function that was interfaced to.

Examples

if(require(pamr))
{

Samples in one class with differential expression to other class.
genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(100, 9, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn)

c(rnorm(75, 9, 1), rnorm(25, 14, 1))))
classes <- factor(rep(c("Poor", "Good"), each = 25))

nearestShrunkenCentroidTrainInterface(genesMatrix, classes)
}

pamrtrained Trained pamr Object

Description

Enables dispatching on it.

Summary

A method which summarises the results is available. result is a ClassifyResult object.

show(result)Prints a short summary of what result contains.

performancePlot 31

Author(s)

Dario Strbenac

Examples

genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(100, 9, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn)

c(rnorm(75, 9, 1), rnorm(25, 14, 1))))
classes <- factor(rep(c("Poor", "Good"), each = 25))

result <- nearestShrunkenCentroidTrainInterface(genesMatrix, classes)
class(result)

performancePlot Plot Performance Measures for Various Classifications

Description

Draws a graphical summary of a particular performance measure for a list of classifications

Usage

S4 method for signature 'list'
performancePlot(results,

aggregate = character(),
xVariable = c("classificationName", "datasetName", "selectionName", "validation"),

performanceName = NULL,
boxFillColouring = c("classificationName", "datasetName", "selectionName", "validation", "None"),

boxFillColours = NULL,
boxLineColouring = c("classificationName", "datasetName", "selectionName", "validation", "None"),

boxLineColours = NULL,
rowVariable = c("None", "validation", "datasetName", "classificationName", "selectionName"),
columnVariable = c("datasetName", "classificationName", "validation", "selectionName", "None"),
yLimits = c(0, 1), fontSizes = c(24, 16, 12, 12), title = NULL,
xLabel = "Analysis", yLabel = performanceName,

margin = grid::unit(c(0, 0, 0, 0), "lines"), rotate90 = FALSE, showLegend = TRUE, plot = TRUE)

Arguments

results A list of ClassifyResult objects.
aggregate A character vector of the levels of xVariable to aggregate to a single number

by taking the mean. This is partciularly meaningful when the cross-validation is
leave-k-out, when k is small.

xVariable The factor to make separate boxes for.
performanceName

The name of the performance measure to make comparisons of. This is one of
the names printed in the Performance Measures field when a ClassifyResult
object is printed.

32 performancePlot

boxFillColouring

A factor to colour the boxes by.

boxFillColours A vector of colours, one for each level of boxFillColouring.
boxLineColouring

A factor to colour the box lines by.

boxLineColours A vector of colours, one for each level of boxLineColouring.

rowVariable The slot name that different levels of are plotted as separate rows of boxplots.

columnVariable The slot name that different levels of are plotted as separate columns of boxplots.

yLimits The minimum and maximum value of the performance metric to plot.

fontSizes A vector of length 4. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the font size of the titles of grouped plots, if any are produced.
In other words, when rowVariable or columnVariable are not NULL.

title An overall title for the plot.

xLabel Label to be used for the x-axis.

yLabel Label to be used for the y-axis of overlap percentages.

margin The margin to have around the plot.

rotate90 Logical. IF TRUE, the plot is horizontal.

showLegend If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.

plot Logical. IF TRUE, a plot is produced on the current graphics device.

Details

Possible values for slot names are "datasetName", "classificationName", and "validation".
If "None", then that graphic element is not used.

If there are multiple values for a performance measure in a single result object, it is plotted as a
boxplot, unless aggregate is TRUE, in which case the all predictions in a single result object are
considered simultaneously, so that only one performance number is calculated, and a barchart is
plotted.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- list(data.frame(sample = sample(10, 20, replace = TRUE),
label = rep(c("Healthy", "Cancer"), each = 10)),

data.frame(sample = sample(10, 20, replace = TRUE),
label = rep(c("Healthy", "Cancer"), each = 10)),

data.frame(sample = sample(10, 20, replace = TRUE),
label = rep(c("Healthy", "Cancer"), each = 10)),

plotFeatureClasses 33

data.frame(sample = sample(10, 20, replace = TRUE),
label = rep(c("Healthy", "Cancer"), each = 10)))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
result1 <- ClassifyResult("Example", "Differential Expression", "t-test", LETTERS[1:10], LETTERS[10:1], list(1:100, c(1:9, 11:101)), list(c(1:3), c(2, 5, 6), c(1:4), c(5:8), 1:5),

predicted, actual, list("fold", 2, 2))
result1 <- calcPerformance(result1, "f")
predicted <- data.frame(sample = sample(10, 100, replace = TRUE),

label = rep(c("Healthy", "Cancer"), each = 50))
result2 <- ClassifyResult("Example", "Differential Variability", "F-test", LETTERS[1:10], LETTERS[10:1], list(1:100, c(1:5, 11:105)), list(c(1:3), c(4:6), c(1, 6, 7, 9), c(5:8), c(1, 5, 10)),

list(predicted), actual, validation = list("leave", 1))
result2 <- calcPerformance(result2, "f")
performancePlot(list(result1, result2), performanceName = "Precision-Recall F measure", title = "Comparison", boxLineColouring = "None")

plotFeatureClasses Plot Density and Scatterplot for Genes By Class

Description

Allows the visualisation of genes which were selected by a feature selection method.

Usage

S4 method for signature 'matrix'
plotFeatureClasses(expression, classes, ...)
S4 method for signature 'ExpressionSet'

plotFeatureClasses(expression, rows, whichPlots = c("both", "density", "stripchart"),
xAxisLabel = expression(log[2](expression)), expressionLimits = c(2, 16),
yAxisLabels = c("Density", "Classes"), showXtickLabels = TRUE,

showYtickLabels = TRUE, xLabelPositions = "auto",
yLabelPositions = "auto", fontSizes = c(24, 16, 12, 12, 12),

colours = c("blue", "red"), plot = TRUE)

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector of class labels.

... Unused variables from the matrix method passed to the ExpressionSet method.

rows A vector specifying which rows of the matrix to plot.

whichPlots Which plots to draw. Can draw either a density plot, stripchart, or both.

xAxisLabel The axis label for the expression axis.

yAxisLabels A character vector of length 2. The first value is the y-axis label for the density
plot. The second value is the y-axis labels for the stripchart. Provide both labels,
even if only plotting one kind of plot.

expressionLimits

The minimum and maximum expression values to plot. Set to NULL to use
range of data.

