Package ‘COCOA’

October 30, 2025
Version 2.25.0
Date 2025-06-25
Title Coordinate Covariation Analysis

Description COCOA is a method for understanding epigenetic variation among samples.
COCOA can be used with epigenetic data that includes
genomic coordinates and an epigenetic signal,
such as DNA methylation and chromatin accessibility data.

To describe the method on a high level, COCOA quantifies
inter-sample variation with either a supervised or unsupervised
technique then uses a database of * "region sets" to

annotate the variation among samples. A region set is a set of
genomic regions that share a biological annotation,

for instance transcription factor (TF) binding regions,

histone modification regions, or open chromatin regions.
COCOA can identify region sets that are associated with
epigenetic variation between samples and

increase understanding of variation in your data.

Depends R (>=3.5), GenomicRanges

Imports BiocGenerics, S4Vectors, IRanges, data.table, ggplot2,
Biobase, stats, methods, ComplexHeatmap, MIRA, tidyr, grid,
grDevices, simpleCache, fitdistrplus

Suggests knitr, parallel, testthat, BiocStyle, rmarkdown,
AnnotationHub, LOLA

VignetteBuilder knitr
License GPL-3

biocViews Epigenetics, DNAMethylation, ATACSeq, DNaseSeq, MethylSeq,
MethylationArray, PrincipalComponent, Genomic Variation,
GeneRegulation, GenomeAnnotation, SystemsBiology,
FunctionalGenomics, ChIPSeq, Sequencing, ImmunoOncology

URL http://code.databio.org/COCOA/

BugReports https://github.com/databio/COCOA
RoxygenNote 7.1.1

http://code.databio.org/COCOA/
https://github.com/databio/COCOA

2 Contents

git_url https://git.bioconductor.org/packages/COCOA

git_branch devel

git_last_commit a245a29

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-10-30

Author John Lawson [aut, cre],

Nathan Sheffield [aut] (http://www.databio.org),
Jason Smith [ctb]

Maintainer John Lawson <jtl2hk@virginia.edu>

Contents
aggregateSignal 3
aggregateSignalGRList oL o 5
atf3_chrl e 8
brcaATACCoord] e 9
brcaATACDatal e e e e 9
brcaMCoord]l e e e e 10
brcaMetadata 10
brcaMethylDatal 11
brcaPCScores oL e e e 11
brcaPCScores657 e e e e e 12
COCOA . . e 12
convertToFromNullDist 13
esrl_chrl e 14
gata3_chrl 14
getGammaPVal o 15
getMetaRegionProfile 16
getPermStat L e e e e 18
getTopRegions e 20
nrfl_chrl e 21
plotAnnoScoreDist 21
regionQuantileByTargetVar L 23
rsRankinglndex L 25
rsScoreHeatmap L. e e e 26
ISSCOTES . . v v o o e e e e e e e e e e e e e e 28
runCOCOA 28
runCOCOAPerm e 32
signalAlongAXis 36

Index 39

aggregateSignal 3

aggregateSignal Score a region set using feature contribution scores

Description

First, this function identifies which epigenetic features overlap the region set. Then the region
set is scored using the feature contribution scores (‘signal® input) according to the ‘scoringMetric’
parameter.

Usage

aggregateSignal(
signal,
signalCoord,
regionSet,
signalCol = c("PC1", "PC2"),
signalCoordType = "default”,
scoringMetric = "default”,
verbose = FALSE,
absVal = TRUE,
rsoL = NULL,
pOlap = NULL,
returnCovInfo = TRUE,
.checkInput = TRUE

)

Arguments

signal Matrix of feature contribution scores (the contribution of each epigenetic feature
to each target variable). One named column for each target variable. One row for
each original epigenetic feature (should be same order as original data/signalCoord).
For (an unsupervised) example, if PCA was done on epigenetic data and the
goal was to find region sets associated with the principal components, you could
use the x$rotation output of prcomp(epigenetic data) as the feature contribution
scores/‘signal* parameter.

signalCoord A GRanges object or data frame with coordinates for the genomic signal/original
epigenetic data. Coordinates should be in the same order as the original data and
the feature contribution scores (each item/row in signalCoord corresponds to a
row in signal). If a data.frame, must have chr and start columns (optionally can
have end column, depending on the epigenetic data type).

