
Preparing Case-Parent Trio Data

and Detecting Disease-Associated

SNPs, SNP Interactions,

and Gene-Environment Interactions

with trio

Holger Schwender, Qing Li, and Ingo Ruczinski

Contents

1 Introduction 4

2 Preparing Data for the Genotypic TDTs 6

2.1 Dataframe in ped format . 6

2.2 Reading a ped file into R . 7

2.3 Transforming a data frame in ped format to a matrix in genotype format 8

3 Genotypic TDTs 9

3.1 Testing a Single SNP with a Genotypic TDT 9

3.2 Testing a Single Interaction between two SNPs 10

3.3 Testing all SNPs in a Matrix in Genotype Format with a Genotypic TDT 12

3.4 Performing a MAX Test . 13

3.5 Testing all Pairs of SNPs in a Matrix in Genotype Format 14

3.6 Testing Gene-Environment Interactions with a Genotypic TDT 15

4 Allelic TDT 18

5 Score Tests 19

6 Generating Data for Trio Logic Regression Input 20

6.1 Supported File Formats and Elementary Data Processing 21

6.2 Missing Genotype Information . 25

6.3 Mendelian Errors . 28

2

6.4 Using Haplotype Frequencies . 30

7 Trio Logic Regression 32

7.1 Parameter Settings for Trio Logic Regression 32

7.2 Performing a Trio Logic Regression Analysis 33

7.3 Permutation Tests for the Trio Logic Regression Model 35

7.4 Fitting Several Trio Logic Regression Models 35

7.5 Plotting Trio Logic Regression Models 37

7.6 Greedy Search in Trio Logic Regression 37

7.7 MC Trio Logic Regression . 38

8 Analysis of Trio Data with trioFS 40

9 Detection of LD Blocks 42

9.1 Computing Values of LD Measures . 42

9.2 Estimating LD Blocks . 44

10 Simulation 46

10.1 A Basic Example . 47

10.2 Using Estimated Haplotype Frequencies 48

10.3 Using Step-Stones . 49

3

1 Introduction

The R package trio contains functions for performing genotypic transmission disequi-

librium tests (gTDTs) and corresponding score tests to test whether the distributions of

individual SNPs (Schaid, 1996), two-way interactions of SNPs (Cordell, 2002; Cordell et

al., 2004), or interactions between SNPs and binary environmental variables differ between

the cases, i.e. the children affected by a disease, and the matched pseudo-controls, i.e.

the combinations of alleles that were not transmitted from the parents to their offspring,

but were also possible given the parents’ genotypes. Additionally, trio also comprises a

function for applying the allelic TDT (Spielman et al., 1993) to genotype data.

Moreover, trio provides functionalities relevant for the analysis of case-parent trio data

with trio logic regression (Li et al., 2010). These are, on the one hand, functions that aid in

the transformation of the trio data from standard linkage files (ped format) or genotype

format into objects suitable as input for trio logic regression, and on the other hand,

functions for applying trio logic regression and a bagging version of trio logic regression

to these objects.

Finally, trio provides functions for reading in and manipulating the case-parent trio data,

estimating LD as well as LD-blocks, and simulating case-parent trio data, where the risk

of disease is specified by (higher order) SNP interactions.

In Section 2 of this vignette, it is shown how family-based data stored in a linkage/ped

file can be read into R and transformed into a format suitable for the application of the

functions for performing the allelic and genotypic TDTs as well as the score tests. While

Section 3 contains examples for the application of the gTDT functions to individual SNPs,

two-way SNP interactions, and gene-environment interactions, Sections 4 and 5 briefly

show how the allelic TDT and the score tests related to the genotypic TDTs, respectively,

can be used to test these factors.

Section 6 is devoted to the steps relevant for data processing necessary to generate a

4

matrix suitable as input for trio logic regression, starting from a linkage or genotype

file, possibly containing missing data and/or Mendelian errors. We give some examples

how missing data can be addressed using haplotype-based imputation. The haplotype

information can be specified by the user, or when this information is not readily available,

automatically inferred. The haplotype blocks are also relevant in the delineation of the

genotypes for the pseudo-controls, as the linkage disequilibrium (LD) structure observed

in the parents is taken into account in this process. While this function is intended to

generate complete case-pseudo-control data as input for trio logic regression, an option

to simply return the completed trio data is also available.

In Sections 7 and 8, it is shown how trio logic regression and trioFS (trio Feature Selection;

Schwender et al., 2011a), in which bagging with base learner trio logic regression is used

to stabilize the search for relevant SNP interactions, can be applied to the data generated

as described in Section 6.

For the estimation of the haplotype structure that might be used in the functions described

in Section 6, the R package trio also contains functions for computing and plotting the

pairwise LD values and for detecting LD blocks. In Section 9, it is described how the

pairwise values of the LD measures D′ and r2 can be computed with the function getLD,

and how the D′ values can be employed to estimate haplotype blocks with the algorithm

of Gabriel et al. (2002).

Finally, Section 10 of the vignette explains in more detail how to set up simulations of

case-parent trio data, where the risk of disease is specified by SNP interactions. The most

time-consuming step for these types of simulations is the generation of mating tables and

the respective probabilities. The mating table information, however, can be stored, which

allows for fast simulations when replicates of the case-parent trio data are generated.

5

2 Preparing Data for the Genotypic TDTs

2.1 Dataframe in ped format

Case-parent trio data are typically stored in a ped file. The first six columns in such a ped

file, which is also referred to as linkage file, identify the family structure of the data, and

the phenotype. It is assumed that only one phenotype variable (column 6) is used. The

object trio.ped1, available in the R package, is an example of a data set in ped format. It

contains information for 10 SNPs in 100 trios. Besides the variables providing information

on the family structure and the phenotypes (columns 1–6), each SNP is encoded in two

variables denoting the alleles.

> library(trio)

> data(trio.data)

> str(trio.ped1)

'data.frame': 300 obs. of 26 variables:

$ famid : int 10001 10001 10001 10002 10002 10002 10003 10003 10003 10004 ...

$ pid : int 1 2 3 1 2 3 1 2 3 1 ...

$ fatid : int 0 0 1 0 0 1 0 0 1 0 ...

$ motid : int 0 0 2 0 0 2 0 0 2 0 ...

$ sex : int 1 2 2 1 2 1 1 2 1 1 ...

$ affected: int 0 0 2 0 0 2 0 0 2 0 ...

$ snp1_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp1_2 : int 1 1 1 1 1 1 1 1 1 2 ...

$ snp2_1 : int 1 2 1 1 2 1 1 1 1 1 ...

$ snp2_2 : int 1 2 2 1 2 2 1 1 1 1 ...

$ snp3_1 : int 1 1 1 2 1 1 1 1 1 1 ...

$ snp3_2 : int 2 1 2 2 1 2 1 2 1 2 ...

$ snp4_1 : int 1 1 1 2 1 1 1 1 1 1 ...

$ snp4_2 : int 2 1 2 2 1 2 1 2 1 2 ...

$ snp5_1 : int 1 2 1 1 2 1 1 1 1 1 ...

$ snp5_2 : int 2 2 2 1 2 2 2 1 1 1 ...

$ snp6_1 : int 1 1 1 2 1 1 1 1 1 1 ...

$ snp6_2 : int 2 1 2 2 1 2 1 2 1 2 ...

$ snp7_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp7_2 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp8_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp8_2 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp9_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp9_2 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp10_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp10_2 : int 1 1 1 2 1 1 1 1 1 2 ...

6

> trio.ped1[1:10,1:12]

famid pid fatid motid sex affected snp1_1 snp1_2 snp2_1 snp2_2 snp3_1 snp3_2

1 10001 1 0 0 1 0 1 1 1 1 1 2

2 10001 2 0 0 2 0 1 1 2 2 1 1

3 10001 3 1 2 2 2 1 1 1 2 1 2

4 10002 1 0 0 1 0 1 1 1 1 2 2

5 10002 2 0 0 2 0 1 1 2 2 1 1

6 10002 3 1 2 1 2 1 1 1 2 1 2

7 10003 1 0 0 1 0 1 1 1 1 1 1

8 10003 2 0 0 2 0 1 1 1 1 1 2

9 10003 3 1 2 1 2 1 1 1 1 1 1

10 10004 1 0 0 1 0 1 2 1 1 1 2

2.2 Reading a ped file into R

If not already available as data frame or matrix in the R workspace, trio data can be read

into R using the function read.pedfile. If we, for example, assume that the working

directory of the current R session contains a file called "pedfile.ped" (this file is actually

not available in trio, we just assume that such a file exists in the working directory),

then this file can be read into R by calling

> ped <- read.pedfile("pedfile.ped")

If the arguments coded and first.row of read.pedfile are not specified by the user,

read.pedfile automatically tries to figures out how the alleles in the ped file are coded,

and whether the first row contains the SNP names (first.row = FALSE) or the data

for the first subject (first.row = TRUE). In the former case, read.pedfile adds the

SNP names (with extensions .1 and .2 to differ between the two alleles) to the respective

columns of the read-in data frame.

7

2.3 Transforming a data frame in ped format to a matrix in

genotype format

For the applications of the functions for performing gTDTs (see Section 3), the trio data

must be in a matrix in genotype format. In such a matrix, each columns represents a

SNP, which is coded by the number of minor alleles, and each block of 3 consecutive

rows contains the genotypes of the father, the mother, and their offspring (in this order)

of one specific trio. Missing values are allowed in this matrix, and need to be coded by

NA. This matrix can either be generated from a data frame in ped format by employing

the function ped2geno, or more conveniently, by setting p2g = TRUE in read.pedfile.

Thus, a matrix in genotype format might be obtained from the above ped file by calling

> geno <- read.pedfile("pedfile.ped", p2g=TRUE)

The output of these functions just contains the matrix in genotype format, whereas

trio.check described in Section 6 additionally contains information about Mendelian

errors. Instead of checking for Mendelian errors in ped2geno or read.pedfile, such

errors are removed SNP-wise in the functions for performing genotypic TDTs.

If, for example, the data frame trio.ped1 should be transformed into a matrix in genotype

format, ped2geno can be applied to it. However, ped2geno requires unique personal IDs

(second column of trio.ped1) such that we first have to combine the family ID and the

personal ID (which would be automatically done by read.pedfile), and change the IDs

of the fathers and mothers in columns 3 and 4 likewise.

