Package ‘tidySpatialExperiment’

November 4, 2025

Type Package
Title SpatialExperiment with tidy principles
Version 1.7.1

Description tidySpatialExperiment provides a bridge between the SpatialExperiment package and the
tidyverse ecosystem. It creates an invisible layer that allows you to interact with a
SpatialExperiment object as if it were a tibble; enabling the use of functions from dplyr,
tidyr, ggplot2 and plotly. But, underneath, your data remains a SpatialExperiment object.

License GPL (>=3)

Depends R (>=4.3.0), SpatialExperiment, tidySingleCellExperiment,
ttservice

Imports SummarizedExperiment, SingleCellExperiment, BiocGenerics,
S4Vectors, methods, utils, pkgconfig, tibble, dplyr, tidyr,
ggplot2 (>=4.0.0), plotly, rlang, purrr, stringr, vctrs,
tidyselect, pillar, cli, fansi, lifecycle, magick, tidygate (>=
1.0.13), shiny

Suggests BiocStyle, testthat, knitr, markdown, scater, igraph,
cowplot, DropletUtils, tidySummarizedExperiment

VignetteBuilder knitr
Biarch true

biocViews Infrastructure, RNASeq, GeneExpression, Sequencing, Spatial,
Transcriptomics, SingleCell

Encoding UTF-8
RoxygenNote 7.3.3
Roxygen list(markdown = TRUE)

URL https://github.com/william-hutchison/tidySpatialExperiment,
https://william-hutchison.github.io/tidySpatialExperiment/

BugReports https://github.com/william-hutchison/tidySpatialExperiment/issues
LazyData true

git_url https://git.bioconductor.org/packages/tidySpatialExperiment

git_branch devel

https://github.com/william-hutchison/tidySpatialExperiment
https://william-hutchison.github.io/tidySpatialExperiment/
https://github.com/william-hutchison/tidySpatialExperiment/issues

2 Contents

git_last_commit 9871264
git_last_commit_date 2025-11-02
Repository Bioconductor 3.23
Date/Publication 2025-11-03

Author William Hutchison [aut, cre] (ORCID:
<https://orcid.org/0009-0001-6242-4269>),
Stefano Mangiola [aut]

Maintainer William Hutchison <hutchison.w@wehi.edu.au>

Contents
add_class e 3
add_count.SpatialExperiment 3
aggregate_cells L 4
AITANGE .« o v o v v e e e e e e e e e e e e e e e 5
as_tibble oL e s 6
bind_cols e 8
bind_rows 8
demo_brush_data 9
demo_select_data 9
distinct L 10
drop_class e 10
ellipse e e e 11
EXITACT . . o o e e e e e e 12
filter e e e e 13
formatting e 15
BAC . . . e e e 16
gate_INnteractive e e 17
ate_Programmatic v v e e e e e e e e e e e e e e e e 18
geplot . . L e 19
glimpse e 20
group_by . oL e 20
INNET_JOIN o i o it e e e e e e e e e e e e e e e e e e 22
join_features L 24
left_join e 25
MULALE o oo e e e e e e e e e e 28
NESE . o v o e e e e e e e e e e e e e e e 30
pivot_longer L 31
PlOt_ly . . o e e e e e e 32
pull . . 35
QUO_NAMES .+ .« v v v v e 35
rectangle L e e e e e e e 36
TENAME . & o o v v v e v e e e e e e e e e e e e e e e e 36
right join L e 37
TOWWISE © v v v v v e i e 40

sample_n 41

https://orcid.org/0009-0001-6242-4269

add_class 3

Select . . oL e e e e 42
SEPATALEt e 46
SHICE . . . L e e e 48
SUMMATIISE &+ v v v v v e v e e e e e e e e e e e e e e e 49
tbl_format_header 50
UNIEE . . . o o e e e e 51
UNNESE . . o o v o e e e e e e e e e e e 52

Index 54

add_class Add class to abject
Description
Add class to abject

Usage

add_class(var, name)

Arguments

var A tibble

name A character name of the attribute
Value

A tibble with an additional attribute

add_count.SpatialExperiment
Count the observations in each group

Description

count() lets you quickly count the unique values of one or more variables: df %>% count(a,
b) is roughly equivalent to df %>% group_by(a, b) %>% summarise(n=n()). count() is paired
with tally(), a lower-level helper that is equivalent to df %>% summarise(n =n()). Supply wt to
perform weighted counts, switching the summary from n = n() to n = sum(wt).

add_count() and add_tally() are equivalents to count () and tally() but use mutate() instead
of summarise() so that they add a new column with group-wise counts.
Usage

S3 method for class 'SpatialExperiment'
add_count(x, ..., wt = NULL, sort = FALSE, name = NULL)

4 aggregate_cells

Arguments
X A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).
<data-masking> Variables to group by.
wt <data-masking> Frequency weights. Can be NULL or a variable:
e If NULL (the default), counts the number of rows in each group.
* If a variable, computes sum(wt) for each group.
sort If TRUE, will show the largest groups at the top.
name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will use
nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding ns until
it gets a new name.
Value

An object of the same type as .data. count() and add_count() group transiently, so the output
has the same groups as the input.

Examples

example(read10xVisium)
spe |>

count()
spe |>

add_count()

aggregate_cells Aggregate cells

Description

Combine cells into groups based on shared variables and aggregate feature counts.

Arguments
.data A tidySpatialExperiment object
.sample A vector of variables by which cells are aggregated
slot The slot to which the function is applied
assays The assay to which the function is applied

aggregation_function
The method of cell-feature value aggregation

Value

A SummarizedExperiment object

arrange 5

Examples

example(read10xVisium)

spe |>
aggregate_cells(sample_id, assays = "counts")
arrange Order rows using column values
Description

arrange () orders the rows of a data frame by the values of selected columns.

Unlike other dplyr verbs, arrange() largely ignores grouping; you need to explicitly mention
grouping variables (or use .by_group = TRUE) in order to group by them, and functions of vari-
ables are evaluated once per data frame, not once per group.

Details

Missing values:
Unlike base sorting with sort(), NA are:

* always sorted to the end for local data, even when wrapped with desc().

* treated differently for remote data, depending on the backend.

Value
An object of the same type as .data. The output has the following properties:
* All rows appear in the output, but (usually) in a different place.
* Columns are not modified.

* Groups are not modified.

 Data frame attributes are preserved.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: mutate(), rename(), slice(), summarise()

6 as_tibble

Examples

example(read10xVisium)

spe |>
arrange(array_row)

as_tibble Coerce lists, matrices, and more to data frames

Description

as_tibble() turns an existing object, such as a data frame or matrix, into a so-called tibble, a data
frame with class tb1l_df. This is in contrast with tibble (), which builds a tibble from individual
columns. as_tibble() isto tibble() as base::as.data.frame() is to base: :data.frame().

as_tibble() is an S3 generic, with methods for:
* data.frame: Thin wrapper around the 1ist method that implements tibble’s treatment of
rownames.
e matrix, poly, ts, table
* Default: Other inputs are first coerced with base: :as.data.frame().
as_tibble_row() converts a vector to a tibble with one row. If the input is a list, all elements must
have size one.

as_tibble_col () converts a vector to a tibble with one column.

Usage
S3 method for class 'SpatialExperiment'
as_tibble(
X,
.name_repair = c("check_unique"”, "unique”, "universal”, "minimal"”),
rownames = pkgconfig::get_config("tibble::rownames”, NULL)
)
Arguments
X A data frame, list, matrix, or other object that could reasonably be coerced to a

tibble.
Unused, for extensibility.
.name_repair Treatment of problematic column names:

* "minimal”: No name repair or checks, beyond basic existence,

e "unique”: Make sure names are unique and not empty,

* "check_unique": (default value), no name repair, but check they are unique,
* "universal”: Make the names unique and syntactic

as_tibble 7

e "unique_quiet": Same as "unique”, but "quiet"
e "universal_quiet”: Same as "universal”, but "quiet"

* a function: apply custom name repair (e.g., .name_repair = make.names
for names in the style of base R).

* A purrr-style anonymous function, see rlang: :as_function()

This argument is passed on as repair to vctrs::vec_as_names(). See there
for more details on these terms and the strategies used to enforce them.

rownames How to treat existing row names of a data frame or matrix:

e NULL: remove row names. This is the default.
* NA: keep row names.

* A string: the name of a new column. Existing rownames are transferred
into this column and the row.names attribute is deleted. No name repair is
applied to the new column name, even if x already contains a column of that
name. Use as_tibble(rownames_to_column(...)) to safeguard against
this case.

Read more in rownames.

Value

tibble

Row names

The default behavior is to silently remove row names.
New code should explicitly convert row names to a new column using the rownames argument.

I

For existing code that relies on the retention of row names, call pkgconfig: :set_config(”tibble: : rownames’
=NA) in your script or in your package’s .onLoad() function.

Life cycle

Using as_tibble () for vectors is superseded as of version 3.0.0, prefer the more expressive as_tibble_row()
and as_tibble_col () variants for new code.

See Also

tibble () constructs a tibble from individual columns. enframe () converts a named vector to a tib-
ble with a column of names and column of values. Name repair is implemented using vctrs: : vec_as_names ().

