
Package ‘midasHLA’
October 24, 2025

Title R package for immunogenomics data handling and association
analysis

Version 1.17.0

Description MiDAS is a R package for immunogenetics data transformation and statistical analy-
sis. MiDAS accepts input data in the form of HLA alleles and KIR types, and can trans-
form it into biologically meaningful variables, enabling HLA amino acid fine mapping, analy-
ses of HLA evolutionary divergence, KIR gene presence, as well as validated HLA-KIR interac-
tions. Further, it allows comprehensive statistical association analysis workflows with pheno-
types of diverse measurement scales. MiDAS closes a gap between the inference of immuno-
genetic variation and its efficient utilization to make relevant discoveries related to T cell, Natu-
ral Killer cell, and disease biology.

License MIT + file LICENCE

Encoding UTF-8

LazyData true

Depends R (>= 4.1), MultiAssayExperiment (>= 1.8.3)

Imports assertthat (>= 0.2.0), broom (>= 0.5.1), dplyr (>= 0.8.0.1),
formattable (>= 0.2.0.1), HardyWeinberg (>= 1.6.3), kableExtra
(>= 1.1.0), knitr (>= 1.21), magrittr (>= 1.5), methods,
stringi (>= 1.2.4), rlang (>= 0.3.1), S4Vectors (>= 0.20.1),
stats, SummarizedExperiment (>= 1.12.0), tibble (>= 2.0.1),
utils, qdapTools (>= 1.3.3)

Suggests broom.mixed (>= 0.2.4), cowplot (>= 1.0.0), devtools (>=
2.0.1), ggplot2 (>= 3.1.0), ggpubr (>= 0.2.5), rmarkdown,
seqinr (>= 3.4-5), survival (>= 2.43-3), testthat (>= 2.0.1),
tidyr (>= 1.1.2)

RoxygenNote 7.1.1

VignetteBuilder knitr

Collate 'asserts.R' 'class.R' 'data.R' 'global.R' 'midasHLA.R'
'parsingFunctions.R' 'stats.R' 'summarise.R'
'transformationFunctions.R' 'utils.R'

biocViews CellBiology, Genetics, StatisticalMethod

git_url https://git.bioconductor.org/packages/midasHLA

1

2 Contents

git_branch devel

git_last_commit 762c63c

git_last_commit_date 2025-04-15

Repository Bioconductor 3.23

Date/Publication 2025-10-24

Author Christian Hammer [aut],
Maciej Migdał [aut, cre]

Maintainer Maciej Migdał <mcjmigdal@gmail.com>

Contents
aaVariationToCounts . 4
adjustPValues . 5
allele_frequencies . 5
analyzeAssociations . 6
analyzeConditionalAssociations . 7
applyInheritanceModel . 9
as.data.frame.MiDAS . 10
backquote . 10
characterMatches . 11
checkAlleleFormat . 11
checkColDataFormat . 12
checkHlaCallsFormat . 13
checkKirCallsFormat . 13
checkKirGenesFormat . 14
checkStatisticalModel . 14
colnamesMatches . 15
convertAlleleToVariable . 15
countsToVariables . 16
dfToExperimentMat . 17
dict_dist_grantham . 17
distGrantham . 18
experimentMatToDf . 18
filterByFrequency . 19
filterByOmnibusGroups . 20
filterByVariables . 20
filterExperimentByFrequency . 21
filterExperimentByVariables . 22
filterListByElements . 23
formatResults . 23
getAAFrequencies . 24
getAlleleResolution . 25
getAllelesForAA . 26
getExperimentFrequencies . 26
getExperimentPopulationMultiplicator . 27
getExperiments . 28

Contents 3

getFrequencies . 28
getFrequencyMask . 30
getHlaCalls . 31
getHlaCallsGenes . 31
getHlaFrequencies . 32
getHlaKirInteractions . 33
getKirCalls . 34
getKIRFrequencies . 34
getObjectDetails . 35
getOmnibusGroups . 35
getPlaceholder . 36
getReferenceFrequencies . 36
getVariableAAPos . 37
hasTidyMethod . 38
hlaAlignmentGrantham . 38
hlaCallsGranthamDistance . 39
hlaCallsToCounts . 40
hlaToAAVariation . 40
hlaToVariable . 41
HWETest . 42
isCharacterOrNULL . 44
isClass . 44
isClassOrNULL . 45
isCountOrNULL . 45
isCountsOrZeros . 46
isExperimentCountsOrZeros . 46
isExperimentInheritanceModelApplicable . 47
isFlagOrNULL . 47
isNumberOrNULL . 48
isStringOrNULL . 48
isTRUEorFALSE . 49
iterativeLRT . 49
iterativeModel . 50
kableResults . 50
kir_frequencies . 51
lapply_tryCatch . 52
listMiDASDictionaries . 53
LRTest . 53
MiDAS-class . 54
midasToWide . 56
MiDAS_tut_HLA . 56
MiDAS_tut_KIR . 57
MiDAS_tut_object . 58
MiDAS_tut_pheno . 59
objectHasPlaceholder . 59
omnibusTest . 60
prepareMiDAS . 61
prepareMiDAS_hla_aa . 63

4 aaVariationToCounts

prepareMiDAS_hla_alleles . 64
prepareMiDAS_hla_custom . 65
prepareMiDAS_hla_divergence . 65
prepareMiDAS_hla_g_groups . 66
prepareMiDAS_hla_het . 66
prepareMiDAS_hla_kir_interactions . 67
prepareMiDAS_hla_NK_ligands . 67
prepareMiDAS_hla_supertypes . 68
prepareMiDAS_kir_custom . 68
prepareMiDAS_kir_genes . 69
prepareMiDAS_kir_haplotypes . 69
readHlaAlignments . 70
readHlaCalls . 71
readKirCalls . 72
reduceAlleleResolution . 72
reduceHlaCalls . 73
runMiDAS . 74
runMiDASGetVarsFreq . 77
stringMatches . 78
summariseAAPosition . 78
updateModel . 79
validateFrequencyCutoffs . 79

Index 81

aaVariationToCounts Transform amino acid variation data frame into counts table

Description

aaVariationToCounts convert amino acid variation data frame into counts table.

Usage

aaVariationToCounts(aa_variation)

Arguments

aa_variation Amino acid variation data frame as returned by hlaToAAVariation.

Value

Amino acid counts data frame. First column holds samples ID’s, further columns, corresponding to
specific amino acid positions, give information on the number of their occurrences in each sample.

adjustPValues 5

adjustPValues Adjust P-values for Multiple Comparisons

Description

Given a set of p-values, returns p-values adjusted using one of several methods.

Usage

adjustPValues(p, method, n = length(p))

Arguments

p numeric vector of p-values (possibly with NAs). Any other R object is coerced
by as.numeric.

method correction method. Can be abbreviated.

n number of comparisons, must be at least length(p); only set this (to non-
default) when you know what you are doing! Note that for Bonferroni correction
it is possible to specify number lower than length(p).

Details

This function modifies stats::p.adjust method such that for Bonferroni correction it is possible
to specify n lower than length(p). This feature is useful in cases when knowledge about the
biology or redundance of alleles reduces the need for correction.

See p.adjust for more details.

Value

A numeric vector of corrected p-values (of the same length as p, with names copied from p).

allele_frequencies Alleles frequencies scraped from allelefrequencies.net

Description

Accessed on 28.07.20

Usage

allele_frequencies

6 analyzeAssociations

Format

A data frame with 2096 rows and 3 variables:

var allele number, character

population reference population name, character

frequency allele frequency in reference population, float

Details

A dataset containing allele frequencies across 5697 alleles For details visit the search results page
in the allelefrequencies.net database website.

Source

www.allelefrequencies.net

analyzeAssociations Association analysis

Description

analyzeAssociations perform association analysis on a single variable level using a statistical
model of choice.

Usage

analyzeAssociations(
object,
variables,
placeholder = "term",
correction = "bonferroni",
n_correction = NULL,
exponentiate = FALSE

)

Arguments

object An existing fit from a model function such as lm, glm and many others.

variables Character vector specifying variables to use in association tests.

placeholder String specifying term in object’s formula which should be substituted with
variables during analysis.

correction String specifying multiple testing correction method. See details for further
information.

www.allelefrequencies.net

analyzeConditionalAssociations 7

n_correction Integer specifying number of comparisons to consider during multiple testing
correction calculations. For Bonferroni correction it is possible to specify a
number lower than the number of comparisons being made. This is useful in
cases when knowledge about the biology or redundance of alleles reduces the
need for correction. For other methods it must be at least equal to the number
of comparisons being made; only set this (to non-default) when you know what
you are doing!

exponentiate Logical flag indicating whether or not to exponentiate the coefficient estimates.
Internally this is passed to tidy. This is typical for logistic and multinomial
regressions, but a bad idea if there is no log or logit link. Defaults to FALSE.

Details

correction specifies p-value adjustment method to use, common choice is Benjamini & Hochberg
(1995) ("BH"). Internally this is passed to p.adjust.

Value

Tibble containing combined results for all variables. The first column "term" hold the names
of variables. Further columns depends on the used model and are determined by associated
tidy function. Generally they will include "estimate", "std.error", "statistic", "p.value",
"conf.low", "conf.high", "p.adjusted".

Examples

midas <- prepareMiDAS(hla_calls = MiDAS_tut_HLA,
colData = MiDAS_tut_pheno,
experiment = "hla_alleles")

analyzeAssociations expects model data to be a data.frame
midas_data <- as.data.frame(midas)

define base model
object <- lm(disease ~ term, data = midas_data)

test for alleles associations
analyzeAssociations(object = object,

variables = c("B*14:02", "DRB1*11:01"))

analyzeConditionalAssociations

Stepwise conditional association analysis

Description

analyzeConditionalAssociations perform stepwise conditional testing adding the previous top-
associated variable as covariate, until there are no more significant variables based on a self-defined
threshold.

8 analyzeConditionalAssociations

Usage

analyzeConditionalAssociations(
object,
variables,
placeholder = "term",
correction = "bonferroni",
n_correction = NULL,
th,
th_adj = TRUE,
keep = FALSE,
rss_th = 1e-07,
exponentiate = FALSE

)

Arguments

object An existing fit from a model function such as lm, glm and many others.
variables Character vector specifying variables to use in association tests.
placeholder String specifying term to substitute with value from x. Ignored if set to NULL.
correction String specifying multiple testing correction method. See details for further

information.
n_correction Integer specifying number of comparisons to consider during multiple testing

correction calculations. For Bonferroni correction it is possible to specify a
number lower than the number of comparisons being made. This is useful in
cases when knowledge about the biology or redundance of alleles reduces the
need for correction. For other methods it must be at least equal to the number
of comparisons being made; only set this (to non-default) when you know what
you are doing!

th Number specifying threshold for a variable to be considered significant.
th_adj Logical flag indicating if adjusted p-value should be used as threshold criteria,

otherwise unadjusted p-value is used.
keep Logical flag indicating if the output should be a list of results resulting from

each selection step. Default is to return only the final result.
rss_th Number specifying residual sum of squares threshold at which function should

stop adding additional variables. As the residual sum of squares approaches 0
the perfect fit is obtained making further attempts at variable selection nonsense.
This behavior can be controlled using rss_th.

exponentiate Logical flag indicating whether or not to exponentiate the coefficient estimates.
Internally this is passed to tidy. This is typical for logistic and multinomial
regressions, but a bad idea if there is no log or logit link. Defaults to FALSE.

Value

Tibble with stepwise conditional testing results or a list of tibbles, see keep argument. The first
column "term" hold the names of variables. Further columns depends on the used model and are
determined by associated tidy function. Generally they will include "estimate", "std.error",
"statistic", "p.value", "conf.low", "conf.high", "p.adjusted".

applyInheritanceModel 9

Examples

midas <- prepareMiDAS(hla_calls = MiDAS_tut_HLA,
colData = MiDAS_tut_pheno,
experiment = "hla_alleles")

analyzeConditionalAssociations expects model data to be a data.frame
midas_data <- as.data.frame(midas)

define base model
object <- lm(disease ~ term, data = midas_data)
analyzeConditionalAssociations(object,

variables = c("B*14:02", "DRB1*11:01"),
th = 0.05)

applyInheritanceModel Apply inheritance model

Description

Helper function transforming experiment counts to selected inheritance_model.