> trio.ped1[,2] <- paste(trio.ped1[,1], trio.ped1[,2], sep="_")

> ids <- trio.ped1[,3] != 0

> trio.ped1[ids,3] <- paste(trio.ped1[ids,1], trio.ped1[ids,3], sep="_")

> trio.ped1[ids,4] <- paste(trio.ped1[ids,1], trio.ped1[ids,4], sep="_")

> trio.ped1[1:5, 1:4]

famid pid fatid motid

1 10001 10001_1 0 0

2 10001 10001_2 0 0

8

3 10001 10001_3 10001_1 10001_2

4 10002 10002_1 0 0

5 10002 10002_2 0 0

Afterwards, ped2geno can be applied to trio.ped1

> geno <- ped2geno(trio.ped1)

> geno[1:5,]

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10

10001_1 0 0 1 1 1 1 0 0 0 0

10001_2 0 2 0 0 2 0 0 0 0 0

10001_3 0 1 1 1 1 1 0 0 0 0

10002_1 0 0 2 2 0 2 0 0 0 1

10002_2 0 2 0 0 2 0 0 0 0 0

The matrix trio.gen1 is the genotype matrix corresponding to trio.ped1. So the

genotypes in the output of ped2geno are identical to trio.gen1 (except for that the

first two columns of trio.gen1 contain the family ID and the personal ID).

> trio.gen1[1:5, 3:12]

snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 0 0 1 1 1 1 0 0 0 0

2 0 2 0 0 2 0 0 0 0 0

3 0 1 1 1 1 1 0 0 0 0

4 0 0 2 2 0 2 0 0 0 1

5 0 2 0 0 2 0 0 0 0 0

> table(trio.gen1[,3:12] == geno)

TRUE

3000

3 Genotypic TDTs

3.1 Testing a Single SNP with a Genotypic TDT

A single SNP or two-way interaction can be tested with a gTDT by employing the functions

tdt and tdtGxG. If we, for example, would like to test the first SNP in the matrix

mat.test available in the R package trio, then this could be done by calling

9

> tdt(mat.test[,1])

Genotypic TDT Based on 3 Pseudo Controls

Model Type: Additive

Coef RR Lower Upper SE Statistic p-Value

-0.04256 0.9583 0.6396 1.436 0.2063 0.04255 0.8366

In this case, a conditional logistic regression is fitted, and the output of tdt contains the

parameter estimate Coef for the SNP in this model, the relative risk RR, the Lower and

Upper bound of the 95% confidence interval of this relative risk, the standard error SE of

the parameter estimate, the Wald Statistic for testing whether this SNP has an effect,

and the corresponding p-Value. Note that in the case of trio data, exp(Coef) is an

unbiased estimate for the relative risk, not for the odds ratio (Schaid, 1996).

By default, an additive effect is tested. It is, however, also possible to consider a dominant

effect

> tdt(mat.test[,1], model="dominant")

Genotypic TDT Based on 3 Pseudo Controls

Model Type: Dominant

Coef RR Lower Upper SE Statistic p-Value

-0.1134 0.8928 0.5219 1.527 0.2739 0.1713 0.679

or a recessive effect

> tdt(mat.test[,1], model="recessive")

Genotypic TDT Based on 3 Pseudo Controls

Model Type: Recessive

Coef RR Lower Upper SE Statistic p-Value

0.06502 1.067 0.5279 2.157 0.3591 0.03278 0.8563

3.2 Testing a Single Interaction between two SNPs

Similarly the interaction between SNP1 and SNP2 in mat.test can be tested by

10

> tdtGxG(mat.test[,1], mat.test[,2])

Likelihood Ratio Test for Epistatic Interactions Based on Genotypic TDTs

Loglikelihood (with Interactions): -272.644

Loglikelihood (without IAs): -275.29

Test Statistic: 5.293

P-Value: 0.26

In this case, the interaction is tested for epistatic interactions as described in Cordell

(2002) and Cordell et al. (2004). Thus, two conditional logistic regression models are

fitted to the cases and the respective 15 matched pseudo-controls (i.e. the 15 possible,

but not transmitted Mendelian genotype realizations, given the parents’ genotypes at the

two loci), one consisting of two coding variables for each of the two SNPs, and the other

additionally containing the four possible interactions of these variables. The two fitted

models are then compared by a likelihood ratio test, and the p-values are computed by

approximation to a χ2-distribution with four degrees of freedom.

Besides this likelihood ratio test (which is the default for the argument test), tdtGxG

also provides the possibility to perform a likelihood ratio test comparing a conditional

logistic regression model containing one parameter for each SNP and one parameter for

the interaction of these two SNPs with a model only consisting of the two parameters for

the main effects of the SNPs (test = "lrt"), where the genetic mode of inheritance

assumed for the SNPs can be specified by the argument mode (by default, an additive mode

is assumed). Furthermore, it is also possible to perform a Wald test for the interaction

term either by considering a conditional logistic regression model either composed of

one parameter for each SNP and one parameter for the interaction (test = "full") or

consisting of just one parameter for the interaction (test = "screen").

Thus, if the most simplest of these tests should be performed, then this could be done by

> tdtGxG(mat.test[,1], mat.test[,2], test="screen")

Genotypic TDT for Two-Way Interaction (Using 15 Pseudo Controls)

Model Type: Additive

11

Coef RR Lower Upper SE Statistic p-Value

0.02424 1.025 0.7806 1.345 0.1387 0.03052 0.8613

3.3 Testing all SNPs in a Matrix in Genotype Format with a

Genotypic TDT

All SNPs represented by the columns of a matrix in genotype format can be tested with

a gTDT by employing the function colTDT. Thus, all SNPs in mat.test can be tested

by calling

> tdt.out <- colTDT(mat.test)

> tdt.out

Genotypic TDT Based on 3 Pseudo Controls

Model Type: Additive

Top 5 SNPs:

Coef RR Lower Upper SE Statistic p-Value Trios

SNP6 0.44895 1.5667 0.9910 2.477 0.2337 3.6908 0.05471 63

SNP3 -0.22884 0.7955 0.5103 1.240 0.2265 1.0209 0.31232 66

SNP2 -0.19671 0.8214 0.5561 1.213 0.1990 0.9772 0.32288 73

SNP4 -0.13353 0.8750 0.5783 1.324 0.2113 0.3994 0.52740 71

SNP5 0.09764 1.1026 0.7148 1.701 0.2211 0.1950 0.65881 64

By default, the five top SNPs, i.e. the five SNPs with the lowest p-values, are shown

ordered by their significance. The top three SNPs can be shown by

> print(tdt.out, 3)

Genotypic TDT Based on 3 Pseudo Controls

Model Type: Additive

Top 3 SNPs:

Coef RR Lower Upper SE Statistic p-Value Trios

SNP6 0.4490 1.5667 0.9910 2.477 0.2337 3.6908 0.05471 63

SNP3 -0.2288 0.7955 0.5103 1.240 0.2265 1.0209 0.31232 66

SNP2 -0.1967 0.8214 0.5561 1.213 0.1990 0.9772 0.32288 73

If the integer specified in print is larger than or equal to the number of SNPs in the

input matrix, the statistics for all SNPs are displayed in the order of their appearance in

this matrix.

12

> print(tdt.out, 10)

Genotypic TDT Based on 3 Pseudo Controls

Model Type: Additive

Coef RR Lower Upper SE Statistic p-Value Trios

SNP1 -0.04256 0.9583 0.6396 1.436 0.2063 0.04255 0.83658 72

SNP2 -0.19671 0.8214 0.5561 1.213 0.1990 0.97724 0.32288 73

SNP3 -0.22884 0.7955 0.5103 1.240 0.2265 1.02085 0.31232 66

SNP4 -0.13353 0.8750 0.5783 1.324 0.2113 0.39941 0.52740 71

SNP5 0.09764 1.1026 0.7148 1.701 0.2211 0.19497 0.65881 64

SNP6 0.44895 1.5667 0.9910 2.477 0.2337 3.69084 0.05471 63

3.4 Performing a MAX Test

Since the genetic mode of inheritance is typically unknown, it might be beneficial to use

the maximum over the gTDT statistics for an additive, a dominant, and a recessive effect

as test statistic, which can be done using the function colTDTmaxStat

> max.stat <- colTDTmaxStat(mat.test)

> max.stat

Maximum Genotypic TDT Statistic

Top 5 SNPs:

Max-Statistic Additive Dominant Recessive

SNP6 5.1295 3.6908 1.14571 5.12953

SNP2 3.1569 0.9772 0.04811 3.15688

SNP3 2.7150 1.0209 2.71503 0.76851

SNP4 0.6990 0.3994 0.69897 0.01234

SNP5 0.2156 0.1950 0.07337 0.21555

This function just computes the MAX gTDT statistic, i.e. the maximum over the three

gTDT statistics, since in contrast to these gTDT statistics, which under the null hypoth-

esis follow an asymptotic χ2
1-distribution, the null distribution of the MAX gTDT statistic

is unknown, and must therefore be estimated by a (time-consuming) permutation proce-

dure. To also determine permutation-based p-values, colTDTmaxTest can be applied to

a matrix in genotype matrix. For example,

> max.out <- colTDTmaxTest(mat.test, perm=1000)

13

computes p-values for the six SNPs in mat.test based on 1000 permutations of the

case-pseudo-control status.

> max.out

Maximum Genotypic TDT

Top 5 SNPs:

Max-Statistic Additive Dominant Recessive p-Value

SNP6 5.1295 3.6908 1.14571 5.12953 0.040

SNP2 3.1569 0.9772 0.04811 3.15688 0.175

SNP3 2.7150 1.0209 2.71503 0.76851 0.187

SNP4 0.6990 0.3994 0.69897 0.01234 0.657

SNP5 0.2156 0.1950 0.07337 0.21555 0.885

3.5 Testing all Pairs of SNPs in a Matrix in Genotype Format

All two-way interactions comprised a matrix in genotype format can be tested using the

function colGxG. Since both the gTDT for two-way interactions and the likelihood ratio

test of Cordell et al. (2004) assume that the two considered loci are unlinked, the testing

might fail, i.e. the fitting of the conditional logistic regression might not work properly, if

the two SNPs are in (strong) LD. There are several other reasons why this might happen.

One of these reasons is that either the minor allele frequencies of both SNPs are very small

or that the number of trios influencing the parameter estimation becomes very small when

considering the two SNPs in combination.

Therefore, colGxG provides an argument called genes that allows specifying which SNP

belongs to which LD-block, gene, or genetic region. If genes is not specified, the inter-

actions between all m(m− 1)/2 pairs of the m SNPs in a matrix are tested. If specified,

only the interactions between SNPs showing different values of genes are tested.