Examples

example(read10xVisium)
spe |>
as_tibble()

8 bind_rows

bind_cols Efficiently bind multiple data frames by row and column

Description
This is an efficient implementation of the common pattern of ‘do.call(rbind, dfs)‘ or ‘do.call(cbind,
dfs)‘ for binding many data frames into one.

This is an efficient implementation of the common pattern of ‘do.call(rbind, dfs)‘ or ‘do.call(cbind,
dfs)‘ for binding many data frames into one.

Details

The output of ‘bind_rows() will contain a column if that column appears in any of the inputs.

The output of ‘bind_rows()‘ will contain a column if that column appears in any of the inputs.

Value

‘bind_rows()‘ and ‘bind_cols()‘ return the same type as the first input, either a data frame, ‘tbl_df*,
or ‘grouped_df*.

‘bind_rows()‘ and ‘bind_cols()‘ return the same type as the first input, either a data frame, ‘tbl_df*,
or ‘grouped_df*.

Examples

Note: "dplyr"” does not provide a generic function for “bind_cols™. Therefore, the generic
function “bind_cols™ located in "ttservice” should be called explicitly with
“ttservice::bind_cols”™ to avoid conflicts.

example(read10xVisium)
spe |>
ttservice::bind_cols(1:99)

bind_rows Efficiently bind multiple data frames by row and column

Description

This is an efficient implementation of the common pattern of ‘do.call(rbind, dfs)‘ or ‘do.call(cbind,
dfs)‘ for binding many data frames into one.

This is an efficient implementation of the common pattern of ‘do.call(rbind, dfs)‘ or ‘do.call(cbind,
dfs)‘ for binding many data frames into one.

Details

The output of ‘bind_rows()‘ will contain a column if that column appears in any of the inputs.

The output of ‘bind_rows()* will contain a column if that column appears in any of the inputs.

demo_brush_data 9

Value

‘bind_rows()‘ and ‘bind_cols()‘ return the same type as the first input, either a data frame, ‘tbl_df*,
or ‘grouped_df*.

‘bind_rows()‘ and ‘bind_cols()‘ return the same type as the first input, either a data frame, ‘tbl_df*,
or ‘grouped_df*.

Examples

Note: "dplyr"” does not provide a generic function for “bind_rows™. Therefore, the generic
function “bind_rows™ located in "ttservice” should be called explicitly with
“ttservice::bind_rows™ to avoid conflicts.

example(read10xVisium)
spe |>
ttservice: :bind_rows(spe)

demo_brush_data Demo brush data

Description

Demo brush data

Usage

demo_brush_data

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 30 rows and 3
columns.

demo_select_data Demo select data

Description

Demo select data

Usage

demo_select_data

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 5 rows and 4
columns.

10 drop_class

distinct Keep distinct/unique rows

Description

Keep only unique/distinct rows from a data frame. This is similar to unique.data.frame() but
considerably faster.

Value
An object of the same type as .data. The output has the following properties:

* Rows are a subset of the input but appear in the same order.

* Columns are not modified if . . . is empty or . keep_all is TRUE. Otherwise, distinct() first
calls mutate() to create new columns.

* Groups are not modified.

e Data frame attributes are preserved.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

example(read10xVisium)
spe |>
distinct(sample_id)

drop_class Remove class to abject

Description

Remove class to abject

Usage

drop_class(var, name)

Arguments

var A tibble

name A character name of the class

ellipse 11

Value

A tibble with an additional attribute

ellipse Ellipse Gating Function

Description

Function to create an ellipse gate in a SpatialExperiment object

Usage

ellipse(spatial_coordl, spatial_coord2, center, axes_lengths)

Arguments

spatial_coordl Numeric vector for x-coordinates
spatial_coord2 Numeric vector for y-coordinates
center Numeric vector (length 2) for ellipse center (X, y)

axes_lengths Numeric vector (length 2) for the lengths of the major and minor axes of the
ellipse

Value

Logical vector indicating points within the ellipse

Examples

example(read10xVisium)
spe |>
mutate(in_ellipse = ellipse(
array_col, array_row, center = c(50, 50), axes_lengths = c(20, 10))

)

12 extract

extract Extract a character column into multiple columns using regular ex-
pression groups

Description

[Superseded]

extract() has been superseded in favour of separate_wider_regex() because it has a more
polished API and better handling of problems. Superseded functions will not go away, but will only
receive critical bug fixes.

Given a regular expression with capturing groups, extract() turns each group into a new column.
If the groups don’t match, or the input is NA, the output will be NA.

Usage

S3 method for class 'SpatialExperiment'
extract(

data,

col,

into,

regex = "([[:alnum:]]+)",

remove = TRUE,

convert = FALSE,

)
Arguments
data A data frame.
col <tidy-select> Column to expand.
into Names of new variables to create as character vector. Use NA to omit the variable
in the output.
regex A string representing a regular expression used to extract the desired values.
There should be one group (defined by ()) for each element of into.
remove If TRUE, remove input column from output data frame.
convert If TRUE, will run type.convert() with as.is = TRUE on new columns. This is
useful if the component columns are integer, numeric or logical.
NB: this will cause string "NA"s to be converted to NAs.
Additional arguments passed on to methods.
Value

tidySpatialExperiment

filter 13

See Also

separate() to split up by a separator.

Examples

example(read10xVisium)
spe |>
extract(col = array_row, into = "A", regex = "([[:digit:J13)")

filter Keep rows that match a condition

Description

The filter () function is used to subset a data frame, retaining all rows that satisfy your conditions.
To be retained, the row must produce a value of TRUE for all conditions. Note that when a condition
evaluates to NA the row will be dropped, unlike base subsetting with [.

Usage
S3 method for class 'SpatialExperiment'
filter(.data, ..., .preserve = FALSE)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.

from dbplyr or dtplyr). See Methods, below, for more details.

<data-masking> Expressions that return a logical value, and are defined in
terms of the variables in .data. If multiple expressions are included, they are
combined with the & operator. Only rows for which all conditions evaluate to
TRUE are kept.

.preserve Relevant when the . data input is grouped. If . preserve = FALSE (the default),
the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

Details

The filter() function is used to subset the rows of .data, applying the expressions in ... to
the column values to determine which rows should be retained. It can be applied to both grouped
and ungrouped data (see group_by() and ungroup()). However, dplyr is not yet smart enough to
optimise the filtering operation on grouped datasets that do not need grouped calculations. For this
reason, filtering is often considerably faster on ungrouped data.

14 filter

Value

An object of the same type as .data. The output has the following properties:

* Rows are a subset of the input, but appear in the same order.
¢ Columns are not modified.
* The number of groups may be reduced (if . preserve is not TRUE).

* Data frame attributes are preserved.

Useful filter functions

There are many functions and operators that are useful when constructing the expressions used to
filter the data:

o ==, >’ >=etc
° &5 I’ !5X0r()
* is.na()

e between(), near()

Grouped tibbles

Because filtering expressions are computed within groups, they may yield different results on
grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is
involved. Compare this ungrouped filtering:

starwars %>% filter(mass > mean(mass, na.rm = TRUE))
With the grouped equivalent:
starwars %>% group_by(gender) %>% filter(mass > mean(mass, na.rm = TRUE))

In the ungrouped version, filter () compares the value of mass in each row to the global average
(taken over the whole data set), keeping only the rows with mass greater than this global average.
In contrast, the grouped version calculates the average mass separately for each gender group, and
keeps rows with mass greater than the relevant within-gender average.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: arrange(), mutate(), reframe(), rename(), select(), slice(), summarise()

formatting 15

Examples

example(read10xVisium)
spe |>
filter(in_tissue == TRUE)

formatting Printing tibbles

Description

One of the main features of the tb1_df class is the printing:

* Tibbles only print as many rows and columns as fit on one screen, supplemented by a summary
of the remaining rows and columns.

* Tibble reveals the type of each column, which keeps the user informed about whether a
variable is, e.g., <chr> or <fct> (character versus factor). See vignette("types") for an
overview of common type abbreviations.

Printing can be tweaked for a one-off call by calling print() explicitly and setting arguments

like n and width. More persistent control is available by setting the options described in pil-
lar::pillar_options. See also vignette("digits") for a comparison to base options, and vignette("numbers")
that showcases num() and char () for creating columns with custom formatting options.

As of tibble 3.1.0, printing is handled entirely by the pillar package. If you implement a package
that extends tibble, the printed output can be customized in various ways. See vignette("extending”,
package = "pillar") for details, and pillar::pillar_options for options that control the display in
the console.

Usage
S3 method for class 'SpatialExperiment'
print(x, ..., n = NULL, width = NULL)
Arguments
X Object to format or print.

These dots are for future extensions and must be empty.

n Number of rows to show. If NULL, the default, will print all rows if less than
the print_max option. Otherwise, will print as many rows as specified by the
print_min option.

width Width of text output to generate. This defaults to NULL, which means use the
width option.

Value

Prints a message to the console describing the contents of the tidySpatialExperiment.

16 gate

Examples

example(read10xVisium)
spe |>
print()

gate Interactively gate cells by spatial coordinates

Description

Gate cells based on their X and Y coordinates. By default, this function launches an interactive
scatter plot with image data overlaid. Colour, shape, size and alpha can be defined as constant
values, or can be controlled by the values of a specified column.