regionSet A genomic ranges (GRanges) object with regions corresponding to the same bi-
ological annotation. Must be from the same reference genome as the coordinates
for the actual data/samples (signalCoord).

signalCol A character vector with the names of the sample variables of interest/target vari-
ables (e.g. PCs or sample phenotypes).

aggregateSignal

signalCoordType

Character. Can be "default", "singleBase", or "multiBase". This describes
whether the coordinates for ‘signal‘ (‘signalCoord®) are each a single base (e.g.
as for DNA methylation) or a region/multiple bases (e.g. as for chromatin
accessibility). Different scoring options are available for each type of data.
If "default" is given, the type of coordinates will be detected automatically.
For "default", if each coordinate start value equals the coordinate end value
(all(start(signalCoord) == end(signalCoord))), "singleBase" will be used. Oth-
erwise, "multiBase" will be used.

scoringMetric A character object with the scoring metric. There are different methods avail-
able for signalCoordType="singleBase" vs signalCoordType="multiBase". For
"singleBase", the available methods are "regionMean", "regionMedian", "sim-
pleMean", and "simpleMedian". The default method is "regionMean". For
"multiBase", the methods are "proportionWeightedMean", "simpleMean", and
"simpleMedian". The default is "proportionWeightedMean". "regionMean" is
a weighted average of the signal, weighted by region (absolute value of sig-
nal if absVal=TRUE). First the signal is averaged within each regionSet region,
then all the regions are averaged. With "regionMean" method, be cautious in
interpretation for region sets with low number of regions that overlap signalCo-
ord. The "regionMedian" method is the same as "regionMean" but the median
is taken at each step instead of the mean. The "simpleMean" method is just the
unweighted average of all (absolute) signal values that overlap the given region
set. For multiBase data, this includes signal regions that overlap a regionSet
region at all (1 base overlap or more) and the signal for each overlapping region
is given the same weight for the average regardless of how much it overlaps.
The "simpleMedian" method is the same as "simpleMean" but takes the median
instead of the mean. "proportionWeightedMean" is a weighted average of all
signalCoord regions that overlap with regionSet regions. For each signalCoord
region that overlaps with a regionSet region, we calculate what proportion of the
regionSet region is covered. Then this proportion is used to weight the signal
value when calculating the mean. The denominator of the mean is the sum of all
the proportion overlaps.

verbose A "logical" object. Whether progress of the function should be shown. One bar
indicates the region set is completed.

absVal Logical. If TRUE, take the absolute value of values in signal. Choose TRUE if
you think there may be some genomic loci in a region set that will increase and
others will decrease (if there may be anticorrelation between regions in a region
set). Choose FALSE if you expect regions in a given region set to all change in
the same direction (all be positively correlated with each other).

rsoL a "SortedByQueryHits" object (output of findOverlaps function). Should have
the overlap information between signalCoord and one item of GRList (one unique
region set). The region set must be the "subject" in findOverlaps and signalCo-
ord must be the "query". E.g. findOverlaps(subject=regionSet, query=signalCoord).
Providing this information can greatly improve permutation speed since the
overlaps will not have to be calculated for each permutation. When using this
parameter, signalCoord, genomicSignal, and the region set must be in the same
order as they were when olList was created. Otherwise, the wrong genomic loci

aggregateSignal GRList

pOlap

returnCovInfo

.checkInput

Value

will be referenced (e.g. if epigenetic features were filtered out of genomicSignal
after rsOL was created.)

Numeric vector. Only used if rsOL is given and scoringMetric is "proportion-
WeightedMean". This vector should contain the proportion of each regionSet
region that is overlapped by a signalCoord region. The order of pOlap should be
the same as the overlaps in rsOL.

logical. If TRUE, the following coverage and region set info will be calculated
and included in function output: regionSetCoverage, signalCoverage, totalRe-
gionNumber, and meanRegionSize. For the proportionWeightedMean scoring
method, sumProportionOverlap will also be calculated.

A "logical" object. For programmatic use only. Whether inputs to the func-
tion should be checked for correctness/appropriateness. This parameter may be
used by some COCOA functions to prevent unnecessary checks of objects after
arguments have already been checked once.