If we thus assume that the first two SNPs in mat.test belong to gene G1 and the other

four SNPs to G2

> genes <- paste("G", rep(1:2, c(2,4)), sep="")

> genes

[1] "G1" "G1" "G2" "G2" "G2" "G2"

14

then only the four interactions between SNP1 and each SNP from gene G2, as well as the

four interactions between SNP2 and each SNP from gene G2 are tested, when calling

> tdt2.out <- colGxG(mat.test, genes=genes)

> tdt2.out

Genotypic TDT for Epistatic Interactions (Using 15 Pseudo Controls)

Top 5 SNP Interactions (Likelihood Ratio Test):

LL (with IAs) LL (w/o IAs) Statistic P-Value Genes

SNP1 : SNP5 -269.5 -277.0 15.069 0.004561 G1 : G2

SNP2 : SNP4 -270.3 -275.0 9.528 0.049167 G1 : G2

SNP1 : SNP3 -273.0 -275.2 4.440 0.349724 G1 : G2

SNP2 : SNP5 -273.3 -275.3 3.871 0.423763 G1 : G2

SNP2 : SNP6 -271.2 -272.6 2.805 0.591008 G1 : G2

Again, by default the top five SNP interactions are shown. The statistics for all eight

interactions can be displayed by calling

> print(tdt2.out, 8)

Genotypic TDT for Epistatic Interactions (Using 15 Pseudo Controls)

Likelihood Ratio Test:

LL (with IAs) LL (w/o IAs) Statistic P-Value Genes

SNP1 : SNP3 -273.0 -275.2 4.440 0.349724 G1 : G2

SNP1 : SNP4 -275.9 -276.8 1.653 0.799239 G1 : G2

SNP1 : SNP5 -269.5 -277.0 15.069 0.004561 G1 : G2

SNP1 : SNP6 -273.3 -274.3 2.050 0.726494 G1 : G2

SNP2 : SNP3 -273.0 -273.4 0.778 0.941371 G1 : G2

SNP2 : SNP4 -270.3 -275.0 9.528 0.049167 G1 : G2

SNP2 : SNP5 -273.3 -275.3 3.871 0.423763 G1 : G2

SNP2 : SNP6 -271.2 -272.6 2.805 0.591008 G1 : G2

3.6 Testing Gene-Environment Interactions with a Genotypic

TDT

In genetic association studies, it is often also of interest to test gene-environment inter-

actions, where most of the usually considered environmental variables are binary. The R

package trio therefore also provides a function called colGxE to test the interactions

between each of the SNPs comprised by a matrix in genotype format and a binary envi-

ronmental variable with values zero and one. If we, for example, assume that the children

15

in the first 50 trios comprised by (the first 150 rows of) mat.test are girls, and the

remaining 50 are boys,

> sex <- rep(0:1, e=50)

then we can test the interactions between the six SNPs in mat.test and the environmental

variable “sex" by

> gxe.out <- colGxE(mat.test, sex)

> gxe.out

Genotypic TDT for GxE Interactions with Binary E

Model Type: Additive

Top 5 GxE Interactions:

Coef RR Lower Upper SE Statistic p-value Trios0 Trios1

SNP2 0.5849 1.7949 0.8134 3.961 0.4038 2.0982 0.1475 37 36

SNP1 -0.4257 0.6533 0.2896 1.474 0.4151 1.0518 0.3051 32 40

SNP6 -0.3878 0.6786 0.2697 1.708 0.4708 0.6783 0.4102 34 29

SNP4 0.2624 1.3000 0.5668 2.982 0.4235 0.3838 0.5356 36 35

SNP5 0.2007 1.2222 0.5129 2.912 0.4430 0.2052 0.6506 33 31

Effects of the SNPs in the Corresponding GxE Models:

Coef RR Lower Upper SE Statistic p-value

SNP2 -0.5108 0.6000 0.3345 1.076 0.2981 2.9356 0.08665

SNP1 0.1744 1.1905 0.6664 2.127 0.2960 0.3469 0.55585

SNP6 0.6242 1.8667 0.9970 3.495 0.3200 3.8051 0.05110

SNP4 -0.2624 0.7692 0.4294 1.378 0.2974 0.7781 0.37771

SNP5 0.0000 1.0000 0.5462 1.831 0.3086 0.0000 1.00000

RRs for Exposed Cases:

RR Lower Upper

SNP2 1.0769 0.6315 1.837

SNP1 0.7778 0.4397 1.376

SNP6 1.2667 0.6437 2.493

SNP4 1.0000 0.5538 1.806

SNP5 1.2222 0.6556 2.279

2 df Likelihood Ratio Test, 2 df Wald Test, 1 df Likelihood Ratio Test:

2df Stat 2df p-Value Wald Stat Wald p-value 1df Stat 1df p-Value

SNP2 3.1061 0.2116 3.0096 0.2221 2.1242 0.1450

SNP1 1.1002 0.5769 1.0930 0.5790 1.0577 0.3037

SNP6 4.4641 0.1073 4.2735 0.1180 0.6797 0.4097

SNP4 0.7848 0.6754 0.7781 0.6777 0.3845 0.5352

SNP5 0.4007 0.8185 0.3987 0.8193 0.2055 0.6503

16

In this situation, a conditional logistic regression model βGG+ βGxE(G× E) is fitted for

each SNP, where G is a variable coding for an additive effect of the SNP, and G×E is the

corresponding gene-environment interaction. Analogously to the other gTDT functions,

a dominant or a recessive effect can also be considered by changing the argument model

of colGxE.

For both βG and βGxE, the same as statistics as, for example, in colTDT, are computed.

Additionally, the relative risks and their confidence intervals for the exposed trios are

determined (note that the relative risks for the unexposed trios are given by exp (βG)),

and a 2 degree of freedom Wald test for testing both βG and βGxE simultaneously as well

as two likelihood ratio tests are performed, where the 2 df likelihood ratio test compares

the likelihood of the full model (containing both βG and βGxE) with the likelihood of a null

model containing no variable, and the 1 df likelihood ratio test compares the likelihoods

of the full model and a model only consisting of the SNP. The computation of all these

statistics can be avoided by setting addGandE = FALSE (for the relative risk of the exposed

cases), add2df = FALSE (for the 2 df Wald test) and whichLRT = "none" for the two

likelihood ratio tests.

If these statistics should be determined, but only the results for the genotypic TDT for

testing the gene-environment interaction should be printed, then this can be done by

calling

> print(gxe.out, onlyGxE=TRUE)

Genotypic TDT for GxE Interactions with Binary E

Model Type: Additive

Top 5 GxE Interactions:

Coef RR Lower Upper SE Statistic p-value Trios0 Trios1

SNP2 0.5849 1.7949 0.8134 3.961 0.4038 2.0982 0.1475 37 36

SNP1 -0.4257 0.6533 0.2896 1.474 0.4151 1.0518 0.3051 32 40

SNP6 -0.3878 0.6786 0.2697 1.708 0.4708 0.6783 0.4102 34 29

SNP4 0.2624 1.3000 0.5668 2.982 0.4235 0.3838 0.5356 36 35

SNP5 0.2007 1.2222 0.5129 2.912 0.4430 0.2052 0.6506 33 31

A convenient way to generate a data frame containing all the statistics determined by

17

colGxE is to use the function getGxEstats. This function can be employed to obtain

these results for all considered SNPs, and it can also be used to get these statistics only

for the top SNPs. If, for example, the results of the three SNPs showing the smallest

p-values for the 2 df likelihood ratio test are of interest, then the data frame containing

these SNPs can be generated by

> dat.top3 <- getGxEstats(gxe.out, top=3, sortBy="lrt2df")

> dat.top3

Coef GxE RR GxE Lower GxE Upper GxE SE GxE Stat GxE pval GxE

SNP6 -0.3877655 0.6785714 0.2696658 1.707518 0.4708282 0.6782869 0.4101772

SNP2 0.5849336 1.7948718 0.8134061 3.960586 0.4038127 2.0982302 0.1474697

SNP1 -0.4256678 0.6533333 0.2896241 1.473787 0.4150604 1.0517658 0.3051008

Trios0 Trios1 Coef G RR G Lower G Upper G SE G Stat G

SNP6 34 29 0.6241543 1.866667 0.9970286 3.494829 0.3199702 3.8050887

SNP2 37 36 -0.5108256 0.600000 0.3344814 1.076293 0.2981424 2.9356067

SNP1 32 40 0.1743534 1.190476 0.6664394 2.126575 0.2960051 0.3469463

pval G RR G&E Lower G&E Upper G&E Stat LRT 2df pval LRT 2df

SNP6 0.05109707 1.2666667 0.6436665 2.492664 4.464086 0.1073090

SNP2 0.08664610 1.0769231 0.6314775 1.836587 3.106149 0.2115964

SNP1 0.55584687 0.7777778 0.4397363 1.375684 1.100231 0.5768831

Stat Wald 2df pval Wald 2df Stat LRT 1df pval LRT 1df

SNP6 4.273492 0.1180383 0.6797377 0.4096771

SNP2 3.009647 0.2220565 2.1241807 0.1449903

SNP1 1.093011 0.5789694 1.0576748 0.3037461

4 Allelic TDT

Besides functions for performing genotypic TDTs, trio also provides functions for applying

an allelic TDT and score tests related to the genotypic TDTs to matrices in genotype

format. For example, the case-parent trio data in mat.test can be analyzed with an

allelic TDT by

> a.out <- allelicTDT(mat.test)

> a.out

Allelic TDT

Top 5 SNPs:

Statistic p-value

6 3.7532 0.05271

18

3 1.0253 0.31126

2 0.9804 0.32210

4 0.4000 0.52709

5 0.1951 0.65869

By default, McNemar’s test statistic

a =
(b− c)2

b+ c

is used as test statistic in allelicTDT, where b and c are the off-diagonal elements of

the 2x2-table summarizing the transmitted and untransmitted alleles from heterozygous

parents, i.e. b is the number of heterozygous parents that transmitted the minor allele to

their respective children, and c the number of heterozygous parents that transmitted the

major allele. Alternatively, a version of McNemar’s test statistic corrected for continuity,

namely

aCor =
(|b− c| − 1)2

b+ c

can be used by calling

> a.out2 <- allelicTDT(mat.test, correct=TRUE)

> a.out2

Allelic TDT

Top 5 SNPs:

Statistic p-value

6 3.3247 0.06825

3 0.8101 0.36808

2 0.7941 0.37286

4 0.2778 0.59816

5 0.1098 0.74042

5 Score Tests

If a score test instead of a Wald test, i.e. a genotypic TDT, should be considered in the

analysis of genotype data, then scoreTDT, scoreMaxStat, scoreGxG, and scoreGxE

can be used instead of and in the same way as colTDT, colTDTmaxStat, colGxG, and

19

colGxE, respectively. For example, the SNPs in mat.test can be tested individually

under the assumption of an additive mode of inheritance by

> s.out <- scoreTDT(mat.test)

> s.out

Score Test for Individual SNPs

Model Type: Additive

Top 5 SNPs:

Score Statistic p-value

SNP6 8.5 3.7532 0.05271

SNP3 -4.5 1.0253 0.31126

SNP2 -5.0 0.9804 0.32210

SNP4 -3.0 0.4000 0.52709

SNP5 2.0 0.1951 0.65869

Score tests, however, only provide scores and p-values, but do not the allow the compu-

tation of odds ratios, relative risks, and confidence intervals. Usually, score tests have

the advantage that their test statistic is much faster too compute than the statistic of

a Wald test. However, when considering SNPs or interactions between SNPs and bi-

nary environmental factors, both the score tests and the genotypic TDTs have about the

same computation time, as in these situations, there also exist analytic solutions for the

genotypic TDT statistics (see Schwender et al., 2011b).