34 PredictParams

showXtickLabels

Logical. IF FALSE, the x-axis labels are hidden.

showYtickLabels

Logical. IF FALSE, the y-axis labels are hidden.

xLabelPositions

Either "auto" or a vector of values. The positions of labels on the x-axis. If
"auto", the placement of labels is automatically calculated.

yLabelPositions

Either "auto" or a vector of values. The positions of labels on the y-axis. If
"auto", the placement of labels is automatically calculated.

fontSizes A vector of length 5. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the size of the legends’ titles. The fifth number is the font size
of the legend labels.

colours The colours to plot data of each class in.

plot Logical. If TRUE, a plot is produced on the current graphics device.

Value

Plots.

Author(s)

Dario Strbenac

Examples

First 25 samples are mixtures of two normals. Last 25 samples are one normal.
genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(50, 5, 1), rnorm(50, 15, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn) rnorm(100, 9, 3)))
classes <- factor(rep(c("Poor", "Good"), each = 25), levels = c("Good", "Poor"))
chosen <- 1:5 # First five genes in the data were chosen.

plotFeatureClasses(genesMatrix, classes, chosen, expressionLimits = NULL)

PredictParams Parameters for Classifier Prediction

Description

Collects the function to be used for making predictions and any associated parameters.

previousSelection 35

Constructor

PredictParams() Creates a default PredictParams object. This assumes that the object returned
by the classifier has a list element named "class".

PredictParams(predictor, transposeExpression, intermediate = character(0), getClasses, ...)
Creates a PredictParams object which stores the function which will do the class prediction
and parameters that the function will use.

predictor A function to make predictions with. The first argument must accept the classi-
fier made in the training step. The second argument must accept a matrix of new data.

transposeExpression Set to TRUE if classifier expects features as columns.
intermediate Character vector. Names of any variables created in prior stages by runTest

that need to be passed to the prediction function.
getClasses A function to extract the vector of class predictions from the result object cre-

ated by predictor.
... Other arguments that predictor may use.

Author(s)

Dario Strbenac

Examples

predictParams <- PredictParams(predictor = predict, TRUE, getClasses = function(result) result)
For prediction by trained object created by dlda function.
PredictParams(predictor = function(){}, TRUE, getClasses = function(result) result)
For when the training function also does prediction and directly returns vector of predictions.

previousSelection Automated Selection of Previously Selected Features

Description

Uses the feature selection of the same cross-validation iteration of a previous classification for the
current classification task.

Usage

S4 method for signature 'matrix'
previousSelection(expression, classes, ...)
S4 method for signature 'ExpressionSet'

previousSelection(expression, datasetName, classifyResult,
minimumOverlapPercent = 80,

selectionName = "Previous Selection", .iteration, verbose = 3)

36 previousSelection

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector of class labels.

... For the matrix method, variables passed to the ExpressionSet method.

datasetName A name for the dataset used. Stored in the result.

classifyResult An existing classification result from which to take the feature selections from.
minimumOverlapPercent

If at least this many selected features can’t be identified in the current dataset,
then the selection stops with an error.

selectionName A name to identify this selection method by. Stored in the result.

.iteration Not to be set by the user.

verbose A number between 0 and 3 for the amount of progress messages to give. This
function only prints progress messages if the value is 3.

Value

An object of class SelectResult.

Author(s)

Dario Strbenac

Examples

if(require(sparsediscrim))
{

Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
rownames(genesMatrix) <- paste("Gene", 1:100)
classes <- factor(rep(c("Poor", "Good"), each = 25))
resubstitute <- ResubstituteParams(nFeatures = seq(10, 100, 10),

performanceType = "err", better = "lower")
result <- runTests(genesMatrix, classes, "Ovarian Cancer", "Differential Expression",

resamples = 2, fold = 2,
params = list(SelectParams(limmaSelection, resubstituteParams = resubstitute),

TrainParams(dlda, TRUE, FALSE),
PredictParams(predict, TRUE, getClasses = function(result) result[["class"]])))

Genes 74 to 98 have differential expression in new dataset.
newDataset <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
newDataset <- cbind(newDataset, rbind(sapply(1:25, function(sample) rnorm(73, 9, 2)),

sapply(1:25, function(sample) rnorm(25, 14, 2)),
sapply(1:25, function(sample) rnorm(2, 14, 2))))

newerResult <- runTests(newDataset, classes, "Ovarian Cancer Updated", "Differential Expression",

rankingPlot 37

resamples = 2, fold = 2,
params = list(SelectParams(previousSelection, intermediate = ".iteration",

classifyResult = result),
TrainParams(dlda, TRUE, FALSE),

PredictParams(predict, TRUE, getClasses = function(result) result[["class"]])))
}

rankingPlot Plot Pair-wise Overlap of Ranked Features

Description

Pair-wise overlaps can be done for two types of analyses. Firstly, each cross-validation iteration can
be considered within a single classification. This explores the feature ranking stability. Secondly,
the overlap may be considered between different classification results. This approach compares the
feature ranking commonality between different methods. Two types of commonality are possible
to analyse. One summary is the average pair-wise overlap between a level of the comparison factor
and the other summary is the pair-wise overlap of each level of the comparison factor that is not the
reference level against the reference level. The overlaps are converted to percentages and plotted as
lineplots.

Usage

S4 method for signature 'list'
rankingPlot(results, topRanked = seq(10, 100, 10),

comparison = c("within", "classificationName", "validation", "datasetName", "selectionName"),
referenceLevel = NULL,

lineColourVariable = c("validation", "datasetName", "classificationName",
"selectionName", "None"),

lineColours = NULL, lineWidth = 1,
pointTypeVariable = c("datasetName", "classificationName", "validation",

"selectionName", "None"),
pointSize = 2, legendLinesPointsSize = 1,

rowVariable = c("None", "datasetName", "classificationName", "validation", "selectionName"),
columnVariable = c("classificationName", "datasetName", "validation", "selectionName", "None"),

yMax = 100, fontSizes = c(24, 16, 12, 12, 12, 16),
title = if(comparison[1] == "within") "Feature Ranking Stability" else "Feature Ranking Commonality",

xLabelPositions = seq(10, 100, 10),
yLabel = if(is.null(referenceLevel)) "Average Common Features (%)" else paste("Average Common Features with", referenceLevel, "(%)"),

margin = grid::unit(c(0, 0, 0, 0), "lines"),
showLegend = TRUE, plot = TRUE, parallelParams = bpparam())

Arguments

results A list of ClassifyResult or SelectResult objects.

topRanked A sequence of thresholds of number of the best features to use for overlapping.