Usage

applyInheritanceModel(
experiment,
inheritance_model = c("dominant", "recessive", "additive", "overdominant")

)

S3 method for class 'matrix'
applyInheritanceModel(
experiment,
inheritance_model = c("dominant", "recessive", "additive", "overdominant")

)

S3 method for class 'SummarizedExperiment'
applyInheritanceModel(
experiment,
inheritance_model = c("dominant", "recessive", "additive", "overdominant")

)

Arguments

experiment Matrix or SummarizedExperiment object.
inheritance_model

String specifying inheritance model to use. Available choices are "dominant",
"recessive", "additive".

10 backquote

Details

Under "dominant" model homozygotes and heterozygotes are coded as 1. In "recessive" model
homozygotes are coded as 1 and other as 0. In "additive" model homozygotes are coded as
2 and heterozygotes as 1. In "overdominant" homozygotes (both 0 and 2) are coded as 0 and
heterozygotes as 1.

Value

experiment converted to specified inheritance model.

as.data.frame.MiDAS Coerce MiDAS to Data Frame

Description

Coerce MiDAS to Data Frame

Usage

S3 method for class 'MiDAS'
as.data.frame(x, ...)

Arguments

x any R object.

... additional arguments to be passed to or from methods.

Value

Data frame representation of MiDAS object. Consecutive columns hold values of variables from
MiDAS’s experiments and colData. The metadata associated with experiments is not preserved.

backquote Backquote character

Description

backquote places backticks around elements of character vector

Usage

backquote(x)

Arguments

x Character vector.

characterMatches 11

Details

backquote is useful when using HLA allele numbers in formulas, where '*' and ':' characters
have special meanings.

Value

Character vector with its elements backticked.

characterMatches Check if character matches one of possible values

Description

characterMatches checks if all elements of a character vector matches values in choices.

Usage

characterMatches(x, choice)

Arguments

x Character vector to test.

choice Character vector with possible values for x.

Value

Logical indicating if x’s elements matches any of the values in choice.

checkAlleleFormat Check HLA allele format

Description

checkAlleleFormat test if the input character follows HLA nomenclature specifications.

Usage

checkAlleleFormat(allele)

Arguments

allele Character vector with HLA allele numbers.

12 checkColDataFormat

Details

Correct HLA number should consist of HLA gene name followed by "*" and sets of digits separated
with ":". Maximum number of sets of digits is 4 which is termed 8-digit resolution. Optionally
HLA numbers can be supplemented with additional suffix indicating its expression status. See
http://hla.alleles.org/nomenclature/naming.html for more details.

HLA alleles with identical sequences across exons encoding the peptide binding domains might
be designated with G group allele numbers. Those numbers have additional G or GG suffix. See
http://hla.alleles.org/alleles/g_groups.html for more details. They are interpreted as
valid HLA alleles designations.

Value

Logical vector specifying if allele elements follows HLA alleles naming conventions.

Examples

allele <- c("A*01:01", "A*01:02")
checkAlleleFormat(allele)

checkColDataFormat Assert colData data

Description

checkColDataFormat asserts if the colData data frame has proper format.

Usage

checkColDataFormat(data_frame)

Arguments

data_frame Data frame containing colData data used to construct MiDAS object.

Value

Logical indicating if data_frame is properly formatted. Otherwise raise an error.

http://hla.alleles.org/nomenclature/naming.html
http://hla.alleles.org/alleles/g_groups.html

checkHlaCallsFormat 13

checkHlaCallsFormat Assert hla calls data frame format

Description

checkHlaCallsFormat asserts if hla calls data frame have proper format.

Usage

checkHlaCallsFormat(hla_calls)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

Value

Logical indicating if hla_calls follows hla calls data frame format. Otherwise raise an error.

checkKirCallsFormat Assert KIR counts data frame format

Description

checkKirCallsFormat asserts if KIR counts data frame have proper format.

Usage

checkKirCallsFormat(kir_calls)

Arguments

kir_calls KIR calls data frame, as returned by readKirCalls function.

Value

Logical indicating if kir_calls follow KIR counts data frame format. Otherwise raise an error.

14 checkStatisticalModel

checkKirGenesFormat Check KIR genes format

Description

checkKirGenesFormat test if the input character follows KIR gene names naming conventions.

Usage

checkKirGenesFormat(genes)

Arguments

genes Character vector with KIR gene names.

Details

KIR genes: "KIR3DL3", "KIR2DS2", "KIR2DL2", "KIR2DL3", "KIR2DP1", "KIR2DL1", "KIR3DP1",
"KIR2DL1", "KIR3DP1", "KIR2DL4", "KIR3DL1", "KIR3DS1", "KIR2DL5", "KIR2DS3", "KIR2DS5",
"KIR2DS4", "KIR2DS1", "KIR3DL2".

Value

Logical vector specifying if genes elements follow KIR genes naming conventions.

Examples

checkKirGenesFormat(c("KIR3DL3", "KIR2DS2", "KIR2DL2"))

checkStatisticalModel Assert statistical model

Description

checkStatisticalModel asserts if object is an existing fit from a model functions such as lm, glm
and many others. Containing MiDAS object as its data atribute.

Usage

checkStatisticalModel(object)

Arguments

object An existing fit from a model function such as lm, glm and many others.

colnamesMatches 15

Value

Logical indicating if object is an existing fit from a model functions such as lm, glm and many
others. Containing MiDAS object as its data attribute. Otherwise raise an error.

colnamesMatches Check column names

Description

colnamesMatches check if data frame’s columns are named as specified

Usage

colnamesMatches(x, cols)

Arguments

x Data frame to test.

cols Ordered character vector to test against x’s colnames.

Value

Logical indicating if x’s colnames equals choice.

convertAlleleToVariable

Convert allele numbers to additional variables

Description

convertAlleleToVariable converts input HLA allele numbers to additional variables based on
the supplied dictionary.

Usage

convertAlleleToVariable(allele, dictionary)

Arguments

allele Character vector with HLA allele numbers.

dictionary Path to file containing HLA allele dictionary or a data frame.

16 countsToVariables

Details

dictionary file should be a tsv format with header and two columns. First column should hold
allele numbers, second additional variables (eg. expression level).

Type of the returned vector depends on the type of the additional variable.

Value

Vector containing HLA allele numbers converted to additional variables according to dictionary.

Examples

dictionary <- system.file("extdata", "Match_allele_HLA_supertype.txt", package = "midasHLA")
convertAlleleToVariable(c("A*01:01", "A*02:01"), dictionary = dictionary)

countsToVariables Convert counts table to variables

Description

countsToVariables converts counts table to additional variables.

Usage

countsToVariables(counts, dictionary, na.value = NA, nacols.rm = TRUE)

Arguments

counts Data frame with counts, such as returned by hlaCallsToCounts function. First
column should contain samples IDs, following columns should contain counts
(natural numbers including zero).

dictionary Path to file containing variables dictionary or data frame. See details for further
explanations.

na.value Vector of length one speciyfing value for variables with no matching entry in
dictionary. Default is to use 0.

nacols.rm Logical indicating if result columns that contain only NA should be removed.

Details

dictionary file should be a tsv format with header and two columns. First column should be named
"Name" and hold variable name, second should be named "Expression" and hold expression used
to identify variable (eg. "KIR2DL3 & ! KIR2DL2" will match all samples with KIR2DL3 and without
KIR2DL2). Optionally a data frame formatted in the same manner can be passed instead.

Dictionaries shipped with the package:

kir_haplotypes KIR genes to KIR haplotypes dictionary.

dfToExperimentMat 17

Value

Data frame with variable number of columns. First column named "ID" corresponds to "ID" col-
umn in counts, further columns hold indicators for converted variables. 1 and 0 code presence and
absence of a variable respectively.

Examples

countsToVariables(MiDAS_tut_KIR, "kir_haplotypes")

dfToExperimentMat Helper transform data frame to experiment matrix

Description

Function deletes ’ID’ column from a df, then transpose it and sets the column names to values from
deleted ’ID’ column.

Usage

dfToExperimentMat(df)

Arguments

df Data frame

Value

Matrix representation of df.

dict_dist_grantham Grantham distance

Description

Integer vector giving Grantham distance values between pairs of amino acid residues.

Usage

dict_dist_grantham

Format

Named integer vector of length 400.

18 experimentMatToDf

distGrantham Calculate Grantham distance between amino acid sequences

Description

distGrantham calculates normalized Grantham distance between two amino acid sequences. For
details on calculations see Grantham R. 1974..

Usage

distGrantham(aa1, aa2)

Arguments

aa1 Character vector giving amino acid sequence using one letter codings. Each
element must correspond to single amino acid.

aa2 Character vector giving amino acid sequence using one letter codings. Each
element must correspond to single amino acid.

Details

Distance between amino acid sequences is normalized by length of compared sequences.

Lengths of aa1 and aa2 must be equal.

Value

Numeric vector of normalized Grantham distance between aa1 and aa2.

experimentMatToDf Helper transform experiment matrix to data frame

Description

Function transpose mat and inserts column names of input mat as a ’ID’ column.

Usage

experimentMatToDf(mat)

Arguments

mat Matrix

Value

Data frame representation of mat.

http://www.sciencemag.org/content/185/4154/862.long

filterByFrequency 19

filterByFrequency Filter MiDAS object by frequency

Description

Filter MiDAS object by frequency

Usage

filterByFrequency(
object,
experiment,
lower_frequency_cutoff = NULL,
upper_frequency_cutoff = NULL,
carrier_frequency = FALSE

)

Arguments

object MiDAS object.

experiment String specifying experiment.
lower_frequency_cutoff

Number giving lower frequency threshold. Numbers greater than 1 are inter-
preted as the number of feature occurrences, numbers between 0 and 1 as frac-
tions.

upper_frequency_cutoff

Number giving upper frequency threshold. Numbers greater than 1 are inter-
preted as the number of feature occurrences, numbers between 0 and 1 as frac-
tions.

carrier_frequency

Logical flag indicating if carrier frequency should be returned.

Value

Filtered MiDAS object.

Examples

filterByFrequency(object = MiDAS_tut_object,
experiment = "hla_alleles",
lower_frequency_cutoff = 0.05,
upper_frequency_cutoff = 0.95,
carrier_frequency = TRUE)

20 filterByVariables

filterByOmnibusGroups Filter MiDAS object by omnibus groups

Description

Filter MiDAS object by omnibus groups

Usage

filterByOmnibusGroups(object, experiment, groups)

Arguments

object MiDAS object.

experiment String specifying experiment.

groups Character vector specifying omnibus groups to select. See getOmnibusGroups
for more details.

Value

Filtered MiDAS object.

Examples

filterByOmnibusGroups(object = MiDAS_tut_object,
experiment = "hla_aa",
groups = c("A_3", "A_6", "C_1"))

filterByVariables Filter MiDAS object by features

Description

Filter MiDAS object by features

Usage

filterByVariables(object, experiment, variables)

Arguments

object MiDAS object.

experiment String specifying experiment.

variables Character vector specifying features to select.

filterExperimentByFrequency 21

Value

Filtered MiDAS object.

Examples

filterByVariables(object = MiDAS_tut_object,
experiment = "hla_alleles",
variables = c("A*25:01", "A*26:01", "B*07:02"))

filterExperimentByFrequency

Filter experiment by frequency

Description

Helper function for experiments filtering

Usage

filterExperimentByFrequency(
experiment,
carrier_frequency = FALSE,
lower_frequency_cutoff = NULL,
upper_frequency_cutoff = NULL

)

S3 method for class 'matrix'
filterExperimentByFrequency(
experiment,
carrier_frequency = FALSE,
lower_frequency_cutoff = NULL,
upper_frequency_cutoff = NULL

)

S3 method for class 'SummarizedExperiment'
filterExperimentByFrequency(
experiment,
carrier_frequency = FALSE,
lower_frequency_cutoff = NULL,
upper_frequency_cutoff = NULL

)

22 filterExperimentByVariables

Arguments

experiment Matrix or SummarizedExperiment object.

carrier_frequency

Logical flag indicating if carrier frequency should be returned.

lower_frequency_cutoff

Positive number or NULL. Numbers greater than 1 are interpreted as number of
feature occurrences, numbers between 0 and 1 as fractions.

upper_frequency_cutoff

Positive number or NULL. Numbers greater than 1 are interpreted as number of
feature occurrences, numbers between 0 and 1 as fractions.