6 Generating Data for Trio Logic Regression Input

If interactions of a higher order than two are of interest, trio logic regression can be used

to detect disease-associated SNP interactions of any order.

To generate data that can be used as input in trio logic regression, the sequential appli-

cation of two functions is required. The function trio.check evaluates whether or not

Mendelian errors are present in the data (stored either in linkage or in genotype format,

see Section 6.1). If no Mendelian inconsistencies are detected, this function creates an

object that is passed to the function trio.prepare. The latter function then generates

20

a matrix of the genotype information for the affected probands and the inferred pseudo-

controls, taking the observed LD structure into account. Missing data are imputed in

the process. The user, however, has to supply the information for the lengths of the LD

blocks. A function called findLDblocks for identifying LD blocks, and thus, for speci-

fying the length of the blocks is therefore also contained in this package (see Section 9).

Given the lengths of the LD blocks, the haplotype frequencies can be estimated, using

the function haplo.em in the haplo.stat package.

6.1 Supported File Formats and Elementary Data Processing

In this section, we show how to generate data suitable for input to trio logic regression from

complete pedigree data without Mendelian errors. The function trio.check requires that

the trio data are already available as a data frame or matrix, either in linkage/ped format

(the default), or in genotype format (for reading a ped file into R, see Section 3).

The first function used is always trio.check. Unless otherwise specified, this function

assumes that the data are in linkage format. If no Mendelian inconsistencies in the

data provided are identified, trio.check creates an object that can be processed in the

subsequent analysis with this package. The genotype information for each SNP will be

converted into a single variable, denoting the number of variant alleles.

If we thus would like to check whether the data frame trio.ped1 contains Mendelian

errors, we call

> trio.tmp <- trio.check(dat=trio.ped1)

> str(trio.tmp, max=1)

List of 2

$ trio :'data.frame': 300 obs. of 12 variables:

$ errors: NULL

> trio.tmp$trio[1:6,]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 10001_1 0 0 1 1 1 1 0 0 0 0

2 10001 10001_2 0 2 0 0 2 0 0 0 0 0

21

3 10001 10001_3 0 1 1 1 1 1 0 0 0 0

4 10002 10002_1 0 0 2 2 0 2 0 0 0 1

5 10002 10002_2 0 2 0 0 2 0 0 0 0 0

6 10002 10002_3 0 1 1 1 1 1 0 0 0 0

Taking the LD structure of the SNPs into account is imperative when creating the geno-

types for the pseudo-controls. This requires information on the LD blocks. However,

there are many ways to delineate this block structure, and in the absence of a consensus

what the best approach is, researchers have different preferences, and thus, results can be

different. In the function findLDblocks, a modified version of the method of Gabriel et

al. (2002) has been implemented, which can be used to specify the block structure by

> table(foundBlocks$blocks}

if foundBlocks is the output of findLDblocks (for details, see Section 9).

The function trio.prepare, which operates on an output object of trio.check, accepts

the block length information as an argument (in the following, we assume that the block

structure is given by c(1, 4, 2, 3), i.e. the first block consists only of the first SNP, the

second block of the next four SNPs, the third of the following two SNPs, and the last block

of the remaining three SNPs). If this argument is not specified, a uniform block length

of 1 (i.e. no LD structure) is assumed. If the haplotype frequencies are not specified,

they are estimated from the parents’ genotypes (more information on this in the following

sections). The function trio.prepare then returns a list that contains the genotype

information in binary format, suitable as input for trio logic regression: bin is a matrix

with the conditional logistic regression response in the first columns, and each SNP as

two binary variables using dominant and recessive coding. The list element miss contains

information about missing values in the original data, and freq contains information on

the estimated haplotype frequencies. To make the matrix generated by trio.prepare

reproducible, the function set.seed is used to set the random number generator in a

reproducible state.

22

> set.seed(123456)

> trio.bin <- trio.prepare(trio.dat=trio.tmp, blocks=c(1,4,2,3))

> str(trio.bin, max=1)

List of 3

$ bin : num [1:400, 1:21] 3 0 0 0 3 0 0 0 3 0 ...

..- attr(*, "dimnames")=List of 2

$ miss: NULL

$ freq:'data.frame': 19 obs. of 3 variables:

- attr(*, "class")= chr "trioPrepare"

> trio.bin$bin[1:8,]

y snp1.D snp1.R snp2.D snp2.R snp3.D snp3.R snp4.D snp4.R snp5.D snp5.R

[1,] 3 0 0 1 0 1 0 1 0 1 0

[2,] 0 0 0 1 0 0 0 0 0 1 1

[3,] 0 0 0 1 0 0 0 0 0 1 1

[4,] 0 0 0 1 0 1 0 1 0 1 0

[5,] 3 0 0 1 0 1 0 1 0 1 0

[6,] 0 0 0 1 0 1 0 1 0 1 0

[7,] 0 0 0 1 0 1 0 1 0 1 0

[8,] 0 0 0 1 0 1 0 1 0 1 0

snp6.D snp6.R snp7.D snp7.R snp8.D snp8.R snp9.D snp9.R snp10.D snp10.R

[1,] 1 0 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 0 0 0

[3,] 1 0 0 0 0 0 0 0 0 0

[4,] 0 0 0 0 0 0 0 0 0 0

[5,] 1 0 0 0 0 0 0 0 0 0

[6,] 1 0 0 0 0 0 0 0 1 0

[7,] 1 0 0 0 0 0 0 0 0 0

[8,] 1 0 0 0 0 0 0 0 1 0

As mentioned above, the trio package also accommodates trio genotype data. The object

trio.gen1, available in the R package, is an example of such a data set. Equivalent to

trio.ped1 used above, it contains information for 10 SNPs in 100 trios. When used

in trio.check, the argument is.linkage needs to be set to FALSE. The output from

this function is then identical to the one shown derived from the linkage file, and can be

passed to the function trio.prepare.

> str(trio.gen1)

'data.frame': 300 obs. of 12 variables:

$ famid: int 10001 10001 10001 10002 10002 10002 10003 10003 10003 10004 ...

$ pid : int 1 2 3 1 2 3 1 2 3 1 ...

$ snp1 : int 0 0 0 0 0 0 0 0 0 1 ...

$ snp2 : int 0 2 1 0 2 1 0 0 0 0 ...

$ snp3 : int 1 0 1 2 0 1 0 1 0 1 ...

23

$ snp4 : int 1 0 1 2 0 1 0 1 0 1 ...

$ snp5 : int 1 2 1 0 2 1 1 0 0 0 ...

$ snp6 : int 1 0 1 2 0 1 0 1 0 1 ...

$ snp7 : int 0 0 0 0 0 0 0 0 0 0 ...

$ snp8 : int 0 0 0 0 0 0 0 0 0 0 ...

$ snp9 : int 0 0 0 0 0 0 0 0 0 0 ...

$ snp10: int 0 0 0 1 0 0 0 0 0 1 ...

> trio.gen1[1:10,1:12]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 2 0 0 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 0 0 0

4 10002 1 0 0 2 2 0 2 0 0 0 1

5 10002 2 0 2 0 0 2 0 0 0 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

7 10003 1 0 0 0 0 1 0 0 0 0 0

8 10003 2 0 0 1 1 0 1 0 0 0 0

9 10003 3 0 0 0 0 0 0 0 0 0 0

10 10004 1 1 0 1 1 0 1 0 0 0 1

> trio.tmp <- trio.check(dat=trio.gen1, is.linkage=FALSE)

> set.seed(123456)

> trio.bin2 <- trio.prepare(trio.dat=trio.tmp, blocks=c(1,4,2,3))

> trio.bin2$bin[1:8,]

y snp1.D snp1.R snp2.D snp2.R snp3.D snp3.R snp4.D snp4.R snp5.D snp5.R

[1,] 3 0 0 1 0 1 0 1 0 1 0

[2,] 0 0 0 1 0 0 0 0 0 1 1

[3,] 0 0 0 1 0 0 0 0 0 1 1

[4,] 0 0 0 1 0 1 0 1 0 1 0

[5,] 3 0 0 1 0 1 0 1 0 1 0

[6,] 0 0 0 1 0 1 0 1 0 1 0

[7,] 0 0 0 1 0 1 0 1 0 1 0

[8,] 0 0 0 1 0 1 0 1 0 1 0

snp6.D snp6.R snp7.D snp7.R snp8.D snp8.R snp9.D snp9.R snp10.D snp10.R

[1,] 1 0 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 0 0 0

[3,] 1 0 0 0 0 0 0 0 0 0

[4,] 0 0 0 0 0 0 0 0 0 0

[5,] 1 0 0 0 0 0 0 0 0 0

[6,] 1 0 0 0 0 0 0 0 1 0

[7,] 1 0 0 0 0 0 0 0 0 0

[8,] 1 0 0 0 0 0 0 0 1 0

24

6.2 Missing Genotype Information

Missing genotypes in ped(igree) files are typically encoded using the integer 0. The data

files can be processed as before if they contain such missing values:

> str(trio.ped2)

'data.frame': 300 obs. of 26 variables:

$ famid : int 10001 10001 10001 10002 10002 10002 10003 10003 10003 10004 ...

$ pid : int 1 2 3 1 2 3 1 2 3 1 ...

$ fatid : int 0 0 1 0 0 1 0 0 1 0 ...

$ motid : int 0 0 2 0 0 2 0 0 2 0 ...

$ sex : int 1 2 2 1 2 1 1 2 1 1 ...

$ affected: int 0 0 2 0 0 2 0 0 2 0 ...