If previously drawn gates are supplied to the programmatic_gates argument, cells will be gated
programmatically. This feature allows the reproduction of previously drawn interactive gates. Pro-
grammatic gating is based on the package gatepoints by Wajid Jawaid.

Usage

gate(
spe,
image_index = 1,
colour = NULL,
shape = NULL,
alpha = 1,
size = 2,
hide_points = FALSE,
programmatic_gates = NULL

)
Arguments

spe A SpatialExperiment object.

image_index The image to display if multiple are stored within the provided SpatialExperi-
ment object.

colour A single colour string compatible with ggplot2. Or, a vector representing the
point colour.

shape A single ggplot2 shape numeric ranging from 0 to 127. Or, a vector representing
the point shape, coercible to a factor of 6 or less levels.

alpha A single ggplot2 alpha numeric ranging from O to 1.

size A single ggplot2 size numeric ranging from 0 to 20.

hide_points A logical. If TRUE, points are hidden during interactive gating. This can greatly
improve performance with large SpatialExperiment objects.

gate_interactive 17

programmatic_gates
A data.frame of the gate brush data, as saved in tidygate_env$gates. The
column x records X coordinates, the column y records Y coordinates and the
column . gate records the gate number. When this argument is supplied, gates
will be drawn programmatically.

Value

A vector of strings, of the gates each X and Y coordinate pair is within. If gates are drawn interac-
tively, they are temporarily saved to tidygate_env$gates.

Examples

example(read10xVisium)
data(demo_brush_data, package = "tidySpatialExperiment"”)

Gate points interactively
if(interactive()) {
spe |>
gate(colour = "blue”, shape = "in_tissue")

}

Gate points programmatically
spe |>
gate(programmatic_gates = demo_brush_data)

gate_interactive Gate interactive

Description

Interactively gate points by their location in space, with image data overlaid.

Usage

gate_interactive(spe, image_index, colour, shape, alpha, size, hide_points)

Arguments
spe A SpatialExperiment object.
image_index The image to display if multiple are stored within the provided SpatialExperi-
ment object.
colour A single colour string compatible with ggplot2. Or, a vector representing the
point colour.
shape A single ggplot2 shape numeric ranging from O to 127. Or, a vector representing

the point shape, coercible to a factor of 6 or less levels.

alpha A single ggplot2 alpha numeric ranging from O to 1.

18 gate_programmatic

size A single ggplot2 size numeric ranging from 0 to 20.

hide_points A logical. If TRUE, points are hidden during interactive gating. This can greatly
improve performance with large SpatialExperiment objects.

Value

The input SpatialExperiment object with a new column . gated, recording the gates each X and Y
coordinate pair is within. If gates are drawn interactively, they are temporarily saved to tidygate_env$gates

Examples

example(read10xVisium)
data(demo_brush_data, package = "tidySpatialExperiment"”)

if(interactive()) {

spe |>
gate(colour = "blue”, shape = "in_tissue")
3
gate_programmatic Gate spatial data with pre-recorded lasso selection coordinates
Description

A helpful way to repeat previous interactive lasso selections to enable reproducibility. Program-
matic gating is based on the package gatepoints by Wajid Jawaid.
Usage

gate_programmatic(spe, programmatic_gates)

Arguments

spe A SpatialExperiment object

programmatic_gates
A data. frame recording the gate brush data, as output by tidygate_env$gates.
The column x records X coordinates, the column y records Y coordinates and
the column . gated records the gate.

Value

The input SpatialExperiment object with a new column . gated, recording the gates each X and Y
coordinate pair is within.

https://github.com/wjawaid/gatepoints

ggplot 19

Examples

example(read10xVisium)
data(demo_brush_data, package = "tidySpatialExperiment"”)

spe |>
gate(programmatic_gates = demo_brush_data)

ggplot Create a new ggplot from a tidySpatialExperiment

Description

ggplot () initializes a ggplot object. It can be used to declare the input data frame for a graphic and
to specify the set of plot aesthetics intended to be common throughout all subsequent layers unless
specifically overridden.

Details

ggplot () is used to construct the initial plot object, and is almost always followed by a plus sign
(+) to add components to the plot.

There are three common patterns used to invoke ggplot():
* ggplot(data = df, mapping = aes(x, y, other aesthetics))
* ggplot(data =df)
* ggplot()

The first pattern is recommended if all layers use the same data and the same set of aesthetics,
although this method can also be used when adding a layer using data from another data frame.

The second pattern specifies the default data frame to use for the plot, but no aesthetics are defined
up front. This is useful when one data frame is used predominantly for the plot, but the aesthetics
vary from one layer to another.

The third pattern initializes a skeleton ggplot object, which is fleshed out as layers are added. This
is useful when multiple data frames are used to produce different layers, as is often the case in
complex graphics.

The data = and mapping = specifications in the arguments are optional (and are often omitted in
practice), so long as the data and the mapping values are passed into the function in the right order.
In the examples below, however, they are left in place for clarity.

Value

ggplot

See Also

The first steps chapter of the online ggplot2 book.

https://ggplot2-book.org/getting-started

20 group_by

Examples

example(read10xVisium)

spe |>
ggplot(ggplot2::aes(x = .cell, y = array_row)) +
ggplot2: :geom_point()

glimpse Get a glimpse of your data

Description

glimpse() is like a transposed version of print(): columns run down the page, and data runs
across. This makes it possible to see every column in a data frame. It’s a little like str() applied to
a data frame but it tries to show you as much data as possible. (And it always shows the underlying
data, even when applied to a remote data source.)

See format_glimpse() for details on the formatting.

Value

x original x is (invisibly) returned, allowing glimpse () to be used within a data pipe line.

S3 methods

glimpse is an S3 generic with a customised method for tbls and data.frames, and a default
method that calls str().

Examples

example(read10xVisium)
spe |>
glimpse()

group_by Group by one or more variables

Description

Most data operations are done on groups defined by variables. group_by() takes an existing tbl
and converts it into a grouped tbl where operations are performed "by group". ungroup() removes

grouping.
Value

A grouped data frame with class grouped_df, unless the combination of . . . and add yields a empty
set of grouping columns, in which case a tibble will be returned.

group_by 21

Methods

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

e group_by(): no methods found.

¢ ungroup(): no methods found.

Ordering

Currently, group_by() internally orders the groups in ascending order. This results in ordered
output from functions that aggregate groups, such as summarise().

When used as grouping columns, character vectors are ordered in the C locale for performance
and reproducibility across R sessions. If the resulting ordering of your grouped operation matters
and is dependent on the locale, you should follow up the grouped operation with an explicit call to
arrange() and set the .locale argument. For example:

data %>%
group_by(chr) %>%
summarise(avg = mean(x)) %>%
arrange(chr, .locale = "en")

This is often useful as a preliminary step before generating content intended for humans, such as an
HTML table.

Legacy behavior:

Prior to dplyr 1.1.0, character vector grouping columns were ordered in the system locale. If you
need to temporarily revert to this behavior, you can set the global option dplyr.legacy_locale
to TRUE, but this should be used sparingly and you should expect this option to be removed in a
future version of dplyr. It is better to update existing code to explicitly call arrange(.locale =
) instead. Note that setting dplyr.legacy_locale will also force calls to arrange() to use the
system locale.

See Also

Other grouping functions: group_map(), group_nest(), group_split(), group_trim()

Examples

example(read10xVisium)
spe |>
group_by(sample_id)

22 inner_join

inner_join Mutating joins

Description

Mutating joins add columns from y to x, matching observations based on the keys. There are four
mutating joins: the inner join, and the three outer joins.

Inner join:

An inner_join() only keeps observations from x that have a matching key in y.

The most important property of an inner join is that unmatched rows in either input are not in-
cluded in the result. This means that generally inner joins are not appropriate in most analyses,
because it is too easy to lose observations.

Outer joins:

The three outer joins keep observations that appear in at least one of the data frames:
e A left_join() keeps all observations in Xx.
* Aright_join() keeps all observations in y.
e A full_join() keeps all observations in x and y.

Usage

S3 method for class 'SpatialExperiment'’

inner_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
Arguments
X,y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.
by A join specification created with join_by(), or a character vector of variables

to join by.

If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.

To join on different variables between x and y, use a join_by() specification.
For example, join_by(a ==b) will match x$a to y$b.

To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a==b, c ==d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).

join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.

For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c(”"x_a" ="y_a", "x_b" ="y_b").

To perform a cross-join, generating all combinations of x and y, see cross_join().

inner_join 23

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

Other parameters passed onto methods.

Value

An object of the same type as x (including the same groups). The order of the rows and columns of
x is preserved as much as possible. The output has the following properties:

* The rows are affect by the join type.

inner_join() returns matched x rows.

left_join() returns all x rows.

right_join() returns matched of x rows, followed by unmatched y rows.

full_join() returns all x rows, followed by unmatched y rows.

* Output columns include all columns from x and all non-key columns from y. If keep = TRUE,
the key columns from y are included as well.

* If non-key columns in x and y have the same name, suffixes are added to disambiguate.
If keep = TRUE and key columns in x and y have the same name, suffixes are added to
disambiguate these as well.