Value

Filtered experiment matrix.

filterExperimentByVariables

Filter experiment by variable

Description

Helper function for experiments filtering

Usage

filterExperimentByVariables(experiment, variables)

S3 method for class 'matrix'
filterExperimentByVariables(experiment, variables)

S3 method for class 'SummarizedExperiment'
filterExperimentByVariables(experiment, variables)

Arguments

experiment Matrix or SummarizedExperiment object.

variables Character vector specifying features to choose.

Value

Filtered experiment object.

filterListByElements 23

filterListByElements Filter list by elements

Description

Filter two level list by its secondary elements and remove empty items

Usage

filterListByElements(list, elements)

Arguments

list A list.

elements Character vector of elements to keep.

Value

List filtered according to elements argument.

formatResults Pretty format statistical analysis results helper

Description

formatResults format statistical analysis results table to html or latex format.

Usage

formatResults(
results,
filter_by = "p.value <= 0.05",
arrange_by = "p.value",
select_cols = c("term", "estimate", "std.error", "p.value", "p.adjusted"),
format = c("html", "latex"),
header = NULL,
scroll_box_height = "400px"

)

24 getAAFrequencies

Arguments

results Tibble as returned by runMiDAS.

filter_by Character vector specifying conditional expression used to filter results, this
is equivalent to ... argument passed to filter.

arrange_by Character vector specifying variable names to use for sorting. Equivalent to ...
argument passed to arrange.

select_cols Character vector specifying variable names that should be included in the output
table. Can be also used to rename selected variables, see examples.

format String "latex" or "html".

header String specifying header for result table. If NULL no header is added.
scroll_box_height

A character string indicating the height of the table.

Value

Character vector of formatted table source code.

Examples

Not run:
midas <- prepareMiDAS(hla_calls = MiDAS_tut_HLA,

colData = MiDAS_tut_pheno,
experiment = "hla_alleles")

object <- lm(disease ~ term, data = midas)
res <- runMiDAS(object,

experiment = "hla_alleles",
inheritance_model = "dominant")

formatResults(res,
filter_by = c("p.value <= 0.05", "estimate > 0"),
arrange_by = c("p.value * estimate"),
select_cols = c("allele", "p-value" = "p.value"),
format = "html",
header = "HLA allelic associations")

End(Not run)

getAAFrequencies Calculate amino acid frequencies

Description

getAAFrequencies calculates amino acid frequencies in amino acid data frame.

Usage

getAAFrequencies(aa_variation)

getAlleleResolution 25

Arguments

aa_variation Amino acid variation data frame as returned by hlaToAAVariation.

Details

Both gene copies are taken into consideration for frequencies calculation, frequency = n / (2 * j)
where n is the number of amino acid occurrences and j is the number of samples in aa_variation.

Value

Data frame with each row holding specific amino acid position, it’s count and frequency.

Examples

aa_variation <- hlaToAAVariation(MiDAS_tut_HLA)
getAAFrequencies(aa_variation)

getAlleleResolution Infer HLA allele resolution

Description

getAlleleResolution returns the resolution of input HLA allele numbers.

Usage

getAlleleResolution(allele)

Arguments

allele Character vector with HLA allele numbers.

Details

HLA allele resolution can take the following values: 2, 4, 6, 8. See http://hla.alleles.org/
nomenclature/naming.html for more details.

NA values are accepted and returned as NA.

Value

Integer vector specifying allele resolutions.

Examples

allele <- c("A*01:01", "A*01:02")
getAlleleResolution(allele)

http://hla.alleles.org/nomenclature/naming.html
http://hla.alleles.org/nomenclature/naming.html

26 getExperimentFrequencies

getAllelesForAA Get HLA alleles for amino acid position

Description

List HLA alleles and amino acid residues at a given position.

Usage

getAllelesForAA(object, aa_pos)

Arguments

object MiDAS object.

aa_pos String specifying gene and amino acid position, example "A_9".

Value

Data frame containing HLA alleles, their corresponding amino acid residues and frequencies at
requested position.

Examples

getAllelesForAA(object = MiDAS_tut_object, aa_pos = "A_9")

getExperimentFrequencies

Calculate experiment’s features frequencies

Description

getExperimentFrequencies calculate features frequencies.

Usage

getExperimentFrequencies(
experiment,
pop_mul = NULL,
carrier_frequency = FALSE,
ref = NULL

)

S3 method for class 'matrix'
getExperimentFrequencies(
experiment,

getExperimentPopulationMultiplicator 27

pop_mul = NULL,
carrier_frequency = FALSE,
ref = NULL

)

S3 method for class 'SummarizedExperiment'
getExperimentFrequencies(
experiment,
pop_mul = NULL,
carrier_frequency = FALSE,
ref = NULL

)

Arguments

experiment Matrix or SummarizedExperiment object.

pop_mul Number by which number of samples should be multiplied to get the population
size.

carrier_frequency

Logical flag indicating if carrier frequency should be returned.

ref Wide format data frame with first column named "var" holding features match-
ing experiment and specific populations frequencies in following columns. See
getReferenceFrequencies for more details.

Value

Data frame with each row holding specific variable, it’s count and frequency.

getExperimentPopulationMultiplicator

Get experiment’s population multiplicator

Description

getExperimentPopulationMultiplicator extracts population multiplicator from experiment’s
metadata.

Usage

getExperimentPopulationMultiplicator(experiment)

S3 method for class 'matrix'
getExperimentPopulationMultiplicator(experiment)

S3 method for class 'SummarizedExperiment'
getExperimentPopulationMultiplicator(experiment)

28 getFrequencies

Arguments

experiment Matrix or SummarizedExperiment object.

Value

Experiment’s population multiplicator number.

getExperiments Get available experiments in MiDAS object.

Description

Get available experiments in MiDAS object.

Usage

getExperiments(object)

Arguments

object MiDAS object.

Value

Character vector giving names of experiments in object.

Examples

getExperiments(object = MiDAS_tut_object)

getFrequencies Calculate features frequencies for a given experiment in MiDAS ob-
ject.

Description

Calculate features frequencies for a given experiment in MiDAS object.

getFrequencies 29

Usage

getFrequencies(
object,
experiment,
carrier_frequency = FALSE,
compare = FALSE,
ref_pop = list(hla_alleles = c("USA NMDP African American pop 2", "USA NMDP Chinese",

"USA NMDP European Caucasian", "USA NMDP Hispanic South or Central American",
"USA NMDP Japanese", "USA NMDP North American Amerindian",

"USA NMDP South Asian Indian"), kir_genes = c("USA California African American KIR",
"USA California Asian American KIR", "USA California Caucasians KIR",
"USA California Hispanic KIR")),

ref = list(hla_alleles = allele_frequencies, kir_genes = kir_frequencies)
)

Arguments

object MiDAS object.

experiment Matrix or SummarizedExperiment object.
carrier_frequency

Logical flag indicating if carrier frequency should be returned.

compare Logical flag indicating if hla_calls frequencies should be compared to refer-
ence frequencies given in ref.

ref_pop Named list of character vectors giving names of reference populations in ref to
compare with. Optionally vectors can be named, then those names will be used
as population names. Each vector should correspond to a specific experiment.

ref Named list of reference frequencies data frames. Each element should give ref-
erence for a specific experiment. See allele_frequencies for an example on
how reference frequency data frame should be formatted.

Value

Data frame with features from selected experiment and their corresponding frequencies. Column
"term" hold features names, "Counts" hold number of feature occurrences, "Freq" hold feature
frequencies. If argument compare is set to TRUE, further columns will hold frequencies in reference
populations.

Examples

using default reference populations
getFrequencies(object = MiDAS_tut_object,

experiment = "hla_alleles",
compare = TRUE)

using customized set of reference populations
getFrequencies(

object = MiDAS_tut_object,
experiment = "hla_alleles",

30 getFrequencyMask

compare = TRUE,
ref_pop = list(

hla_alleles = c("USA NMDP Chinese", "USA NMDP European Caucasian")
),
ref = list(hla_alleles = allele_frequencies)

)

getFrequencyMask Helper function for filtering frequency data frame

Description

Helper function for filtering frequency data frame

Usage

getFrequencyMask(
df,
lower_frequency_cutoff = NULL,
upper_frequency_cutoff = NULL

)

Arguments

df Data frame as returned by getExperimentFrequencies.

lower_frequency_cutoff

Positive number or NULL. Numbers greater than 1 are interpreted as number of
feature occurrences, numbers between 0 and 1 as fractions.

upper_frequency_cutoff

Positive number or NULL. Numbers greater than 1 are interpreted as number of
feature occurrences, numbers between 0 and 1 as fractions.

Value

Character vector containing names of variables after filtration.

getHlaCalls 31

getHlaCalls Get HLA calls from MiDAS object.

Description

Get HLA calls from MiDAS object.

Usage

getHlaCalls(object)

Arguments

object MiDAS object.

Value

HLA calls data frame.

Examples

getHlaCalls(object = MiDAS_tut_object)

getHlaCallsGenes Get HLA calls genes

Description

getHlaCallsGenes get’s genes found in HLA calls.

Usage

getHlaCallsGenes(hla_calls)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

Value

Character vector of genes in hla_calls.

32 getHlaFrequencies

getHlaFrequencies Calculate HLA allele frequencies

Description

getHlaFrequencies calculates allele frequencies in HLA calls data frame.

Usage

getHlaFrequencies(
hla_calls,
carrier_frequency = FALSE,
compare = FALSE,
ref_pop = c("USA NMDP African American pop 2", "USA NMDP Chinese",
"USA NMDP European Caucasian", "USA NMDP Hispanic South or Central American",
"USA NMDP Japanese", "USA NMDP North American Amerindian",
"USA NMDP South Asian Indian"),

ref = allele_frequencies
)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.
carrier_frequency

Logical flag indicating if carrier frequency should be returned.

compare Logical flag indicating if hla_calls frequencies should be compared to refer-
ence frequencies given in ref.

ref_pop Character vector giving names of reference populations in ref to compare with.
Optionally vector can be named, then those names will be used as population
names.

ref Data frame giving reference allele frequencies. See allele_frequencies for
an example.

Details

Both gene copies are taken into consideration for frequencies calculation, frequency = n / (2 * j)
where n is the number of allele occurrences and j is the number of samples in hla_calls.

Value

Data frame with each row holding HLA allele, it’s count and frequency.

Examples

getHlaFrequencies(MiDAS_tut_HLA)

getHlaKirInteractions 33

getHlaKirInteractions Get HLA - KIR interactions

Description

getHlaKirInteractions calculate presence-absence matrix of HLA - KIR interactions.

Usage

getHlaKirInteractions(
hla_calls,
kir_calls,
interactions_dict = system.file("extdata", "Match_counts_hla_kir_interactions.txt",

package = "midasHLA")
)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.
kir_calls KIR calls data frame, as returned by readKirCalls function.
interactions_dict

Path to HLA - KIR interactions dictionary.

Details

hla_calls are first reduced to all possible resolutions and converted to additional variables, such
as G groups, using dictionaries shipped with the package.

interactions_dict file should be a tsv format with header and two columns. First column should
be named "Name" and hold interactions names, second should be named "Expression" and hold
expression used to identify interaction (eg. "C2 & KIR2DL1" will match all samples with C2 and
KIR2DL1). The package is shipped with an interactions file based on Pende et al., 2019.

Value

Data frame with variable number of columns. First column named "ID" corresponds to "ID" col-
umn in counts, further columns hold indicators for HLA - KIR interactions. 1 and 0 code presence
and absence of a variable respectively.

Examples

getHlaKirInteractions(
hla_calls = MiDAS_tut_HLA,
kir_calls = MiDAS_tut_KIR,
interactions_dict = system.file(
"extdata", "Match_counts_hla_kir_interactions.txt",
package = "midasHLA")

)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558367/

34 getKIRFrequencies

getKirCalls Get KIR calls from MiDAS object.