$ snp1_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp1_2 : int 1 1 1 1 1 1 1 1 1 2 ...

$ snp2_1 : int 1 0 1 1 2 1 1 1 1 1 ...

$ snp2_2 : int 1 0 2 1 2 2 1 1 1 1 ...

$ snp3_1 : int 1 1 1 2 0 1 1 1 1 1 ...

$ snp3_2 : int 2 1 2 2 0 2 1 2 1 2 ...

$ snp4_1 : int 1 0 1 2 1 1 1 1 1 1 ...

$ snp4_2 : int 2 0 2 2 1 2 1 2 1 2 ...

$ snp5_1 : int 1 2 1 1 2 1 1 1 1 1 ...

$ snp5_2 : int 2 2 2 1 2 2 2 1 1 1 ...

$ snp6_1 : int 1 1 1 0 1 1 1 1 1 1 ...

$ snp6_2 : int 2 1 2 0 1 2 1 2 1 2 ...

$ snp7_1 : int 1 1 1 1 1 1 1 1 0 1 ...

$ snp7_2 : int 1 1 1 1 1 1 1 1 0 1 ...

$ snp8_1 : int 1 1 1 1 0 1 1 1 0 1 ...

$ snp8_2 : int 1 1 1 1 0 1 1 1 0 1 ...

$ snp9_1 : int 1 1 1 1 1 1 1 0 1 1 ...

$ snp9_2 : int 1 1 1 1 1 1 1 0 1 1 ...

$ snp10_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp10_2 : int 1 1 1 2 1 1 1 1 1 2 ...

> trio.tmp <- trio.check(dat=trio.ped2)

> trio.tmp$trio[1:6,]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 NA 0 NA 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 0 0 0

4 10002 1 0 0 2 2 0 NA 0 0 0 1

5 10002 2 0 2 NA 0 2 0 0 NA 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

Since trio logic regression requires complete data, the function trio.prepare also per-

forms an imputation of the missing genotypes. The imputation is based on estimated

25

haplotypes, using the block length information specified by the user. In a later section we

demonstrate how this imputation can be run more efficiently when haplotype frequency

estimates are already available.

> set.seed(123456)

> trio.bin3 <- trio.prepare(trio.dat=trio.tmp, blocks=c(1,4,2,3))

> trio.bin3$bin[1:8,]

y snp1.D snp1.R snp2.D snp2.R snp3.D snp3.R snp4.D snp4.R snp5.D snp5.R

[1,] 3 0 0 1 0 1 0 1 0 1 0

[2,] 0 0 0 0 0 0 0 0 0 1 1

[3,] 0 0 0 1 0 0 0 0 0 1 1

[4,] 0 0 0 0 0 1 0 1 0 1 0

[5,] 3 0 0 1 0 1 0 1 0 1 0

[6,] 0 0 0 1 0 1 0 1 0 1 0

[7,] 0 0 0 1 0 1 0 1 0 1 0

[8,] 0 0 0 1 0 1 0 1 0 1 0

snp6.D snp6.R snp7.D snp7.R snp8.D snp8.R snp9.D snp9.R snp10.D snp10.R

[1,] 1 0 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 0 0 0

[3,] 0 0 0 0 0 0 0 0 0 0

[4,] 1 0 0 0 0 0 0 0 0 0

[5,] 1 0 0 0 0 0 0 0 0 0

[6,] 1 0 0 0 0 0 0 0 0 0

[7,] 1 0 0 0 0 0 0 0 1 0

[8,] 1 0 0 0 0 0 0 0 1 0

Missing data in genotypes files should be encoded using NA, the conventional symbol in

R to indicate missing values.

> str(trio.gen2)

'data.frame': 300 obs. of 12 variables:

$ famid: int 10001 10001 10001 10002 10002 10002 10003 10003 10003 10004 ...

$ pid : int 1 2 3 1 2 3 1 2 3 1 ...

$ snp1 : int 0 0 0 0 0 0 0 0 0 1 ...

$ snp2 : int 0 2 1 NA NA 1 0 0 0 0 ...

$ snp3 : int 1 NA 1 2 0 1 0 NA 0 1 ...

$ snp4 : int 1 0 1 NA 0 1 0 1 0 1 ...

$ snp5 : int 1 2 1 0 2 1 1 NA 0 0 ...

$ snp6 : int 1 0 1 NA 0 1 0 1 0 1 ...

$ snp7 : int 0 0 0 0 0 0 0 0 0 0 ...

$ snp8 : int 0 0 NA 0 0 0 0 NA 0 0 ...

$ snp9 : int 0 0 0 0 0 0 0 0 0 0 ...

$ snp10: int 0 0 0 1 0 0 0 0 0 1 ...

> trio.tmp <- trio.check(dat=trio.gen2, is.linkage=FALSE)

> set.seed(123456)

26

> trio.bin4 <- trio.prepare(trio.dat=trio.tmp, blocks=c(1,4,2,3))

> trio.bin4$bin[1:8,]

y snp1.D snp1.R snp2.D snp2.R snp3.D snp3.R snp4.D snp4.R snp5.D snp5.R

[1,] 3 0 0 1 0 1 0 1 0 1 0

[2,] 0 0 0 1 0 0 0 0 0 1 1

[3,] 0 0 0 1 0 0 0 0 0 1 1

[4,] 0 0 0 1 0 1 0 1 0 1 0

[5,] 3 0 0 1 0 1 0 1 0 1 0

[6,] 0 0 0 1 0 1 0 1 0 1 0

[7,] 0 0 0 1 0 1 0 1 0 1 0

[8,] 0 0 0 1 0 1 0 1 0 1 0

snp6.D snp6.R snp7.D snp7.R snp8.D snp8.R snp9.D snp9.R snp10.D snp10.R

[1,] 1 0 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 0 0 0

[3,] 0 0 0 0 0 0 0 0 0 0

[4,] 1 0 0 0 0 0 0 0 0 0

[5,] 1 0 0 0 0 0 0 0 0 0

[6,] 1 0 0 0 0 0 0 0 1 0

[7,] 1 0 0 0 0 0 0 0 1 0

[8,] 1 0 0 0 0 0 0 0 0 0

As the user might also be interested in the completed genotype data in the original format

(genotype or linkage file), the function trio.prepare also allows for this option by using

the argument logic = FALSE. In the resulting object, the matrix bin is then replaced

by the data frame trio, and miss and freq are also returned.

> trio.tmp <- trio.check(dat=trio.gen2, is.linkage=FALSE)

> set.seed(123456)

> trio.imp <- trio.prepare(trio.dat=trio.tmp, blocks=c(1,4,2,3), logic=FALSE)

> str(trio.imp, max=1)

List of 3

$ trio:'data.frame': 300 obs. of 12 variables:

$ miss:'data.frame': 250 obs. of 5 variables:

$ freq:'data.frame': 19 obs. of 3 variables:

- attr(*, "class")= chr "trioPrepare"

> trio.imp$miss[c(1:6),]

famid pid snp r c

1 10001 2 3 2 5

2 10001 3 8 3 10

3 10002 1 2 4 4

4 10002 1 4 4 6

5 10002 1 6 4 8

6 10002 2 2 5 4

> trio.gen2[1:6,]

27

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 2 NA 0 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 NA 0 0

4 10002 1 0 NA 2 NA 0 NA 0 0 0 1

5 10002 2 0 NA 0 0 2 0 0 0 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

> trio.imp$trio[1:6,]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 2 0 0 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 0 0 0

4 10002 1 0 0 2 2 0 2 0 0 0 1

5 10002 2 0 2 0 0 2 0 0 0 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

The same applies to pedigree data:

> trio.tmp <- trio.check(dat=trio.ped2)

> set.seed(123456)

> trio.imp2 <- trio.prepare(trio.dat=trio.tmp, blocks=c(1,4,2,3), logic=FALSE)

> trio.imp$trio[1:6,]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 2 0 0 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 0 0 0

4 10002 1 0 0 2 2 0 2 0 0 0 1

5 10002 2 0 2 0 0 2 0 0 0 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

6.3 Mendelian Errors

To delineate the genotype information for the pseudo-controls, the trio data must not

contain any Mendelian errors. The function trio.check returns a warning, and an R

object with relevant information when Mendelian errors are encountered is created.

> trio.tmp <- trio.check(dat=trio.ped.err)

[1] "Found Mendelian error(s)."

> str(trio.tmp, max=1)

28

List of 3

$ trio : NULL

$ errors :'data.frame': 4 obs. of 5 variables:

$ trio.err:'data.frame': 300 obs. of 12 variables:

> trio.tmp$errors

trio famid snp r c

1 1 10001 9 1 11

2 1 10001 10 1 12

3 2 10002 10 4 12

4 3 10003 10 7 12

In this data set, trio 1, for example, contains two Mendelian errors, in SNPs 9 and 10.

> trio.tmp$trio.err[1:3, c(1,2, 11:12)]

famid pid snp9 snp10

1 10001 1 0 1

2 10001 2 0 2

3 10001 3 2 0

> trio.ped.err[1:3,c(1:2, 23:26)]

famid pid snp9_1 snp9_2 snp10_1 snp10_2

1 10001 1 1 1 1 2

2 10001 2 1 1 2 2

3 10001 3 2 2 1 1

It is the user’s responsibility to find the cause for the Mendelian errors and correct those,

if possible. However, Mendelian inconsistencies are often due to genotyping errors and

thus, it might not be possible to correct those in a very straight-forward manner. In this

instance, the user might want to encode the genotypes that cause theses Mendelian errors

in some of the trios as missing data. The argument replace = TRUE in trio.check

allows for this possibility. The resulting missing data can then be imputed as described in

the previous section.

> trio.rep <- trio.check(dat=trio.ped.err, replace=TRUE)

> str(trio.rep, max=1)

List of 2

$ trio :'data.frame': 300 obs. of 12 variables:

$ errors: NULL

> trio.rep$trio[1:3,11:12]

29

snp9 snp10

1 NA NA

2 NA NA

3 NA NA

The same option is available for data in genotype format with Mendelian inconsistencies.

> trio.tmp <- trio.check(dat=trio.gen.err, is.linkage=FALSE)

[1] "Found Mendelian error(s)."

