
Package ‘QRscore’
October 24, 2025

Title Quantile Rank Score

Version 1.1.1

Date 2025-03-28

Description
In genomics, differential analysis enables the discovery of groups of genes implicating impor-
tant biological processes such as cell differentiation and aging. Non-parametric tests of differen-
tial gene expression usually detect shifts in centrality (such as mean or median), and there-
fore suffer from diminished power against alternative hypotheses character-
ized by shifts in spread (such as variance). This package provides a flexible family of non-
parametric two-sample tests and K-sample tests, which is based on theoretical work around non-
parametric tests, spacing statistics and local asymptotic normality (Erdmann-
Pham et al., 2022+ [arXiv:2008.06664v2]; Erdmann-Pham, 2023+ [arXiv:2209.14235v2]).

License GPL (>= 3)

Depends R (>= 4.4.0)

Imports MASS, pscl, arrangements, hitandrun, assertthat, dplyr,
BiocParallel

Suggests devtools, DESeq2, knitr, rmarkdown, testthat, BiocStyle

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

NeedsCompilation no

VignetteBuilder BiocStyle

URL https://github.com/songlab-cal/QRscore

BugReports https://github.com/songlab-cal/QRscore/issues

biocViews StatisticalMethod, DifferentialExpression, GeneExpression,
StructuralGenomics, GeneTarget

git_url https://git.bioconductor.org/packages/QRscore

git_branch devel

git_last_commit 609b666

git_last_commit_date 2025-06-19

1

https://github.com/songlab-cal/QRscore
https://github.com/songlab-cal/QRscore/issues

2 computeweight_disp

Repository Bioconductor 3.23

Date/Publication 2025-10-24

Author Fanding Zhou [cre, aut] (ORCID:
<https://orcid.org/0000-0003-1306-740X>),

Alan Aw [aut] (ORCID: <https://orcid.org/0000-0001-9455-7878>),
Dan Erdmann-Pham [aut],
Jonathan Fischer [aut] (ORCID: <https://orcid.org/0000-0002-1165-9930>),
Xurui Chen [ctb]

Maintainer Fanding Zhou <zhoufd@berkeley.edu>

Contents

computeweight_disp . 2
computeweight_mean . 3
example_dataset . 4
example_dataset_raw_3000_genes . 5
getCompositionPValue . 6
QRscore . 7
QRscoreGenetest . 8
QRscoreTest . 9
QRscore_Flex . 12
QRscore_ZINB . 14
QRscore_ZINB_nSamples . 16
rank_x . 18
rzinbinom . 19

Index 20

computeweight_disp Compute weights for dispersion shift analysis

Description

Given the value of the estimated parameters for zero-inflated negative binomial distribution (β, µ,
π), the sample sizes n and k (by default n ⩾ k), this function computes weights that target on
changes of the dispersion parameter in zero-inflated negative binomial model.

Usage

computeweight_disp(beta, mu, pi, n, k, tail = 10^(-4), bigN = 10^6)

https://orcid.org/0000-0003-1306-740X
https://orcid.org/0000-0001-9455-7878
https://orcid.org/0000-0002-1165-9930

computeweight_mean 3

Arguments

beta Target for number of successful trials, or dispersion parameter. Must be strictly
positive.

mu Non-negative mean of the uninflated negative binomial distribution.

pi Zero inflation probability for structural zeros.

n Sample size of y

k Sample size of x

tail Distribution tail trimmed for numerically calculate expectation. Default is 10−4

bigN Sampling numbers for numerically calculate expectation, this will only be ap-
plied when mean parameter is extremely large. Default is 106

Details

The function returns a list containing a weight vector and estimated variance for constructing test
statistics.

Value

A list containing a weight vector ($weight) and estimated variance ($var) useful for constructing
test statistics.

