Package 'Polytect'

October 30, 2025

Title An R package for digital data clustering

Version 1.3.0

Description Polytect is an advanced computational tool designed for the analysis of multi-color digital PCR data. It provides automatic clustering and labeling of partitions into distinct groups based on clusters first identified by the flowPeaks algorithm. Polytect is particularly useful for researchers in molecular biology and bioinformatics, enabling them to gain deeper insights into their experimental results through precise partition classification and data visualization.

biocViews ddPCR, Clustering, MultiChannel, Classification

License Artistic-2.0

URL https://github.com/emmachenlingo/Polytect

BugReports https://github.com/emmachenlingo/Polytect/issues

Encoding UTF-8 LazyData false

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2 Depends R (>= 4.4.0)

Imports stats, utils, grDevices, mvtnorm, sn, dplyr, flowPeaks, ggplot2, tidyverse, cowplot, mlrMBO, DiceKriging, smoof, ParamHelpers, lhs, rgenoud, BiocManager

Suggests testthat (>= 3.0.0), knitr, rmarkdown, ddPCRclust

VignetteBuilder knitr **Config/testthat/edition** 3

git_url https://git.bioconductor.org/packages/Polytect

git_branch devel

git_last_commit cb9d858

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-10-30

2 approxSilhouette

Author Yao Chen [aut, cre] (ORCID: https://orcid.org/0000-0001-8172-3996)

Maintainer Yao Chen https://orcid.org/0000-0001-8172-3996)

Contents

appr	oxSilhouette	Inte	rnal	l Fu	ınct	ion	2									
Index																20
	-															•
	sil_plot								 		 					19
	silhouette_coef								 		 					18
	polytect_summary .								 	 	 					17
	polytect_plot								 	 	 					17
	polytect_merge								 		 					16
	polytect_clust								 		 					15
	mstep_mu								 	 	 					13
	mstep_cov								 	 	 					13
	MM								 		 					12
	LR								 		 					12
	HR								 		 					11
	HMM_merge								 		 					10
	HIV								 		 					10
	GMM_init								 		 					9
	fp_search								 	 	 					9
	estep								 	 	 					8
	conc_cal								 	 	 					7
	compute_tmp_matri															7
	combined_vectors .															6
	CNV6plex															5
	CNV5plex															5
	cluster_selection .															4
	CA															4
	BPV															3
	approxSilhouette .															2

Description

This function outputs silhouette coefficients.

```
approxSilhouette(x, clusters)
```

BPV 3

Arguments

x A matrix of fluorescence intensities in each channel. Each row represents each

partitions, and each column each channel.

clusters cluster labels

Value

A data frame of silhouette coefficients for each partition.

BPV BPV data

Description

A 3-color dPCR data of bovine papilloma virus assay

Usage

data(BPV)

Format

A data frame of fluorescence intensities in each channel. Each row represents each partitions, and each column each channel.

channel1 fluorescence intensities of color 1

channel2 fluorescence intensities of color 2

channel3 fluorescence intensities of color 3

Examples

data(BPV)
head(BPV)

4 cluster_selection

CA

CA data

Description

2-color competitive assay of competition BRAF V600E assay with 1% mutant

Usage

```
data(CA)
```

Format

A data frame of fluorescence intensities in each channel. Each row represents each partitions, and each column each channel. data is not orthogonal.

channel1 fluorescence intensities of color 1 **channel2** fluorescence intensities of color 2

Examples

data(CA)
head(CA)

cluster_selection

Internal Function 11

Description

This function outputs all combinations of primary targets

Usage

```
cluster_selection(cluster_num)
```

Arguments

cluster_num

The expected maximum number of clusters

Value

A matrix of all combinations of primary targets

CNV5plex 5

CNV5plex

CNV 5-plex data

Description

CNV 5-plex universal probes

Usage

```
data(CNV5plex)
```

Format

A data frame of fluorescence intensities in each channel. Each row represents each partitions, and each column each channel.

channel1 fluorescence intensities of color 1

channel2 fluorescence intensities of color 2

channel3 fluorescence intensities of color 3

channel4 fluorescence intensities of color 4

channel5 fluorescence intensities of color 5

Examples

```
data(CNV5plex)
head(CNV5plex)
```

CNV6plex

CNV 6-plex data

Description

CNV 6-plex universal probes

```
data(CNV6plex)
```

6 combined_vectors

Format

A data frame of fluorescence intensities in each channel. Each row represents each partitions, and each column each channel.

channel1 fluorescence intensities of color 1
channel2 fluorescence intensities of color 2
channel3 fluorescence intensities of color 3
channel4 fluorescence intensities of color 4
channel5 fluorescence intensities of color 5
channel6 fluorescence intensities of color 6