> trio.tmp$errors

trio famid snp r c

1 1 2001 5 1 7

2 2 2002 5 4 7

> trio.tmp$trio.err[1:6, c(1,2,7), drop=F]

famid pid snp5

6 2001 1 0

7 2001 2 0

5 2001 3 1

9 2002 1 1

10 2002 2 0

8 2002 3 2

> trio.rep <- trio.check(dat=trio.gen.err, is.linkage=FALSE, replace=TRUE)

> trio.rep$trio[1:6,c(1,2,7)]

famid pid snp5

6 2001 1 NA

7 2001 2 NA

5 2001 3 NA

9 2002 1 NA

10 2002 2 NA

8 2002 3 NA

6.4 Using Haplotype Frequencies

As mentioned above, when estimates for the haplotype frequencies are already available,

they can be used in the imputation of missing data and the delineation of the pseudo-

controls. In case there are blocks of length one, i.e. SNPs not belonging to any LD blocks,

30

the minor allele frequencies of those SNPs are supplied. In this case, no haplotype estima-

tion is required when the function trio.prepare is run, which can result in substantial

time savings.

As an example for the format of a file containing haplotype frequency estimates and SNP

minor allele frequencies, the object freq.hap is available in the R package:

> str(freq.hap)

'data.frame': 20 obs. of 3 variables:

$ key : int 1 1 2 2 2 2 2 2 2 3 ...

$ hap : int 1 2 1111 1112 1121 1221 1222 2112 2222 11 ...

$ freq: num 0.8 0.2 0.3373 0.2059 0.0024 ...

> freq.hap[1:6,]

key hap freq

1 1 1 0.800000000

2 1 2 0.200000000

3 2 1111 0.337339745

4 2 1112 0.205929486

5 2 1121 0.002403846

6 2 1221 0.368589742

We can now impute the missing genotypes using these underlying haplotype frequencies.

> trio.tmp <- trio.check(dat=trio.gen2, is.linkage=FALSE)

> set.seed(123456)

> trio.imp3 <- trio.prepare(trio.dat=trio.tmp, freq=freq.hap, logic=FALSE)

> str(trio.imp3, max=1)

List of 3

$ trio:'data.frame': 300 obs. of 12 variables:

$ miss:'data.frame': 250 obs. of 5 variables:

$ freq:'data.frame': 20 obs. of 3 variables:

- attr(*, "class")= chr "trioPrepare"

> trio.gen2[1:6,]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 2 NA 0 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 NA 0 0

4 10002 1 0 NA 2 NA 0 NA 0 0 0 1

5 10002 2 0 NA 0 0 2 0 0 0 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

> trio.imp3$trio[1:6,]

31

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 2 0 0 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 0 0 0

4 10002 1 0 0 2 2 0 2 0 0 0 1

5 10002 2 0 2 0 0 2 0 0 0 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

7 Trio Logic Regression

After having prepared a matrix suitable for a trio logic regression analysis, the function

trioLR can be used to perform this analysis.

7.1 Parameter Settings for Trio Logic Regression

To ensure that the following examples are fast to run, we here only use 1000 iterations, i.e.

the minimum number of iterations allowed, in the stochastic search algorithms, simulated

annealing and MCMC, employed in trio logic regression. In a real trio logic regression

analysis, at least a few hundred thousands of iterations should be used, where

the number of iterations in particular depends on the number of variables

considered in the analysis.

The parameter iter for setting the number of iterations along with several other control

parameters for the two stochastic search algorithms and the logic tree, i.e. the logic

expression, grown in a trio logic regression can be specified by employing the argument

control of the function trioLR, which in turn should be specified via the function

lrControl. Here, we set

> my.control <- lrControl(start=1, end=-3, iter=1000, output=-4)

where start and end are the starting and end temperature on log10-scale in simulated

annealing, where the temperature governs how likely it is that the model proposed in an

32

iteration of trio logic regression is accepted although it actually performs worse than the

model accepted in the previous iteration (at the beginning, this acceptance probability

is comparatively high so that many models are visited/accepted, whereas in the last

iterations, this probability is very low so that virtually only models are accepted if they

are better than the current trio logic regression model). Again, it is very hard to give

a good recommendation how to choose start and end (if they are not specified, the

algorithm tries to find good choices for these two parameters, which, however, might

works suboptimal), as their optimal specification highly depends on the data at hand. In

our experience, start = 1 and end = -3 are often reasonable choices for a trio logic

regression, but for a particular case-parent trio data set other choices might work better.

The help page for the function logreg.anneal.control in the R package LogicReg

gives a comprehensive introduction on how the control parameters of simulated annealing

can be chosen.

Finally, we have set output = -4, so that the models visited during the search for the

best trio logic regression model with an MCMC algorithm are not stored in file, but all

statistics for individual SNPs, pairs of SNPs, and triplets of SNPs are computed.

7.2 Performing a Trio Logic Regression Analysis

Employing this specification of these four parameters and the defaults for the other control

parameters, trioLR can be directly applied to the output of trio.prepare, i.e. for

example trio.bin (see Section 6.2), by

> lr.out <- trioLR(trio.bin, control=my.control, rand=9876543)

> lr.out

Trio Logic Regression

Search Algorithm: Simulated Annealing

A single model has been fitted:

-2.66 * ((snp6.D | snp2.R) & !snp4.D)

Score: 0.325

33

where we specify the argument rand to set the random number generator in a reproducible

state. By default, the logic expression found by trio logic regression is printed as it has

been found. Alternatively, it can also be printed in disjunctive normal form

> print(lr.out, asDNF=TRUE)

Trio Logic Regression

Search Algorithm: Simulated Annealing

A single model has been fitted:

-2.66 * ((snp2.R & !snp4.D) | (!snp4.D & snp6.D))

Score: 0.325

This has the advantage that the interactions – in particular, in a statistical sense – con-

tained in the logic expression are directly given by the AND-combinations (&) in this

disjunctive normal form. In the example, this advantage admittedly does not really ex-

ist, but when a much larger and more complex logic tree is grown, the logic expression

represented by this logic tree can be very hard to interpret.

It is also possible to construct the matrix x containing the values of the cases and the

matched pseudo-controls and the vector y comprising the class labels of the (artificial)

subjects without using trio.prepare. In this situation, each column of x must represent

one of the logic/binary variable, coded by zeros and ones, and each row must correspond

to a case or a pseudo-control, where each block of four consecutive rows has to consist

of the data for a case and the three matched pseudo-controls (in this order). In y, each

case must be coded by a 3 and each pseudo-control by a 0 so that y is given by

> n.trios <- 100

> y <- rep(c(3, 0, 0, 0), n.trios)

where n.trios is the number of case-parent trios considered in a study. This number is

here set to 100, as our example data set trio.bin consists of 100 trios. To avoid the

construction of the matrix x, we extract this matrix for this example from trio.bin.

> x <- trio.bin$bin[,-1]

The same trio regression analysis as above can then be performed by

34

> lr.out2 <- trioLR(x, y, control=my.control, rand=9876543)

> lr.out2

Trio Logic Regression

Search Algorithm: Simulated Annealing

A single model has been fitted:

-2.66 * ((snp6.D | snp2.R) & !snp4.D)

Score: 0.325

7.3 Permutation Tests for the Trio Logic Regression Model

The trio logic regression model resulting from such an application can then be tested by

a null-model permutation procedure, which checks whether there is signal in the data, or

by a conditional permutation test for model selection. Both can be performed using the

function trio.permTest in which the argument conditional specifies which of these

permutation tests are done. Thus, the null-model permutation test with n.perm = 20

permutations can be applied to the case-parent trio data in trio.bin by

> trio.permTest(lr.out, n.perm=20)

while the conditional permutation test can be performed by

> trio.permTest(lr.out, conditional=TRUE, n.perm=20)

7.4 Fitting Several Trio Logic Regression Models

By default, (trio) logic regression uses simulated annealing as search algorithm, and

trioLR fits one trio logic regression model comprising one logic tree with a maximum of

five leaves, i.e. five binary variables coded by zeros and ones Thus, the argument nleaves

is by default set to nleaves = 5, whereas the number of logic trees cannot be changed

in a trio logic regression.

35

Figure 1: Logic tree built in a trio logic regression analysis of case-parent trio data in
which a maximum of five leaves was allowed.

Alternatively, several trio logic regression models with different maximum numbers of

leaves/variables can be fitted by setting nleaves to a vector of length 2, where the

first element specifies the lowest maximum number, and the second element the largest

maximum number. If thus, for example, trio logic regression models should be fitted in

which the maximum number of leaves varies between 3 and 5, then this can be done by

> lr.out3 <- trioLR(trio.bin, nleaves=c(3,5), control=my.control, rand=9876543)

The number of trees in these models is 1

The model size is 3

The best model with 1 trees of size 3 has a score of 0.3314

The model size is 4

The best model with 1 trees of size 4 has a score of 0.3330

The model size is 5

The best model with 1 trees of size 5 has a score of 0.3144

36

> lr.out3

Trio Logic Regression

Search Algorithm: Simulated Annealing

3 models have been fitted:

Model with a maximum of 3 leaves:

0.982 * (!snp6.D & !snp4.D)

Score: 0.331

Model with a maximum of 4 leaves:

1.61 * ((snp3.D | !snp6.D) & (snp9.D & !snp3.R))

Score: 0.333

Model with a maximum of 5 leaves:

2.99 * ((snp7.D | !snp8.D) & (!snp4.D | snp6.D))

Score: 0.314

7.5 Plotting Trio Logic Regression Models

The resulting logic trees cannot only be printed, but also plotted. If, for example, the

logic tree in the third trio logic regression model (i.e. the model with a maximum of five

leaves) should be plotted, then this can be done by

plot(lr.out3, whichTree=3)

(see Figure 1), where the argument whichTree needs only to be specified if several models

have been fitted.

7.6 Greedy Search in Trio Logic Regression

Alternatively to simulated annealing, a greedy search can be employed in trio logic regres-

sion by changing the argument search to "greedy".

> lr.out4 <- trioLR(trio.bin, search="greedy", rand=9876543)

37

Model 0 has a score of 0.3466

Model 1 has a score of 0.3429

Model 2 has a score of 0.3359

Model 3 has a score of 0.3306

Model 4 has a score of 0.3265

Model 5 has a score of 0.3227

> lr.out4

Trio Logic Regression

Search Algorithm: Greedy

6 models have been fitted:

Model with 0 leaves:

Model contains no variables.