Examples

set.seed(1)
computeweight_disp(

beta = 5, mu = 40, pi = 0.1, n = 100, k = 60,
tail = 10^(-4), bigN = 10^6

)

computeweight_mean Compute weights for mean shift analysis

Description

Given the value of the estimated parameters for zero-inflated negative binomial distribution (β, µ,
π),the sample sizes n and k (by default n ⩾ k), this function computes weights that target changes
in the mean parameter of the zero-inflated negative binomial model.

Usage

computeweight_mean(beta, mu, pi, n, k)

4 example_dataset

Arguments

beta Dispersion parameter of the negative binomial component. Must be strictly pos-
itive.

mu Mean of the uninflated negative binomial distribution. Should be non-negative.

pi Probability of zeros due to zero inflation.

n Sample size of y

k Sample size of x

Details

The function generates a vector of weights and an estimated variance that are used to construct
test statistics. The weight vector is computed by considering how each potential count value from
the combined distribution contributes to the expected shift in mean, considering both inflated and
uninflated components.

Value

A list containing a weight vector ($weight) and estimated variance ($var) useful for constructing
test statistics.

Examples

computeweight_mean(beta = 5, mu = 40, pi = 0.1, n = 100, k = 60)

example_dataset Example Dataset for MOCHIS DEG Analysis

Description

This dataset contains a subset of rounded normalized gene expression counts from GTEx whole
blood tissue and associated labels for demonstration purposes.

Usage

example_dataset

Format

This dataset contains the following objects:

example_data1 A numeric matrix of normalized counts for all age groups.

labels1 A vector of sample labels for all age groups.

example_data2 A numeric matrix of normalized counts for age groups 20-39 and 60-79.

labels2 A vector of sample labels for age groups 20-39 and 60-79.

example_dataset_raw_3000_genes 5

Source

Normalized counts from GTEx for package demonstration purposes.

Examples

data(example_dataset)

example_dataset_raw_3000_genes

Example Dataset for MOCHIS DEG Analysis with Raw Counts

Description

This dataset contains raw gene expression counts from 3000 genes in GTEx whole blood tissue for
demonstration purposes.

Usage

example_dataset_raw_3000_genes

Format

This dataset contains a list with the following components

COUNTS A numeric matrix of raw counts for 3000 genes.

METADATA The metadata for the corresponding raw counts.

Source

Raw counts from GTEx for package demonstration purposes.

Examples

data(example_dataset_raw_3000_genes)

6 getCompositionPValue

getCompositionPValue Approximate p-value by Resampling Integer Compositions

Description

Given the value of the test statistic t, the sample sizes n and k,power exponent p and vector of
weights that together determine the test statistic (by default n ⩾ k), as well as the user-specified
resampling number (by default this is 5000), performs resampling from the collection of integer
compositions to approximate the p-value of the observed test statistic.

Usage

getCompositionPValue(t, n, k, p, wList, alternative, type, resamp_number)

Arguments

t Value of test statistic ||Sn,k(D)/n||pp,w computed from data D

n Sample size of y

k Sample size of x

p Power exponent of test statistic

wList Weight vector

alternative Character string that should be one of "two.sided" (default), "greater" or
"less"

type If using resampling approximation, either an unbiased estimate of ("unbiased",
default), or valid, but biased estimate of, ("valid") p-value (see Hemerik and
Goeman, 2018), or both ("both"). Default is "unbiased".

resamp_number Number of compositions of n to draw (default is 5000)

Details

For n and k small enough (n ⩽ 40, k ⩽ 10), computes exact p-value by computing the test statistic
across all k-compositions of n under the uniform distribution.

The function returns a two-sided p-value by default, which is more conservative. Users can choose
other p-values corresponding to different alternatives; see documentation on alternative. Note
that the interpretation of the choice of alternative depends on the choice of weight vector. For
example, a weight vector that is a quadratic kernel will upweight the extreme components of the
weight vector. For this choice, setting alternative to be greater translates into an alternative
hypothesis of a bigger spread in the larger sample (the one with sample size n).