Description

Get KIR calls from MiDAS object.

Usage

getKirCalls(object)

Arguments

object MiDAS object.

Value

KIR calls data frame.

Examples

getKirCalls(object = MiDAS_tut_object)

getKIRFrequencies Calculate KIR genes frequencies

Description

getKIRFrequencies calculates KIR genes frequencies in KIR calls data frame.

Usage

getKIRFrequencies(kir_calls)

Arguments

kir_calls KIR calls data frame, as returned by readKirCalls function.

Value

Data frame with each row holding KIR gene, it’s count and frequency.

Examples

getKIRFrequencies(MiDAS_tut_KIR)

getObjectDetails 35

getObjectDetails Get attributes of statistical model object

Description

getObjectDetails extracts some of the statistical model object attributes that are needed for
runMiDAS internal calculations.

Usage

getObjectDetails(object)

Arguments

object An existing fit from a model function such as lm, glm and many others.

Value

List with following elements:

call Object’s call

formula_vars Character containing names of variables in object formula

data MiDAS object associated with model

getOmnibusGroups Get omnibus groups from MiDAS object.

Description

Get omnibus groups from MiDAS object.

Usage

getOmnibusGroups(object, experiment)

Arguments

object MiDAS object.

experiment String specifying experiment.

Details

For some experiments features can be naturally divided into groups (here called omnibus groups).
For example, in "hla_aa" experiment features can be grouped by amino acid position ("B_46_E",
"B_46_A") can be grouped into B_46 group). Such groups can be then used to perform omnibus
test, see runMiDAS for more details.

36 getReferenceFrequencies

Value

List of omnibus groups for a given experiment.

Examples

getOmnibusGroups(object = MiDAS_tut_object,
experiment = "hla_aa")

getPlaceholder Get placeholder name from MiDAS object.

Description

Get placeholder name from MiDAS object.

Usage

getPlaceholder(object)

Arguments

object MiDAS object.

Value

String giving name of placeholder.

Examples

getPlaceholder(object = MiDAS_tut_object)

getReferenceFrequencies

Helper transforming reference frequencies

Description

Helper transforming reference frequencies

Usage

getReferenceFrequencies(ref, pop, carrier_frequency = FALSE)

getVariableAAPos 37

Arguments

ref Long format data frame with three columns "var", "population", "frequency".

pop Character giving names of populations to include
carrier_frequency

Logical indicating if carrier frequency should be returned instead of frequency.
Carrier frequency is calculated based on Hardy-Weinberg equilibrium model.

Value

Wide format data frame with population frequencies as columns.

getVariableAAPos Find variable positions in sequence alignment

Description

getVariableAAPos finds variable amino acid positions in protein sequence alignment.

Usage

getVariableAAPos(alignment, varchar = "[A-Z]")

Arguments

alignment Matrix containing amino acid level alignment, as returned by readHlaAlignments,

varchar Regex matching characters that should be considered when looking for variable
amino acid positions. See details for further explanations.

Details

The variable amino acid positions in the alignment are those at which different amino acids can be
found. As the alignments can also contain indels and unknown characters, the user choice might be
to consider those positions as variable or not. This can be achieved by passing appropriate regular
expression in varchar. Eg. when varchar = "[A-Z]" occurence of deletion/insertion (".") will not
be treated as variability. In order to detect this kind of variability varchar = "[A-Z\\.]" should be
used.

Value

Integer vector specifying which alignment columns are variable.

Examples

alignment <- readHlaAlignments(gene = "TAP1")
getVariableAAPos(alignment)

38 hlaAlignmentGrantham

hasTidyMethod Check if tidy method for class exist

Description

hasTidyMethod check if there is a tidy method available for a given class.

Usage

hasTidyMethod(class)

Arguments

class String giving object class.

Value

Logical indicating if there is a tidy method for a given class.

hlaAlignmentGrantham Helper function returning alignment for Grantham distance calcula-
tions

Description

Helper function returning alignment for Grantham distance calculations

Usage

hlaAlignmentGrantham(gene, aa_sel = 2:182)

Arguments

gene Character vector specifying HLA gene.

aa_sel Numeric vector specifying amino acids that should be extracted.

Value

HLA alignment processed for grantham distance calculation. Processing includes extracting spe-
cific amino acids, masking indels, gaps and stop codons.

hlaCallsGranthamDistance 39

hlaCallsGranthamDistance

Calculate Grantham distance between HLA alleles

Description

hlaCallsGranthamDistance calculate Grantham distance between two HLA alleles of a given,
using original formula by Grantham R. 1974..

Usage

hlaCallsGranthamDistance(
hla_calls,
genes = c("A", "B", "C"),
aa_selection = "binding_groove"

)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

genes Character vector specifying genes for which allelic distance should be calcu-
lated.

aa_selection String specifying variable region in peptide binding groove which should be con-
sidered for Grantham distance calculation. Valid choices includes: "binding_groove",
"B_pocket", "F_pocket". See details for more information.

Details

Grantham distance is calculated only for class I HLA alleles. First exons forming the variable region
in the peptide binding groove are selected. Here we provide option to choose either "binding_groove"
- exon 2 and 3 (positions 1-182 in IMGT/HLA alignments, however here we take 2-182 as many
1st positions are missing), "B_pocket" - residues 7, 9, 24, 25, 34, 45, 63, 66, 67, 70, 99 and
"F_pocket" - residues 77, 80, 81, 84, 95, 116, 123, 143, 146, 147. Then all the alleles containing
gaps, stop codons or indels are discarded. Finally distance is calculated for each pair.

See Robinson J. 2017. for more details on the choice of exons 2 and 3.

Value

Data frame of normalized Grantham distances between pairs of alleles for each specified HLA gene.
First column (ID) is the same as in hla_calls, further columns are named as given by genes.

Examples

hlaCallsGranthamDistance(MiDAS_tut_HLA, genes = "A")

http://www.sciencemag.org/content/185/4154/862.long
https://europepmc.org/article/med/28650991

40 hlaToAAVariation

hlaCallsToCounts Transform HLA calls to counts table

Description

hlaCallsToCounts converts HLA calls data frame into a counts table.

Usage

hlaCallsToCounts(hla_calls, check_hla_format = TRUE)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.
check_hla_format

Logical indicating if hla_calls format should be checked. This is useful if one
wants to use hlaCallsToCounts with input not adhering to HLA nomenclature
standards. See examples.

Value

HLA allele counts data frame. First column holds samples ID’s, further columns, corresponding to
specific alleles, give information on the number of their occurrences in each sample.

hlaToAAVariation Generate amino acid variation matrix

Description

hlaToAAVariation convert HLA calls data frame to a matrix of variable amino acid positions.

Usage

hlaToAAVariation(hla_calls, indels = TRUE, unkchar = FALSE, as_df = TRUE)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

indels Logical indicating whether indels should be considered when checking variabil-
ity.

unkchar Logical indicating whether unknown characters in the alignment should be con-
sidered when checking variability.

as_df Logical indicating if data frame should be returned. Otherwise a matrix is re-
turned.

hlaToVariable 41

Details

Variable amino acid positions are found by comparing elements of the alignment column wise.
Some of the values in alignment can be treated specially using indels and unkchar arguments.
Function processes alignments for all HLA genes found in hla_calls.

Variable amino acid position uses protein alignments from EBI database.

Value

Matrix or data frame containing variable amino acid positions. Rownames corresponds to ID col-
umn in hla_calls, and colnames to alignment positions. If no variation is found one column matrix
filled with NA’s is returned.

Examples

hlaToAAVariation(MiDAS_tut_HLA)

hlaToVariable Convert HLA calls to variables

Description

hlaToVariable converts HLA calls data frame to additional variables.

Usage

hlaToVariable(
hla_calls,
dictionary,
reduce = TRUE,
na.value = 0,
nacols.rm = TRUE

)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

dictionary Path to file containing HLA allele dictionary or a data frame.

reduce Logical indicating if function should try to reduce allele resolution when no
matching entry in the dictionary is found. See details.

na.value Vector of length one speciyfing value for alleles with no matching entry in
dictionary. Default is to use 0.

nacols.rm Logical indicating if result columns that contain only NA should be removed.

ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/hla/alignments/

42 HWETest

Details

dictionary file should be a tsv format with header and two columns. First column should hold
allele numbers and second corresponding additional variables. Optionally a data frame formatted
in the same manner can be passed instead.

dictionary can be also used to access dictionaries shipped with the package. They can be referred
to by using one of the following strings:

"allele_HLA_Bw" Translates HLA-B alleles together with A*23, A*24 and A*32 into Bw4 and
Bw6 allele groups. In some cases HLA alleles containing Bw4 epitope, on nucleotide level
actually carries a premature stop codon. Meaning that although on nucleotide level the allele
would encode a Bw4 epitope it’s not really there and it is assigned to Bw6 group. However in
4-digit resolution these alleles can not be distinguished from other Bw4 groups. Since alleles
with premature stop codons are rare, Bw4 group is assigned.

"allele_HLA-B_only_Bw" Translates HLA-B alleles (without A*23, A*24 and A*32) into Bw4
and Bw6 allele groups.

"allele_HLA-C_C1-2" Translates HLA-C alleles into C1 and C2 allele groups.

"allele_HLA_supertype" Translates HLA-A and HLA-B alleles into supertypes, a classification
that group HLA alleles based on peptide binding specificities.

"allele_HLA_Ggroup" Translates HLA alleles into G groups, which defines amino acid iden-
tity only in the exons relevant for peptide binding. Note that alleles DRB1*01:01:01 and
DRB1*01:16 match more than one G group, here this ambiguity was removed by deleting
matching with DRB5*01:01:01G group.

reduce control if conversion should happen in a greedy way, such that if some HLA number cannot
be converted, it’s resolution is reduced by 2 and another attempt is taken. This process stops when
alleles cannot be further reduced or all have been successfully converted.

Value

Data frame with variable number of columns. First column named "ID" corresponds to "ID" col-
umn in hla_calls, further columns holds converted HLA variables.

Examples

hlaToVariable(MiDAS_tut_HLA, dictionary = "allele_HLA_supertype")

HWETest Test for Hardy Weinberg equilibrium

Description

Test experiment features for Hardy Weinberg equilibrium.

HWETest 43

Usage

HWETest(
object,
experiment = c("hla_alleles", "hla_aa", "hla_g_groups", "hla_supertypes",
"hla_NK_ligands"),

HWE_group = NULL,
HWE_cutoff = NULL,
as.MiDAS = FALSE

)

Arguments

object MiDAS object.

experiment String specifying experiment to test. Valid values includes "hla_alleles",
"hla_aa", "hla_g_groups", "hla_supertypes", "hla_NK_ligands".

HWE_group Expression defining samples grouping to test for Hardy Weinberg equilibrium.
By default samples are not grouped.

HWE_cutoff Number specifying p-value threshold. When HWE_group is specified both groups
are thresholded.

as.MiDAS Logical flag indicating if MiDAS object should be returned.

Details

Setting as.MiDAS to TRUE will filter MiDAS object based on p-value cut-off given by HWE_cutoff.

Value

Data frame with Hardy Weinberg Equilibrium test results or a filtered MiDAS object.

Examples

create MiDAS object
midas <- prepareMiDAS(hla_calls = MiDAS_tut_HLA,

colData = MiDAS_tut_pheno,
experiment = "hla_alleles"

)

get HWE p-values as data frame
HWETest(midas, experiment = "hla_alleles")

get HWE in groups defined by disease status
grouping by `disease == 1` will divide samples into two groups:
`disease == 1` and `not disease == 1`
HWETest(midas, experiment = "hla_alleles", HWE_group = disease == 1)

filter MiDAS object by HWE test p-value
HWETest(midas, experiment = "hla_alleles", HWE_cutoff = 0.05, as.MiDAS = TRUE)

44 isClass

isCharacterOrNULL Check if object is character vector or NULL

Description

isCharacterOrNULL checks if the object is a character vector or NULL.

Usage

isCharacterOrNULL(x)

Arguments

x object to test.

Value

Logical indicating if object is character vector or NULL

isClass Check if object is of class x

Description

isClassOrNULL checks if object is an instance of a specified class or is null.