Score: 0.347

Model with a maximum of 1 leaf:

0.762 * snp9.D

Score: 0.343

Model with a maximum of 2 leaves:

1.43 * (snp9.D & !snp3.R)

Score: 0.336

Model with a maximum of 3 leaves:

1.82 * ((snp9.D & snp7.D) & !snp3.R)

Score: 0.331

Model with a maximum of 4 leaves:

1.93 * ((snp9.D & (snp7.D | !snp8.D)) & !snp3.R)

Score: 0.326

Model with a maximum of 5 leaves:

2.2 * ((snp9.D & (snp7.D | !snp8.D)) & (!snp3.R & !snp6.R))

Score: 0.323

7.7 MC Trio Logic Regression

While trio logic regression based on simulated annealing or a greedy search tries to identify

the logic expression, and thus, the trio logic regression model, that provides the best

prediction for the disease risk, the main goal of trio MC logic regression, i.e. trio logic

regression based on MCMC is the specification of the individual relevance of SNPs and

38

Figure 2: Visualization of the results of a trio MC logic regression analysis for the individual
SNPs.

the joint importance of pairs and triplets of SNPs for disease risk by counting how often

the individual SNPs occur in the models visited (and accepted) during the MCMC search

and how often pairs and triplets of SNPs occur jointly in these models (cf. Kooperberg

and Ruczinski, 2005). This trio MC logic regression can be performed by

> lr.out5 <- trioLR(trio.bin, search="mcmc", control=my.control, rand=9876543)

> lr.out5

Trio Logic Regression

Search Algorithm: MCMC

Visited models are not stored.

The results of this analysis can be visualized by plotting for each SNP the percentages

of visited models in which this SNP occurs (freqType = 1; the default), and for each

pair of SNPs in how many of the visited models this pair occurs jointly (freqType = 2)

39

Figure 3: Values of the importance measure of trioFS for the five most important identified
SNP interactions.

and the observed-to-expected ratio of being jointly in the models (freqType = 3). For

example, in Figure 2,

plot(lr.out5, freqType=1, useNames=TRUE)

the frequencies for the individual SNPs are displayed.

8 Analysis of Trio Data with trioFS

Another way to quantify the importance of SNPs and SNP interactions for the prediction

of the disease risk is to apply trio logic regression to several subsets of the case-parent trio

data and then employ the resulting trio logic regression models to compute importance

40

measures for the interactions found. This procedure called trioFS (trio Feature Selection)

is implemented in the function trioFS that can be used in a similar way as trioLR. For

example, trioFS can be applied to the case-parent trio data by

> fs.out <- trioFS(trio.bin, B=5, control=my.control, rand=9876543)

> fs.out

Identification of Interactions Using Trio Logic Regression

Number of Iterations: 5

Sampling Method: Bagging

Number of Trees: 1

Max. Number of Leaves: 5

The 5 Most Important Interactions:

Importance Proportion.vec.primes Proportion.Freq

1 13.6428 !X6 & X17 0.20

2 3.3615 X11 & !X20 0.20

3 3.0737 !X1 & !X5 0.20

4 0.2292 X13 & X15 0.20

5 0.0026 !X2 & !X8 & X17 & !X20 0.20

Expression

1 !snp3.R & snp9.D

2 snp6.D & !snp10.R

3 !snp1.D & !snp3.D

4 snp7.D & snp8.D

5 !snp1.R & !snp4.R & snp9.D & !snp10.R

where we here consider only B = 5 subsets of the data, while in a real analysis, at least B

= 20 subsets should be considered. By default, simulated annealing is used in this search.

Alternatively, it is also possible to do a greedy search by setting the argument fast of

trioFS to TRUE.

The importances of the identified SNP interactions cannot only be printed, but also be

plotted.

plot(fs.out)

(see Figure 3).

41

9 Detection of LD Blocks

For the estimation of the haplotype structure that might be used in the R function

trio.prepare, this package also includes functions for the fast computation of the pair-

wise D′ and r2 values for hundreds or thousands of SNPs, and for the identification of

LD blocks in these genotype data using a modified version of the algorithm proposed by

Gabriel et al. (2002). For the latter, it is assumed that the SNPs are ordered by their

position on the chromosomes.

These functions are not restricted to trio data, but can also be applied to population-

based data. The only argument of these functions specifically included for trio data

is parentsOnly. If set to TRUE, only the genotypes of the parents are used in the

determination of the pairwise values of the LD measures and the estimation of the LD

blocks. Furthermore, each parent is only considered once so that parents with more than

one offspring do not bias the estimations. If trio data is used as input, the functions

assume that the matrix containing the SNP data is in genotype format.

9.1 Computing Values of LD Measures

Here, we consider a simulated matrix LDdata from a population-based study. Thus, all

subjects are assumed to be unrelated. This matrix contains simulated genotype data for

10 LD blocks each consisting of 5 SNPs each typed on 500 subjects. The pairwise D′

and r2 values for the SNPs in this matrix can be computed by

> ld.out <- getLD(LDdata, asMatrix=TRUE)

where by the default these values are stored in vectors to save memory. If asMatrix is

set to TRUE, the values will be stored in matrices. The pairwise LD values for the first 10

SNPs (rounded to the second digit) can be displayed by

> round(ld.out$Dprime[1:10,1:10], 2)

42

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 NA NA NA NA NA NA NA NA NA NA

S2 0.99 NA NA NA NA NA NA NA NA NA

S3 0.98 1.00 NA NA NA NA NA NA NA NA

S4 0.98 0.99 1.00 NA NA NA NA NA NA NA

S5 0.97 0.98 0.99 1.00 NA NA NA NA NA NA

S6 0.09 0.06 0.05 0.05 0.04 NA NA NA NA NA

S7 0.11 0.09 0.08 0.08 0.07 0.99 NA NA NA NA

S8 0.13 0.11 0.10 0.10 0.09 0.99 1.00 NA NA NA

S9 0.14 0.11 0.10 0.11 0.10 0.99 1.00 1.00 NA NA

S10 0.16 0.13 0.11 0.12 0.11 0.97 0.98 0.98 1 NA

> round(ld.out$rSquare[1:10,1:10], 2)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 NA NA NA NA NA NA NA NA NA NA

S2 0.97 NA NA NA NA NA NA NA NA NA

S3 0.94 0.97 NA NA NA NA NA NA NA NA

S4 0.93 0.96 1.00 NA NA NA NA NA NA NA

S5 0.91 0.94 0.98 0.98 NA NA NA NA NA NA

S6 0.00 0.00 0.00 0.00 0 NA NA NA NA NA

S7 0.00 0.00 0.00 0.00 0 0.97 NA NA NA NA

S8 0.00 0.00 0.00 0.00 0 0.95 0.98 NA NA NA

S9 0.00 0.00 0.00 0.00 0 0.93 0.96 0.98 NA NA

S10 0.00 0.00 0.00 0.00 0 0.91 0.94 0.96 0.98 NA

and the pairwise LD plot for all SNPs can be generated by

Figure 4: Pairwise r2 values for the SNPs from LDdata.

43

> plot(ld.out)

(see Figure 4). This figure shows the r2-values. The D′ values can be plotted by

> plot(ld.out, "Dprime")

(not shown).

9.2 Estimating LD Blocks

The LD blocks in genotype data can be identified using the modified algorithm of Gabriel

et al. (2002) by calling

> blocks <- findLDblocks(LDdata)

> blocks

Found 10 LD blocks containing between 5 and 5 SNPs.

0 of the 50 SNPs do not belong to a LD block.

Used Parameter:

Strong LD: C_L >= 0.7 and C_U >= 0.98

Recombination: C_U < 0.9

(C_L and C_U are the lower and upper bound of

the 90%-confidence intervals for D')
LD blocks: Ratio >= 9

Alternatively, the output of getLD can be used when addVarN has been set to TRUE in

getLD to store additional information on the pairwise LD values.

> ld.out2 <- getLD(LDdata, addVarN=TRUE)

> blocks2 <- findLDblocks(ld.out2)

> blocks2

Found 10 LD blocks containing between 5 and 5 SNPs.

0 of the 50 SNPs do not belong to a LD block.

Used Parameter:

Strong LD: C_L >= 0.7 and C_U >= 0.98

Recombination: C_U < 0.9

(C_L and C_U are the lower and upper bound of

the 90%-confidence intervals for D')
LD blocks: Ratio >= 9

44

Figure 5: LD blocks as found by the modified algorithm of Gabriel et al. (2002). The
borders of the LD blocks are marked by red lines. The color for the LD between each pair
of SNPs is defined by the three categories used by Gabriel et al. (2002) to define the LD
blocks.

The blocks can also be plotted by

> plot(blocks)

(see Figure 5). In this figure, the borders of the LD blocks are marked by red lines. By

default, the three categories used by the algorithm of Gabriel et al. (2002) to define the

LD blocks are displayed. Since this algorithm is based on the D′ values, it is also possible

to show these values in the LD (block) plot.

> plot(blocks, "Dprime")

(see Figure 6).

As mentioned in Section 6, the haplotype structure required by trio.prepare can be

obtained by

> hap <- as.vector(table(blocks$blocks))

> hap

[1] 5 5 5 5 5 5 5 5 5 5

45

Figure 6: LD blocks as found by the modified algorithm of Gabriel et al. (2002). The
borders of the LD blocks are marked by red lines. The darker the field for each pair of
SNPs, the larger is the D′ value for the corresponding SNP pair.

10 Simulation

The function trio.sim simulates case-parents trio data when the disease risk of chil-

dren is specified by (possibly higher-order) SNP interactions. The mating tables and

the respective sampling probabilities depend on the haplotype frequencies (or SNP mi-

nor allele frequencies when the SNP does not belong to a block). This information is

specified in the freq argument of the function trio.sim. The probability of disease

is assumed to be described by the logistic term logit(p) = α + β × Interaction, where

α = logit (prev) = log(prev

1−prev
) and β = log(OR). The arguments interaction, prev

and OR, are specified in the function trio.sim. Generating the mating tables and the

respective sampling probabilities, in particular for higher order interactions, can be very

CPU and memory intensive. We show how this information, once it has been generated,

can be used for future simulations, and thus, speed up the simulations dramatically.

46

10.1 A Basic Example

We use the built-in object simuBkMap in a basic example to show how to simulate case-

parent trios when the disease risk depends on (possibly higher order) SNP interactions.

This file contains haplotype frequency information on 15 blocks with a total of 45 loci.

In this example, we specify that the children with two variant alleles on SNP1 and two

variant alleles on SNP5 have a higher disease risk. We assume that prev = 0.001 and

OR = 2 in the logistic model specifying disease risk, and simulate a single replicate of 20

trios total.

> str(simuBkMap)

'data.frame': 66 obs. of 3 variables:

$ key : Factor w/ 15 levels "10-1","10-10",..: 1 1 1 8 8 8 8 9 9 9 ...

$ hap : int 11 21 22 121 122 111 222 21 22 12 ...

$ freq: num 0.099 0.228 0.673 0.006 0.026 0.1 0.867 0.079 0.441 0.48 ...