Dependencies: arrangements::compositions

Value

p-value (scalar)

QRscore 7

Examples

getCompositionPValue(
t = 0.5, n = 50, k = 11, p = 1, wList = (10:0) / 10,
alternative = "two.sided", type = "unbiased", resamp_number = 5000

)

QRscore QRscore: Nonparametric Quantile Rank Score Tests for Distributional
Shifts in Gene Expression

Description

The QRscore package implements a family of nonparametric two-sample, and multi-sample tests
for detecting shifts in central tendency (mean) and spread (variance/dispersion) in gene expression
data. The package includes functionality for negative binomial and zero-inflated negative binomial
models, resampling-based and asymptotic approximations, and is designed to be robust, flexible
and efficient.

Main Functions

• QRscoreTest(): Wrapper for one-, two-, and multi-sample QRscore tests.

• QRscoreGenetest(): DE pipeline over many genes.

Author(s)

Maintainer: Fanding Zhou <zhoufd@berkeley.edu> (ORCID)

Authors:

• Alan Aw <nalawanij@gmail.com> (ORCID)

• Dan Erdmann-Pham <erdpham@stanford.edu>

• Jonathan Fischer <jfischer1@ufl.edu> (ORCID)

Other contributors:

• Xurui Chen <xuruichen@berkeley.edu> [contributor]

See Also

Useful links:

• https://github.com/songlab-cal/QRscore

• Report bugs at https://github.com/songlab-cal/QRscore/issues

https://orcid.org/0000-0003-1306-740X
https://orcid.org/0000-0001-9455-7878
https://orcid.org/0000-0002-1165-9930
https://github.com/songlab-cal/QRscore
https://github.com/songlab-cal/QRscore/issues

8 QRscoreGenetest

QRscoreGenetest Perform Differential Expression Analysis using QRscore

Description

This function performs differential expression analysis using the QRscore method.

Usage

QRscoreGenetest(
expr_matrix,
labels,
size_factors = NULL,
pairwise_test = FALSE,
pairwise_logFC = FALSE,
test_mean = TRUE,
test_dispersion = FALSE,
num_cores = 1,
verbose = FALSE,
rank = TRUE,
seed = 1,
...

)

Arguments

expr_matrix A prefiltered raw count matrix (gene × sample).

labels A vector of labels corresponding to the samples.

size_factors A vector of size factors estimated from DESeq2

pairwise_test Logical, whether to perform pairwise test statistics for more than two groups.

pairwise_logFC Logical, whether to calculate pairwise log fold changes for mean and variance.

test_mean Logical, whether to test the mean.
test_dispersion

Logical, whether to test the dispersion.

num_cores Integer, number of cores to use for parallel processing.

verbose Logical, whether to suppress all messages except warnings and errors.

rank Logical. If TRUE, returns a ranked list of DEGs or DDGs sorted by p-values.

seed Integer. Set seed in parallel computing.

... Additional arguments passed to the QRscoreTest function.

Value

A list with two data frames: mean_test and var_test.

QRscoreTest 9

Examples

data(example_dataset)
results <- QRscoreGenetest(

expr_matrix = example_dataset$example_data1,
labels = example_dataset$labels1,
size_factors = example_dataset$size_factors1,
pairwise_test = FALSE, pairwise_logFC = TRUE,
test_mean = TRUE, test_dispersion = TRUE, num_cores = 2,
approx = "asymptotic"

)
head(results$var_test)

results2 <- QRscoreGenetest(
expr_matrix = example_dataset$example_data2,
labels = example_dataset$labels2,
size_factors = example_dataset$size_factors2,
pairwise_test = TRUE, pairwise_logFC = TRUE,
test_mean = TRUE, test_dispersion = FALSE, num_cores = 2,
approx = "asymptotic"

)
head(results2$mean_test)

QRscoreTest QRscore Test

Description

This function performs statistical tests on data from one or more groups using summary statistics
computed on weighted linear combinations of powers of spacing statistics. It is capable of conduct-
ing one-sample tests, two-sample tests, and multi-sample tests, utilizing either user-defined weights
or automatically generated weights based on Negative Binomial (NB) or Zero-Inflated Negative
Binomial (ZINB) models.