Usage

isClass(x, class)

Arguments

x object to test.

class String specifying class to test.

Value

Logical indicating if x is an instance of class.

isClassOrNULL 45

isClassOrNULL Check if object is of class x or null

Description

isClassOrNULL checks if object is an instance of a specified class or is null.

Usage

isClassOrNULL(x, class)

Arguments

x object to test.

class String specifying class to test.

Value

Logical indicating if x is an instance of class.

isCountOrNULL Check if object is count or NULL

Description

isCountOrNULL check if object is a count (a single positive integer) or NULL.

Usage

isCountOrNULL(x)

Arguments

x object to test.

Value

Logical indicating if object is count or NULL

46 isExperimentCountsOrZeros

isCountsOrZeros Check if vector contains only counts or zeros

Description

isCountsOrZeros checks if vector contains only positive integers or zeros.

Usage

isCountsOrZeros(x, na.rm = TRUE)

Arguments

x Numeric vector or object that can be unlist to numeric vector.

na.rm Logical indicating if NA values should be accepted.

Value

Logical indicating if provided vector contains only positive integers or zeros.

isExperimentCountsOrZeros

Check if frequencies can be calculated for an experiment

Description

isExperimentCountsOrZeros checks if experiment contains only positive integers or zeros.

Usage

isExperimentCountsOrZeros(x, na.rm = TRUE)

Arguments

x Matrix or SummarizedExperiment object.

na.rm Logical indicating if NA values should be accepted.

Value

Logical indicating if x contains only positive integers or zeros.

isExperimentInheritanceModelApplicable 47

isExperimentInheritanceModelApplicable

Check if experiment is inheritance model applicable

Description

isExperimentInheritanceModelApplicable check experiment’s metadata for presence of "inheritance_model_applicable"
flag, indicating if inheritance model can be applied.

Usage

isExperimentInheritanceModelApplicable(experiment)

S3 method for class 'matrix'
isExperimentInheritanceModelApplicable(experiment)

S3 method for class 'SummarizedExperiment'
isExperimentInheritanceModelApplicable(experiment)

Arguments

experiment Matrix or SummarizedExperiment object.

Value

Logical flag.

isFlagOrNULL Check if object is flag or NULL

Description

isFlagOrNULL checks if object is flag (a length one logical vector) or NULL.

Usage

isFlagOrNULL(x)

Arguments

x object to test.

Value

Logical indicating if object is flag or NULL

48 isStringOrNULL

isNumberOrNULL Check if object is number or NULL

Description

isNumberOrNULL checks if object is number (a length one numeric vector) or NULL.

Usage

isNumberOrNULL(x)

Arguments

x object to test.

Value

Logical indicating if object is number or NULL

isStringOrNULL Check if object is string or NULL

Description

isStringOrNULL checks if object is string (a length one character vector) or NULL.

Usage

isStringOrNULL(x)

Arguments

x object to test.

Value

Logical indicating if object is string or NULL

isTRUEorFALSE 49

isTRUEorFALSE Check if object is TRUE or FALSE flag

Description

isTRUEorFALSE check if object is a flag (a length one logical vector) except NA.

Usage

isTRUEorFALSE(x)

Arguments

x object to test.

Value

Logical indicating if object is TRUE or FALSE flag

iterativeLRT Iterative likelihood ratio test

Description

iterativeLRT performs likelihood ratio test in an iterative manner over groups of variables given
in omnibus_groups.

Usage

iterativeLRT(object, placeholder, omnibus_groups)

Arguments

object An existing fit from a model function such as lm, glm and many others.

placeholder String specifying term to substitute with value from x. Ignored if set to NULL.

omnibus_groups List of character vectors giving sets of variables for which omnibus test should
be applied.

Value

Data frame containing summarised likelihood ratio test results.

50 kableResults

iterativeModel Iteratively evaluate model for different variables

Description

Information about variable statistic from each model is extracted using tidy function.

Usage

iterativeModel(object, placeholder, variables, exponentiate = FALSE)

Arguments

object An existing fit from a model function such as lm, glm and many others.

placeholder String specifying term to substitute with value from x. Ignored if set to NULL.

variables Character vector specifying variables to use in association tests.

exponentiate Logical flag indicating whether or not to exponentiate the coefficient estimates.
Internally this is passed to tidy. This is typical for logistic and multinomial
regressions, but a bad idea if there is no log or logit link. Defaults to FALSE.

Value

Tibble containing per variable summarised model statistics. The exact output format is model de-
pendent and controlled by model’s dedicated tidy function.

kableResults Create association analysis results table in HTML or LaTeX

Description

kableResults convert results table (runMiDAS output) to HTML or LaTeX format.

Usage

kableResults(
results,
colnames = NULL,
header = "MiDAS analysis results",
pvalue_cutoff = NULL,
format = getOption("knitr.table.format"),
scroll_box_height = "400px"

)

kir_frequencies 51

Arguments

results Tibble as returned by runMiDAS.

colnames Character vector of form c("new_name" = "old_name"), used to rename results
colnames.

header String specifying results table header.

pvalue_cutoff Number specifying p-value cutoff for results to be included in output. If NULL
no filtering is done.

format String "latex" or "html".
scroll_box_height

A character string indicating the height of the table.

Value

Association analysis results table in HTML or LaTeX.

Examples

midas <- prepareMiDAS(hla_calls = MiDAS_tut_HLA,
colData = MiDAS_tut_pheno,
experiment = "hla_alleles")

object <- lm(disease ~ term, data = midas)
res <- runMiDAS(object, experiment = "hla_alleles", inheritance_model = "additive")
kableResults(results = res,

colnames = c("HLA allele" = "allele"))

kir_frequencies KIR genes frequencies scraped from allelefrequencies.net

Description

Accessed on 28.08.20

Usage

kir_frequencies

Format

A data frame with 3744 rows and 3 variables:

var allele number, character

population reference population name, character

frequency KIR genes carrier frequency in reference population, float

52 lapply_tryCatch

Details

A dataset containing KIR genes frequencies across 16 genes. For details visit the search results
page in the allelefrequencies.net database website.

Source

www.allelefrequencies.net

lapply_tryCatch lapply with tryCatch routine

Description

Used to run function iteratively over list, while using tryCatch to catch warnings and errors to finally
present a summary of issues rather than error on each and every one. Used in iterativeLRT and
iterativeModel.

Usage

lapply_tryCatch(X, FUN, err_res, ...)

Arguments

X a vector (atomic or list) or an expression object. Other objects (including
classed objects) will be coerced by base::as.list.

FUN the function to be applied to each element of X: see ‘Details’. In the case of
functions like +, %*%, the function name must be backquoted or quoted.

err_res Function creating a result that should be output in case of error.

... optional arguments to FUN.

Value

List of elements as returned by FUN.

www.allelefrequencies.net

listMiDASDictionaries 53

listMiDASDictionaries List HLA alleles dictionaries

Description

listMiDASDictionaries lists dictionaries shipped with the MiDAS package. See hlaToVariable
for more details on dictionaries.

Usage

listMiDASDictionaries(pattern = "allele", file.names = FALSE)

Arguments

pattern String used to match dictionary names, it can be a regular expression. By default
all names are matched.

file.names Logical value. If FALSE, only the names of dictionaries are returned. If TRUE
their paths are returned.

Value

Character vector giving names of available HLA alleles dictionaries.

LRTest Likelihood ratio test

Description

LRTest carry out an asymptotic likelihood ratio test for two models.

Usage

LRTest(mod0, mod1)

Arguments

mod0 An existing fit from a model function such as lm, glm and many others.

mod1 Object of the same class as mod0 with extra terms included.

Details

mod0 have to be a reduced version of mod1. See examples.

54 MiDAS-class

Value

Data frame with the results of likelihood ratio test of the supplied models.

Column term holds new variables appearing in mod1, df difference in degrees of freedom between
models, logLik difference in log likelihoods, statistic Chisq statistic and p.value correspond-
ing p-value.

MiDAS-class MiDAS class

Description

The MiDAS class is a MultiAssayExperiment object containing data and metadata required for
MiDAS analysis.

Valid MiDAS object must have unique features names across all experiments and colData. It’s meta-
data list needs to have a placeholder element, which is a string specifying name of column in
colData used when defining statistical model for downstream analyses (see runMiDAS for more de-
tails). Optionally the object’s metadata can also store 'hla_calls' and 'kir_calls' data frames
(see prepareMiDAS for more details).

Usage

S4 method for signature 'MiDAS'
getExperiments(object)

S4 method for signature 'MiDAS'
getHlaCalls(object)

S4 method for signature 'MiDAS'
getKirCalls(object)

S4 method for signature 'MiDAS'
getPlaceholder(object)

S4 method for signature 'MiDAS'
getOmnibusGroups(object, experiment)

S4 method for signature 'MiDAS'
getFrequencies(
object,
experiment,
carrier_frequency = FALSE,
compare = FALSE,
ref_pop = list(hla_alleles = c("USA NMDP African American pop 2", "USA NMDP Chinese",

"USA NMDP European Caucasian", "USA NMDP Hispanic South or Central American",
"USA NMDP Japanese", "USA NMDP North American Amerindian",

"USA NMDP South Asian Indian"), kir_genes = c("USA California African American KIR",

MiDAS-class 55

"USA California Asian American KIR", "USA California Caucasians KIR",
"USA California Hispanic KIR")),

ref = list(hla_alleles = allele_frequencies, kir_genes = kir_frequencies)
)

S4 method for signature 'MiDAS'
filterByFrequency(
object,
experiment,
lower_frequency_cutoff = NULL,
upper_frequency_cutoff = NULL,
carrier_frequency = FALSE

)

S4 method for signature 'MiDAS'
filterByOmnibusGroups(object, experiment, groups)

S4 method for signature 'MiDAS'
filterByVariables(object, experiment, variables)

S4 method for signature 'MiDAS'
getAllelesForAA(object, aa_pos)

Arguments

object MiDAS object.

experiment String specifying experiment.
carrier_frequency

Logical flag indicating if carrier frequency should be returned.

compare Logical flag indicating if hla_calls frequencies should be compared to refer-
ence frequencies given in ref.

ref_pop Named list of character vectors giving names of reference populations in ref to
compare with. Optionally vectors can be named, then those names will be used
as population names. Each vector should correspond to a specific experiment.

ref Named list of reference frequencies data frames. Each element should give ref-
erence for a specific experiment. See allele_frequencies for an example on
how reference frequency data frame should be formatted.

lower_frequency_cutoff

Number giving lower frequency threshold. Numbers greater than 1 are inter-
preted as the number of feature occurrences, numbers between 0 and 1 as frac-
tions.

upper_frequency_cutoff

Number giving upper frequency threshold. Numbers greater than 1 are inter-
preted as the number of feature occurrences, numbers between 0 and 1 as frac-
tions.

groups Character vector specifying omnibus groups to select. See getOmnibusGroups
for more details.

56 MiDAS_tut_HLA

variables Character vector specifying features to select.

aa_pos String specifying gene and amino acid position, example "A_9".

Value

Instance of class MiDAS

midasToWide Transform MiDAS to wide format data.frame

Description

Transform MiDAS to wide format data.frame

Usage

midasToWide(object, experiment)

Arguments

object Object of class MiDAS

experiment Character specifying experiments to include

Value

Data frame representation of MiDAS object. Consecutive columns holds values of variables from
MiDAS’s experiments and colData. The metadata associated with experiments is not preserved.

MiDAS_tut_HLA MiDAS tutorial HLA data

Description

Example HLA calls data used in MiDAS tutorial

Usage

MiDAS_tut_HLA

MiDAS_tut_KIR 57

Format

Data frame with 1000 rows and 19 columns. First column holds samples ID’s, following columns
holds HLA alleles calls for different genes.

ID Character sample ID

A_1 Character

A_2 Character

B_1 Character

B_2 Character

C_1 Character

C_2 Character

DPA1_1 Character

DPA1_2 Character

DPB1_1 Character

DPB1_2 Character

DQA1_1 Character

DQA1_2 Character

DQB1_1 Character

DQB1_2 Character

DRA_1 Character

DRA_2 Character

DRB1_1 Character

DRB1_2 Character

MiDAS_tut_KIR MiDAS tutorial KIR data

Description

Example KIRR presence/absence data used in MiDAS tutorial

Usage

MiDAS_tut_KIR

58 MiDAS_tut_object

Format

Data frame with 1000 rows and 17 columns. First column holds samples ID’s, following columns
holds presence/absence indicators for different KIR genes.