A data.frame with one row and the following columns: one column for each item of signalCol with

names given by sig
columns: signalCo

nalCol. These columns have scores for the region set for each signalCol. Other
verage (formerly cytosine_coverage) which has number of epigenetic features

that overlapped at all with regionSet, regionSetCoverage which has number of regions from region-

Set that overlapped

any of the epigenetic features, totalRegionNumber that has number of regions in

regionSet, meanRegionSize that has average size in base pairs of regions in regionSet, the average is
based on all regions in regionSet and not just ones that overlap. For "multiBase" data, if the "propor-

tionWeightedMean

" scoring metric is used, then the output will also have a "sumProportionOverlap"

column. During this scoring method, the proportion overlap between each signalCoord region and
overlapping regionSet region is calculated. This column is the sum of all those proportion overlaps

and is another way

Examples

to quantify coverage of regionSet in addition to regionSetCoverage.

data("brcaATACCoord1")
data("brcaATACDatal")

data("esrli_chr1")

featureContributionScores <- prcomp(t(brcaATACDatal))$rotation
rsScores <- aggregateSignal(signal=featureContributionScores,

signalCoord=brcaATACCoord1,
regionSet=esri_chri,
signalCol=c("PC1", "PC2"),
scoringMetric="default")

aggregateSignalGR

List Score many region sets

6 aggregateSignal GRList

Description

This function will give each region set a score for each target variable given by ‘signalCol‘ based
on the ‘scoringMetric‘ parameter. Based on these scores, you can determine which region sets out
of a region set database (given by ‘GRList‘) are most associated with the target variables. See the
vignette "Introduction to Coordinate Covariation Analysis" for help interpreting your results.

Usage

aggregateSignalGRList(
signal,
signalCoord,
GRList,
signalCol = c("PC1", "PC2"),
signalCoordType = "default”,

scoringMetric = "default”,
verbose = TRUE,
absVal = TRUE,

olList = NULL,
pOlapList = NULL,
returnCovInfo = TRUE

Arguments

signal Matrix of feature contribution scores (the contribution of each epigenetic feature
to each target variable). One named column for each target variable. One row for
each original epigenetic feature (should be same order as original data/signalCoord).
For (an unsupervised) example, if PCA was done on epigenetic data and the
goal was to find region sets associated with the principal components, you could
use the x$rotation output of prcomp(epigenetic data) as the feature contribution
scores/‘signal* parameter.

signalCoord A GRanges object or data frame with coordinates for the genomic signal/original
epigenetic data. Coordinates should be in the same order as the original data and
the feature contribution scores (each item/row in signalCoord corresponds to a
row in signal). If a data.frame, must have chr and start columns (optionally can
have end column, depending on the epigenetic data type).

GRList GRangesList object. Each list item is a distinct region set to test (region set: re-
gions that correspond to the same biological annotation). The region set database
must be from the same reference genome as the coordinates for the actual data/samples
(signalCoord).

signalCol A character vector with the names of the sample variables of interest/target vari-
ables (e.g. PCs or sample phenotypes).

signalCoordType
Character. Can be "default", "singleBase", or "multiBase". This describes
whether the coordinates for ‘signal® (‘signalCoord®) are each a single base (e.g.
as for DNA methylation) or a region/multiple bases (e.g. as for chromatin
accessibility). Different scoring options are available for each type of data.

aggregateSignal GRList

scoringMetric

verbose

absVal

olList

If "default" is given, the type of coordinates will be detected automatically.
For "default", if each coordinate start value equals the coordinate end value
(all(start(signalCoord) == end(signalCoord))), "singleBase" will be used. Oth-
erwise, "multiBase" will be used.

A character object with the scoring metric. There are different methods avail-
able for signalCoordType="singleBase" vs signalCoordType="multiBase". For
"singleBase", the available methods are "regionMean", "regionMedian", "sim-
pleMean", and "simpleMedian". The default method is "regionMean". For
"multiBase", the methods are "proportionWeightedMean", "simpleMean", and
"simpleMedian". The default is "proportionWeightedMean". "regionMean" is
a weighted average of the signal, weighted by region (absolute value of sig-
nal if absVal=TRUE). First the signal is averaged within each regionSet region,
then all the regions are averaged. With "regionMean" method, be cautious in
interpretation for region sets with low number of regions that overlap signalCo-
ord. The "regionMedian" method is the same as "regionMean" but the median
is taken at each step instead of the mean. The "simpleMean" method is just the
unweighted average of all (absolute) signal values that overlap the given region
set. For multiBase data, this includes signal regions that overlap a regionSet
region at all (1 base overlap or more) and the signal for each overlapping region
is given the same weight for the average regardless of how much it overlaps.
The "simpleMedian" method is the same as "simpleMean" but takes the median
instead of the mean. "proportionWeightedMean" is a weighted average of all
signalCoord regions that overlap with regionSet regions. For each signalCoord
region that overlaps with a regionSet region, we calculate what proportion of the
regionSet region is covered. Then this proportion is used to weight the signal
value when calculating the mean. The denominator of the mean is the sum of all
the proportion overlaps.