Usage

QRscoreTest(
samples,
labels = NULL,
size_factors = NULL,
p = NULL,
wList = NULL,
alternative = "two.sided",
approx = "resample",
type = "unbiased",
n_mom = 100,
resamp_number = 5000,
zero_inflation = TRUE,
LR.test = FALSE,

10 QRscoreTest

pi_threshold = 0.95,
gene.name = NULL,
measure = "mean",
perturb = TRUE,
use_base_r = TRUE

)

Arguments

samples A numeric vector containing all sample measurements.

labels An optional vector of group labels corresponding to each entry in samples.

size_factors Optional vector of size factors for weight estimation. If provided, log-transformed
size factors are used as offsets in NB/ZINB model fitting.

p The exponent used in the power sum test statistic, required if wList is not NULL.

wList An optional vector of weights; if NULL, weights are estimated using an NB or
ZINB model for multiple groups.

alternative Specifies the alternative hypothesis; must be one of "two.sided", "greater", or
"less".

approx The method used for p-value approximation, either "resample" or "asymptotic".

type Specifies if the estimation of the p-value should be "unbiased", "valid", or "both".

n_mom The number of moments to accompany the approximation, relevant for moment-
based methods.

resamp_number The number of resampling iterations used if approx is "resample".

zero_inflation Indicates whether to account for zero inflation in model-based weight estima-
tion.

LR.test Whether a likelihood ratio test is used to decide between NB and ZINB models.

pi_threshold Threshold for the proportion of zeros in ZINB models; results in NA if exceeded.

gene.name Optional identifier for a gene, used in output messages.

measure Specifies the statistical measure to be analyzed ("mean" or "dispersion") when
weights are auto-generated.

perturb Boolean to indicate if data should be perturbed slightly to prevent ties.

use_base_r Boolean to decide whether to use base R functions for certain edge cases like
Mann-Whitney tests.

Details

For one-sample tests, the function assesses the uniformity of data entries. For two-sample and multi-
sample tests, it evaluates whether groups are drawn from the same distribution, with alternative
hypotheses considering differences in means or dispersions.

If the weights and p are given, the function calculates the test statistic as:

||Sk||pp,w =

k∑
j=1

wiSk[j]
p

QRscoreTest 11

where wi are weights, xi are data points, and p is the power specified.

In two-sample and multi-sample settings without specified weights, the function can automatically
estimate weights using score function for a Negative Binomial or a Zero-Inflated Negative Binomial
model, optimizing for dispersion or mean shifts.

Value

Returns the p-value of the test.

Examples

set.seed(1)
One-sample test example with normally distributed data
data <- abs(rnorm(10))
QRscoreTest(data,

p = 2, wList = rep(1, 10), alternative = "two.sided",
approx = "resample"

)

Two-sample test with specified weights using normally distributed data
group1 <- rnorm(120, sd = 1)
group2 <- rnorm(120, sd = 2) # Different mean
data <- c(group1, group2)
labels <- c(rep("Group1", 120), rep("Group2", 120))
QRscoreTest(

samples = data, labels = labels, p = 1, wList = c(60:0, seq_len(60)),
alternative = "two.sided", approx = "resample"

)

Two-sample test with automatically estimated weights from NB model
group1 <- rzinbinom(120, size = 2, mu = 20, pi = 0)
group2 <- rzinbinom(100, size = 2, mu = 30, pi = 0) # Different mean
data <- c(group1, group2)
labels <- c(rep("Group1", 120), rep("Group2", 100))
QRscoreTest(

samples = data, labels = labels,
approx = "asymptotic", measure = "mean", zero_inflation = FALSE

)

Two-sample test with automatically estimated weights from ZINB model
group1 <- rzinbinom(100, size = 2, mu = 40, pi = 0.1)
group2 <- rzinbinom(200, size = 1, mu = 40, pi = 0.1)
data <- c(group1, group2)
labels <- c(rep("Group1", 100), rep("Group2", 200))
QRscoreTest(

samples = data, labels = labels, alternative = "two.sided",
approx = "asymptotic", measure = "dispersion"