ID Character sample ID

KIR3DL3 Integer

KIR2DS2 Integer

KIR2DL2 Integer

KIR2DL3 Integer

KIR2DP1 Integer

KIR2DL1 Integer

KIR3DP1 Integer

KIR2DL4 Integer

KIR3DL1 Integer

KIR3DS1 Integer

KIR2DL5 Integer

KIR2DS3 Integer

KIR2DS5 Integer

KIR2DS4 Integer

KIR2DS1 Integer

KIR3DL2 Integer

MiDAS_tut_object MiDAS tutorial MiDAS object

Description

Example MiDAS object created with data used in MiDAS tutorial: MiDAS_tut_HLA, MiDAS_tut_KIR,
MiDAS_tut_pheno. Used in code examlpes and unit tests.

Usage

MiDAS_tut_object

Format

MiDAS object with following experiments defined:

hla_alleles SummarizedExperiment with 447 rows and 1000 columns

hla_aa SummarizedExperiment with 1223 rows and 1000 columns

hla_g_groups SummarizedExperiment with 46 rows and 1000 columns

MiDAS_tut_pheno 59

hla_supertypes SummarizedExperiment with 12 rows and 1000 columns
hla_NK_ligands SummarizedExperiment with 5 rows and 1000 columns
kir_genes SummarizedExperiment with 16 rows and 1000 columns
kir_haplotypes SummarizedExperiment with 6 rows and 1000 columns
hla_kir_interactions SummarizedExperiment with 29 rows and 1000 columns
hla_divergence matrix with 4 rows and 1000 columns
hla_het SummarizedExperiment with 9 rows and 1000 columns

MiDAS_tut_pheno MiDAS tutorial phenotype data

Description

Example phenotype data used in MiDAS tutorial

Usage

MiDAS_tut_pheno

Format

Data frame with 1000 rows and 4 columns.

ID Character sample ID
disease Integer
lab_value Numeric
outcome Integer

objectHasPlaceholder Check if placeholder is present in object formula

Description

isTRUEorFALSE check if object is a flag (a length one logical vector) except NA.

Usage

objectHasPlaceholder(object, placeholder)

Arguments

object statistical model to test.
placeholder string specifying name of placeholder.

Value

Logical indicating if placeholder is present in object formula.

60 omnibusTest

omnibusTest Omnibus test

Description

OmnibusTest calculates overall p-value for linear combination of variables using likelihood ratio
test.

Usage

omnibusTest(
object,
omnibus_groups,
placeholder = "term",
correction = "bonferroni",
n_correction = NULL

)

Arguments

object An existing fit from a model function such as lm, glm and many others.

omnibus_groups List of character vectors giving sets of variables for which omnibus test should
be applied.

placeholder String specifying term in object’s formula which should be substituted with
variables during analysis.

correction String specifying multiple testing correction method. See details for further
information.

n_correction Integer specifying number of comparisons to consider during multiple testing
correction calculations. For Bonferroni correction it is possible to specify a
number lower than the number of comparisons being made. This is useful in
cases when knowledge about the biology or redundance of alleles reduces the
need for correction. For other methods it must be at least equal to the number
of comparisons being made; only set this (to non-default) when you know what
you are doing!

Details

Likelihood ratio test is conducted by comparing a model given in an object with an extended
model, that is created by including the effect of variables given in variables as their linear combi-
nation.

Value

Data frame with columns:

• "group" Omnibus group name

prepareMiDAS 61

• "term" Elements of omnibus group added to base model
• "df" Difference in degrees of freedom between base and extended model
• "logLik" Difference in log likelihoods between base and extended model
• "statistic" Chisq statistic
• "p.value" P-value
• "p.adjusted" Adjusted p-value

Examples

midas <- prepareMiDAS(hla_calls = MiDAS_tut_HLA,
colData = MiDAS_tut_pheno,
experiment = "hla_aa")

define base model
object <- lm(disease ~ term, data = midas)
omnibusTest(object,

omnibus_groups = list(
A_29 = c("A_29_D", "A_29_A"),
A_43 = c("A_43_Q", "A_43_R")

))

prepareMiDAS Construct a MiDAS object

Description

prepareMiDAS transform HLA alleles calls and KIR calls according to selected experiments cre-
ating a MiDAS object.

Usage

prepareMiDAS(
hla_calls = NULL,
kir_calls = NULL,
colData,
experiment = c("hla_alleles", "hla_aa", "hla_g_groups", "hla_supertypes",
"hla_NK_ligands", "kir_genes", "kir_haplotypes", "hla_kir_interactions",
"hla_divergence", "hla_het", "hla_custom", "kir_custom"),

placeholder = "term",
lower_frequency_cutoff = NULL,
upper_frequency_cutoff = NULL,
indels = TRUE,
unkchar = FALSE,
hla_divergence_aa_selection = "binding_groove",
hla_het_resolution = 8,
hla_dictionary = NULL,
kir_dictionary = NULL

)

62 prepareMiDAS

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

kir_calls KIR calls data frame, as returned by readKirCalls function.

colData Data frame holding additional variables like phenotypic observations or covari-
ates. It have to contain 'ID' column holding samples identifiers corresponding
to identifiers in hla_calls and kir_calls. Importantly rows of hla_calls
and kir_calls without corresponding phenotype are discarded.

experiment Character vector indicating analysis type for which data should be prepared.
Valid choices are "hla_alleles", "hla_aa", "hla_g_groups", "hla_supertypes",
"hla_NK_ligands", "kir_genes", "hla_kir_interactions", "hla_divergence",
"hla_het". See details for further explanations.

placeholder String giving name for dummy variable inserted to colData. This variable can
be than used to define base statistical model used by runMiDAS.

lower_frequency_cutoff

Number giving lower frequency threshold. Numbers greater than 1 are inter-
preted as the number of feature occurrences, numbers between 0 and 1 as frac-
tions.

upper_frequency_cutoff

Number giving upper frequency threshold. Numbers greater than 1 are inter-
preted as the number of feature occurrences, numbers between 0 and 1 as frac-
tions.

indels Logical indicating whether indels should be considered when checking amino
acid variability in 'hla_aa' experiment.

unkchar Logical indicating whether unknown characters in the alignment should be con-
sidered when checking amino acid variability in 'hla_aa' experiment.

hla_divergence_aa_selection

String specifying variable region in peptide binding groove which should be con-
sidered for Grantham distance calculation. Valid choices includes: "binding_groove",
"B_pocket", "F_pocket". See details for more information.

hla_het_resolution

Number specifying HLA alleles resolution used to calculate heterogeneity in
"hla_het" experiment.

hla_dictionary Data frame giving HLA allele dictionary used in 'hla_custom' experiment.
See hlaToVariable for more details.

kir_dictionary Data frame giving KIR genes dictionary used in 'kir_custom' experiment. See
countsToVariables for more details.

Details

experiment specifies analysis types for which hla_calls and kir_call should be prepared.

’hla_alleles’ hla_calls are transformed to counts matrix describing number of allele occur-
rences for each sample. This experiment is used to test associations on HLA alleles level.

’hla_aa’ hla_calls are transformed to a matrix of variable amino acid positions. See hlaToAAVariation
for more details. This experiment is used to test associations on amino acid level.

prepareMiDAS_hla_aa 63

"hla_g_groups" hla_calls are translated into HLA G groups and transformed to matrix describ-
ing number of G group occurrences for each sample. See hlaToVariable for more details.
This experiment is used to test associations on HLA G groups level.

"hla_supertypes" hla_calls are translated into HLA supertypes and transformed to matrix de-
scribing number of G group occurrences for each sample. See hlaToVariable for more
details. This experiment is used to test associations on HLA supertypes level.

"hla_NK_ligands" hla_calls are translated into NK ligands, which includes HLA Bw4/Bw6
and HLA C1/C2 groups and transformed to matrix describing number of their occurrences for
each sample. See hlaToVariable for more details.This experiment is used to test associations
on HLA NK ligands level.

"kir_genes" kir_calls are transformed to counts matrix describing number of KIR gene occur-
rences for each sample. This experiment is used to test associations on KIR genes level.

"hla_kir_interactions" hla_calls and kir_calls are translated to HLA - KIR interactions
as defined in Pende et al., 2019.. See getHlaKirInteractions for more details. This experi-
ment is used to test associations on HLA - KIR interactions level.

"hla_divergence" Grantham distance for class I HLA alleles is calculated based on hla_calls
using original formula by Grantham R. 1974.. See hlaCallsGranthamDistance for more
details. This experiment is used to test associations on HLA divergence level measured by
Grantham distance.

"hla_het" hla_calls are transformed to heterozygosity status, where 1 designates a heterozygote
and 0 homozygote. Heterozygosity status is calculated only for classical HLA genes (A, B, C,
DQA1, DQB1, DRA, DRB1, DPA1, DPB1). This experiment is used to test associations on
HLA divergence level measured by heterozygosity.

Value

Object of class MiDAS

Examples

midas <- prepareMiDAS(hla_calls = MiDAS_tut_HLA,
kir_calls = MiDAS_tut_KIR,
colData = MiDAS_tut_pheno,
experiment = "hla_alleles")

prepareMiDAS_hla_aa Prepare MiDAS data on HLA amino acid level

Description

Prepare MiDAS data on HLA amino acid level

Usage

prepareMiDAS_hla_aa(hla_calls, indels = TRUE, unkchar = FALSE, ...)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558367/
http://www.sciencemag.org/content/185/4154/862.long

64 prepareMiDAS_hla_alleles

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

indels Logical indicating whether indels should be considered when checking variabil-
ity.

unkchar Logical indicating whether unknown characters in the alignment should be con-
sidered when checking variability.

... Not used

Value

SummarizedExperiment

prepareMiDAS_hla_alleles

Prepare MiDAS data on HLA allele level

Description

Prepare MiDAS data on HLA allele level

Usage

prepareMiDAS_hla_alleles(hla_calls, ...)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

... Not used

Value

Matrix

prepareMiDAS_hla_custom 65

prepareMiDAS_hla_custom

Prepare MiDAS data on custom HLA level

Description

Prepare MiDAS data on custom HLA level

Usage

prepareMiDAS_hla_custom(hla_calls, hla_dictionary, ...)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.
hla_dictionary Data frame giving HLA allele dictionary. See hlaToVariable for more details.
... Not used

Value

Matrix

prepareMiDAS_hla_divergence

Prepare MiDAS data on HLA divergence level

Description

Prepare MiDAS data on HLA divergence level

Usage

prepareMiDAS_hla_divergence(
hla_calls,
hla_divergence_aa_selection = "binding_groove",
...

)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.
hla_divergence_aa_selection

String specifying variable region in peptide binding groove which should be con-
sidered for Grantham distance calculation. Valid choices includes: "binding_groove",
"B_pocket", "F_pocket". See details for more information.

... Not used

66 prepareMiDAS_hla_het

Value

Matrix

prepareMiDAS_hla_g_groups

Prepare MiDAS data on HLA allele’s G groups level

Description

Prepare MiDAS data on HLA allele’s G groups level

Usage

prepareMiDAS_hla_g_groups(hla_calls, ...)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

... Not used

Value

Matrix

prepareMiDAS_hla_het Prepare MiDAS data on HLA heterozygosity level

Description

Prepare MiDAS data on HLA heterozygosity level

Usage

prepareMiDAS_hla_het(hla_calls, hla_het_resolution = 8, ...)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.
hla_het_resolution

Number specifying HLA alleles resolution used to calculate heterogeneity.

... Not used

Value

Matrix

prepareMiDAS_hla_kir_interactions 67

prepareMiDAS_hla_kir_interactions

Prepare MiDAS data on HLA - KIR interactions level

Description

Prepare MiDAS data on HLA - KIR interactions level

Usage

prepareMiDAS_hla_kir_interactions(hla_calls, kir_calls, ...)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

kir_calls KIR calls data frame, as returned by readKirCalls function.