A "logical" object. Whether progress of the function should be shown. One bar
indicates the region set is completed.

Logical. If TRUE, take the absolute value of values in signal. Choose TRUE if
you think there may be some genomic loci in a region set that will increase and
others will decrease (if there may be anticorrelation between regions in a region
set). Choose FALSE if you expect regions in a given region set to all change in
the same direction (all be positively correlated with each other).

list. Each list item should be a "SortedByQueryHits" object (output of findOver-
laps function). Each hits object should have the overlap information between
signalCoord and one item of GRList (one unique region set). The region sets
from GRList must be the "subject" in findOverlaps and signalCoord must be the
"query". E.g. findOverlaps(subject=regionSet, query=signalCoord). Providing
this information can greatly improve permutation speed since the overlaps will
not have to be calculated for each permutation. The "runCOCOAPerm" func-
tion calculates this information only once, internally, so this does not have to
be provided when using that function. When using this parameter, signalCo-
ord, genomicSignal, and each region set must be in the same order as they were
when olList was created. Otherwise, the wrong genomic loci will be referenced
(e.g. if epigenetic features were filtered out of genomicSignal after olList was
created.)

8 atf3_chrl

pOlapList list. This parameter is only used if the scoring metric is "proportionWeighted-
Mean" and olList is also provided as an argument. Each item of the list should be
a vector that contains the proportion overlap between signalCoord and regions
from one region set (one item of GRList). Specifically, each value should be the
proportion of the region set region that is overlapped by a signalCoord region.
The proportion overlap values should be in the same order as the overlaps given
by olList for the corresponding region set.

returnCovInfo logical. If TRUE, the following coverage and region set info will be calculated
and included in function output: regionSetCoverage, signalCoverage, totalRe-
gionNumber, and meanRegionSize. For the proportionWeightedMean scoring
method, sumProportionOverlap will also be calculated.

Value

Data.frame of results, one row for each region set. It has the following columns: one column for
each item of signalCol with names given by signalCol. These columns have scores for the region
set for each signalCol. Other columns: signalCoverage (formerly cytosine_coverage) which has
number of epigenetic features that overlapped at all with regionSet, regionSetCoverage which has
number of regions from regionSet that overlapped any of the epigenetic features, totalRegionNum-
ber that has number of regions in regionSet, meanRegionSize that has average size in base pairs of
regions in regionSet, the average is based on all regions in regionSet and not just ones that overlap.
For "multiBase" data, if the "proportionWeightedMean" scoring metric is used, then the output will
also have a "sumProportionOverlap" column. During this scoring method, the proportion overlap
between each signalCoord region and overlapping regionSet region is calculated. This column is
the sum of all those proportion overlaps and is another way to quantify coverage of regionSet in
addition to regionSetCoverage.

Examples

data("brcaATACCoord1")

data("brcaATACDatal")

data("esri_chr1")

data("nrfli_chr1”)

featureContributionScores <- prcomp(t(brcaATACDatal))$rotation

GRList <- GRangesList(esr1_chrl, nrfl_chr1)

rsScores <- aggregateSignalGRList(signal=featureContributionScores,
signalCoord=brcaATACCoord1,
GRList= GRList,
signalCol=c("PC1", "PC2"),
scoringMetric="default")

atf3_chri Atf3 binding regions.

Description

Binding regions for Atf3. hg38 genome version. Only includes regions in chrl to keep the example
data small.

brcaATACCoordl 9

Usage
data(atf3_chri)

Format
A GRanges object
brcaATACCoord1 A GRanges object with coordinates for select BRCA ATAC-seq peak
regions from chrl.
Description

Corresponds to the rows of brcaATACDatal. The ATAC-seq data is from breast cancer patients
from The Cancer Genome Atlas (TCGA-BRCA, Corces et. al, 2018, doi: 10.1126/science.aav1898,
https://atacseq.xenahubs.net/download/brca/brea_peak_Log2Counts_dedup). Coordinates correspond
to the hg38 genome version. Only select regions on chrl are included to keep the example data
small.