)

Three-sample test with automatically estimated weights from NB model
group1 <- rzinbinom(150, size = 1, mu = 30, pi = 0.1)
group2 <- rzinbinom(100, size = 2, mu = 30, pi = 0.1)

12 QRscore_Flex

group3 <- rzinbinom(30, size = 3, mu = 30, pi = 0.1)
data <- c(group1, group2, group3)
labels <- c(rep("Group1", 150), rep("Group2", 100), rep("Group3", 30))
QRscoreTest(

samples = data, labels = labels, alternative = "two.sided",
approx = "asymptotic", measure = "dispersion"

)

Two-sample NB test with size factors
sf <- runif(200, 0.5, 1.5)
x <- rnbinom(100, size = 2, mu = sf[1:100] * 20)
y <- rnbinom(100, size = 2, mu = sf[101:200] * 35)
QRscoreTest(

samples = c(x, y), labels = rep(c("A", "B"), each = 100),
size_factors = sf, measure = "mean", zero_inflation = FALSE

)

QRscore_Flex Flexible Non-Parametric One- and Two-Sample Tests (Native R ver-
sion)

Description

Given data consisting of either a single sample x = (x1, . . . , xk), or two samples x = (x1, . . . , xk)
and y = (y1, . . . , yn), this function uses summary statistics computed on weighted linear combina-
tions of powers of the spacing statistics Sk (former) or Sn,k (latter).

Usage

QRscore_Flex(
x,
y = NULL,
p = 1,
wList,
alternative = "two.sided",
approx = "resample",
type = "unbiased",
n_mom = NULL,
resamp_number = 5000

)

Arguments

x First sample

y Second sample

p Exponent value in defining test statistic (must be integer)

wList Vector of weights. It should have length equal to x when y is NULL, and one
more than the length of x when y is not NULL

QRscore_Flex 13

alternative How p-value should be computed; i.e., a character specifying the alternative
hypothesis, must be one of "two.sided", "greater" or "less"

approx Which approximation method to use (choose "resample", "asymptotic")

type If using resampling approximation, either an unbiased estimate of ("unbiased",
default), or valid, but biased estimate of, ("valid") p-value (see Hemerik and
Goeman, 2018), or both ("both"). Default is "unbiased".

n_mom The number of moments to accompany the approximation (recommended 200,
if not at least 100)

resamp_number Number of k-compositions of n or simplex vectors in [0, 1]k to draw

Details

More precisely, this function does the following:

For a single sample x, the function tests for uniformity of its entries. When p = 2 and a particular
choice of w is specified, we recover Greenwood’s test.

For two samples, the function tests the null of x and y being drawn from the same distribution
(i.e., stochastic equality), against flexible alternatives that correspond to specific choices of the test
statistic parameters, w (weight vector) and p (power). These parameters not only determine the test
statistic ||Sk||pp,w =

∑k
j=1 wiSk[j]

p (analogously defined for ||Sn,k||pp,w), but also encode alterna-
tive hypotheses ranging from different populational means (i.e., µx ̸= µy), different populational
spreads (i.e., σ2

x ̸= σ2
y), etc.

Additional tuning parameters include: (1) choice of p-value computation (one- or two-sided); (2)
approximation method (3) number of moments accompanying the approximation chosen if using
moment-based approximation (recommended 200, typically at least 100); and (4) in case of two
samples, whether the user prefers to use exact discrete moments (more accurate but slower) or to
use continuous approximations of the discrete moments (less accurate but faster).

Currently, only resampling and Gaussian asymptotics are supported. Both are efficient and well-
calibrated. For n ⩾ 100 and k ⩾ 50 such that k

n ⩾ 0.001, function automatically uses Gaussian
approximation to the null.

