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1 Introduction

The LPE package describes local-pooled-error (LPE) test for identifying significant differen-
tially expressed genes in microarray experiments. Local pooled error test is especially useful
when the number of replicates is low (2-3) [1]. LPE estimation is based on pooling errors
within genes and between replicate arrays for genes in which expression values are similar.
This is motivated by the observation that errors between duplicates vary as a function of
the average gene expression intensity and by the fact that many gene expression studies are
implemented with a limited number of replicated arrays [3].

LPE library is primarily used for analyzing data between two conditions. To use it for
paired data, see LPEP library. For using LPE in multiple conditions, use HEM library.



1.1 Mouse Immune Response Study dataset

Step by step analysis is presented in Section 1.1 using data from a 6-chip (Affymetrix mu-
nie GeneChip, MG-U74Av2) oligonucleotide microarray study of a mouse immune response
study. Three replicates of Affymetrix oligonucleotide chips per condition (Naive and Acti-
vated) were used. Mouse immune response study was conducted by Dr. Klaus Ley, Uni-
veristy of Virginia.

Details of methodology and application of Local Pooled Error (LPE) test can be ob-
tained from the LPE paper, published in Bioinformatics [1], and detailed description of
Rank-invariant resampling based FDR method can be obtained from FDR paper, pub-
lished in BMC Bioinformatics [2].

2 Analyzing data set using LPE library

2.1 Check installed version of LPFE

First, make sure that the version of LPE library you are using is at least 1.6.0
> packageDescription("LPE")

If you have an older version, download the latest version from Bioconductor.

2.2 Load the library

First, set the seed to 0 (to have reproducible results as shown below):
> set.seed(0)

Load the LPE library:

> library(LPE)

2.3 Load the data set

Load the data set ‘Ley’ (built in LPE package), check its dimensions and see the dataset.
For illustration purposes, we will use only a small subset of Ley data (1000 rows) in the
subsequent examples. Replicates of Naive condition are named as cl, ¢2, c¢3 and those of
Activated condition are named as t1, t2 and t3 respectively.

> data(Ley)
> dim(Ley)

[1] 12488 7

> head(Ley)
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ID cl c2 c3 t1 t2 t3
1 AFFX-MurIl2_at 16.0 14.1 19.3 2782.7 2861.3 2540.2
2 AFFX-MurIL10_at 22.7 6.9 28.2 18.6 12.7 7.5
3 AFFX-MurIl4_at 33.9 17.1 23.9 24.9 25.2 24.9
4 AFFX-MurFAS_at 151.0 133.6 134.1 160.6 188.2 156.4
5 AFFX-BioB-5_at 246.9 182.9 273.6 178.0 184.8 146.6
6 AFFX-BioB-M_at 644.8 398.8 577.3 364.9 355.7 349.7

\

Ley.subset <- Ley[seq(1000),]

2.4 Normalization of data

Do the pre-processing (or normalization) of the data. Since the data obtained here is in
MAS5 format, we will use data.type=MAS5. (Note that LPE does not require users to
normalize the gene-expression data using the preprocess function. Users can very well use
other methods, such as RMA or any other method of their choice.)

The preprocess function does IQR normalization (so that inter-quartile ranges on all
chips are set to their widest range), thresholding (making the intensity values lower than
1.0 to 1.0), log based 2 transformation and LOWESS normalization (if LOWESS is set to
TRUE). Note that this preprocess is a simple constant-scale and location-normalization step.

\

Ley.normalized <- Ley.subset
Ley.normalized[,2:7] <- preprocess(Ley.subset[,2:7], data.type = "MAS5")
Ley.normalized[1:3,]

VvV Vv

ID cl c2 c3 t1 t2 t3
AFFX-MurIL2_at 4.304733 4.076621 4.560498 11.442270 11.611246 11.385874
AFFX-MurIL10_at 4.809354 3.045594 5.107593 4.217231 3.795548 2.982039
AFFX-MurIL4_at 5.387947 4.354922 4.868908 4.638074 4.784143 4.713222

w N -

Remove the Affymetrix control spots (whose ID begins with ‘AFFX’):

> Ley.final <- Ley.normalized[substring(Ley.normalized$ID,1,4) !="AFFX",]
> dim(Ley.final)

[1] 934 7
> Ley.final[1:3,]

ID cl c2 c3 t1 t2 t3
67 92539_at 12.245451 12.410680 12.570798 12.048521 12.255754 11.981926
68 92540_f_at 9.194694 9.262375 8.920783 11.356672 11.504808 11.415221
69 92541_at 6.488617 6.337949 6.379552 5.153805 5.388064 5.982039



2.5 Obtain baseline error distribution

Calculate the baseline error distribution of Naive condition, which returns a data.frame of
A vs M for selected number of bins (= 1/q), where q = quantile.

