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Calculating linkage disequilibrium statistics
We shall first load some illustrative data.

> data(ld.example)

The data are drawn from the International HapMap Project and concern 603 SNPs over a
1mb region of chromosome 22 in sample of Europeans (ceph.1mb) and a sample of Africans
(yri.1mb):

> ceph.1mb

A SnpMatrix with 90 rows and 603 columns
Row names: NA06985 ... NA12892
Col names: rs5993821 ... rs5747302

> yri.1mb

A SnpMatrix with 90 rows and 603 columns
Row names: NA18500 ... NA19240
Col names: rs5993821 ... rs5747302

The details of these SNP are stored in the dataframe support.ld:

> head(support.ld)

dbSNPalleles Assignment Chromosome Position Strand
rs5993821 G/T G/T chr22 15516658 +
rs5993848 C/G C/G chr22 15529033 +
rs361944 C/G C/G chr22 15544372 +
rs361995 C/T C/T chr22 15544478 +
rs361799 C/T C/T chr22 15544773 +
rs361973 A/G A/G chr22 15549522 +
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The function for calculating measures of linkage disequilibrium (LD) in snpStats is ld. The
following two commands call this function to calculate the D-prime and R-squared measures
of LD between pairs of SNPs for the European and African samples:

> ld.ceph <- ld(ceph.1mb, stats=c("D.prime", "R.squared"), depth=100)
> ld.yri <- ld(yri.1mb, stats=c("D.prime", "R.squared"), depth=100)

The argument depth specifies the maximum separation between pairs of SNPs to be con-
sidered, so that depth=1 would have specified calculation of LD only between immediately
adjacent SNPs.

Both ld.ceph and ld.yri are lists with two elements each, named D.prime and R.squared.
These elements are (upper triangular) band matrices, stored in a packed form defined in the
Matrix package. They are too large to be listed, but the Matrix package provides an image
method, a convenient way to examine patterns in the matrices. You should look at these
carefully and note any differences.

> image(ld.ceph$D.prime, lwd=0)
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> image(ld.yri$D.prime, lwd=0)
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The important things to note are

1. there are fairly well-defined “blocks” of LD, and

2. LD is more pronounced in the Europeans than in the Africans.

The second point is demonstrated by extracting the D-prime values from the matrices (they
are to be found in a slot named x) and calculating quartiles of their distribution:

> quantile(ld.ceph$D.prime@x, na.rm=TRUE)

0% 25% 50% 75% 100%
0.0000000 0.1284461 0.2966520 0.6373923 1.0000000
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> quantile(ld.yri$D.prime@x, na.rm=TRUE)

0% 25% 50% 75% 100%
0.0000000 0.1066341 0.2438494 0.5098348 1.0000000

If preferred, image can produce colour plots. We first create a set of 10 colours ranging
from yellow (for low values) to red (for high values)

> spectrum <- rainbow(10, start=0, end=1/6)[10:1]

and plot the image, with a colour key down its right hand side

> image(ld.ceph$D.prime, lwd=0, cuts=9, col.regions=spectrum, colorkey=TRUE)
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The R-squared matrices provide similar pictures, although they are rather less regular.
To show this clearly, we focus on the 200 SNPs starting from the 75-th, using the European
data

> use <- 75:274

> image(ld.ceph$D.prime[use,use], lwd=0)
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> image(ld.ceph$R.squared[use,use], lwd=0)
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The R-squared values are smaller and there are “holes” in the LD blocks; SNPs within an LD
block do not necessarily have large R-squared between them. This is further demonstrated
in the next section.

D-prime, R-squared, and distance
To examine the relationship between LD and physical distance, we first need to construct a
similar matrix holding the physical distances. This is carried out, by first calculating each
off-diagonal, and then combining them into a band matrix
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> pos <- support.ld$Position
> diags <- vector("list", 100)
> for (i in 1:100) diags[[i]] <- pos[(i+1):603] - pos[1:(603-i)]
> dist <- bandSparse(603, k=1:100, diagonals=diags)

The values in the body of the band matrix are contained in a slot named x, so the follow-
ing commands extract the physical distances and the corresponding LD statistics for the
Europeans:

> distance <- dist@x
> D.prime <- ld.ceph$D.prime@x
> R.squared <- ld.ceph$R.squared@x

These are very long vectors so we use the hexbin package to produce abreviated plots. We
first demonstrate the relationship between D-prime and R-squared

> plot(hexbin(D.prime^2, R.squared))
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We see that the square of D-prime provides an upper bound for R-squared; a high D-prime
indicates the potential for two SNPs to be highly correlated, but they need not be. The
following commands examine the relationship between the two LD measures and physical
distance

> plot(hexbin(distance, D.prime, xbin=10))
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> plot(hexbin(distance, R.squared, xbin=10))
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Although the data are very noisy, the first plot is consistent with an approximately expo-
nential decline in mean D-prime with distance, as predicted by the Malecot model.