Dependencies: functions in utils.R

Value

Returns the p-value.

Examples

set.seed(1)
One-sample examples
QRscore_Flex(

x = abs(rnorm(10)), p = 2, wList = rep(1, 10),
alternative = "two.sided", approx = "resample"

)

Two-sample examples
QRscore_Flex(

x = abs(rnorm(30)), y = abs(rnorm(100)), p = 2,

14 QRscore_ZINB

wList = rep(1, 31), alternative = "two.sided",
approx = "resample", resamp_number = 5000

)

QRscore_Flex(
x = abs(rnorm(100)), y = abs(rnorm(100)), p = 1,
wList = 0:100, alternative = "two.sided",
approx = "asymptotic"

)

QRscore_ZINB Non-Parametric Two-Sample Tests Designed for Testing Differences in
Mean or Dispersion Parameters in (Zero-Inflated) Negative Binomial
Distributions.

Description

This function evaluates the null hypothesis that two samples, x and y, are drawn from the same
distribution, specifically designed for NB or ZINB models. It is particularly effective in detecting
shifts in either the mean or the dispersion parameters.

Usage

QRscore_ZINB(
x,
y,
size_factors = NULL,
zero_inflation = TRUE,
LR.test = FALSE,
approx = "resample",
alternative = "two.sided",
resamp_num = 20000,
pi_threshold = 0.95,
gene.name = NULL,
measure = "mean",
p_value = TRUE

)

Arguments

x First sample

y Second sample

size_factors Optional vector of size factors for weight estimation. If provided, log-transformed
size factors are used as offsets in NB/ZINB model fitting.

zero_inflation If TRUE, automatically chooses between ZINB and NB models based on the
data; if FALSE, applies NB model estimation.

QRscore_ZINB 15

LR.test Whether to use a likelihood ratio test to determine which model (NB or ZINB)
to fit

approx Which approximation method to use (default resample)

alternative How p-value should be computed; must be one of "two.sided", "greater" or
"less".

resamp_num Number of k-compositions of n or simplex vectors in [0, 1]k to draw

pi_threshold Threshold for estimated proportion of zeros in ZINB model

gene.name Optional, name of the gene if applicable, used for customized messages.

measure Specifies whether to test for shifts in "mean" or "dispersion".

p_value If TRUE, returns a p-value, else returns test statistics and weights.

Details

The function automatically computes optimal weights for the chosen model and derives a p-value
based on the selected test statistic and approximation method.

Additional tuning parameters include: (1) whether to use a likelihood ratio test to determine which
model (NB or ZINB) to fit, (2) the approximation method (default is resampling, with asymptotic
estimation for large samples),(3) choice of p-value computation (one- or two-sided), (4) threshold
for estimated proportion of zeros in ZINB model (returns NA if exceeded).

Dependencies: pscl::zeroinfl, MASS::glm.nb, and auxiliary functions from auxiliary.R

Value

p-value or test statistics depending on p_value parameter.

Examples

set.seed(1)
Two-sample example comparing mean shifts
QRscore_ZINB(

x = rzinbinom(100, size = 2, mu = 20, pi = 0),
y = rzinbinom(100, size = 2, mu = 30, pi = 0),
zero_inflation = FALSE, LR.test = FALSE, alternative = "greater",
approx = "asymptotic", measure = "mean"

)

Two-sample example comparing dispersion shifts
QRscore_ZINB(

x = rzinbinom(100, size = 2, mu = 20, pi = 0.1),
y = rzinbinom(100, size = 1, mu = 20, pi = 0.1),
zero_inflation = TRUE, LR.test = TRUE, alternative = "two.sided",
approx = "asymptotic", measure = "dispersion"

)

Two-sample example with significant zero inflation and variance shift
QRscore_ZINB(

x = rzinbinom(30, size = 4, mu = 20, pi = 0.1),
y = rzinbinom(30, size = 1, mu = 20, pi = 0.3),