... Not used

Value

Matrix

prepareMiDAS_hla_NK_ligands

Prepare MiDAS data on HLA allele’s groups level

Description

Prepare MiDAS data on HLA allele’s groups level

Usage

prepareMiDAS_hla_NK_ligands(hla_calls, ...)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

... Not used

Value

Matrix

68 prepareMiDAS_kir_custom

prepareMiDAS_hla_supertypes

Prepare MiDAS data on HLA allele’s supertypes level

Description

Prepare MiDAS data on HLA allele’s supertypes level

Usage

prepareMiDAS_hla_supertypes(hla_calls, ...)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

... Not used

Value

Matrix

prepareMiDAS_kir_custom

Prepare MiDAS data on custom KIR level

Description

Prepare MiDAS data on custom KIR level

Usage

prepareMiDAS_kir_custom(kir_calls, kir_dictionary, ...)

Arguments

kir_calls KIR calls data frame, as returned by readKirCalls function.

kir_dictionary Data frame giving KIR genes dictionary. See countsToVariables for more
details.

... Not used

Value

Matrix

prepareMiDAS_kir_genes 69

prepareMiDAS_kir_genes

Prepare MiDAS data on KIR genes level

Description

Prepare MiDAS data on KIR genes level

Usage

prepareMiDAS_kir_genes(kir_calls, ...)

Arguments

kir_calls KIR calls data frame, as returned by readKirCalls function.

... Not used

Value

Matrix

prepareMiDAS_kir_haplotypes

Prepare MiDAS data on KIR haplotypes level

Description

Prepare MiDAS data on KIR haplotypes level

Usage

prepareMiDAS_kir_haplotypes(kir_calls, ...)

Arguments

kir_calls KIR calls data frame, as returned by readKirCalls function.

... Not used

Value

Matrix

70 readHlaAlignments

readHlaAlignments Read HLA allele alignments

Description

readHlaAlignments read HLA allele alignments from file.

Usage

readHlaAlignments(file, gene = NULL, trim = FALSE, unkchar = "")

Arguments

file Path to input file.

gene Character vector of length one specifying the name of a gene for which align-
ment is required. See details for further explanations.

trim Logical indicating if alignment should be trimmed to start codon of the mature
protein.

unkchar Character to be used to represent positions with unknown sequence.

Details

HLA allele alignment file should follow EBI database format, for details see ftp://ftp.ebi.ac.
uk/pub/databases/ipd/imgt/hla/alignments/README.md.

All protein alignment files from the EBI database are shipped with the package. They can be
easily accessed using gene parameter. If gene is set to NULL, file parameter is used instead and
alignment is read from the provided file. In EBI database alignments for DRB1, DRB3, DRB4 and
DRB5 genes are provided as a single file, here they are separated.

Additionally, for the alleles without sequence defined in the original alignment files we have infered
thier sequence based on known higher resolution alleles.

Value

Matrix containing HLA allele alignments.

Rownames correspond to allele numbers and columns to positions in the alignment. Sequences
following the termination codon are marked as empty character (""). Unknown sequences are
marked with a character of choice, by default "". Stop codons are represented by a hash (X).
Insertion and deletions are marked with period (.).

Examples

hla_alignments <- readHlaAlignments(gene = "A")

ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/hla/alignments/README.md
ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/hla/alignments/README.md

readHlaCalls 71

readHlaCalls Read HLA allele calls

Description

readHlaCalls read HLA allele calls from file

Usage

readHlaCalls(file, resolution = 4, na.strings = c("Not typed", "-", "NA"))

Arguments

file Path to input file.

resolution Number specifying desired resolution.

na.strings a character vector of strings which are to be interpreted as NA values. Blank
fields are also considered to be missing values in logical, integer, numeric and
complex fields. Note that the test happens after white space is stripped from
the input, so na.strings values may need their own white space stripped in
advance.

Details

Input file has to be a tsv formatted table with a header. First column should contain sample IDs, fur-
ther columns hold HLA allele numbers. See system.file("extdata", "MiDAS_tut_HLA.txt",
package = "midasHLA") file for an example.

resolution parameter can be used to reduce HLA allele numbers. If reduction is not needed
resolution can be set to 8. resolution parameter can take the following values: 2, 4, 6, 8. For
more details about HLA allele numbers resolution see http://hla.alleles.org/nomenclature/
naming.html.

Value

HLA calls data frame. First column hold sample IDs, further columns hold HLA allele numbers.

Examples

file <- system.file("extdata", "MiDAS_tut_HLA.txt", package = "midasHLA")
hla_calls <- readHlaCalls(file)

http://hla.alleles.org/nomenclature/naming.html
http://hla.alleles.org/nomenclature/naming.html

72 reduceAlleleResolution

readKirCalls Read KIR calls

Description

readKirCalls read KIR calls from file.

Usage

readKirCalls(file, na.strings = c("", "NA", "uninterpretable"))

Arguments

file Path to input file.

na.strings a character vector of strings which are to be interpreted as NA values. Blank
fields are also considered to be missing values in logical, integer, numeric and
complex fields. Note that the test happens after white space is stripped from
the input, so na.strings values may need their own white space stripped in
advance.

Details

Input file has to be a tsv formatted table. First column should be named "ID" and contain samples
IDs, further columns should hold KIR genes presence / absence indicators. See system.file("extdata",
"MiDAS_tut_KIR", package = "midasHLA") for an example.

Value

Data frame containing KIR gene’s counts. First column hold samples IDs, further columns hold
KIR genes presence / absence indicators.

Examples

file <- system.file("extdata", "MiDAS_tut_KIR.txt", package = "midasHLA")
readKirCalls(file)

reduceAlleleResolution

Reduce HLA alleles

Description

reduceAlleleResolution reduce HLA allele numbers resolution.

reduceHlaCalls 73

Usage

reduceAlleleResolution(allele, resolution = 4)

Arguments

allele Character vector with HLA allele numbers.

resolution Number specifying desired resolution.

Details

In cases when allele number contain additional suffix their resolution can not be unambiguously
reduced. These cases are returned unchanged. Function behaves in the same manner if resolution
is higher than resolution of input HLA allele numbers.

NA values are accepted and returned as NA.

TODO here we give such warning when alleles have G or GG suffix (see http://hla.alleles.org/alleles/g_groups.html)
"Reducing G groups alleles, major allele gene name will be used." I dond’t really remember why
we are doing this xd These allele numbers are processed as normal alleles (without suffix). Let me
know if this warning is relevant or we could go without it. If we want to leave it lets also add text
in documentation.

Value

Character vector containing reduced HLA allele numbers.

Examples

reduceAlleleResolution(c("A*01", "A*01:24", "C*05:24:55:54"), 2)

reduceHlaCalls Reduce HLA calls resolution

Description

reduceHlaCalls reduces HLA calls data frame to specified resolution.

Usage

reduceHlaCalls(hla_calls, resolution = 4)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

resolution Number specifying desired resolution.

74 runMiDAS

Details

Alleles with resolution greater than resolution or optional suffixes are returned unchanged.

Value

HLA calls data frame reduced to specified resolution.

Examples

reduceHlaCalls(MiDAS_tut_HLA, resolution = 2)

runMiDAS Run MiDAS statistical analysis

Description

runMiDAS perform association analysis on MiDAS data using statistical model of choice. Function
is intended for use with prepareMiDAS. See examples section.

Usage

runMiDAS(
object,
experiment,
inheritance_model = NULL,
conditional = FALSE,
omnibus = FALSE,
omnibus_groups_filter = NULL,
lower_frequency_cutoff = NULL,
upper_frequency_cutoff = NULL,
correction = "bonferroni",
n_correction = NULL,
exponentiate = FALSE,
th = 0.05,
th_adj = TRUE,
keep = FALSE,
rss_th = 1e-07

)

Arguments

object An existing fit from a model function such as lm, glm and many others.
experiment String indicating the experiment associated with object’s MiDAS data to use.

Valid values includes: "hla_alleles", "hla_aa", "hla_g_groups", "hla_supertypes",
"hla_NK_ligands", "kir_genes", "kir_haplotypes", "hla_kir_interactions",
"hla_divergence", "hla_het", "hla_custom", "kir_custom". See prepareMiDAS
for more information.

runMiDAS 75

inheritance_model

String specifying inheritance model to use. Available choices are "dominant",
"recessive", "additive".

conditional Logical flag indicating if conditional analysis should be performed.

omnibus Logical flag indicating if omnibus test should be used.
omnibus_groups_filter

Character vector specifying omnibus groups to use.
lower_frequency_cutoff

Number giving lower frequency threshold. Numbers greater than 1 are inter-
preted as the number of feature occurrences, numbers between 0 and 1 as frac-
tions.

upper_frequency_cutoff

Number giving upper frequency threshold. Numbers greater than 1 are inter-
preted as the number of feature occurrences, numbers between 0 and 1 as frac-
tions.

correction String specifying multiple testing correction method. See details for further
information.

n_correction Integer specifying number of comparisons to consider during multiple testing
correction calculations. For Bonferroni correction it is possible to specify a
number lower than the number of comparisons being made. This is useful in
cases when knowledge about the biology or redundance of alleles reduces the
need for correction. For other methods it must be at least equal to the number
of comparisons being made; only set this (to non-default) when you know what
you are doing!

exponentiate Logical flag indicating whether or not to exponentiate the coefficient estimates.
Internally this is passed to tidy. This is typical for logistic and multinomial
regressions, but a bad idea if there is no log or logit link. Defaults to FALSE.

th Number specifying threshold for a variable to be considered significant.

th_adj Logical flag indicating if adjusted p-value should be used as threshold criteria,
otherwise unadjusted p-value is used.

keep Logical flag indicating if the output should be a list of results resulting from
each selection step. Default is to return only the final result.

rss_th Number specifying residual sum of squares threshold at which function should
stop adding additional variables. As the residual sum of squares approaches 0
the perfect fit is obtained making further attempts at variable selection nonsense.
This behavior can be controlled using rss_th.

Details

By default statistical analysis is performed iteratively on each variable in selected experiment. This
is done by substituting placeholder in the object’s formula with each variable in the experiment.

Setting conditional argument to TRUE will cause the statistical analysis to be performed in a
stepwise conditional testing manner, adding the previous top-associated variable as a covariate to
object’s formula. The analysis stops when there is no more significant variables, based on self-
defined threshold (th argument). Either adjusted or unadjusted p-values can be used as the selection
criteria, which is controlled using th_adj argument.

76 runMiDAS

Setting omnibus argument to TRUE will cause the statistical analysis to be performed iteratively on
groups of variables (like residues at particular amino acid position) using likelihood ratio test.

Argument inheritance_model specifies the inheritance model that should be applyed to experi-
ment’s data. Following choices are available:

• "dominant" carrier status is sufficient for expression of the phenotype (non-carrier: 0, het-
erozygous & homozygous carrier: 1).

• "recessive" two copies are required for expression of the phenotype (non-carrier & heterozy-
gous carrier: 0, homozygous carrier: 1).

• "additive" allele dosage matters, homozygous carriers show stronger phenotype expression or
higher risk than heterozygous carriers (non-carrier = 0, heterozygous carrier = 1, homozygous
carrier = 2).

• "overdominant" heterozygous carriers are at higher risk compared to non-carriers or homozy-
gous carriers (non-carrier & homozygous carrier = 0, heterozygous carrier = 1).

correction specifies p-value adjustment method to use, common choice is Benjamini & Hochberg
(1995) ("BH"). Internally this is passed to p.adjust.

Value

Analysis results, depending on the parameters:

conditional=FALSE, omnibus=FALSE Tibble with first column "term" holding names of tested
variables (eg. alleles). Further columns depends on the used model and are determined by as-
sociated tidy function. Generally they will include "estimate", "std.error", "statistic",
"p.value", "conf.low", "conf.high", "p.adjusted".

conditional=TRUE, omnibus=FALSE Tibble or a list of tibbles, see keep argument. The first col-
umn "term" hold names of tested variables. Further columns depends on the used model
and are determined by associated tidy function. Generally they will include "estimate",
"std.error", "statistic", "p.value", "conf.low", "conf.high", "p.adjusted".

conditional=FALSE, omnibus=TRUE Tibble with first column holding names of tested omnibus
groups (eg. amino acid positions) and second names of variables in the group (eg. residues).
Further columns are: "df" giving difference in degrees of freedom between base and extended
model, "statistic" giving Chisq statistic, "p.value" and "p.adjusted".

conditional=TRUE, omnibus=TRUE Tibble or a list of tibbles, see keep argument. The first col-
umn hold names of tested omnibus groups (eg. amino acid positions), second column hold
names of variables in the group (eg. residues). Further columns are: "df" giving difference
in degrees of freedom between base and extended model, "statistic" giving Chisq statistic,
"p.value" and "p.adjusted".