* If keep = FALSE, output columns included in by are coerced to their common type between x
and y.

Many-to-many relationships

By default, dplyr guards against many-to-many relationships in equality joins by throwing a warn-
ing. These occur when both of the following are true:

* A row in x matches multiple rows in y.

* A row in y matches multiple rows in x.

This is typically surprising, as most joins involve a relationship of one-to-one, one-to-many, or
many-to-one, and is often the result of an improperly specified join. Many-to-many relationships
are particularly problematic because they can result in a Cartesian explosion of the number of rows
returned from the join.

If a many-to-many relationship is expected, silence this warning by explicitly setting relationship
= "many-to-many".

In production code, it is best to preemptively set relationship to whatever relationship you expect
to exist between the keys of x and y, as this forces an error to occur immediately if the data doesn’t
align with your expectations.

Inequality joins typically result in many-to-many relationships by nature, so they don’t warn on
them by default, but you should still take extra care when specifying an inequality join, because
they also have the capability to return a large number of rows.

24 Jjoin_features

Rolling joins don’t warn on many-to-many relationships either, but many rolling joins follow a
many-to-one relationship, so it is often useful to set relationship = "many-to-one” to enforce
this.

Note that in SQL, most database providers won’t let you specify a many-to-many relationship be-
tween two tables, instead requiring that you create a third junction table that results in two one-to-
many relationships instead.

Methods

These functions are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

e inner_join(): no methods found.
e left_join(): no methods found.

e right_join(): no methods found.

full_join(): no methods found.

See Also

Other joins: cross_join(), filter-joins, nest_join()

Examples

example(read10xVisium)

spe |>
inner_join(
spe |>
filter(in_tissue == TRUE) |>
mutate(new_column = 1)
)
join_features Extract and join information for features.
Description

join_features() extracts and joins information for specified features

left_join 25

Arguments
.data A SpatialExperiment object
features A vector of feature identifiers to join
all If TRUE return all

exclude_zeros If TRUE exclude zero values
shape Format of the returned table "long" or "wide"

Parameters to pass to join wide, i.e. assay name to extract feature abundance
from and gene prefix, for shape="wide"

Details
This function extracts information for specified features and returns the information in either long
or wide format.

Value

An object containing the information.for the specified features

Examples

example(read10xVisium)
spe |>
join_features(features = "ENSMUSG0Q000025900")

left_join Mutating joins

Description

Mutating joins add columns from y to x, matching observations based on the keys. There are four
mutating joins: the inner join, and the three outer joins.

Inner join:
An inner_join() only keeps observations from x that have a matching key in y.

The most important property of an inner join is that unmatched rows in either input are not in-
cluded in the result. This means that generally inner joins are not appropriate in most analyses,
because it is too easy to lose observations.

Outer joins:

The three outer joins keep observations that appear in at least one of the data frames:
* A left_join() keeps all observations in Xx.
e Aright_join() keeps all observations in y.
e A full_join() keeps all observations in x and y.

26 left_join

Usage
S3 method for class 'SpatialExperiment'
left_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
Arguments
X,y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.
by A join specification created with join_by(), or a character vector of variables
to join by.

If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.

To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.

To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a ==b, c ==d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).

join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.

For simple equality joins, you can alternatively specify a character vector of

variable names to join by. For example, by = c("a", "b") joins x$a to y$a and

x$b to y$b. If variable names differ between x and y, use a named character

vector like by = c("x_a" ="y_a", "x_b" ="y_b").

To perform a cross-join, generating all combinations of x and y, see cross_join().
copy If x and y are not from the same data source, and copy is TRUE, then y will be

copied into the same src as x. This allows you to join tables across srcs, but it is

a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

Other parameters passed onto methods.

Value

An object of the same type as x (including the same groups). The order of the rows and columns of
x is preserved as much as possible. The output has the following properties:

* The rows are affect by the join type.

inner_join() returns matched x rows.

left_join() returns all x rows.

right_join() returns matched of x rows, followed by unmatched y rows.

full_join() returns all x rows, followed by unmatched y rows.

* Output columns include all columns from x and all non-key columns from y. If keep = TRUE,
the key columns from y are included as well.

left_join 27

* If non-key columns in x and y have the same name, suffixes are added to disambiguate.
If keep = TRUE and key columns in x and y have the same name, suffixes are added to
disambiguate these as well.

o If keep = FALSE, output columns included in by are coerced to their common type between x
and y.

Many-to-many relationships

By default, dplyr guards against many-to-many relationships in equality joins by throwing a warn-
ing. These occur when both of the following are true:

* A row in x matches multiple rows in y.

* A row in y matches multiple rows in x.
This is typically surprising, as most joins involve a relationship of one-to-one, one-to-many, or
many-to-one, and is often the result of an improperly specified join. Many-to-many relationships

are particularly problematic because they can result in a Cartesian explosion of the number of rows
returned from the join.

If a many-to-many relationship is expected, silence this warning by explicitly setting relationship
= "many-to-many".

In production code, it is best to preemptively set relationship to whatever relationship you expect
to exist between the keys of x and y, as this forces an error to occur immediately if the data doesn’t
align with your expectations.

Inequality joins typically result in many-to-many relationships by nature, so they don’t warn on
them by default, but you should still take extra care when specifying an inequality join, because
they also have the capability to return a large number of rows.

Rolling joins don’t warn on many-to-many relationships either, but many rolling joins follow a
many-to-one relationship, so it is often useful to set relationship = "many-to-one"” to enforce
this.

Note that in SQL, most database providers won’t let you specify a many-to-many relationship be-
tween two tables, instead requiring that you create a third junction table that results in two one-to-
many relationships instead.

Methods

These functions are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

e inner_join(): no methods found.
e left_join(): no methods found.
e right_join(): no methods found.
e full_join(): no methods found.

See Also

Other joins: cross_join(), filter-joins, nest_join()

28 mutate

Examples

example(read10xVisium)

spe |>
left_join(
spe |>
filter(in_tissue == TRUE) |>
mutate(new_column = 1)
)
mutate Create, modify, and delete columns
Description

mutate() creates new columns that are functions of existing variables. It can also modify (if the
name is the same as an existing column) and delete columns (by setting their value to NULL).

Usage
S3 method for class 'SpatialExperiment'
mutate(.data, ...)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.

from dbplyr or dtplyr). See Methods, below, for more details.
<data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:
* A vector of length 1, which will be recycled to the correct length.
* A vector the same length as the current group (or the whole data frame if
ungrouped).
¢ NULL, to remove the column.
* A data frame or tibble, to create multiple columns in the output.

Value
An object of the same type as .data. The output has the following properties:

* Columns from .data will be preserved according to the . keep argument.

* Existing columns that are modified by . .. will always be returned in their original location.
* New columns created through . .. will be placed according to the .before and . after argu-
ments.

* The number of rows is not affected.

* Columns given the value NULL will be removed.

* Groups will be recomputed if a grouping variable is mutated.
 Data frame attributes are preserved.

mutate 29

Useful mutate functions

* +, -, log(), etc., for their usual mathematical meanings
lead(), lag()

e dense_rank(), min_rank(), percent_rank(), row_number(), cume_dist(), ntile()

e cumsum(), cummean(), cummin(), cummax(), cumany(), cumall ()
* na_if (), coalesce()

e if_else(), recode(), case_when()

Grouped tibbles

Because mutating expressions are computed within groups, they may yield different results on
grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is
involved. Compare this ungrouped mutate:

starwars %>%
select(name, mass, species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

With the grouped equivalent:

starwars %>%
select(name, mass, species) %>%
group_by(species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

The former normalises mass by the global average whereas the latter normalises by the averages
within species levels.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

Methods available in currently loaded packages: no methods found.

See Also

Other single table verbs: arrange(), rename(), slice(), summarise()

Examples

example(read10xVisium)
spe |>
mutate(array_col = 1)

30 nest

nest Nest rows into a list-column of data frames

Description

Nesting creates a list-column of data frames; unnesting flattens it back out into regular columns.
Nesting is implicitly a summarising operation: you get one row for each group defined by the non-
nested columns. This is useful in conjunction with other summaries that work with whole datasets,
most notably models.

Learn more in vignette("nest").

Usage
S3 method for class 'SpatialExperiment'
nest(.data, ..., .names_sep = NULL)
Arguments
.data A data frame.

<tidy-select> Columns to nest; these will appear in the inner data frames.
Specified using name-variable pairs of the form new_col = c(col1, col2, col3).
The right hand side can be any valid tidyselect expression.

If not supplied, then . . . is derived as all columns noft selected by .by, and will
use the column name from . key.

[Deprecated]: previously you could write df %>% nest(x, y, z). Convert to
df %>% nest(data=c(x, y, 2)).

.names_sep If NULL, the default, the inner names will come from the former outer names. If
a string, the new inner names will use the outer names with names_sep auto-
matically stripped. This makes names_sep roughly symmetric between nesting
and unnesting.

Details
If neither ... nor .by are supplied, nest() will nest all variables, and will use the column name
supplied through . key.