Usage
data(brcaATACCoord1)

Format

A GRanges object

brcaATACDatal A matrix with ATAC-seq counts in select peak regions from chromo-
some 1 for 37 patients.

Description

Each row corresponds to one region and the coordinates for these regions are in the object br-
caATACCoord1, (data("brcaATACCoord1"), hg38 genome). Only select regions on chrl are in-
cluded to keep the example data small. Columns are patients, with TCGA patient identifiers as
column names. 4053 regions are included. ATAC-seq data is from breast cancer patients from
The Cancer Genome Atlas (TCGA-BRCA, Corces et. al, 2018, doi: 10.1126/science.aav1898,
https://atacseq.xenahubs.net/download/brca/brea_peak_Log2Counts_dedup).

Usage
data(brcaATACDatal)

Format

A matrix object

10 brcaMetadata

brcaMCoord1 A GRanges object with genomic coordinates for cytosines from chrl
for the package’s built-in DNA methylation data

Description

Corresponds to the rows of brcaMethylDatal. DNA methlyation data is Illumina 450k microarray

data from breast cancer patients from The Cancer Genome Atlas (TCGA-BRCA, https://portal.gdc.cancer.gov/).
Coordinates correspond to the hg38 genome version. Only selected cytosines on chrl are included

to keep the example data small.

Usage

data(brcaMCoord1)

Format

A GRanges object

brcaMetadata A data.frame with patient metadata for breast cancer patients.

Description

Has metadata for patients for which DNA methylation or chromatin accessibility data was included
as package data (329 patients). Rows are patients, with TCGA patient identifiers as row names
and the column "subject_ID". Also includes columns: ER_status, ER_percent, age_diagnosis,
days_to_death, and days_to_last_follow_up. Metadata is from The Cancer Genome Atlas (TCGA-
BRCA, https://portal.gdc.cancer.gov/).

Usage

data(brcaMetadata)

Format

A data.frame object

brcaMethylDatal 11

brcaMethylData1l A matrix with DNA methylation levels from some CpGs on chromo-
some 1

Description

This object contains methylation levels (0 to 1) for select cytosines in chromosome 1 for TCGA
breast cancer patients from a DNA methylation microarray (Illumina 450k microarray). Each row
corresponds to one cytosine and the coordinates for these cytosines are in the object brcaMCoordl,
(data("brcaMCoord1"), hg38 genome). Only select cytosines on chrl are included to keep the exam-
ple data small. Columns are patients, with TCGA patient identifiers as column names. 6004 CpGs
and 300 patients are included. DNA methlyation data is Illumina 450k microarray data from breast
cancer patients from The Cancer Genome Atlas (TCGA-BRCA, https://portal.gdc.cancer.gov/).

Usage

data(brcaMethylDatal)

Format

A matrix object

brcaPCScores A matrix with principal component scores for PCs 1-4 for four breast
cancer patients.

Description

This object contains PC scores for four patients for PCs 1-4. Columns are PCs. Rows are patients,

with TCGA patient identifiers as row names. DNA methlyation data is Illumina 450k microarray

data from breast cancer patients from The Cancer Genome Atlas (TCGA-BRCA, https://portal.gdc.cancer.gov/),
hg38 genome.

Usage

data(brcaPCScores)

Format

A matrix object

12 COCOA

brcaPCScores657 A data.frame with principal component scores for PCs 1-4 for 657
breast cancer patients as well as a column with estrogen receptor sta-
tus.

Description

This object contains PC scores for 657 patients for PCs 1-4. Columns are PCs as well as a col-
umn with estrogen receptor status. Rows are patients, with TCGA patient identifiers as row names.
Patients were selected from all BRCA patients in TCGA based on having complete metadata infor-
mation for estrogen receptor status and progesterone receptor status as well as having 450k microar-
ray data. PCA was done on the Illumina 450k DNA methlyation microarray data (TCGA-BRCA,
https://portal.gdc.cancer.gov/), hg38 genome.