> simuBkMap[1:7,]

key hap freq

1 10-1 11 0.099

2 10-1 21 0.228

3 10-1 22 0.673

4 10-2 121 0.006

5 10-2 122 0.026

6 10-2 111 0.100

7 10-2 222 0.867

> sim <- trio.sim(freq=simuBkMap, interaction="1R and 5R", prev=.001, OR=2,

+ n=20, rep=1)

> str(sim)

List of 1

$: num [1:60, 1:24] 1 1 1 2 2 2 3 3 3 4 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:24] "famid" "pid" "snp1" "snp2" ...

> sim[[1]][1:6, 1:12]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

[1,] 1 1 0 1 0 0 0 1 0 1 1 1

[2,] 1 2 0 0 0 0 0 1 0 1 2 1

[3,] 1 3 0 1 0 0 0 2 0 1 2 0

[4,] 2 1 0 0 1 1 1 0 0 1 1 1

[5,] 2 2 0 0 0 0 0 1 0 2 1 0

[6,] 2 3 0 0 1 1 1 0 0 2 1 0

47

10.2 Using Estimated Haplotype Frequencies

In this example we estimate the haplotype frequencies in the built-in data set trio.gen1,

which contains genotypes for 10 SNPs in 100 trios. These estimated frequencies are then

used to simulate 20 trios for the above specified disease risk model.

> trio.tmp <- trio.check(dat=trio.gen1, is.linkage=FALSE)

> trio.impu <- trio.prepare(trio.dat=trio.tmp, blocks=c(1,4,2,3), logic=TRUE)

> str(trio.impu, max=2)

List of 3

$ bin : num [1:400, 1:21] 3 0 0 0 3 0 0 0 3 0 ...

..- attr(*, "dimnames")=List of 2

$ miss: NULL

$ freq:'data.frame': 19 obs. of 3 variables:

..$ key : 'AsIs' chr [1:19] "ch-1" "ch-1" "ch-h2" "ch-h2" ...

..$ hap : num [1:19] 1 2 1111 1112 1121 ...

..$ freq: num [1:19] 0.9425 0.0575 0.325 0.2225 0.0075 ...

- attr(*, "class")= chr "trioPrepare"

> trio.impu$freq[1:7,]

key hap freq

1 ch-1 1 9.42500e-01

2 ch-1 2 5.75000e-02

3 ch-h2 1111 3.25000e-01

4 ch-h2 1112 2.22500e-01

5 ch-h2 1121 7.50000e-03

6 ch-h2 1221 3.35000e-01

7 ch-h2 1222 3.78392e-09

> sim <- trio.sim(freq=trio.impu$freq, interaction="1R and 5R", prev=.001, OR=2,

+ n=20, rep=1)

> str(sim)

List of 1

$: num [1:60, 1:7] 1 1 1 2 2 2 3 3 3 4 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:7] "famid" "pid" "snp1" "snp2" ...

> sim[[1]][1:6,]

famid pid snp1 snp2 snp3 snp4 snp5

[1,] 1 1 2 2 2 2 2

[2,] 1 2 2 2 1 0 2

[3,] 1 3 2 2 2 1 2

[4,] 2 1 2 0 2 2 0

[5,] 2 2 1 0 2 2 0

[6,] 2 3 1 0 2 2 0

48

As before, the object containing the haplotype frequency information can also be generated

from external haplotype frequencies and SNP minor allele frequencies. In the following

example we specify the haplotype frequencies, and generate two replicates of ten trios

each.

> sim <- trio.sim(freq=freq.hap, interaction="1R or 4D", prev=.001, OR=2,

+ n=10, rep=2)

> str(sim)

List of 2

$: num [1:30, 1:7] 1 1 1 2 2 2 3 3 3 4 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:7] "famid" "pid" "snp1" "snp2" ...

$: num [1:30, 1:7] 1 1 1 2 2 2 3 3 3 4 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:7] "famid" "pid" "snp1" "snp2" ...

> sim[[1]][1:6,]

famid pid snp1 snp2 snp3 snp4 snp5

[1,] 1 1 2 2 2 2 2

[2,] 1 2 0 2 2 2 2

[3,] 1 3 1 2 2 2 2

[4,] 2 1 2 2 1 1 2

[5,] 2 2 1 1 2 2 0

[6,] 2 3 1 1 1 1 1

10.3 Using Step-Stones

Generating the mating tables and the respective sampling probabilities necessary to simu-

late case-parent trios can be very time consuming for interaction models involving three or

more SNPs. In simulation studies, many replicates of similar data are usually required, and

generating these sampling probabilities in each instance would be a large and avoidable

computational burden (CPU and memory). The sampling probabilities depend foremost

on the interaction term and the underlying haplotype frequencies, and as long as these

remain constant in the simulation study, the mating table information and the sampling

probabilities can be “recycled.” This is done by storing the relevant information (denoted

49

as “step-stone”) as a binary R file in the working directory, and loading the binary file again

in future simulations, speeding up the simulation process dramatically. It is even possible

to change the parameters prev and OR in these additional simulations, as the sampling

probabilities can be adjusted accordingly.

In the following example, we first simulate case-parent trios using a three-SNP interaction

risk model, and save the step-stone object. We then simulate additional trios with a

different parameter OR, using the previously generated information.

> sim <- trio.sim(freq=freq.hap, interaction="1R or (6R and 10D)", prev=.001,

+ OR=2, n=10, rep=1)

> str(sim)

List of 1

$: num [1:30, 1:7] 1 1 1 2 2 2 3 3 3 4 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:7] "famid" "pid" "snp1" "snp2" ...

> sim[[1]][1:6,]

famid pid snp1 snp2 snp3 snp4 snp5

[1,] 1 1 2 2 1 1 2

[2,] 1 2 2 2 2 2 1

[3,] 1 3 2 2 1 1 2

[4,] 2 1 1 2 0 0 2

[5,] 2 2 1 1 2 2 0

[6,] 2 3 1 1 1 1 1

> sim <- trio.sim(freq=freq.hap, interaction="1R or (6R and 10D)", prev=.001,

+ OR=3, n=10, rep=1, step.save="step3way")

> str(sim, max=1)

List of 1

$: num [1:30, 1:7] 1 1 1 2 2 2 3 3 3 4 ...

..- attr(*, "dimnames")=List of 2

> sim[[1]][1:6,]

famid pid snp1 snp2 snp3 snp4 snp5

[1,] 1 1 2 2 1 1 2

[2,] 1 2 1 2 1 1 1

[3,] 1 3 1 2 1 1 2

[4,] 2 1 2 2 0 0 2

[5,] 2 2 1 2 2 2 2

[6,] 2 3 1 2 1 1 2

50

Acknowledgments

Financial support was provided by DFG grants SCHW 1508/1-1, SCHW 1508/2-1, and

SCHW 1508/3-1, as well as NIH grants R01 DK061662 and R01 HL090577.

References

Cordell, H.J. (2002). Epistasis: What it Means, what it Doesn’t Mean, and Statistical

Methods to Detect it in Humans. Human Molecular Genetics, 11, 2463–2468.

Cordell, H.J., Barratt, B.J., and Clayton, D.G. (2004). Case/Pseudocontrol Analysis

in Genetic Association Studies: A Unified Framework for Detection of Genotype and

Haplotype Associations, Gene-Gene and Gene-Environment Interactions, and Parent-

of-Origin Effects. Genetic Epidemiology, 26, 167–185.

Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B., Higgins,

J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S.N., Rotimi, C., Adeyemo,

A., Cooper, R., Ward, R., Lander, E.S., Daly, M.J., and Altshuler, D. (2002). The

Structure of Haplotype Blocks in the Human Genome. Science, 296, 2225–2229.

Kooperberg, C. and Ruczinski, I. (2005). Identifying Interacting SNPs Using Monte Carlo

Logic Regression. Genetic Epidemiology, 28, 157–170.

Li, Q., Fallin, M.D., Louis, T.A., Lasseter, V.K., McGrath, J.A., Avramopoulos, D.,

Wolyniec, P.S., Valle, D., Liang, K.Y., Pulver, A.E., and Ruczinski, I. (2010). Detection

of SNP-SNP Interactions in Trios of Parents with Schizophrenic Children. Genetic

Epidemiology, 34, 396–406.

Schaid, D.J. (1996). General Score Tests for Associations of Genetic Markers with Disease

Using Cases and Their Parents. Genetic Epidemiology, 13, 423–449.

51

Schwender, H., Bowers, K., Fallin, M.D., and Ruczinski, I. (2011). Importance Measure

for Epistatic Interactions in Case-Parent Trios. Annals of Human Genetics, 75, 122–132.

Schwender, H., Taub, M.A., Beaty, T.H., Marazita, M.L., and Ruczinski, I. (2011).

Rapid Testing of SNPs and Gene-Environment Interactions in Case-Parent Trio Data

Based on Exact Analytic Parameter Estimation. B iometrics. DOI: 10.1111/j.1541-

0420.2011.01713.x.

Spielman, R.S., McGinnis, R.E., and Ewens, W.J. (1993). Trsnmmission Test for Link-

age Disequilibrium: The Insulin Gene Region and Insulin-Dependent Diabetes Mellitus

(IDDM). American Journal of Human Genetics, 52, 506–516.

52

	Introduction
	Preparing Data for the Genotypic TDTs
	Dataframe in ped format
	Reading a ped file into R
	Transforming a data frame in ped format to a matrix in genotype format

	Genotypic TDTs
	Testing a Single SNP with a Genotypic TDT
	Testing a Single Interaction between two SNPs
	Testing all SNPs in a Matrix in Genotype Format with a Genotypic TDT
	Performing a MAX Test
	Testing all Pairs of SNPs in a Matrix in Genotype Format
	Testing Gene-Environment Interactions with a Genotypic TDT

	Allelic TDT
	Score Tests
	Generating Data for Trio Logic Regression Input
	Supported File Formats and Elementary Data Processing
	Missing Genotype Information
	Mendelian Errors
	Using Haplotype Frequencies

	Trio Logic Regression
	Parameter Settings for Trio Logic Regression
	Performing a Trio Logic Regression Analysis
	Permutation Tests for the Trio Logic Regression Model
	Fitting Several Trio Logic Regression Models
	Plotting Trio Logic Regression Models
	Greedy Search in Trio Logic Regression
	MC Trio Logic Regression

	Analysis of Trio Data with trioFS
	Detection of LD Blocks
	Computing Values of LD Measures
	Estimating LD Blocks

	Simulation
	A Basic Example
	Using Estimated Haplotype Frequencies
	Using Step-Stones