Value

tidySpatialExperiment_nested

New syntax

tidyr 1.0.0 introduced a new syntax for nest() and unnest() that’s designed to be more similar
to other functions. Converting to the new syntax should be straightforward (guided by the message
you’ll receive) but if you just need to run an old analysis, you can easily revert to the previous
behaviour using nest_legacy() and unnest_legacy() as follows:

pivot_longer 31

library(tidyr)
nest <- nest_legacy
unnest <- unnest_legacy

Grouped data frames

df %>% nest(data = c(x, y)) specifies the columns to be nested; i.e. the columns that will appear
in the inner data frame. df %>% nest(.by = c(x, y)) specifies the columns to nest by; i.e. the
columns that will remain in the outer data frame. An alternative way to achieve the latter is to
nest() a grouped data frame created by dplyr: :group_by(). The grouping variables remain in
the outer data frame and the others are nested. The result preserves the grouping of the input.

Variables supplied to nest () will override grouping variables so that df %>% group_by(x, y) %>%
nest(data = !z) will be equivalent to df %>% nest(data=1z).

You can’t supply .by with a grouped data frame, as the groups already represent what you are
nesting by.

Examples

example(read10xVisium)
spe |>
nest(data = -sample_id)

pivot_longer Pivot data from wide to long

Description

pivot_longer() "lengthens" data, increasing the number of rows and decreasing the number of
columns. The inverse transformation is pivot_wider ()

Learn more in vignette("pivot").

Details

pivot_longer() is an updated approach to gather(), designed to be both simpler to use and to
handle more use cases. We recommend you use pivot_longer() for new code; gather() isn’t
going away but is no longer under active development.

Value

tidySingleCellExperiment

Examples

example(read10xVisium)
spe |>
pivot_longer(c(array_row, array_col), names_to = "dimension”, values_to = "location")

32 plot_ly

plot_ly Initiate a plotly visualization

Description

This function maps R objects to plotly.js, an (MIT licensed) web-based interactive charting library.
It provides abstractions for doing common things (e.g. mapping data values to fill colors (via color)
or creating animations (via frame)) and sets some different defaults to make the interface feel more
’R-like’ (i.e., closer to plot() and ggplot2::gplot()).

Usage

S3 method for class 'SpatialExperiment'
plot_ly(
data = data.frame(),

L

type

= NULL,
name = NULL,
color = NULL,
colors = NULL,
alpha = NULL,

stroke = NULL,
strokes = NULL,
alpha_stroke = 1,

size = NULL,
sizes = c(10, 100),
span = NULL,

spans = c(1, 20),
symbol = NULL,
symbols = NULL,
linetype = NULL,
linetypes = NULL,

split = NULL,
frame = NULL,
width = NULL,
height = NULL,
source = "A"

)

Arguments
data A data frame (optional) or crosstalk::SharedData object.

Arguments (i.e., attributes) passed along to the trace type. See schema() for
a list of acceptable attributes for a given trace type (by going to traces ->
type -> attributes). Note that attributes provided at this level may over-
ride other arguments (e.g. plot_ly(x=1:10, y=1:10, color =I("red"),
marker = list(color = "blue"))).

https://plotly.com/javascript/

plot_ly 33

type A character string specifying the trace type (e.g. "scatter”, "bar”, "box",
etc). If specified, it always creates a trace, otherwise

name Values mapped to the trace’s name attribute. Since a trace can only have one
name, this argument acts very much like split in that it creates one trace for
every unique value.

color Values mapped to relevant ’fill-color’ attribute(s) (e.g. fillcolor, marker.color,
textfont.color, etc.). The mapping from data values to color codes may be con-
trolled using colors and alpha, or avoided altogether via I() (e.g., color =
I("red")). Any color understood by grDevices: :col2rgh() may be used in
this way.

colors Either a colorbrewer2.org palette name (e.g. "Y1OrRd" or "Blues"), or a vector
of colors to interpolate in hexadecimal "#RRGGBB" format, or a color interpo-
lation function like colorRamp().

alpha A number between 0 and 1 specifying the alpha channel applied to color. De-
faults to 0.5 when mapping to fillcolor and 1 otherwise.

stroke Similar to color, but values are mapped to relevant ’stroke-color’ attribute(s)
(e.g., marker.line.color and line.color for filled polygons). If not specified, stroke
inherits from color.

strokes Similar to colors, but controls the stroke mapping.
alpha_stroke Similar to alpha, but applied to stroke.

size (Numeric) values mapped to relevant 'fill-size’ attribute(s) (e.g., marker.size,
textfont.size, and error_x.width). The mapping from data values to symbols may
be controlled using sizes, or avoided altogether via I() (e.g., size = 1(30)).

sizes A numeric vector of length 2 used to scale size to pixels.

span (Numeric) values mapped to relevant ’stroke-size’ attribute(s) (e.g., marker.line.width,
line.width for filled polygons, and error_x.thickness) The mapping from data
values to symbols may be controlled using spans, or avoided altogether via I()
(e.g., span = 1(30)).

spans A numeric vector of length 2 used to scale span to pixels.

symbol (Discrete) values mapped to marker.symbol. The mapping from data values to
symbols may be controlled using symbols, or avoided altogether via I() (e.g.,
symbol = I("pentagon”)). Any pch value or symbol name may be used in this

way.
symbols A character vector of pch values or symbol names.
linetype (Discrete) values mapped to line.dash. The mapping from data values to sym-

bols may be controlled using linetypes, or avoided altogether via I() (e.g.,
linetype = I("dash")). Any 1ty (see par) value or dash name may be used in

this way.
linetypes A character vector of 1ty values or dash names
split (Discrete) values used to create multiple traces (one trace per value).
frame (Discrete) values used to create animation frames.
width Width in pixels (optional, defaults to automatic sizing).

height Height in pixels (optional, defaults to automatic sizing).

https://plotly.com/r/reference/#scatter-fillcolor
https://plotly.com/r/reference/#scatter-marker-color
https://plotly.com/r/reference/#scatter-textfont-color
https://plotly.com/r/reference/#scatter-fillcolor
https://plotly.com/r/reference/#scatter-marker-line-color
https://plotly.com/r/reference/#scatter-line-color
https://plotly.com/r/reference/#scatter-marker-size
https://plotly.com/r/reference/#scatter-textfont-size
https://plotly.com/r/reference/#scatter-error_x-width
https://plotly.com/r/reference/#scatter-marker-line-width
https://plotly.com/r/reference/#scatter-line-width
https://plotly.com/r/reference/#scatter-error_x-thickness
https://plotly.com/r/reference/#scatter-marker-symbol
https://plotly.com/r/reference/#scatter-marker-symbol
https://plotly.com/r/reference/#scatter-marker-symbol
https://plotly.com/r/reference/#scatter-line-dash
https://plotly.com/r/reference/#scatter-line-dash
https://plotly.com/r/reference/#scatter-line-dash

34 plot_ly

source a character string of length 1. Match the value of this string with the source
argument in event_data() to retrieve the event data corresponding to a specific
plot (shiny apps can have multiple plots).

Details

Unless type is specified, this function just initiates a plotly object with *global’ attributes that are
passed onto downstream uses of add_trace() (or similar). A formula must always be used when
referencing column name(s) in data (e.g. plot_ly(mtcars, x =~wt)). Formulas are optional
when supplying values directly, but they do help inform default axis/scale titles (e.g., plot_ly(x =
mtcars$wt) vs plot_ly(x = ~mtcars$wt))

Value

plotly

Author(s)

Carson Sievert

References

https://plotly-r.com/overview.html

See Also
* For initializing a plotly-geo object: plot_geo()
* For initializing a plotly-mapbox object: plot_mapbox ()
* For translating a ggplot2 object to a plotly object: ggplotly()
» For modifying any plotly object: layout(), add_trace(), style()
* For linked brushing: highlight ()
* For arranging multiple plots: subplot(), crosstalk: :bscols()
* For inspecting plotly objects: plotly_json()

* For quick, accurate, and searchable plotly.js reference: schema()

Examples

example(read10xVisium)
spe |>
plot_ly(x = ~ array_col, y = ~ array_row)

https://plotly-r.com/overview.html

pull 35

pull Extract a single column

Description
pull() is similar to $. It’s mostly useful because it looks a little nicer in pipes, it also works with
remote data frames, and it can optionally name the output.

Value

A vector the same size as .data.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

example(read10xVisium)
spe |>
pull(in_tissue)

quo_names Convert array of quosure (e.g. c(col_a, col_b)) into character vector

Description

Convert array of quosure (e.g. c(col_a, col_b)) into character vector

Usage

quo_names (V)

Arguments

v A array of quosures (e.g. c(col_a, col_b))

Value

A character vector

36 rename

rectangle Rectangle Gating Function

Description

Determines whether points specified by spatial coordinates are within a defined rectangle.

Usage

rectangle(spatial_coordl, spatial_coord2, center, height, width)

Arguments

spatial_coordl Numeric vector for x-coordinates (e.g., array_col)
spatial_coord2 Numeric vector for y-coordinates (e.g., array_row)

center Numeric vector of length 2 specifying the center of the rectangle (X, y)
height The height of the rectangle
width The width of the rectangle

Value

Logical vector indicating points within the rectangle

Examples

example(read10xVisium)
spe |>
mutate(in_rectangle = rectangle(
array_col, array_row, center = c(50, 50), height = 20, width = 10)
)

rename Rename columns

Description
rename () changes the names of individual variables using new_name = old_name syntax; rename_with()
renames columns using a function.