38 rankingPlot

comparison The aspect of the experimental design to compare. See Details section for a
detailed description.

referenceLevel The level of the comparison factor to use as the reference to compare each non-
reference level to. If NULL, then each level has the average pairwise overlap
calculated to all other levels.

lineColourVariable

The slot name that different levels of are plotted as different line colours.

lineColours A vector of colours for different levels of the line colouring parameter. If NULL,
a default palette is used.

lineWidth A single number controlling the thickness of lines drawn.
pointTypeVariable

The slot name that different levels of are plotted as different point shapes on the
lines.

pointSize A single number specifying the diameter of points drawn.
legendLinesPointsSize

A single number specifying the size of the lines and points in the legend, if a
legend is drawn.

rowVariable The slot name that different levels of are plotted as separate rows of lineplots.

columnVariable The slot name that different levels of are plotted as separate columns of lineplots.

yMax The maximum value of the percentage to plot.

fontSizes A vector of length 6. The first number is the size of the title. The second
number is the size of the axes titles. The third number is the size of the axes
values. The fourth number is the size of the legends’ titles. The fifth number is
the font size of the legend labels. The sixth number is the font size of the titles
of grouped plots, if any are produced. In other words, when rowVariable or
columnVariable are not NULL.

title An overall title for the plot.
xLabelPositions

Locations where to put labels on the x-axis.

yLabel Label to be used for the y-axis of overlap percentages.

margin The margin to have around the plot.

showLegend If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.

plot Logical. If TRUE, a plot is produced on the current graphics device.

parallelParams An object of class MulticoreParam or SnowParam.

Details

Possible values for characteristics are "datasetName", "classificationName", "selectionName",
and "validation". If "None", then that graphical element is not used.

If comparison is "within", then the feature rankings are compared within a particular analy-
sis. The result will inform how stable the feature rankings are between different iterations of
cross-validation for a particular analysis. If comparison is "classificationName", then the
feature rankings are compared across different classification algorithm types, for each level of

rankingPlot 39

"datasetName", "selectionName" and "validation". The result will inform how stable the
feature rankings are between different classification algorithms, for every cross-validation scheme,
selction algorithm and dataset. If comparison is "selectionName", then the feature rankings are
compared across different feature selection algorithms, for each level of "datasetName", "classificationName"
and "validation". The result will inform how stable the feature rankings are between feature se-
lection classification algorithms, for every dataset, classification algorithm, and cross-validation
scheme. If comparison is "validation", then the feature rankings are compared across differ-
ent cross-validation schemes, for each level of "classificationName", "selectionName" and
"datasetName". The result will inform how stable the feature rankings are between different
cross-validation schemes, for every selection algorithm, classification algorithm and every dataset.
If comparison is "datasetName", then the feature rankings are compared across different datasets,
for each level of "classificationName", "selectionName" and "validation". The result will
inform how stable the feature rankings are between different datasets, for every classification al-
gorithm and every dataset. This could be used to consider if different experimental studies have a
highly overlapping feature ranking pattern.

Calculating all pair-wise set overlaps for a large cross-validation result can be time-consuming. This
stage can be done on multiple CPUs by providing the relevant options to parallelParams.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- data.frame(sample = sample(10, 100, replace = TRUE),
label = rep(c("Healthy", "Cancer"), each = 50))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
rankList <- list(list(1:100, c(5:1, 6:100)), list(c(1:9, 11:101), c(1:50, 60:51, 61:100)))
result1 <- ClassifyResult("Example", "Differential Expression", "Example Selection", LETTERS[1:10], LETTERS[10:1],

rankList,
list(list(rankList[[1]][[1]][1:15], rankList[[1]][[2]][1:15]),

list(rankList[[2]][[1]][1:10], rankList[[2]][[2]][1:10])),
list(predicted), actual, list("fold", 2, 2))

predicted[, "label"] <- sample(predicted[, "label"])
rankList <- list(list(1:100, c(sample(20), 21:100)), list(c(1:9, 11:101), c(1:50, 60:51, 61:100)))
result2 <- ClassifyResult("Example", "Differential Variability", "Example Selection", LETTERS[1:10], LETTERS[10:1],

rankList,
list(list(rankList[[1]][[1]][1:15], rankList[[1]][[2]][1:15]),

list(rankList[[2]][[1]][1:10], rankList[[2]][[2]][1:10])),
list(predicted), actual, validation = list("fold", 2, 2))

rankingPlot(list(result1, result2), pointTypeVariable = "classificationName")

oneRanking <- c(10, 8, 1, 2, 3, 4, 7, 9, 5, 6)
otherRanking <- c(8, 2, 3, 4, 1, 10, 6, 9, 7, 5)
oneResult <- SelectResult("Example", "One Method", list(oneRanking), list(oneRanking[1:5]))

40 ResubstituteParams

otherResult <- SelectResult("Example", "Another Method", list(otherRanking), list(otherRanking[1:2]))

rankingPlot(list(oneResult, otherResult), comparison = "selectionName",
referenceLevel = "One Method", topRanked = seq(2, 8, 2),
lineColourVariable = "selectionName", columnVariable = "None",
pointTypeVariable = "None", xLabelPositions = 1:10)

ResubstituteParams Parameters for Resubstitution Error Calculation

Description

Some feature selection functions provided in the framework use resubstitution error rate to choose
the best number of features for classification. This class stores parameters related to that process

Constructor

ResubstituteParams() Creates a default ResubstituteParams object. The number of features
tried is 100, 200, 300, 400, 500. The performance measure used is the balanced error rate.

ResubstituteParams(nFeatures, performanceType, better = c("lower", "higher"))
Creates a ResubstituteParams object, storing information about the number of top features to
calculate the performance measure for, the performance measure to use, and if higher or lower
values of the measure are better.

nFeatures A vector for the top number of features to test the resubstitution error for.

performanceType Either "balanced" or one of the options provided by performance.

better Either "lower" or "higher". Determines whether higher or lower values of the
performance measure are desirable.

intermediate Character vector. Names of any variables created in prior stages by runTest
that need to be passed to classifier.

... Other named parameters which will be used by the classifier.