Usage
data(brcaPCScores657)

Format

A data.frame object

COCOA Coordinate Covariation Analysis (COCOA)

Description

COCOA is a method for understanding epigenetic variation among samples. COCOA can be used
with epigenetic data that includes genomic coordinates and an epigenetic signal, such as DNA
methylation and chromatin accessibility data. To describe the method on a high level, COCOA
quantifies inter-sample variation with either a supervised or unsupervised technique then uses a
database of "region sets" to annotate the variation among samples. A region set is a set of genomic
regions that share a biological annotation, for instance transcription factor (TF) binding regions,
histone modification regions, or open chromatin regions. COCOA can identify region sets that are
associated with epigenetic variation between samples and increase understanding of variation in
your data.

Author(s)

John Lawson
Nathan Sheffield

References

http://github.com/databio

http://github.com/databio

convertToFromNullDist 13

convertToFromNullDist Converts COCOA permutation results to null distributions and vice
versa

Description

This function will take a list of results of permutation tests that included many region sets and return
a list of data.frames where each data.frame contains the null distribution for a single region set. The
function can also convert in the reverse order from a list of null distributions to a list of COCOA
results.

Usage

convertToFromNullDist(rsScoresList)

Arguments

rsScoreslList each item in the list is a data.frame, one item for each permutation with the
results of that permutation. Each row in the data.frame is a region set. All
data.frames should be the same size and each data.frame’s rows should be in the
same order

Value

a list of data.frames. If given a list where each item is a data.frame with results from one COCOA
permutation, this function will return a list of data.frames where each data.frame contains the null
distributions for a single region set. The output data.frames will have the same columns as the input
data.frames. If given a list where each item is a data.frame with the null distribution/s for a single
region set, this function will return a list where each item is a data.frame with one row for each
region set (e.g. a data.frame with results for a single COCOA permutation).

Examples

six region sets (rows), 2 signals (columns)
fakePermScores <- data.frame(abs(rnorm(6)), abs(rnorm(6)))
fakePermScores2 <- data.frame(abs(rnorm(6)), abs(rnorm(6)))
2 fake COCOA results (i.e. nPerm=2)

permRSScores <- list(fakePermScores, fakePermScores2)
convertToFromNullDist(permRSScores)

14 gata3 chrl

esrl_chri Estrogen receptor alpha binding regions.

Description

Binding regions for estrogen receptor alpha (ESR1). hg 38 genome version. Only includes regions
in chrl to keep the example data small.

Usage

data(esri_chri)

Format

A GRanges object

gata3_chr1 Gata3 binding regions.

Description

Binding regions for gata3. hg38 genome version. Only includes regions in chrl to keep the example
data small.

Usage

data(gata3_chri)

Format

A GRanges object

getGammaPVal 15

getGammaPVal Get a p-value for region set scores based on a gamma distribution.

Description

First fit a gamma distribution to each region set’s null distribution/s (nullDistList). Then use this
gamma distribution to convert scores in rsScores to p-values.

Usage

getGammaPVal(
rsScores,
nullDistlList,
signalCol,
method = "mme"”,
realScorelInDist = TRUE,
force = FALSE

Arguments

rsScores data.frame. A data.frame with region set scores. The output of the ’aggregateS-
ignalGRList’ function. Each row is a region set. One column for each sample
variable of interest (e.g. PC or sample phenotype). Also can have columns with
info on the overlap between the region set and the epigenetic data. Rows should
be in the same order as the region sets in GRList (the list of region sets used to
create rsScores.)

nullDistList list of data.frames. Each list item has null distributions for a single region set
(list items should be in the same order as rows of rsScores). Has same score
columns as rsScores. Each column corresponds to a null distribution for that
region set for a given sample variable of interest/target variable (e.g. PC or
sample phenotype).

signalCol A character vector with the names of the sample variables of interest/target vari-
ables (e.g. PCs or sample phenotypes). Must be column names of rsScores.

method Character. Has the method to use to fit the gamma distribution to the null dis-
tribution. Options are "mme" (moment matching estimation), "mle" (maximum
likelihood estimation), "gme" (quantile matching estimation), and "mge" (maxi-
mum goodness-of-fit estimation). See ?fitdistrplus::fitdist() for available options
and meaning.

realScoreInDist
logical. Should the actual score (from test with no permutations) be included in
the null distribution when fitting the gamma distribution. realScoreInDist=TRUE
is recommended.

force logical. If force=TRUE, when fitting the gamma distribution returns an error (as
may happen when a method other than "mme" is used) then allow the error. If

16 getMetaRegionProfile

force=FALSE, when fitting the gamma distribution returns an error then don’t
return an error but instead use the "mme" method for fitting that specific gamma
distribution.