Examples

```
data(CNV6plex)
head(CNV6plex)
```

combined_vectors

Internal Function 4

Description

This function outputs vectors and weights that will be used in EM algorithm

Usage

```
combined_vectors(coefs, mus, cluster_num, dim_data)
```

Arguments

coefs coefs The coefficients to adjust for the expected cluster centers. The default is 1

which can be used for common assay designs and has to be modified for special

assays such as competing assays.

mus The cluster centers of primary targets

cluster_num The expected maximum number of clusters.

dim_data dimension of the dataset

Value

A list of vectors and weights

compute_tmp_matrix 7

compute_tmp_matrix	Internal Function 6
--------------------	---------------------

Description

This function compute the necessary elements for estep function

Usage

```
compute_tmp_matrix(g, k, cluster_num, mg, log_pih, mug_t, muh_t, covh, covg)
```

Arguments

g	cluster index
k	cluster index
cluster_num	The expected maximum number of clusters
mg	cluster sizes of base clustering result
log_pih	log pih (the probability of cluster g belonging at level l+1 to cluster h at level l)
mug_t	the transposed matrix of cluster centers at level l+1
muh_t	the transposed matrix of cluster centers at level l
covh	the covariance matrix of clusters at level l
covg	the covariance matrix of clusters at level l+1

Value

A vector of intermediate values for zi calculation in estep function

conc_cal	concentration calculation function	
	·	

Description

This function takes a data frame of fluorescence intensities and partition clusters as input. It can be results from polytect_clust or polytect_merge. It will give the target concentration as output.

```
conc_cal(df_data, cluster_num, sampvol = 0.91, volmix = 20, voltemp = 20)
```

8 estep

Arguments

df_data A data frame containing partition fluorescence intensities and corresponding

cluster label. This can be the output of polytect_merge or any data frame

containing the above information.

cluster_num the expected number of clusters

sampvol The sample volume in microliters (μ L)

volmix The volume of the mixture voltemp The volume of the template

Value

a data frame of target concentration.

Examples

```
data(HR)
df_data<-polytect_clust(HR,4)
conc_cal(df_data,4)</pre>
```

estep

Internal Function 7

Description

This function calculates zi in E-step of EM algorithm

Usage

```
estep(g_clusternum, cluster_num, pih, muh, covh, mg, mug, covg)
```

Arguments

g_clusternum cluster labels from base clustering

cluster_num The expected maximum number of clusters

pih the probability of cluster g belonging at level l+1 to cluster h at level l

muh the matrix of cluster centers at level l
covh the covariance matrix of clusters at level l
mg cluster sizes of base clustering result
mug the matrix of cluster centers at level l+1
covg the covariance matrix of clusters at level l+1

Value

zi for estep in EM algorithm

fp_search 9

Description

This function optimizes parameters of flowPeaks

Usage

```
fp_search(data, cluster_num = 16)
```

Arguments

data A matrix of fluorescence intensities in each channel. Each row represents each

partitions, and each column each channel.

cluster_num The expected maximum number of clusters

Value

A vector containing the optimal parameters found by the algorithm

GMM_init	Internal Function 5	

Description

This function intialize the parameters for the main clustering function

Usage

```
GMM_init(data, cluster_num, base_clust, coefs)
```

Arguments

data A matrix or data frame of fluorescence intensities in each channel. Each row

represents each partitions, and each column each channel.

cluster_num The expected maximum number of clusters

base_clust The results of base clustering

coefs The coefficients to adjust for the expected cluster centers. The default is 1 which

can be used for common assay designs and has to be modified for special assays

such as competing assays.

Value

A list of initial parameters for the EM algorithm

10 HMM_merge

HIV

HIV data

Description

A 4-color dPCR data of intact HIV-1 proviruses

Usage

```
data(HIV)
```

Format

A data frame of fluorescence intensities in each channel. Each row represents each partitions, and each column each channel.

```
channel1 fluorescence intensities of color 1
channel2 fluorescence intensities of color 2
channel3 fluorescence intensities of color 3
channel4 fluorescence intensities of color 4
```

Source

```
https://www.biorxiv.org/content/10.1101/2023.08.18.553846v1
```

Examples

```
data(HIV)
head(HIV)
```

 ${\it HMM_merge}$

Internal Function 10

Description

This function merges the excess clusters given by the base clustering

```
HMM_merge(
  data,
  cluster_num,
  base_clust,
  eps = 10^(-10),
  max_iter = 1000,
  lambdas = rep(2, 2),
  coefs = rep(1, 2)
)
```

HR 11

Arguments

data A matrix or data frame of fluorescence intensities in each channel. Each row

represents each partitions, and each column each channel.

cluster_num The expected maximum number of clusters base_clust base clustering results before merging

eps the convergence threshold
max_iter maximum number of iterations

lambdas The penalty terms for the deviation from the expected cluster centers. Higher

lambdas penalizes the deviation more.

coefs The coefficients to adjust for the expected cluster centers. The default is 1 which

can be used for common assay designs and has to be modified for special assays

such as competing assays.