Author(s)

Dario Strbenac

Examples

ResubstituteParams(nFeatures = seq(25, 1000, 25), performanceType = "err", better = "lower")

ROCplot 41

ROCplot Plot Receiver Operating Curve Graphs for Classification Results

Description

The average pair-wise overlap is computed for every pair of cross-validations. The overlap is con-
verted to a percentage and plotted as lineplots.

Usage

S4 method for signature 'list'
ROCplot(results, nBins = sapply(results, totalPredictions),

lineColourVariable = c("classificationName", "datasetName", "selectionName", "validation", "None"), lineColours = NULL,
lineWidth = 1, fontSizes = c(24, 16, 12, 12, 12), labelPositions = seq(0.0, 1.0, 0.2),
plotTitle = "ROC", legendTitle = NULL, xLabel = "False Positive Rate", yLabel = "True Positive Rate",

plot = TRUE, showAUC = TRUE)

Arguments

results A list of ClassifyResult objects.

nBins The number of intervals to group the samples’ scores into. By default, there are
as many bins as there were predictions made, for each result object.

lineColourVariable

The slot name that different levels of are plotted as different line colours.

lineColours A vector of colours for different levels of the line colouring parameter. If NULL,
a default palette is used.

lineWidth A single number controlling the thickness of lines drawn.

fontSizes A vector of length 5. The first number is the size of the title. The second number
is the size of the axes titles and AUC text, if it is not part of the legend. The third
number is the size of the axes values. The fourth number is the size of the
legends’ titles. The fifth number is the font size of the legend labels.

labelPositions Locations where to put labels on the x and y axes.

plotTitle An overall title for the plot.

legendTitle A default name is used if the value is NULL. Otherwise a character name can be
provided.

xLabel Label to be used for the x-axis of false positive rate.

yLabel Label to be used for the y-axis of true positive rate.

plot Logical. If TRUE, a plot is produced on the current graphics device.

showAUC Logical. If TRUE, the AUC value of each result is added to its legend text.

42 runTest

Details

Possible values for slot names are "datasetName", "classificationName", and "validation".
If "None", then any lines drawn will be black.

The scores stored in the results should be higher if the sample is more likely to be from the second
class, based on the levels of the actual classes. The scores must be in a column named "score".

For cross-validated classification, all predictions from all iterations are considered simultaneously,
to calculate one curve per classification.

The number of bins determines how many pairs of TPR and FPR points will be used to draw the
plot. A higher number will result in a smoother ROC curve.

The AUC is calculated using the trapezoidal rule.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- list(data.frame(sample = c(1, 8, 15, 3, 11, 20, 19, 18), score = c(0.11, 0.32, 0.47, 0.24, 0.87, 0.80, 0.40, 0.75)),
data.frame(sample = c(11, 18, 15, 4, 6, 10, 11, 12), score = c(0.55, 0.44, 0.67, 0.44, 0.67, 0.80, 0.40, 0.60)))

actual <- factor(c(rep("Healthy", 10), rep("Cancer", 10)), levels = c("Healthy", "Cancer"))
result1 <- ClassifyResult("Example", "Differential Expression", "t-test", LETTERS[1:10], LETTERS[10:1], list(1:100, c(1:9, 11:101)), list(sample(10, 10), sample(10, 10)),

predicted, actual, list("fold", 2, 1))
predicted[[1]][, "score"][c(2, 6)] <- c(0.60, 0.40)
result2 <- ClassifyResult("Example", "Differential Variability", "F-test", LETTERS[1:10], LETTERS[10:1], list(1:100, c(1:5, 11:105)), list(sample(10, 10), sample(10, 10)),

predicted, actual, validation = list("fold", 2, 1))
ROCplot(list(result1, result2), lineColourVariable = "classificationName", plotTitle = "Ovarian Cancer ROC")

runTest Perform a Single Classification

Description

For a dataset of features and samples, the classification process is run. It consists of data transfor-
mation, feature selection, training and testing.

Usage

S4 method for signature 'matrix'
runTest(expression, classes, ...)
S4 method for signature 'ExpressionSet'

runTest(expression, datasetName, classificationName,
training, testing, params = list(SelectParams(), TrainParams(), PredictParams()),

verbose = 1, .iteration = NULL)

runTest 43

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector of class labels.

datasetName A name associated with the dataset used.
classificationName

A name associated with the classification.

training A vector which specifies the training samples.

testing A vector which specifies the test samples.

params A list of objects of class of TransformParams, SelectParams, TrainParams,
or PredictParams. The order they are in the list determines the order in which
the stages of classification are done in.

... Unused variables from the matrix method passed to the ExpressionSet method.

verbose A number between 0 and 3 for the amount of progress messages to give. A
higher number will produce more messages.

.iteration Not to be set by a user. This value is used to keep track of the cross-validation
iteration, if called by runTests.

Details

This function only performs one classification and prediction. See runTests for a driver function
that does cross validation and uses this function. datasetName and classificationName need to
be provided.

Value

A named list with five elements. The first element contains all of the features, ranked from most
important to least important. The second element contains the indices of genes that were selected
by the feature selection step. The third element contains the indices of the samples that were in the
test set. The fourth element contains a vector of the classes predicted by the classifer. The fifth
element contains the value of any tuning parameters tried and chosen.

Author(s)

Dario Strbenac

Examples

if(require(curatedOvarianData) && require(sparsediscrim))
{

data(TCGA_eset)
badOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "deceased" & pData(TCGA_eset)[, "days_to_death"] <= 365)
goodOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "living" & pData(TCGA_eset)[, "days_to_death"] >= 365 * 5)
TCGA_eset <- TCGA_eset[, c(badOutcome, goodOutcome)]
classes <- factor(rep(c("Poor", "Good"), c(length(badOutcome), length(goodOutcome))))
pData(TCGA_eset)[, "class"] <- classes
runTest(TCGA_eset, "Ovarian Cancer", "Differential Expression",

44 runTests

training = (1:ncol(TCGA_eset)) %% 2 == 0,
testing = (1:ncol(TCGA_eset)) %% 2 != 0)

}

runTests Reproducibly Do Resampling or Leave Out and Cross Validation

Description

Enables doing classification schemes such as 100 resamples 5-fold cross validation or leave one out
cross validaion. Processing in parallel is possible by leveraging the package BiocParallel.