Value
An object of the same type as .data. The output has the following properties:

* Rows are not affected.

* Column names are changed; column order is preserved.
 Data frame attributes are preserved.

* Groups are updated to reflect new names.

right_join 37

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: arrange(), mutate(), slice(), summarise()

Examples

example(read10xVisium)
spe |>
rename(in_liver = in_tissue)

right_join Mutating joins

Description

Mutating joins add columns from y to x, matching observations based on the keys. There are four
mutating joins: the inner join, and the three outer joins.

Inner join:
An inner_join() only keeps observations from x that have a matching key in y.

The most important property of an inner join is that unmatched rows in either input are not in-
cluded in the result. This means that generally inner joins are not appropriate in most analyses,
because it is too easy to lose observations.

Outer joins:

The three outer joins keep observations that appear in at least one of the data frames:
* A left_join() keeps all observations in Xx.
* Aright_join() keeps all observations in y.

e A full_join() keeps all observations in x and y.

Usage

S3 method for class 'SpatialExperiment'
right_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

38 right_join

Arguments

X,y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a ==b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a==b, c ==d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" ="y_a", "x_b" ="y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

Other parameters passed onto methods.

Value

An object of the same type as x (including the same groups). The order of the rows and columns of
x is preserved as much as possible. The output has the following properties:

* The rows are affect by the join type.

inner_join() returns matched x rows.

left_join() returns all x rows.

right_join() returns matched of x rows, followed by unmatched y rows.

full_join() returns all x rows, followed by unmatched y rows.

* Output columns include all columns from x and all non-key columns from y. If keep = TRUE,
the key columns from y are included as well.

* If non-key columns in x and y have the same name, suffixes are added to disambiguate.
If keep = TRUE and key columns in x and y have the same name, suffixes are added to
disambiguate these as well.

o If keep = FALSE, output columns included in by are coerced to their common type between x
and y.

right_join 39

Many-to-many relationships

By default, dplyr guards against many-to-many relationships in equality joins by throwing a warn-
ing. These occur when both of the following are true:

* A row in x matches multiple rows in y.

* A row in y matches multiple rows in x.

This is typically surprising, as most joins involve a relationship of one-to-one, one-to-many, or
many-to-one, and is often the result of an improperly specified join. Many-to-many relationships
are particularly problematic because they can result in a Cartesian explosion of the number of rows
returned from the join.

If a many-to-many relationship is expected, silence this warning by explicitly setting relationship
= "many-to-many".

In production code, it is best to preemptively set relationship to whatever relationship you expect
to exist between the keys of x and y, as this forces an error to occur immediately if the data doesn’t
align with your expectations.

Inequality joins typically result in many-to-many relationships by nature, so they don’t warn on
them by default, but you should still take extra care when specifying an inequality join, because
they also have the capability to return a large number of rows.

Rolling joins don’t warn on many-to-many relationships either, but many rolling joins follow a
many-to-one relationship, so it is often useful to set relationship = "many-to-one” to enforce
this.

Note that in SQL, most database providers won’t let you specify a many-to-many relationship be-
tween two tables, instead requiring that you create a third junction table that results in two one-to-
many relationships instead.

Methods
These functions are generics, which means that packages can provide implementations (methods)

for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

e inner_join(): no methods found.

left_join(): no methods found.

e right_join(): no methods found.

full_join(): no methods found.

See Also

Other joins: cross_join(), filter-joins, nest_join()

40 rowwise

Examples

example(read10xVisium)

spe |>
right_join(
spe |>
filter(in_tissue == TRUE) |>
mutate(new_column = 1)
)
rowwise Group input by rows
Description

rowwise() allows you to compute on a data frame a row-at-a-time. This is most useful when a
vectorised function doesn’t exist.

Most dplyr verbs preserve row-wise grouping. The exception is summarise(), which return a
grouped_df. You can explicitly ungroup with ungroup() or as_tibble(), or convert to a grouped_df
with group_by ().

Value

A row-wise data frame with class rowwise_df. Note that a rowwise_df is implicitly grouped by
row, but is not a grouped_df.

List-columns

Because a rowwise has exactly one row per group it offers a small convenience for working with
list-columns. Normally, summarise() and mutate() extract a groups worth of data with [. But
when you index a list in this way, you get back another list. When you’re working with a rowwise
tibble, then dplyr will use [[instead of [to make your life a little easier.

See Also

nest_by() for a convenient way of creating rowwise data frames with nested data.

Examples

example(read10xVisium)
spe |>
rowwise()

sample_n 41

sample_n Sample n rows from a table

Description

[Superseded] sample_n() and sample_frac() have been superseded in favour of slice_sample().
While they will not be deprecated in the near future, retirement means that we will only perform
critical bug fixes, so we recommend moving to the newer alternative.

These functions were superseded because we realised it was more convenient to have two mutually
exclusive arguments to one function, rather than two separate functions. This also made it to clean
up a few other smaller design issues with sample_n()/sample_frac:

¢ The connection to slice() was not obvious.

* The name of the first argument, tbl, is inconsistent with other single table verbs which use
.data.

* The size argument uses tidy evaluation, which is surprising and undocumented.
* It was easier to remove the deprecated . env argument.

* ... was in a suboptimal position.

Usage

S3 method for class 'SpatialExperiment'’
sample_n(tbl, size, replace = FALSE, weight = NULL, .env = NULL, ...)

S3 method for class 'SpatialExperiment'’

sample_frac(tbl, size = 1, replace = FALSE, weight = NULL, .env = NULL, ...)
Arguments

tbl A data.frame.

size <tidy-select>For sample_n(), the number of rows to select. For sample_frac(),

the fraction of rows to select. If tbl is grouped, size applies to each group.
replace Sample with or without replacement?

weight <tidy-select> Sampling weights. This must evaluate to a vector of non-
negative numbers the same length as the input. Weights are automatically stan-
dardised to sum to 1.

.env DEPRECATED.

ignored

Value

tidySpatialExperiment

42 select

Examples

example(read10xVisium)

spe |>
sample_n(10)
spe |>

sample_frac(0.1)

select Keep or drop columns using their names and types

Description

Select (and optionally rename) variables in a data frame, using a concise mini-language that makes
it easy to refer to variables based on their name (e.g. a: f selects all columns from a on the left to f
on the right) or type (e.g. where(is.numeric) selects all numeric columns).

Overview of selection features:
Tidyverse selections implement a dialect of R where operators make it easy to select variables:
« : for selecting a range of consecutive variables.
« | for taking the complement of a set of variables.
* & and | for selecting the intersection or the union of two sets of variables.
¢ c() for combining selections.

In addition, you can use selection helpers. Some helpers select specific columns:
e everything(): Matches all variables.
e last_col(): Select last variable, possibly with an offset.
e group_cols(): Select all grouping columns.
Other helpers select variables by matching patterns in their names:
e starts_with(): Starts with a prefix.
¢ ends_with(): Ends with a suffix.
* contains(): Contains a literal string.
e matches(): Matches a regular expression.
* num_range(): Matches a numerical range like x01, x02, x03.

Or from variables stored in a character vector:

* all_of (): Matches variable names in a character vector. All names must be present, other-
wise an out-of-bounds error is thrown.

e any_of (): Same as all_of (), except that no error is thrown for names that don’t exist.
Or using a predicate function:

* where(): Applies a function to all variables and selects those for which the function returns
TRUE.

select 43

Usage
S3 method for class 'SpatialExperiment'
select(.data, ...)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.

from dbplyr or dtplyr). See Methods, below, for more details.

<tidy-select> One or more unquoted expressions separated by commas. Vari-
able names can be used as if they were positions in the data frame, so expressions
like x: y can be used to select a range of variables.

Value
An object of the same type as .data. The output has the following properties:

¢ Rows are not affected.

* Output columns are a subset of input columns, potentially with a different order. Columns
will be renamed if new_name = old_name form is used.

* Data frame attributes are preserved.

* Groups are maintained; you can’t select off grouping variables.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

Here we show the usage for the basic selection operators. See the specific help pages to learn about
helpers like starts_with().