Value

A list of membership probability, cluster center, merging probability

HR HR data

Description

A high-resolution 2-color dPCR data of RPP30 genomic DNA assay

Usage

data(HR)

Format

A data frame of fluorescence intensities in each channel. Each row represents each partitions, and each column each channel. good separation but some crosstalk.

channel1 fluorescence intensities of color 1channel2 fluorescence intensities of color 2

Source

https://pubmed.ncbi.nlm.nih.gov/33992770/

Examples

data(HR)

head(HR)

12 MM

LR

LR data

Description

A low-resolution 2-color dPCR data of development of genotyping assays for plants various

Usage

data(LR)

Format

A data frame of fluorescence intensities in each channel. Each row represents each partitions, and each column each channel. barely separable on x-axis.

channel1 fluorescence intensities of color 1 **channel2** fluorescence intensities of color 2

Examples

data(LR)
head(LR)

MM

MM data

Description

A multi-mode 2-color dPCR data of HIV gBlock sequences

Usage

data(MM)

Format

A data frame of fluorescence intensities in each channel. Each row represents each partitions, and each column each channel. obvious multimodality.

channel1 fluorescence intensities of color 1 **channel2** fluorescence intensities of color 2

Source

https://pubmed.ncbi.nlm.nih.gov/37827643/

mstep_cov 13

Examples

data(MM) head(MM)

mstep_cov Internal Function 9

Description

This function calculates mu in M-step of EM algorithm

Usage

```
mstep_cov(cluster_num, dim_data, g_clusternum, zi, mg, covg, mug, muh)
```

Arguments

cluster_num The expected maximum number of clusters

dim_data the dimension of the dataset

g_clusternum cluster labels from base clustering

zi the expected log-likelihood found on the E step

mg cluster sizes of base clustering result

covg the covariance matrix of clusters at level l+1
mug the matrix of cluster centers at level l+1
muh the matrix of cluster centers at level l

Value

covh the covariance matrix of clusters at level 1 in the EM algorithm

mstep_mu Internal Function 8

Description

This function calculates mu in M-step of EM algorithm

14 mstep_mu

Usage

```
mstep_mu(
   zi,
   g_clusternum,
   dim_data,
   cluster_num,
   weights,
   muh,
   covh,
   mg,
   mug,
   neg_assum,
   lambdas,
   coefs
)
```

Arguments

zi	the expected 1	log-likelihood	found on	the E step

g_clusternum cluster labels from base clustering

dim_data the dimension of the dataset

cluster_num The expected maximum number of clusters

weights combinations of coefficients of the cluster centers

muh the matrix of cluster centers at level l

covh the covariance matrix of clusters at level 1

mg cluster sizes of base clustering result

mug the matrix of cluster centers at level 1+1

neg_assum the estimated cluster center of negative population

lambdas The penalty terms for the deviation from the expected cluster centers. Higher

lambdas penalizes the deviation more.

coefs The coefficients to adjust for the expected cluster centers. The default is 1 which

can be used for common assay designs and has to be modified for special assays

such as competing assays.

Value

muh the cluster centers at level l in the EM algorithm

polytect_clust 15

ering

Description

This is the main function for clustering. The function will start with flowPeaks, then merge the excess clusters. It will return a data frame of fluorescence intensities and partition labels.

Usage

```
polytect_clust(
  data,
  cluster_num,
  fp_par = "default",
  fp_optim = c(0.1, 1, 1.5),
  lambdas = rep(2, 64 - log2(64)),
  coefs = rep(1, 6)
)
```

Arguments

data	A matrix of fluorescence intensities in each channel. Each row represents each partitions, and each column each channel.
cluster_num	The expected maximum number of clusters.
fp_par	The parameters for flowPeaks. fp_par=c("default","manual","auto"). When "default" is chosen, the default parameters of flowPeaks will be used. With "manual", you have to fill in fp_optim.
fp_optim	The paramters for flowPeaks that users have to fill in manually when fp_par is set at "manual".
lambdas	The penalty terms for the deviation from the expected cluster centers. Higher lambdas penalizes the deviation more.
coefs	The coefficients to adjust for the expected cluster centers. The default is 1 which can be used for common assay designs and has to be modified for special assays such as competing assays.

Value

A data frame containing the original fluorescence intensity and the cluster labels.

Examples

```
data(HR)
head(polytect_clust(HR, 4))
```

polytect_merge

poly	√tect	_merge

Function for merging

Description

This function takes the clustering result as input. Users can first perform any clustering algorithm, then use this function. It will return a data frame of fluorescence intensities and partition labels.