Usage

S4 method for signature 'matrix'
runTests(expression, classes, ...)
S4 method for signature 'ExpressionSet'

runTests(expression, datasetName, classificationName,
validation = c("bootstrap", "leaveOut"), bootMode = c("fold", "split"),
resamples = 100, percent = 25, folds = 5, leave = 2, seed, parallelParams = bpparam(),
params = list(SelectParams(), TrainParams(), PredictParams()),

verbose = 1)

Arguments

expression Either a matrix or ExpressionSet containing the training data. For a matrix,
the rows are features, and the columns are samples.

classes A vector the same length as the number of columns of expression data specifying
the class that the samples belong to.

datasetName A name associated with the dataset used.
classificationName

A name associated with the classification.

validation "bootstrap" for repeated resampling or "leaveOut" for leaving all combinations
of k samples as test samples.

bootMode Character. Either "fold" or "split". If "fold", then the samples are split into folds
and in each iteration one is used as the test set. If "split", the samples are split
into two groups. One is used as the training set, the other is the test set.

resamples Relevant when repeated resampling is used. The number of times to do sampling
with replacement.

percent Used when bootstrap resampling with split method is chosen. The percentage
of samples to be in the test set.

folds Relevant when repeated resampling is used with fold mode. The number of folds
to break each resampling into. Each fold is used once as the test set.

leave Relevant when leave k out validation is used. The number of samples to leave
for testing.

selectionPlot 45

seed The random number generator used for repeated resampling will use this seed, if
it is provided. Allows reproducibility of repeated usage on the same input data.

parallelParams An object of class MulticoreParam or SnowParam.

params A list of objects of class of TransformParams, SelectParams, TrainParams,
or PredictParams. The order they are in the list determines the order in which
the stages of classification are done in.

... Unused variables from the matrix method passed to the ExpressionSet method.

verbose A number between 0 and 3 for the amount of progress messages to give. A
higher number will produce more messages.

Value

If the predictor function made a single prediction, then an object of class ClassifyResult. If the
predictor function made a set of predictions, then a list of such objects.

Author(s)

Dario Strbenac

Examples

if(require(curatedOvarianData) && require(sparsediscrim))
{

data(TCGA_eset)
badOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "deceased" & pData(TCGA_eset)[, "days_to_death"] <= 365)
goodOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "living" & pData(TCGA_eset)[, "days_to_death"] >= 365 * 5)
TCGA_eset <- TCGA_eset[, c(badOutcome, goodOutcome)]
classes <- factor(rep(c("Poor", "Good"), c(length(badOutcome), length(goodOutcome))))
pData(TCGA_eset)[, "class"] <- classes
runTests(TCGA_eset, "Ovarian Cancer", "Differential Expression", resamples = 2, fold = 2)

}

selectionPlot Plot Pair-wise Overlap or Selection Size Distribution of Selected Fea-
tures

Description

Pair-wise overlaps can be done for two types of analyses. Firstly, each cross-validation iteration can
be considered within a single classification. This explores the feature selection stability. Secondly,
the overlap may be considered between different classification results. This approach compares
the feature selection commonality between different selection methods. Two types of commonality
are possible to analyse. One summary is the average pair-wise overlap between a level of the
comparison factor and the other summary is the pair-wise overlap of each level of the comparison
factor that is not the reference level against the reference level. The overlaps are converted to
percentages and plotted as lineplots.

Additionally, a heatmap of selection size frequencies can be made.

46 selectionPlot

Usage

S4 method for signature 'list'
selectionPlot(results,

comparison = c("within", "size", "classificationName", "validation", "datasetName", "selectionName"),
referenceLevel = NULL,

xVariable = c("classificationName", "datasetName", "validation", "selectionName"),
boxFillColouring = c("classificationName", "size", "datasetName", "validation",

"selectionName", "None"),
boxFillColours = NULL,
boxFillBinBoundaries = NULL, setSizeBinBoundaries = NULL,

boxLineColouring = c("validation", "classificationName", "datasetName", "selectionName", "None"),
boxLineColours = NULL,

rowVariable = c("None", "validation", "datasetName", "classificationName", "selectionName"),
columnVariable = c("datasetName", "classificationName", "validation", "selectionName", "None"),

yMax = 100, fontSizes = c(24, 16, 12, 16),
title = if(comparison[1] == "within") "Feature Selection Stability" else if(comparison == "size") "Feature Selection Size" else "Feature Selection Commonality",

xLabel = "Analysis",
yLabel = if(is.null(referenceLevel) && comparison != "size") "Common Features (%)" else if(comparison == "size") "Set Size" else paste("Common Features with", referenceLevel, "(%)"),

margin = grid::unit(c(0, 0, 0, 0), "lines"), rotate90 = FALSE,
showLegend = TRUE, plot = TRUE, parallelParams = bpparam())

Arguments

results A list of ClassifyResult or SelectResult objects.

comparison The aspect of the experimental design to compare. See Details section for a
detailed description.

referenceLevel The level of the comparison factor to use as the reference to compare each non-
reference level to. If NULL, then each level has the average pairwise overlap
calculated to all other levels.

xVariable The factor to make separate boxes in the boxplot for.
boxFillColouring

A factor to colour the boxes by.

boxFillColours A vector of colours, one for each level of boxFillColouring. If NULL, a default
palette is used.

boxFillBinBoundaries

Used only if comparison is "size". A vector of integers, specifying the bin
boundaries of percentages of size bins observed. e.g. 0, 10, 20, 30, 40, 50.

setSizeBinBoundaries

Used only if comparison is "size". A vector of integers, specifying the bin
boundaries of set size bins. e.g. 50, 100, 150, 200, 250.

boxLineColouring

A factor to colour the box lines by.

boxLineColours A vector of colours, one for each level of boxLineColouring. If NULL, a default
palette is used.

rowVariable The slot name that different levels of are plotted as separate rows of boxplots.

selectionPlot 47

columnVariable The slot name that different levels of are plotted as separate columns of boxplots.

yMax The maximum value of the percentage to plot.

fontSizes A vector of length 4. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the font size of the titles of grouped plots, if any are produced.
In other words, when rowVariable or columnVariable are not NULL.

title An overall title for the plot.

xLabel Label to be used for the x-axis.

yLabel Label to be used for the y-axis of overlap percentages.

margin The margin to have around the plot.

rotate90 Logical. If TRUE, the boxplot is horizontal.

showLegend If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.

plot Logical. If TRUE, a plot is produced on the current graphics device.

parallelParams An object of class MulticoreParam or SnowParam.