The selection language can be used in functions like dplyr: :select() or tidyr: :pivot_longer().
Let’s first attach the tidyverse:

library(tidyverse)

For better printing
iris <- as_tibble(iris)

Select variables by name:

starwars %>% select(height)
#> # A tibble: 87 x 1

#> height

#> <int>

44

#> 1
#> 2
#> 3
#> 4
#> #

iris
#H #
#>

#>

#> 1
#> 2
#> 3
#> 4
#> #

172
167
96
202
i 83 more rows

%>% pivot_longer(Sepal.Length)

A tibble: 150 x 6

Sepal.Width Petal.Length Petal.Width Species

<dbl> <dbl
3.5 1.
3 1.
3.2 1.
3.1 1.

i 146 more rows

>
4

g W A

<dbl> <fct>

0.2 setosa
setosa
setosa
setosa

(SN
N NN

name
<chr>

Sepal.Length
Sepal.Length
Sepal.Length
Sepal.Length

value
<dbl>

B
[o2 N B{e)

select

Select multiple variables by separating them with commas. Note how the order of columns is
determined by the order of inputs:

starwars %>% select(homeworld, height, mass)

#> #
#>

#>

#> 1
#> 2
#> 3
#> 4
#> #

A tibble: 87 x 3
homeworld height mass

<chr> <int> <dbl>
Tatooine 172 77
Tatooine 167 75
Naboo 96 32
Tatooine 202 136

i 83 more rows

Functions like tidyr::pivot_longer() don’t take variables with dots. In this case use c() to
select multiple variables:

iris %>% pivot_longer(c(Sepal.Length, Petal.Length))

#> # A tibble: 300 x 5

#> Sepal.Width Petal.Width
#> <dbl> <dbl>
#> 1 3.5 0.2
#> 2 3.5 0.2
#> 3 3 0.2
#> 4 3 0.2
#> # i 296 more rows

Operators::

Species name
<fct> <chr>
setosa Sepal.lLength
setosa Petal.Length
setosa Sepal.Length
setosa Petal.Length

The : operator selects a range of consecutive variables:

starwars %>% select(name:mass)
#> # A tibble: 87 x 3
name height mass
<chr> <int> <dbl>

#>
#>

value
<dbl>
5.1

R N
FNERT-RNN

select

45

#> 1 Luke Skywalker 172 77

#> 2 C-3PO 167 75
#> 3 R2-D2 96 32
#> 4 Darth Vader 202 136

#> # 1 83 more rows
The ! operator negates a selection:

starwars %>% select(!(name:mass))
#> # A tibble: 87 x 11
#> hair_color skin_color eye_color birth_year sex gender homeworld species

#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 blond fair blue 19 male masculine Tatooine Human
#> 2 <NA> gold yellow 112 none masculine Tatooine Droid
#> 3 <NA> white, blue red 33 none masculine Naboo Droid
#> 4 none white yellow 41.9 male masculine Tatooine Human
#> # i 83 more rows

#> # i 3 more variables: films <list>, vehicles <list>, starships <list>

iris %>% select(!c(Sepal.Length, Petal.Length))
#> # A tibble: 150 x 3
#> Sepal.Width Petal.Width Species

#> <dbl> <dbl> <fct>
#> 1 3.5 0.2 setosa
#> 2 3 0.2 setosa
#> 3 3.2 0.2 setosa
#> 4 3.1 0.2 setosa
#> # i 146 more rows

iris %>% select(!ends_with("Width"))
#> # A tibble: 150 x 3
#> Sepal.Length Petal.Length Species

#> <dbl> <dbl> <fct>
#> 1 5.1 1.4 setosa
#> 2 4.9 1.4 setosa
#> 3 4.7 1.3 setosa
#> 4 4.6 1.5 setosa
#> # i 146 more rows

& and | take the intersection or the union of two selections:

iris %>% select(starts_with("Petal”) & ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Width

#> <dbl>
#> 1 0.2
#> 2 0.2
#> 3 0.2
#> 4 0.2
#> # i 146 more rows

46 separate

iris %>% select(starts_with("Petal”) | ends_with("Width"))
#> # A tibble: 150 x 3
#> Petal.Length Petal.Width Sepal.Width

#> <dbl> <dbl> <dbl>
#> 1 1.4 0.2 3.5
#> 2 1.4 0.2 3
#> 3 1.3 0.2 3.2
#> 4 1.5 0.2 3.1
#> # i 146 more rows

To take the difference between two selections, combine the & and ! operators:

iris %>% select(starts_with("Petal”) & !ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Length

#> <dbl>
#> 1 1.4
#> 2 1.4
#> 3 1.3
#> 4 1.5
#> # 1 146 more rows

See Also

Other single table verbs: arrange(), filter(),mutate(), reframe(), rename(), slice(), summarise()

Examples

example(read10xVisium)
spe |>
select(in_tissue)

separate Separate a character column into multiple columns with a regular ex-
pression or numeric locations

Description

[Superseded]

separate() has been superseded in favour of separate_wider_position() and separate_wider_delim()
because the two functions make the two uses more obvious, the API is more polished, and the han-

dling of problems is better. Superseded functions will not go away, but will only receive critical bug

fixes.

Given either a regular expression or a vector of character positions, separate() turns a single
character column into multiple columns.

separate 47
Usage
S3 method for class 'SpatialExperiment'
separate(
data,
col,
into,
sep = "[*[:alnum:]]+",
remove = TRUE,
convert = FALSE,
extra = "warn",
fill = "warn”,
)
Arguments
data A data frame.
col <tidy-select> Column to expand
into Names of new variables to create as character vector. Use NA to omit the variable
in the output.
sep Separator between columns.
If character, sep is interpreted as a regular expression. The default value is a
regular expression that matches any sequence of non-alphanumeric values.
If numeric, sep is interpreted as character positions to split at. Positive values
start at 1 at the far-left of the string; negative value start at -1 at the far-right of
the string. The length of sep should be one less than into.
remove If TRUE, remove input column from output data frame.
convert If TRUE, will run type.convert() with as.is = TRUE on new columns. This is
useful if the component columns are integer, numeric or logical.
NB: this will cause string "NA"s to be converted to NAs.
extra If sep is a character vector, this controls what happens when there are too many
pieces. There are three valid options:
* "warn” (the default): emit a warning and drop extra values.
e "drop": drop any extra values without a warning.
* "merge”: only splits at most length(into) times
fill If sep is a character vector, this controls what happens when there are not
enough pieces. There are three valid options:
* "warn” (the default): emit a warning and fill from the right
* "right”: fill with missing values on the right
e "left": fill with missing values on the left
Additional arguments passed on to methods.
Value

tidySpatialExperiment

48 slice

See Also

unite(), the complement, extract () which uses regular expression capturing groups.

Examples

example(read10xVisium)
spe |>
separate(col = sample_id, into = c("A", "B"), sep = "[[:alnum:]1In")

slice Subset rows using their positions

Description

slice() lets you index rows by their (integer) locations. It allows you to select, remove, and
duplicate rows. It is accompanied by a number of helpers for common use cases:

e slice_head() and slice_tail() select the first or last rows.
* slice_sample() randomly selects rows.

e slice_min() and slice_max() select rows with the smallest or largest values of a variable.
If .datais a grouped_df, the operation will be performed on each group, so that (e.g.) slice_head(df,
n = 5) will select the first five rows in each group.
Details
Slice does not work with relational databases because they have no intrinsic notion of row order. If
you want to perform the equivalent operation, use filter () and row_number().
Value
An object of the same type as .data. The output has the following properties:

» Each row may appear 0, 1, or many times in the output.
* Columns are not modified.
* Groups are not modified.

* Data frame attributes are preserved.

Methods

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

¢ slice(): no methods found.

sumimarise 49

slice_head(): no methods found.

slice_tail(): no methods found.

e slice_min(): no methods found.

e slice_max(): no methods found.

e slice_sample(): no methods found.

See Also

Other single table verbs: arrange(), mutate(), rename(), summarise()

Examples

example(read10xVisium)
spe |>
slice(1)

summarise Summarise each group down to one row

Description

summarise() creates a new data frame. It returns one row for each combination of grouping vari-
ables; if there are no grouping variables, the output will have a single row summarising all observa-
tions in the input. It will contain one column for each grouping variable and one column for each
of the summary statistics that you have specified.

summarise() and summarize() are synonyms.

Value
An object usually of the same type as .data.

* The rows come from the underlying group_keys().

* The columns are a combination of the grouping keys and the summary expressions that you
provide.

* The grouping structure is controlled by the .groups= argument, the output may be another
grouped_df, a tibble or a rowwise data frame.

* Data frame attributes are not preserved, because summarise() fundamentally creates a new
data frame.

Useful functions

¢ Center: mean(), median()

e Spread: sd(), IQR(), mad()

* Range: min(), max(),

e Position: first(), last(), nth(),
e Count: n(), n_distinct()

* Logical: any(), all()

50 tbl_format_header

Backend variations

The data frame backend supports creating a variable and using it in the same summary. This means
that previously created summary variables can be further transformed or combined within the sum-
mary, as in mutate(). However, it also means that summary variables with the same names as
previous variables overwrite them, making those variables unavailable to later summary variables.

This behaviour may not be supported in other backends. To avoid unexpected results, consider
using new names for your summary variables, especially when creating multiple summaries.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: arrange(), mutate(), rename(), slice()

Examples

example(read10xVisium)
spe |>
summarise(mean(array_row))

tbl_format_header Format the header of a tibble

Description

[Experimental]

For easier customization, the formatting of a tibble is split into three components: header, body, and
footer. The tbl_format_header () method is responsible for formatting the header of a tibble.
Override this method if you need to change the appearance of the entire header. If you only need to
change or extend the components shown in the header, override or extend tb1_sum() for your class
which is called by the default method.

Usage
S3 method for class 'tidySpatialExperiment'
tbl_format_header(x, setup, ...)
Arguments
X A tibble-like object.
setup A setup object returned from tbl_format_setup().

These dots are for future extensions and must be empty.

unite 51

Value

A character vector.

Examples

TODO

unite Unite multiple columns into one by pasting strings together

Description

Convenience function to paste together multiple columns into one.