16 QRscore_ZINB_nSamples

zero_inflation = TRUE, LR.test = FALSE, alternative = "two.sided",
approx = "resample", resamp_num = 50000, measure = "dispersion"

)
Two-sample example with size factors, zero inflation, and dispersion shift
sf_x <- runif(100, 0.5, 1.5)
sf_y <- runif(100, 0.5, 1.5)
QRscore_ZINB(

x = rzinbinom(100, size = 4, mu = sf_x * 25, pi = 0.1),
y = rzinbinom(100, size = 1, mu = sf_y * 25, pi = 0.1),
size_factors = c(sf_x, sf_y),
zero_inflation = TRUE, LR.test = TRUE, alternative = "two.sided",
approx = "resample", resamp_num = 20000, measure = "dispersion"

)

QRscore_ZINB_nSamples Multi-Sample Nonparametric Test for Mean or Dispersion Differences
in (Zero-Inflated) Negative Binomial Distributions.

Description

This function conducts statistical tests across multiple samples to evaluate the null hypothesis that
all groups are drawn from the same distribution. It is optimized for data modeled by Negative
Binomial (NB) or Zero-Inflated Negative Binomial (ZINB) distributions and is capable of detect-
ing shifts in mean or dispersion parameters. The function can handle any number of groups and
automatically computes optimal weights for the specified measure (mean or dispersion).

Usage

QRscore_ZINB_nSamples(
samples,
labels,
size_factors = NULL,
zero_inflation = TRUE,
LR.test = FALSE,
approx = "resample",
resamp_num = 20000,
pi_threshold = 0.95,
gene.name = NULL,
measure = "mean",
perturb = TRUE

)

Arguments

samples Vector of all sample measurements.

labels Group labels for each sample.

size_factors Optional vector of size factors for weight estimation. If provided, log-transformed
size factors are used as offsets in NB/ZINB model fitting.

QRscore_ZINB_nSamples 17

zero_inflation Boolean, if TRUE, the function chooses between ZINB and NB models based
on data; if FALSE, only NB model is applied.

LR.test Boolean, if TRUE, performs a likelihood ratio test to select between NB and
ZINB models.

approx The method used for p-value approximation; "resample" (default) or "asymp-
totic".

resamp_num The number of resampling iterations used if approx is "resample".

pi_threshold Threshold for proportion of zeros at which to return NA, indicating unreliable
results due to excessive zero inflation.

gene.name Optional, name of the gene if applicable, enhancing the relevance of output in
genetic studies.

measure Specifies whether the test focuses on "mean" or "dispersion" differences.

perturb Boolean, if TRUE, adds small noise to data to avoid ties and improve model
stability.

Details

The computation involves constructing a B matrix that transforms group-specific scores into a space
where independence among groups is maximized. It then uses these transformed scores to calculate
a test statistic, which follows a chi-square distribution under the null hypothesis.

Additional tuning parameters allow customization of the model fitting and statistical testing, includ-
ing:

• Selection between NB and ZINB models based on presence of zero inflation.

• Choice of approximation method for computing p-values - ’asymptotic’ is recommended.

• Decision criteria for statistical tests (one-sided or two-sided).

• Threshold for the estimated proportion of zeros beyond which results are considered unreli-
able.

Dependencies: Requires pscl::zeroinfl for zero-inflated models, MASS::glm.nb for NB models,
and other auxiliary functions as needed.

Value

Returns the p-value of the test if p_value is TRUE, otherwise returns test statistics and weights.