Details

Possible values for characteristics are "datasetName", "classificationName", "size", "selectionName",
and "validation". If "None", then that graphical element is not used.

If comparison is "within", then the feature selection overlaps are compared within a particu-
lar analysis. The result will inform how stable the selections are between different iterations of
cross-validation for a particular analysis. If comparison is "classificationName", then the
feature selections are compared across different classification algorithm types, for each level of
"datasetName", "selectionName" and "validation". The result will inform how stable the fea-
ture selections are between different classification algorithms, for every cross-validation scheme,
selction algorithm and dataset. If comparison is "selectionName", then the feature selections are
compared across different feature selection algorithms, for each level of "datasetName", "classificationName"
and "validation". The result will inform how stable the feature selections are between feature
selection algorithms, for every dataset, classification algorithm, and cross-validation scheme. If
comparison is "validation", then the feature selections are compared across different cross-
validation schemes, for each level of "classificationName", "selectionName" and "datasetName".
The result will inform how stable the feature selections are between different cross-validation
schemes, for every selection algorithm, classification algorithm and every dataset. If comparison is
"datasetName", then the feature selections are compared across different datasets, for each level of
"classificationName", "selectionName", and "validation". The result will inform how sta-
ble the feature selections are between different datasets, for every classification algorithm and every
dataset. This could be used to consider if different experimental studies have a highly overlapping
feature selection pattern.

Calculating all pair-wise set overlaps can be time-consuming. This stage can be done on multiple
CPUs by providing the relevant options to parallelParams. The percentage is calculated as the
intersection of two sets of features divided by the union of the sets, multiplied by 100.

For the selection size mode, boxFillBins is used to create bins which include the lowest value for
the first bin, and the highest value for the last bin using cut.

48 SelectParams

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- data.frame(sample = sample(10, 100, replace = TRUE),
label = rep(c("Healthy", "Cancer"), each = 50))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
rankList <- list(list(1:100, c(5:1, 6:100)), list(c(1:9, 11:101), c(1:50, 60:51, 61:100)))
result1 <- ClassifyResult("Example", "Differential Expression", "Example Selection", LETTERS[1:10], LETTERS[10:1],

rankList,
list(list(rankList[[1]][[1]][1:15], rankList[[1]][[2]][1:15]),

list(rankList[[2]][[1]][1:10], rankList[[2]][[2]][1:10])),
list(predicted), actual, list("fold", 2, 2))

predicted[, "label"] <- sample(predicted[, "label"])
rankList <- list(list(1:100, c(sample(20), 21:100)), list(c(1:9, 11:101), c(1:50, 60:51, 61:100)))
result2 <- ClassifyResult("Example", "Differential Variability", "Example Selection", LETTERS[1:10], LETTERS[10:1],

rankList,
list(list(rankList[[1]][[1]][1:15], rankList[[1]][[2]][1:15]),

list(rankList[[2]][[1]][1:10], rankList[[2]][[2]][1:10])),
list(predicted), actual, validation = list("fold", 2, 2))

selectionPlot(list(result1, result2), xVariable = "classificationName", xLabel = "Analysis", columnVariable = "None", rowVariable = "None", boxFillColouring = "classificationName")

selectionPlot(list(result1, result2), comparison = "size", xVariable = "classificationName", xLabel = "Analysis", columnVariable = "None", rowVariable = "None", boxFillColouring = "size", boxFillBinBoundaries = seq(0, 100, 10),
setSizeBinBoundaries = seq(0, 25, 5), boxLineColouring = "None")

oneRanking <- c(10, 8, 1, 2, 3, 4, 7, 9, 5, 6)
otherRanking <- c(8, 2, 3, 4, 1, 10, 6, 9, 7, 5)
oneResult <- SelectResult("Example", "One Method", list(oneRanking), list(oneRanking[1:5]))
otherResult <- SelectResult("Example", "Another Method", list(otherRanking), list(otherRanking[1:2]))

selectionPlot(list(oneResult, otherResult), comparison = "selectionName", xVariable = "selectionName", xLabel = "Selection Method", columnVariable = "None", rowVariable = "None", boxFillColouring = "selectionName", boxLineColouring = "None")

SelectParams Parameters for Feature Selection

Description

Collects and checks necessary parameters required for feature selection. The empty constructor is
provided for convenience.

SelectResult 49

Constructor

SelectParams() Creates a default SelectParams object. This uses a limma t-test and tries 100,
200, 300, 400, 500 features, and picks the number of features with the best resubstitution error
rate. Users should create an appropriate SelectParams object for the characteristics of their
data, once they are familiar with this software.

SelectParams(featureSelection, selectionName, minPresence = 1, intermediate = character(0), subsetExpressionData = TRUE, ...)
Creates a SelectParams object which stores the function which will do the selection and pa-
rameters that the function will use.

featureSelection Either a function which will do the selection or a list of such functions.
For a particular function, the first argument must be an ExpressionSet object. The
function’s return value must be a vector of row indices of genes that were selected.

selectionName A name to identify this selection method by.
minPresence If a list of functions was provided, how many of those must a feature have been

selected by to be used in classification. 1 is equivalent to a set union and a number the
same length as featureSelection is equivalent to set intersection.

intermediate Character vector. Names of any variables created in prior stages by runTest
that need to be passed to a feature selection function.

subsetExpressionData Whether to subset the expression data, after selection has been done.
... Other named parameters which will be used by the selection function. If featureSelection

was a list of functions, this must be a list of lists, as long as featureSelection.

Author(s)

Dario Strbenac

Examples

if(require(sparsediscrim))
{

SelectParams(limmaSelection, "t-test",
trainParams = TrainParams(), predictParams = PredictParams(),
resubstituteParams = ResubstituteParams())

For pamr shrinkage selection.
SelectParams(nearestShrunkenCentroidSelectionInterface, datasetName = "Ovarian Cancer",

intermediate = "trained", subsetExpressionData = FALSE)
}

SelectResult Container for Storing Feature Selection Results

Description

Contains the ranked indices or names of features, from most discriminative to least discriminative
and a list of indicies of feature selected for use in classification. This class is not intended to be
created by the user, but could be used in another package.

50 subtractFromLocation

Constructor

SelectResult(datasetName, selectionName, rankedFeatures, chosenFeatures

datasetName A name associated with the dataset used.
selectionName A name associated with the classification.
rankedFeatures Indices or names of all features, from most to least discriminative.
chosenFeatures Indices or names of features selected at each fold.