Usage

S3 method for class 'SpatialExperiment'

unite(data, col, ..., sep = "_", remove = TRUE, na.rm = FALSE)
Arguments

data A data frame.

col The name of the new column, as a string or symbol.

This argument is passed by expression and supports quasiquotation (you can
unquote strings and symbols). The name is captured from the expression with
rlang::ensym() (note that this kind of interface where symbols do not repre-
sent actual objects is now discouraged in the tidyverse; we support it here for
backward compatibility).

<tidy-select> Columns to unite

sep Separator to use between values.

remove If TRUE, remove input columns from output data frame.

na.rm If TRUE, missing values will be removed prior to uniting each value.
Value

tidySpatialExperiment

See Also

separate(), the complement.

Examples

example(read10xVisium)
spe |>
unite("A", array_row:array_col)

52

unnest

unnest

Unnest a list-column of data frames into rows and columns

Description

Unnest expands a list-column containing data frames into rows and columns.

Usage

S3 method for class 'tidySpatialExperiment_nested'

unnest(
data,
cols,

L

keep_empty = FALSE,

ptype = NULL,
names_sep = NULL,
names_repair = "check_unique”,
.drop,
.id,
.sep,
.preserve
)
Arguments
data A data frame.
cols <tidy-select> List-columns to unnest.
When selecting multiple columns, values from the same row will be recycled to
their common size.
[Deprecated]: previously you could write df %>% unnest(x, y, z). Convert
to df %>% unnest(c(x, y, z)). If you previously created a new variable in
unnest () you’ll now need to do it explicitly with mutate(). Convert df %>%
unnest(y = fun(x, y, z)) todf %>% mutate(y = fun(x, y, z)) %>% unnest(y).
keep_empty By default, you get one row of output for each element of the list that you are
unchopping/unnesting. This means that if there’s a size-0 element (like NULL
or an empty data frame or vector), then that entire row will be dropped from
the output. If you want to preserve all rows, use keep_empty = TRUE to replace
size-0 elements with a single row of missing values.
ptype Optionally, a named list of column name-prototype pairs to coerce cols to, over-
riding the default that will be guessed from combining the individual values.
Alternatively, a single empty ptype can be supplied, which will be applied to all
cols.
names_sep If NULL, the default, the outer names will come from the inner names. If a

string, the outer names will be formed by pasting together the outer and the
inner column names, separated by names_sep.

unnest 53

names_repair Used to check that output data frame has valid names. Must be one of the

following options:

* "minimal": no name repair or checks, beyond basic existence,

e "unique": make sure names are unique and not empty,

* "check_unique": (the default), no name repair, but check they are unique,

* "universal": make the names unique and syntactic

* afunction: apply custom name repair.

* tidyr_legacy: use the name repair from tidyr 0.8.

e aformula: a purrr-style anonymous function (see rlang: :as_function())
See vctrs: :vec_as_names() for more details on these terms and the strategies

used to enforce them.
.drop, .preserve

[Deprecated]: all list-columns are now preserved; If there are any that you don’t
want in the output use select() to remove them prior to unnesting.

.id [Deprecated]: convert df %>% unnest(x, .id = "id") todf %>% mutate(id = names(x)) %>% unnest

.sep [Deprecated]: use names_sep instead.

Value

tidySpatialExperiment

New syntax

tidyr 1.0.0 introduced a new syntax for nest() and unnest() that’s designed to be more similar
to other functions. Converting to the new syntax should be straightforward (guided by the message
you’ll receive) but if you just need to run an old analysis, you can easily revert to the previous
behaviour using nest_legacy() and unnest_legacy() as follows:

library(tidyr)
nest <- nest_legacy
unnest <- unnest_legacy

See Also

Other rectangling: hoist(), unnest_longer(), unnest_wider()

Examples

example(read10xVisium)

spe |>
nest(data = -sample_id) |>
unnest(data)

Index

+ data
demo_brush_data, 9
demo_select_data, 9

* internal
add_class, 3
drop_class, 10
quo_names, 35

* single table verbs
arrange, 5
mutate, 28
rename, 36
slice, 48
summarise, 49

+, 29

.onLoad(), 7

==, 14

> 14

>=, 14

?join_by, 22, 26, 38

&, 14

add_class, 3
add_count

(add_count.SpatialExperiment),

3

add_count.SpatialExperiment, 3

add_trace(), 34
aggregate_cells, 4
all(), 49
all_of(), 42
animation, 32
any(), 49
any_of (), 42
arrange, 5, 14, 29, 37, 46, 49, 50
arrange(), 21
as_tibble, 6
as_tibble(), 40

base::as.data.frame(), 6
base::data.frame(), 6

54

between(), 14
bind_cols, 8
bind_rows, 8

case_when(), 29
char(), 15
coalesce(), 29
contains(), 42

count (add_count.SpatialExperiment), 3

cross_join, 24,27, 39
cross_join(), 22, 26, 38
crosstalk: :bscols(), 34

crosstalk: :SharedData, 32

cumall(), 29
cumany (), 29
cume_dist(), 29
cummax(), 29
cummean(), 29
cummin(), 29
cumsum(), 29

data.frame, 6
demo_brush_data, 9
demo_select_data, 9
dense_rank(), 29
distinct, 10
dplyr::group_by(), 31
drop_class, 10

ellipse, 11
ends_with(), 42
enframe(), 7
event_data(), 34
everything(), 42
extract, 12
extract(), 48

filter, 13, 46
filter(), 48
first(), 49

INDEX

format_glimpse(), 20 min_rank(), 29
formatting, 15 mutate, 5, 14, 28, 37, 46, 49, 50
formula, 34 mutate(), 50

gate, 16 n(), 49
gate_interactive, 17 n_distinct(), 49
gate_programmatic, 18 na_if (), 29
gather(), 31 near(), 14

ggplot, 19 nest, 30
ggplot2::gplot(), 32 nest_by(), 40
ggplotly(), 34 nest_join, 24, 27, 39
glimpse, 20 nest_legacy(), 30, 53
grDevices: :col2rgb(), 33 nth(), 49

group_by, 20 ntile(), 29
group_by(), 13, 40 num(), 15
group_cols(), 42 num_range(), 42
group_keys(), 49

group_map, 21 option, 15

group_nest, 21

group_split, 2/ par, 33
group_trim, 27 pch, 33
grouped_df, 20, 40, 48, 49 percent_rank(), 29
pillar::pillar_options, 15
highlight(), 34 pivot_longer, 31
hoist, 53 pivot_wider(), 3!/
plot(), 32
10,33 plot_geo(), 34
if_else(), 29 plot_ly, 32
inner_join, 22 plot_mapbox(), 34
IQR(), 49 plotly_json(), 34
is.na(), 14 poly, 6
print (formatting), 15
join_by(), 22, 26, 38 pull, 35

join_features, 24
quasiquotation, 51

lag(d, 29 quo_names, 35

last(), 49

last_col(), 42 recode(), 29

layout (), 34 rectangle, 36

lead(), 29 reframe, 14, 46

left_join, 25 rename, 5, 14, 29, 36, 46, 49, 50

log(), 29 right_join, 37
rlang::as_function(), 7, 53

mad(), 49 rlang: :ensym(), 51

matches(), 42 row_number(), 29, 48

matrix, 6 rownames, 6, 7

max(), 49 rowwise, 40, 49

mean(), 49

median(), 49 sample_frac (sample_n), 41

min(), 49 sample_n, 41

56 INDEX

schema(), 32, 34

sd(), 49

select, 14,42

separate, 46

separate(), 13,51
separate_wider_delim(), 46
separate_wider_position(), 46
separate_wider_regex(), 12
slice, 5, 14, 29, 37, 46, 48, 50
slice_head (slice), 48
slice_max (slice), 48
slice_min (slice), 48
slice_sample (slice), 48
slice_sample(), 41
slice_tail (slice), 48
starts_with(), 42, 43
str(), 20

style(), 34

subplot(), 34
summarise, 5, 14, 29, 37, 46, 49, 49
summarise(), 21, 40
summarize (summarise), 49

table, 6

tbl_df, 6
tbl_format_header, 50
tbl_format_setup(), 50
tbl_sum(), 50
tibble, 49
tibble(), 6, 7
tidyr_legacy, 53

ts, 6
type.convert(), 12,47

ungroup(), 13, 40
unique.data.frame(), 10
unite, 51

unite(), 48

unnest, 52
unnest_legacy(), 30, 53
unnest_longer, 53
unnest_wider, 53

vctrs: :vec_as_names(), 7, 53
where(), 42

xor(), 14

	add_class
	add_count.SpatialExperiment
	aggregate_cells
	arrange
	as_tibble
	bind_cols
	bind_rows
	demo_brush_data
	demo_select_data
	distinct
	drop_class
	ellipse
	extract
	filter
	formatting
	gate
	gate_interactive
	gate_programmatic
	ggplot
	glimpse
	group_by
	inner_join
	join_features
	left_join
	mutate
	nest
	pivot_longer
	plot_ly
	pull
	quo_names
	rectangle
	rename
	right_join
	rowwise
	sample_n
	select
	separate
	slice
	summarise
	tbl_format_header
	unite
	unnest
	Index