> var.Naive <- baseOlig.error(Ley.finall[,2:4],9=0.01)
> dim(var.Naive)

[1] 934 2
> var.Naive[1:3,]

A var.M
67 12.410680 0.01618317
68 9.194694 0.07100961
69 6.379552 0.24239947

Similarly calculate the base-line distribution of Activated condition:

> var.Activated <- baseOlig.error(Ley.finall[,5:7], q=0.01)
> dim(var.Activated)

[1] 934 2
> var.Activated[1:3,]

A var.M
67 12.048521 0.01405070
68 11.415221 0.01563467
69 5.388064 0.36761319

2.6 Calculate z-statistics for each gene

Calculate the lpe variance estimates as described above. The function 1pe takes the first
two arguments as the replicated data, next two arguments as the baseline distribution of the
replicates calculated from the baseOlig.error function, and Gene IDs as probe.set.name.

lpe.val <- data.frame(lpe(Ley.finall[,5:7], Ley.finall[,2:4],
var.Activated, var.Naive,
probe.set.name=Ley.final$ID)

lpe.val <- round(lpe.val, digits=2)

>
+
+
+ )
>
> dim (lpe.val)

[1] 934 13



> lpe.val[1:3,]

x.tl x.t2 x.t3 median.l std.dev.l y.cl y.c2 y.c3 median.2

92539_at  12.05 12.26 11.98 12.05 0.12 12.25 12.41 12.57 12.41

92540_f_at 11.36 11.50 11.42 11.42 0.13 9.19 9.26 8.92 9.19

92541_at 5.15 5.39 5.98 5.39 0.61 6.49 6.34 6.38 6.38
std.dev.2 median.diff pooled.std.dev z.stats

92539_at 0.13 -0.36 0.13 -2.88

92540_f _at 0.27 2.22 0.21 10.43

92541_at 0.49 -0.99 0.57 -1.75

2.7 FDR correction

Various FDR correction methods are supported in LPE: BH (Benjamini-Hochberg), BY (Benjamini-
Yekutieli), mix.all (does FDR adjustment similar to that of SAM) or resamp (Rank invari-

ant resampling based FDR correction - recommended method). For the sake of completion,
there is an option “Bonferroni” to get Bonferroni adjusted p-values also. Note that BH and

BY methods are adopted from multtest package.

> fdr.BH <- fdr.adjust(lpe.val, adjp="BH")
> dim(fdr.BH)

[1] 934 2

> round(fdr.BH[1:4, ],2)

FDR z.real
93086_at 0 28.47
94224 s_at 0 20.46
92830_s_at 0 20.02
94063_at 0 19.03

Resampling based FDR adjustment takes a while to run, and returns the critical z-values
and corresponding FDR. Users can decide from the table that which z.critical values to select
(from the Ipe results, here in Ipe.val) to obtain the target fdr.

> fdr.resamp <- fdr.adjust(lpe.val, adjp="resamp", iterations=2)

iteration number 1 is in progress
iteration number 1 finished
iteration number 2 is in progress
iteration number 2 finished
Computing FDR...

> fdr.resamp



target.fdr z.critical

[1,] 0.001 3.96
[2,] 0.010 2.44
[3,] 0.020 2.24
[4,] 0.030 2.08
[5,] 0.040 1.92
[6,] 0.050 1.77
[7,] 0.060 1.66
[8,] 0.070 1.53
[9,] 0.080 1.44
[10,] 0.090 1.33
[11,] 0.100 1.28
[12,] 0.150 0.99
[13,] 0.200 0.77
[14,] 0.500 0.00

Note that above table may differ slightly due to generation of ‘NULL distribution’ by resam-
pling. For each target.fdr, we can note critical z-value, above which all genes are considered
significant. For example, in the above table, to obtain all the genes with FDR less than or
equal to 5%, identify the z.critical corresponding to 5%, (=1.77), and subselect all the
genes obtained from LPE-method (section 2.6) for which absolute value of z.statistics is
greater than 1.77.

Finally, here is an example of Bonferroni correction (sorted in order of significance):

> Bonferroni.adjp <- fdr.adjust(lpe.val, adjp="Bonferroni")
> head(Bonferroni.adjp)

FDR z.real
93086_at 1.161547e-183 28.47
94224 _s_at 3.310302e-87 20.46
92830_s_at 1.298127e-83 20.02
94063_at 7.768063e-79 19.03
94304 _at 1.626826e-64 17.97
92642_at 5.485022e-54 16.24

3 Discussion

Using our LPE approach, the sensitivity of detecting subtle expression changes can be dra-
matically increased and differential gene expression patterns can be identified with both small
false-positive and small false-negative error rates. This is because, in contrast to the individ-
ual gene’s error variance, the local pooled error variance can be estimated very accurately.
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