Examples

set.seed(1)
data <- c(

rnbinom(100, size = 2, mu = 20), rnbinom(100, size = 2, mu = 25),
rnbinom(100, size = 2, mu = 30)

)
labels <- factor(c(rep("Group1", 100), rep("Group2", 100),

rep("Group3", 100)))
QRscore_ZINB_nSamples(

samples = data, labels = labels,

18 rank_x

zero_inflation = FALSE, LR.test = FALSE, approx = "resample",
resamp_num = 5000, pi_threshold = 0.95, measure = "mean"

)

Example with zero inflation and dispersion shift detection
data_zi <- c(

rzinbinom(100, size = 2, mu = 20, pi = 0.1),
rzinbinom(100, size = 3, mu = 20, pi = 0.1),
rzinbinom(100, size = 4, mu = 20, pi = 0.1)

)
labels_zi <- factor(c(rep("Group1", 100), rep("Group2", 100),

rep("Group3", 100)))
QRscore_ZINB_nSamples(

samples = data_zi, labels = labels_zi,
zero_inflation = TRUE, LR.test = TRUE, approx = "asymptotic",
resamp_num = 2000, pi_threshold = 0.95, measure = "dispersion"

)
Multi-sample NB example with size factors
sf <- runif(300, 0.5, 1.5)
data_sf <- c(

rnbinom(100, size = 2, mu = sf[1:100] * 20),
rnbinom(100, size = 2, mu = sf[101:200] * 30),
rnbinom(100, size = 2, mu = sf[201:300] * 40)

)
labels_sf <- factor(rep(c("Group1", "Group2", "Group3"), each = 100))
QRscore_ZINB_nSamples(

samples = data_sf, labels = labels_sf, size_factors = sf,
zero_inflation = FALSE, LR.test = FALSE, approx = "asymptotic",
resamp_num = 10000, pi_threshold = 0.95, measure = "mean"

)

rank_x Retrieve indices of x_i’s after merging x and y in ascending order.

Description

Given data consisting of either a single sample x = (x1, . . . , xk), or two samples x = (x1, . . . , xk)
and y = (y1, . . . , yn), this function obtains the indices of xi’s after merging x and y in ascending
order.

Usage

rank_x(x, y = NULL, ties.break = TRUE)

Arguments

x First sample

y Second sample

ties.break Whether to break the ties when ordering x and y. Default is 'TRUE'.

rzinbinom 19

Details

Dependencies: None

Value

Ranks of xi’s after merging x and y in ascending order

Examples

set.seed(1)
rank_x(x = abs(rnorm(10)))
rank_x(x = abs(rnorm(10)), y = abs(rnorm(100)))
rank_x(

x = rnbinom(10, size = 5, prob = 0.3),
y = rnbinom(20, size = 2, prob = 0.3), ties.break = TRUE

)

rzinbinom Generate random samples from a zero-inflated negative binomial dis-
tribution

Description

Generate random samples from a zero-inflated negative binomial distribution

Usage

rzinbinom(n, mu, theta, size, pi)

Arguments

n Integer. Number of samples to generate.

mu Numeric. Mean of the negative binomial distribution.

theta Numeric. Dispersion parameter (size) of the negative binomial distribution.

size Numeric. Alternative name for the dispersion parameter (used interchangeably
with theta).

pi Numeric. Zero-inflation probability; must be in the range [0, 1].

Value

A vector of random samples from a Zero-Inflated Negative Binomial (ZINB) distribution.

Examples

set.seed(1)
rzinbinom(n = 5, mu = 10, theta = 5, pi = 0.2)

Index

∗ datasets
example_dataset, 4
example_dataset_raw_3000_genes, 5

∗ package
QRscore, 7

computeweight_disp, 2
computeweight_mean, 3

example_dataset, 4
example_dataset_raw_3000_genes, 5

getCompositionPValue, 6

QRscore, 7
QRscore-package (QRscore), 7
QRscore_Flex, 12
QRscore_ZINB, 14
QRscore_ZINB_nSamples, 16
QRscoreGenetest, 8
QRscoreGenetest(), 7
QRscoreTest, 9
QRscoreTest(), 7

rank_x, 18
rzinbinom, 19

20

	computeweight_disp
	computeweight_mean
	example_dataset
	example_dataset_raw_3000_genes
	getCompositionPValue
	QRscore
	QRscoreGenetest
	QRscoreTest
	QRscore_Flex
	QRscore_ZINB
	QRscore_ZINB_nSamples
	rank_x
	rzinbinom
	Index