Usage

```
polytect_merge(
  data,
  cluster_num,
  base_clust,
  lambdas = rep(2, 64 - log2(64)),
  coefs = rep(1, 6)
)
```

Arguments

data	A matrix of fluorescence intensities in each channel. Each row represents each partitions, and each column each channel.
cluster_num	The expected maximum number of clusters.
base_clust	A list that contains partition labels given by initial clustering.
lambdas	The penalty terms for the deviation from the expected cluster centers. Higher lambdas penalizes the deviation more.
coefs	The coefficients to adjust for the expected cluster centers. The default is 1 which can be used for common assay designs and has to be modified for special assays such as competing assays.

Value

A data frame containing the original fluorescence intensity and the cluster labels.

Examples

```
data(HR)
dist_matrix <- dist(HR)
hc <- hclust(dist_matrix, method = "ward.D2")
hc_clusters <- cutree(hc, k = 6)
base_clust<-list()
base_clust$cluster<-hc_clusters
head(polytect_merge(HR, 4, base_clust))</pre>
```

polytect_plot 17

polytect_plot	Plotting function for clustering results	

Description

This function takes results from polytect_clust and polytect_merge, or a data frame containing flurescence intensities and partition labels. It will output all combination of 2-color plots.

Usage

```
polytect_plot(df_data, cluster_num, cluster_selected = TRUE)
```

Arguments

df_data A data frame containing partition fluorescence intensities and corresponding

cluster label. This can be the output of polytect_clust and polytect_merge

or any data frame containing the above information.

cluster_num the expected number of clusters

cluster_selected

Indicator of whether all the clusters are present in the plots. If TRUE, then only selected ones (the ones only positive in the selected 2 dimensions) are shown. The default value is "TRUE".

Value

2-color plots.

Examples

```
data(HR)
df_data<-polytect_clust(HR,4)
polytect_plot(df_data,4)</pre>
```

polytect_summary

Summary function

Description

This function takes results from polytect_clust and polytect_merge, or a data frame containing flurescence intensities and partition labels. It will summarise cluster centers, cluster sizes and cluster silhouette coefficients.

```
polytect_summary(df_data)
```

silhouette_coef

Arguments

df_data A data frame containing partition fluorescence intensities and corresponding

cluster label. This can be the output of $polytect_clust$ and $polytect_merge$

or any data frame containing the above information.

Value

a data frame of the summary of cluster centers, cluster sizes and cluster silhouette coefficients.

Examples

```
data(HR)
df_data<-polytect_clust(HR,4)
polytect_summary(df_data)</pre>
```

silhouette_coef

Internal Function 1

Description

This function outputs silhouette coefficients.

Usage

```
silhouette_coef(data, clustering, plot = FALSE)
```

Arguments

data A data frame containing standardized partition fluorescence intensities and cor-

responding cluster label.

clustering cluster labels

plot TRUE or FALSE, whether a plot should be shown. The default value is "FALSE".

Value

A list of silhouette coefficients for each partition and the mean silhouette coefficients for each cluster.

sil_plot

 sil_plot

Plotting function for silhouette coefficients

Description

This function takes results from polytect_clust and polytect_merge, or a data frame containing flurescence intensities and partition labels. It will output the silhouette coefficients of each cluster.

Usage

```
sil_plot(df_data)
```

Arguments

df_data

A data frame containing partition fluorescence intensities and corresponding cluster label. This can be the output of polytect_clust and polytect_merge or any data frame containing the above information.

Value

plot of silhouette coefficients for each cluster.

Examples

```
data(HR)
df_data<-polytect_clust(HR,4)
sil_plot(df_data)</pre>
```

Index

* datasets BPV, 3	HMM_merge, 10 HR, 11
CA, 4 CNV5plex, 5	LR, 12
CNV6plex, 5 HIV, 10 HR, 11 LR, 12 MM, 12 * internal approxSilhouette, 2 cluster_selection, 4 combined_vectors, 6 compute_tmp_matrix, 7 estep, 8 fp_search, 9 GMM_init, 9 HMM_merge, 10 mstep_cov, 13 mstep_mu, 13 silhouette_coef, 18	MM, 12 mstep_cov, 13 mstep_mu, 13 polytect_clust, 15 polytect_merge, 16 polytect_plot, 17 polytect_summary, 17 sil_plot, 19 silhouette_coef, 18
${\it approxSilhouette}, 2$	
BPV, 3	
CA, 4 cluster_selection, 4 CNV5plex, 5 CNV6plex, 5 combined_vectors, 6 compute_tmp_matrix, 7 conc_cal, 7	
estep,8	
fp_search, 9	
GMM_init,9	
HIV, 10	