Examples

create MiDAS object
midas <- prepareMiDAS(hla_calls = MiDAS_tut_HLA,

colData = MiDAS_tut_pheno,
experiment = c("hla_alleles", "hla_aa")

)

runMiDASGetVarsFreq 77

construct statistical model
object <- lm(disease ~ term, data = midas)

run analysis
runMiDAS(object, experiment = "hla_alleles", inheritance_model = "dominant")

omnibus test
omnibus_groups_filter argument can be used to restrict omnibus test only
to selected variables groups, here we restrict the analysis to HLA-A
positions 29 and 43.
runMiDAS(

object,
experiment = "hla_aa",
inheritance_model = "dominant",
omnibus = TRUE,
omnibus_groups_filter = c("A_29", "A_43")

)

runMiDASGetVarsFreq Get variables frequencies from MiDAS

Description

Helper getting variables frequencies from MiDAS object. Additionally for binary test covariate
frequencies per phenotype are added. Used in scope of runMiDAS.

Usage

runMiDASGetVarsFreq(midas, experiment, test_covar)

Arguments

midas MiDAS object.

experiment String specifying experiment from midas.

test_covar String giving name of test covariate.

Value

Data frame with variable number of columns. First column, "term" holds experiment’s variables,
further columns hold number of variable occurrence and their frequencies.

78 summariseAAPosition

stringMatches Check if string matches one of possible values

Description

stringMatches checks if string is equal to one of the choices.

Usage

stringMatches(x, choice)

Arguments

x string to test.

choice Character vector with possible values for x.

Value

Logical indicating if x matches one of the strings in choice.

summariseAAPosition Summarize amino acid position

Description

List HLA alleles and amino acid residues at a given position.

Usage

summariseAAPosition(hla_calls, aa_pos, aln = NULL, na.rm = FALSE)

Arguments

hla_calls HLA calls data frame, as returned by readHlaCalls function.

aa_pos String specifying gene and amino acid position, example "A_9".

aln Matrix containing amino acid sequence alignments as returned by readHlaAlignments
function. By default function will use alignment files shipped with the package.

na.rm Logical flag indicating if NA values should be considered for frequency calcula-
tions.

Value

Data frame containing HLA alleles, their corresponding amino acid residues and frequencies at
requested position.

updateModel 79

Examples

summariseAAPosition(MiDAS_tut_HLA, "A_9")

updateModel Extend and Re-fit a Model Call

Description

updateModel adds new variables to model and re-fit it.

Usage

updateModel(object, x, placeholder = NULL, backquote = TRUE, collapse = " + ")

Arguments

object An existing fit from a model function such as lm, glm and many others.

x Character vector specifying variables to be added to model.

placeholder String specifying term to substitute with value from x. Ignored if set to NULL.

backquote Logical indicating if added variables should be quoted. Elements of this vector
are recycled over x.

collapse String specifying how variables should be combined. Defaults to " + " ie. linear
combination.

Value

Updated fitted object.

validateFrequencyCutoffs

Validate frequency cutoffs

Description

validateFrequencyCutoffs checks if lower_frequency_cutoff and upper_frequency_cutoff
are valid.

Usage

validateFrequencyCutoffs(lower_frequency_cutoff, upper_frequency_cutoff)

80 validateFrequencyCutoffs

Arguments

lower_frequency_cutoff

Number
upper_frequency_cutoff

Number

Details

lower_frequency_cutoff and upper_frequency_cutoff should be a positive numbers, giving
either frequency or counts. lower_frequency_cutoff has to be lower than upper_frequency_cutoff.

Value

Logical indicating if lower_frequency_cutoff and upper_frequency_cutoff are valid.

Index

∗ datasets
allele_frequencies, 5
dict_dist_grantham, 17
kir_frequencies, 51
MiDAS_tut_HLA, 56
MiDAS_tut_KIR, 57
MiDAS_tut_object, 58
MiDAS_tut_pheno, 59

aaVariationToCounts, 4
adjustPValues, 5
allele_frequencies, 5, 29, 32, 55
analyzeAssociations, 6
analyzeConditionalAssociations, 7
applyInheritanceModel, 9
arrange, 24
as.data.frame.MiDAS, 10
as.list, 52
as.numeric, 5

backquote, 10

characterMatches, 11
checkAlleleFormat, 11
checkColDataFormat, 12
checkHlaCallsFormat, 13
checkKirCallsFormat, 13
checkKirGenesFormat, 14
checkStatisticalModel, 14
colnamesMatches, 15
convertAlleleToVariable, 15
countsToVariables, 16, 62, 68

dfToExperimentMat, 17
dict_dist_grantham, 17
distGrantham, 18

experimentMatToDf, 18
expression, 52

filter, 24

filterByFrequency, 19
filterByFrequency,MiDAS-method

(MiDAS-class), 54
filterByOmnibusGroups, 20
filterByOmnibusGroups,MiDAS-method

(MiDAS-class), 54
filterByVariables, 20
filterByVariables,MiDAS-method

(MiDAS-class), 54
filterExperimentByFrequency, 21
filterExperimentByVariables, 22
filterListByElements, 23
formatResults, 23

getAAFrequencies, 24
getAlleleResolution, 25
getAllelesForAA, 26
getAllelesForAA,MiDAS-method

(MiDAS-class), 54
getExperimentFrequencies, 26
getExperimentPopulationMultiplicator,

27
getExperiments, 28
getExperiments,MiDAS-method

(MiDAS-class), 54
getFrequencies, 28
getFrequencies,MiDAS-method

(MiDAS-class), 54
getFrequencyMask, 30
getHlaCalls, 31
getHlaCalls,MiDAS-method (MiDAS-class),

54
getHlaCallsGenes, 31
getHlaFrequencies, 32
getHlaKirInteractions, 33, 63
getKirCalls, 34
getKirCalls,MiDAS-method (MiDAS-class),

54
getKIRFrequencies, 34
getObjectDetails, 35

81

82 INDEX

getOmnibusGroups, 20, 35, 55
getOmnibusGroups,MiDAS-method

(MiDAS-class), 54
getPlaceholder, 36
getPlaceholder,MiDAS-method

(MiDAS-class), 54
getReferenceFrequencies, 27, 36
getVariableAAPos, 37

hasTidyMethod, 38
hlaAlignmentGrantham, 38
hlaCallsGranthamDistance, 39, 63
hlaCallsToCounts, 16, 40
hlaToAAVariation, 4, 25, 40, 62
hlaToVariable, 41, 53, 62, 63, 65
HWETest, 42

isCharacterOrNULL, 44
isClass, 44
isClassOrNULL, 45
isCountOrNULL, 45
isCountsOrZeros, 46
isExperimentCountsOrZeros, 46
isExperimentInheritanceModelApplicable,

47
isFlagOrNULL, 47
isNumberOrNULL, 48
isStringOrNULL, 48
isTRUEorFALSE, 49
iterativeLRT, 49
iterativeModel, 50

kableResults, 50
kir_frequencies, 51

lapply_tryCatch, 52
listMiDASDictionaries, 53
LRTest, 53

MiDAS, 12, 19–21, 26, 28, 29, 31, 34–36, 43,
55, 61, 63

MiDAS (MiDAS-class), 54
MiDAS-class, 54
MiDAS_tut_HLA, 56
MiDAS_tut_KIR, 57
MiDAS_tut_object, 58
MiDAS_tut_pheno, 59
midasToWide, 56
MultiAssayExperiment, 54

NA, 5, 71, 72

objectHasPlaceholder, 59
omnibusTest, 60

p.adjust, 5, 7, 76
prepareMiDAS, 54, 61, 74
prepareMiDAS_hla_aa, 63
prepareMiDAS_hla_alleles, 64
prepareMiDAS_hla_custom, 65
prepareMiDAS_hla_divergence, 65
prepareMiDAS_hla_g_groups, 66
prepareMiDAS_hla_het, 66
prepareMiDAS_hla_kir_interactions, 67
prepareMiDAS_hla_NK_ligands, 67
prepareMiDAS_hla_supertypes, 68
prepareMiDAS_kir_custom, 68
prepareMiDAS_kir_genes, 69
prepareMiDAS_kir_haplotypes, 69

readHlaAlignments, 37, 70, 78
readHlaCalls, 13, 31–33, 39–41, 62, 64–68,

71, 73, 78
readKirCalls, 13, 33, 34, 62, 67–69, 72
reduceAlleleResolution, 72
reduceHlaCalls, 73
runMiDAS, 24, 35, 50, 51, 54, 62, 74
runMiDASGetVarsFreq, 77

stringMatches, 78
summariseAAPosition, 78

tidy, 7, 8, 50, 75

updateModel, 79

validateFrequencyCutoffs, 79

	aaVariationToCounts
	adjustPValues
	allele_frequencies
	analyzeAssociations
	analyzeConditionalAssociations
	applyInheritanceModel
	as.data.frame.MiDAS
	backquote
	characterMatches
	checkAlleleFormat
	checkColDataFormat
	checkHlaCallsFormat
	checkKirCallsFormat
	checkKirGenesFormat
	checkStatisticalModel
	colnamesMatches
	convertAlleleToVariable
	countsToVariables
	dfToExperimentMat
	dict_dist_grantham
	distGrantham
	experimentMatToDf
	filterByFrequency
	filterByOmnibusGroups
	filterByVariables
	filterExperimentByFrequency
	filterExperimentByVariables
	filterListByElements
	formatResults
	getAAFrequencies
	getAlleleResolution
	getAllelesForAA
	getExperimentFrequencies
	getExperimentPopulationMultiplicator
	getExperiments
	getFrequencies
	getFrequencyMask
	getHlaCalls
	getHlaCallsGenes
	getHlaFrequencies
	getHlaKirInteractions
	getKirCalls
	getKIRFrequencies
	getObjectDetails
	getOmnibusGroups
	getPlaceholder
	getReferenceFrequencies
	getVariableAAPos
	hasTidyMethod
	hlaAlignmentGrantham
	hlaCallsGranthamDistance
	hlaCallsToCounts
	hlaToAAVariation
	hlaToVariable
	HWETest
	isCharacterOrNULL
	isClass
	isClassOrNULL
	isCountOrNULL
	isCountsOrZeros
	isExperimentCountsOrZeros
	isExperimentInheritanceModelApplicable
	isFlagOrNULL
	isNumberOrNULL
	isStringOrNULL
	isTRUEorFALSE
	iterativeLRT
	iterativeModel
	kableResults
	kir_frequencies
	lapply_tryCatch
	listMiDASDictionaries
	LRTest
	MiDAS-class
	midasToWide
	MiDAS_tut_HLA
	MiDAS_tut_KIR
	MiDAS_tut_object
	MiDAS_tut_pheno
	objectHasPlaceholder
	omnibusTest
	prepareMiDAS
	prepareMiDAS_hla_aa
	prepareMiDAS_hla_alleles
	prepareMiDAS_hla_custom
	prepareMiDAS_hla_divergence
	prepareMiDAS_hla_g_groups
	prepareMiDAS_hla_het
	prepareMiDAS_hla_kir_interactions
	prepareMiDAS_hla_NK_ligands
	prepareMiDAS_hla_supertypes
	prepareMiDAS_kir_custom
	prepareMiDAS_kir_genes
	prepareMiDAS_kir_haplotypes
	readHlaAlignments
	readHlaCalls
	readKirCalls
	reduceAlleleResolution
	reduceHlaCalls
	runMiDAS
	runMiDASGetVarsFreq
	stringMatches
	summariseAAPosition
	updateModel
	validateFrequencyCutoffs
	Index