A view of the calculations
To understand the calculations let us consider the first and fifth SNPs in the Europeans. We
shall first converting these to character data for legibility, and then tabulate the two-SNP
genotypes, saving the 3× 3 table of genotype frequencies as tab33:
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> snp1 <- as(ceph.1mb[,1], "character")
> snp5 <- as(ceph.1mb[,5], "character")
> tab33 <- table(snp1, snp5)
> tab33

snp5
snp1 A/A A/B B/B

A/A 6 21 17
A/B 2 18 17
B/B 0 2 7

These two SNPs have a moderately high D-prime, but a very low R-squared:

> ld.ceph$D.prime[1,5]

[1] 0.570161

> ld.ceph$R.squared[1,5]

[1] 0.06628534

The LD measures cannot be directly calculated from the 3 × 3 table above, but from a
2 × 2 table of haplotype frequencies. In only eight cells around the periphery of the table
we can unambiguously count haplotypes and these give us the following table of haplotype
frequencies:

rs361799
rs5993821 A B

A 35 72
B 4 33

However, in the central cell of the 3×3 table (i.e. tab33[2,2]) we have 18 doubly heterozy-
gous subjects, whose genotype could correspond either to the pair of haplotypes A-A/B-B or
to the pair of haplotypes A-B/B-A. These are said to have unknown phase. The expected
split between these possible phases is determined by a further measure of LD — the odds
ratio. If the odds ratio is θ, we expect a proportion θ/(1 + θ) of the doubly heterozygous
subjects to be A-A/B-B, and a proportion 1/(1 + θ) to be A-B/B-A.

We next use ld to obtain an estimate of this odds ratio1 and, using this, we partition the
doubly heterozygous individuals between the two possible phases:

> OR <- ld(ceph.1mb[,1], ceph.1mb[,5], stats="OR")
> OR

1Here ld is called with two arguments of class SnpStats and, since only the odds ratio is to be calculated,
it returns the odds ratio rather than a list.
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rs361799
rs5993821 4.163

> AABB <- tab33[2,2]*OR/(1+OR)
> ABBA <- tab33[2,2]*1/(1+OR)
> AABB

rs361799
rs5993821 14.51

> ABBA

rs361799
rs5993821 3.486

We are now able to construct the table of haplotype frequencies:

rs361799
rs5993821 A B

A 49.51 75.49
B 7.486 47.51

It is easy to confirm that the odds ratio in this table, (49.51 × 47.51)/(75.49 × 7.486),
corresponds closely with that given by the ld function. Having obtained the 2 × 2 table of
haplotype frequencies, any LD statistic may be calculated.

Of course, there is a circularity here; we needed to know the odds ratio in order to be able
to construct the 2× 2 table from which it is calculated! That is why these calculations are
not simple. The usual method involves iterative solution using an EM algorithm: an initial
guess at the odds ratio is used, as in the calculations above, to compute a new estimate,
and these calculations are repeated until the estimate stabilizes. However, in snpStats the
estimate is calculated in one step, by solving a cubic equation.

The extent of LD around a point
Often we wish to guage how far LD extends from a given point (for example, from a SNP
which is associated with disease incidence). For illustrative purposes we shall consider the
region surroung the 168-th SNP, rs2385786. We first calculate D-prime values for the 100
SNPs on either side of rs2385786, and their positions:

> lr100 <- c(68:167, 169:268)
> D.prime <- ld(ceph.1mb[,168], ceph.1mb[,lr100], stats="D.prime")
> where <- pos[lr100]

We now plot D.prime against position, adding a simple smoother:
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> plot(where, D.prime)
> lines(where, smooth(D.prime))
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Although the data are somewhat noisy (the sample size is small), the region of LD is fairly
clearly delineated.

Selecting tag SNPs
Several ways have been suggested to select a set of “tag” SNPs which can be used to test
for associations in a given region. That described below is based upon a heirarchical cluster
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analysis. We shall apply it to the region of high LD identified in the previous section, which
lies between positions 1.579× 107 and 1.587× 107.

The following commands identify which SNPs lie in this region, and extracts the relevant
part of the R2 matrix, as a symmetric matrix rather than as an upper triangular matrix.

> use <- pos>=1.579e7 & pos<=1.587e7
> r2 <- forceSymmetric(ld.ceph$R.squared[use, use])

The next step is to convert (1 − R2) into a distance matrix, stored as required for the
hierachical clustering function hclust, and to carry out a complete linkage cluster analysis

> D <- as.dist(1-r2)
> hc <- hclust(D, method="complete")

To plot the dendrogram, we must first adjust the character size for legibility:

> par(cex=0.5)
> plot(hc)
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The interpretation of this dendrogram is that, if we were to draw a horizontal line at a
“height” of 0.5, then this would divide the SNPs into clusters in such a way that the value
of (1 − R2) between any pair of SNPs in a cluster would be no more than 0.5 (so that R2

would be at least 0.5). This can be carried out using the cutree function, which returns the
cluster membership of each SNP:

> clusters <- cutree(hc, h=0.5)
> head(clusters)

rs5994093 rs5748744 rs5992589 rs9306242 rs5994095 rs5992590
1 1 1 1 1 2
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> table(clusters)

clusters
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
5 1 7 1 3 6 2 2 6 1 9 12 3 1 1 1 4 1

It can be seen that there are 18 clusters. To have a reasonable chance of picking up an
association with the SNPs in this 80kb region, we would need to type a SNP from each one
of these clusters. Of these, 7 SNPs would only tag themselves!

A threshold R2 of 0.5 might seem rather low. However, this is a “worst case” figure and
most values of R2 would be substantially better than this, particularly if an effort is made
to choose tag SNPs which are in the center of clusters rather than on their edges. Also, this
process has only considered tagging by single SNPs; it can be that two or more tag SNPs,
taken together, can provide substantially better prediction than any one of them alone.
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