Summary

A method which summarises the results is available. result is a SelectResult object.

show(result)Prints a short summary of what result contains.

Author(s)

Dario Strbenac

Examples

SelectResult("Melanoma", "Moderated t-test", list(1:50), list(1:10))

subtractFromLocation Subtract All Feature Measurements from Location

Description

For each feature, calculates the location, and subtracts all measurements from that location.

Usage

S4 method for signature 'matrix'
subtractFromLocation(expression, ...)
S4 method for signature 'ExpressionSet'

subtractFromLocation(expression, training, location = c("mean", "median"),
absolute = TRUE, verbose = 3)

Arguments

expression Either a matrix or ExpressionSet containing the data. For a matrix, the rows
are features, and the columns are samples.

... Unused variables from the matrix method passed to the ExpressionSet method.
training A vector specifying which samples are in the training set.
location Character. Either "mean" or "median".
absolute If TRUE, then absolute values of the differences are returned.
verbose A number between 0 and 3 for the amount of progress messages to give. A

higher number will produce more messages.

TrainParams 51

Details

Only the samples specified by training are used in the calculation of the location. To use all
samples for calculation of the location, simply provide indices of all the samples.

Value

An ExpressionSet of the same dimension that was input, with values subtracted from the location
specified.

Author(s)

Dario Strbenac

Examples

subtractFromLocation(matrix(1:100, ncol = 10), training = 1:5, "median")

TrainParams Parameters for Classifier Training

Description

Collects and checks necessary parameters required for classifier training. The empty constructor is
provided for convenience.

Constructor

TrainParams() Creates a default TrainParams object. The classifier function is DLDA. Users
should create an appropriate TrainParams object for the characteristics of their data, once
they are familiar with this software.

TrainParams(classifier, transposeExpression, doesTests, ...) Creates a TrainParams
object which stores the function which will do the classifier building and parameters that the
function will use.

classifier A function which will construct a classifier, and also possibly make the predic-
tions. The first argument must be a matrix object. The second argument must be a vector
of classes. The third argument must be verbose. If doesTests is TRUE, the third argument
must be a matrix of test data and the fourth argument is verbose. The function’s re-
turn value can be either a trained classifier when doesTests is FALSE or a vector of class
predictions if doesTests is TRUE.

transposeExpression Set to TRUE if classifier expects features as columns.
doesTests Set to TRUE if classifier also performs and returns predictions.
intermediate Character vector. Names of any variables created in prior stages by runTest

that need to be passed to classifier.
... Other named parameters which will be used by the classifier.

52 TransformParams

Author(s)

Dario Strbenac

Examples

if(require(sparsediscrim))
trainParams <- TrainParams(dlda, transposeExpression = TRUE, doesTests = FALSE)

sparsediscrim has a separate predict method for trained DLDA objects.
dlda expects features in columns, and samples in rows.

TransformParams Parameters for Data Transformation

Description

Collects and checks necessary parameters required for transformation. The empty constructor is
for when no data transformation is desired. One data transformation function is distributed. See
subtractFromLocation.

Constructor

TransformParams(transform, intermediate = character(0), ...) Creates a Transform-
Params object which stores the function which will do the transformation and parameters that
the function will use.

transform A function which will do the transformation. The first argument must be an
ExpressionSet object.

intermediate Character vector. Names of any variables created in prior stages by runTest
that need to be passed to a feature selection function.

... Other named parameters which will be used by the transformation function.

Author(s)

Dario Strbenac

Examples

transforParams <- TransformParams(subtractFromLocation, location = "median")
Subtract all values from training set median, to obtain absolute deviations.

Index

actualClasses (ClassifyResult), 6
actualClasses,ClassifyResult-method

(ClassifyResult), 6

bartlett.test, 3
bartlettSelection, 3
bartlettSelection,ExpressionSet-method

(bartlettSelection), 3
bartlettSelection,matrix-method

(bartlettSelection), 3
BiocParallel, 44

calcNormFactors, 11
calcPerformance, 4, 7
calcPerformance,ClassifyResult-method

(calcPerformance), 4
character, 7
Classify, 5
classifyInterface, 5
ClassifyResult, 4, 5, 6, 8, 12, 31, 37, 41, 45,

46
ClassifyResult,character,character,character,character,character-method

(ClassifyResult), 6
ClassifyResult-class (ClassifyResult), 6
cut, 47

data.frame, 6, 7, 14, 24, 26
distribution, 7
distribution,ClassifyResult-method

(distribution), 7
DMDselection, 9
DMDselection,ExpressionSet-method

(DMDselection), 9
DMDselection,matrix-method

(DMDselection), 9

edgeR, 11
edgeRselection, 10
edgeRselection,ExpressionSet-method

(edgeRselection), 10

edgeRselection,matrix-method
(edgeRselection), 10

errorMap, 12
errorMap,list-method (errorMap), 12
estimateDisp, 11
ExpressionSet, 3, 9, 11, 14–19, 21–25, 27,

28, 30, 33, 36, 43–45, 49–52

factor, 7
features (ClassifyResult), 6
features,ClassifyResult-method

(ClassifyResult), 6
fisherDiscriminant, 13
fisherDiscriminant,ExpressionSet-method

(fisherDiscriminant), 13
fisherDiscriminant,matrix-method

(fisherDiscriminant), 13
function, 35
functionOrList, 15
functionOrList-class (functionOrList),

15

geom_histogram, 8
getLocationsAndScales, 9, 15, 18, 21
getLocationsAndScales,ExpressionSet-method

(getLocationsAndScales), 15
getLocationsAndScales,matrix-method

(getLocationsAndScales), 15
glmFit, 11

KolmogorovSmirnovSelection, 16
KolmogorovSmirnovSelection,ExpressionSet-method

(KolmogorovSmirnovSelection),
16

KolmogorovSmirnovSelection,matrix-method
(KolmogorovSmirnovSelection),
16

ks.test, 17
KullbackLeiblerSelection, 17

53

54 INDEX

KullbackLeiblerSelection,ExpressionSet-method
(KullbackLeiblerSelection), 17

KullbackLeiblerSelection,matrix-method
(KullbackLeiblerSelection), 17

leveneSelection, 19
leveneSelection,ExpressionSet-method

(leveneSelection), 19
leveneSelection,matrix-method

(leveneSelection), 19
likelihoodRatioSelection, 20
likelihoodRatioSelection,ExpressionSet-method

(likelihoodRatioSelection), 20
likelihoodRatioSelection,matrix-method

(likelihoodRatioSelection), 20
limmaSelection, 22
limmaSelection,ExpressionSet-method

(limmaSelection), 22
limmaSelection,matrix-method

(limmaSelection), 22
list, 6, 7, 11, 16, 43, 45
lmFit, 22

matrix, 3, 9, 11, 14–19, 21–25, 27, 28, 30, 33,
35, 36, 43–45, 50, 51

MixmodCluster, 24
mixmodCluster, 24
mixmodels, 23
mixModelsTest (mixmodels), 23
mixModelsTest,list,ExpressionSet-method

(mixmodels), 23
mixModelsTest,list,matrix-method

(mixmodels), 23
mixModelsTrain (mixmodels), 23
mixModelsTrain,ExpressionSet-method

(mixmodels), 23
mixModelsTrain,matrix-method

(mixmodels), 23
MulticoreParam, 38, 45, 47

naiveBayesKernel, 25
naiveBayesKernel,ExpressionSet-method

(naiveBayesKernel), 25
naiveBayesKernel,matrix-method

(naiveBayesKernel), 25
nearestShrunkenCentroidPredictInterface,

27
nearestShrunkenCentroidPredictInterface,pamrtrained,ExpressionSet-method

(nearestShrunkenCentroidPredictInterface),
27

nearestShrunkenCentroidPredictInterface,pamrtrained,matrix-method
(nearestShrunkenCentroidPredictInterface),
27

nearestShrunkenCentroidSelectionInterface,
28

nearestShrunkenCentroidSelectionInterface,ExpressionSet-method
(nearestShrunkenCentroidSelectionInterface),
28

nearestShrunkenCentroidSelectionInterface,matrix-method
(nearestShrunkenCentroidSelectionInterface),
28

nearestShrunkenCentroidTrainInterface,
28, 29, 29

nearestShrunkenCentroidTrainInterface,ExpressionSet-method
(nearestShrunkenCentroidTrainInterface),
29

nearestShrunkenCentroidTrainInterface,matrix-method
(nearestShrunkenCentroidTrainInterface),
29

pamr.listgenes, 28, 29
pamr.predict, 27, 28
pamr.train, 29, 30
pamrtrained, 30
pamrtrained-class (pamrtrained), 30
performance, 4, 40
performance (ClassifyResult), 6
performance,ClassifyResult-method

(ClassifyResult), 6
performancePlot, 31
performancePlot,list-method

(performancePlot), 31
plotFeatureClasses, 33
plotFeatureClasses,ExpressionSet-method

(plotFeatureClasses), 33
plotFeatureClasses,matrix-method

(plotFeatureClasses), 33
predictions (ClassifyResult), 6
predictions,ClassifyResult-method

(ClassifyResult), 6
PredictParams, 3, 9, 11, 16, 18, 19, 21, 22,

34, 43, 45
PredictParams,ANY-method

(PredictParams), 34
PredictParams,function-method

(PredictParams), 34
PredictParams-class (PredictParams), 34
previousSelection, 35

INDEX 55

previousSelection,ExpressionSet-method
(previousSelection), 35

previousSelection,matrix-method
(previousSelection), 35

rankingPlot, 37
rankingPlot,list-method (rankingPlot),

37
ResubstituteParams, 3, 9, 11, 16, 18, 19, 21,

22, 40
ResubstituteParams,ANY,ANY,ANY-method

(ResubstituteParams), 40
ResubstituteParams,numeric,character,character-method

(ResubstituteParams), 40
ResubstituteParams-class

(ResubstituteParams), 40
ROCplot, 41
ROCplot,list-method (ROCplot), 41
runTest, 35, 40, 42, 49, 51, 52
runTest,ExpressionSet-method (runTest),

42
runTest,matrix-method (runTest), 42
runTests, 4, 6, 43, 44
runTests,ExpressionSet-method

(runTests), 44
runTests,matrix-method (runTests), 44

selectionPlot, 45
selectionPlot,list-method

(selectionPlot), 45
SelectParams, 43, 45, 48
SelectParams,ANY-method (SelectParams),

48
SelectParams,functionOrList-method

(SelectParams), 48
SelectParams-class (SelectParams), 48
SelectResult, 3, 10, 11, 17, 18, 20, 22, 29,

36, 37, 46, 49
SelectResult,character,character,list,list-method

(SelectResult), 49
SelectResult-class (SelectResult), 49
show,ClassifyResult-method

(ClassifyResult), 6
show,SelectResult-method

(SelectResult), 49
SnowParam, 38, 45, 47
stat_density, 8
stats, 3
subtractFromLocation, 50, 52

subtractFromLocation,ExpressionSet-method
(subtractFromLocation), 50

subtractFromLocation,matrix-method
(subtractFromLocation), 50

totalPredictions (ClassifyResult), 6
totalPredictions,ClassifyResult-method

(ClassifyResult), 6
TrainParams, 3, 9, 11, 16, 18, 19, 21, 22, 43,

45, 51
TrainParams,ANY-method (TrainParams), 51
TrainParams,function-method

(TrainParams), 51
TrainParams-class (TrainParams), 51
TransformParams, 43, 45, 52
TransformParams,ANY-method

(TransformParams), 52
TransformParams,function-method

(TransformParams), 52
TransformParams-class

(TransformParams), 52
tunedParameters (ClassifyResult), 6
tunedParameters,ClassifyResult-method

(ClassifyResult), 6

	bartlettSelection
	calcPerformance
	classifyInterface
	ClassifyResult
	distribution
	DMDselection
	edgeRselection
	errorMap
	fisherDiscriminant
	functionOrList
	getLocationsAndScales
	KolmogorovSmirnovSelection
	KullbackLeiblerSelection
	leveneSelection
	likelihoodRatioSelection
	limmaSelection
	mixmodels
	naiveBayesKernel
	nearestShrunkenCentroidPredictInterface
	nearestShrunkenCentroidSelectionInterface
	nearestShrunkenCentroidTrainInterface
	pamrtrained
	performancePlot
	plotFeatureClasses
	PredictParams
	previousSelection
	rankingPlot
	ResubstituteParams
	ROCplot
	runTest
	runTests
	selectionPlot
	SelectParams
	SelectResult
	subtractFromLocation
	TrainParams
	TransformParams
	Index