Value

Returns a data.frame with p values, one column for each signalCol in rsScores

getMetaRegionProfile Create a "meta-region" profile

Description

This profile can show enrichment of genomic signals with high feature contribution scores in the
region set but not in the surrounding genome, suggesting that variation is linked specifically to that
region set.

Usage

getMetaRegionProfile(
signal,
signalCoord,
regionSet,
signalCol = c("PC1", "PC2"),
signalCoordType = "default”,
binNum = 21,
verbose = TRUE,
aggrMethod = "default”,
absVal = TRUE

Arguments

signal Matrix of feature contribution scores (the contribution of each epigenetic feature
to each target variable). One named column for each target variable. One row for
each original epigenetic feature (should be same order as original data/signalCoord).
For (an unsupervised) example, if PCA was done on epigenetic data and the
goal was to find region sets associated with the principal components, you could
use the x$rotation output of prcomp(epigenetic data) as the feature contribution
scores/‘signal* parameter.

signalCoord A GRanges object or data frame with coordinates for the genomic signal/original
epigenetic data. Coordinates should be in the same order as the original data and
the feature contribution scores (each item/row in signalCoord corresponds to a
row in signal). If a data.frame, must have chr and start columns (optionally can
have end column, depending on the epigenetic data type).

regionSet A genomic ranges (GRanges) object with regions corresponding to the same
biological annotation.

getMetaRegionProfile 17

signalCol A character vector with the names of the sample variables of interest/target vari-
ables (e.g. PCs or sample phenotypes).

signalCoordType

Character. Can be "default", "singleBase", or "multiBase". This describes
whether the coordinates for ‘signal‘ (‘signalCoord®) are each a single base (e.g.
as for DNA methylation) or a region/multiple bases (e.g. as for chromatin
accessibility). Different scoring options are available for each type of data.
If "default" is given, the type of coordinates will be detected automatically.
For "default", if each coordinate start value equals the coordinate end value
(all(start(signalCoord) == end(signalCoord))), "singleBase" will be used. Oth-
erwise, "multiBase" will be used.

binNum Number of bins to split each region into when making the aggregate profile.
More bins will give a higher resolution but perhaps more noisy profile.

verbose A "logical" object. Whether progress of the function should be shown. One bar
indicates the region set is completed.

aggrMethod character. A character object with the aggregation method. Similar to aggre-
gateSignalGRList ‘scoringMetric‘ parameter. There are different methods avail-
able for signalCoordType="singleBase" vs signalCoordType="multiBase". For
"singleBase", the available methods are "regionMean", "regionMedian", "sim-
pleMean", and "simpleMedian". The default method is "regionMean". For
"multiBase", the methods are "proportionWeightedMean", "simpleMean", and
"simpleMedian". The default is "proportionWeightedMean". "regionMean" is
a weighted average of the signal, weighted by region (absolute value of sig-
nal if absVal=TRUE). First the signal is averaged within each regionSet region,
then all the regions are averaged. With "regionMean" method, be cautious in
interpretation for region sets with low number of regions that overlap signalCo-
ord. The "regionMedian" method is the same as "regionMean" but the median
is taken at each step instead of the mean. The "simpleMean" method is just the
unweighted average of all (absolute) signal values that overlap the given region
set. For multiBase data, this includes signal regions that overlap a regionSet
region at all (1 base overlap or more) and the signal for each overlapping region
is given the same weight for the average regardless of how much it overlaps.
The "simpleMedian" method is the same as "simpleMean" but takes the median
instead of the mean. "proportionWeightedMean" is a weighted average of all
signalCoord regions that overlap with regionSet regions. For each signalCoord
region that overlaps with a regionSet region, we calculate what proportion of the
regionSet region is covered. Then this proportion is used to weight the signal
value when calculating the mean. The denominator of the mean is the sum of all
the proportion overlaps.

absVal Logical. If TRUE, take the absolute value of values in signal. Choose TRUE if
you think there may be some genomic loci in a region set that will increase and
others will decrease (if there may be anticorrelation between regions in a region
set). Choose FALSE if you expect regions in a given region set to all change in
the same direction (all be positively correlated with each other).

18 getPermStat

Details

All regions in a given region set are combined into a single aggregate profile. Regions in ‘regionSet*
should be expanded on each side to include a wider area of the genome around the regions of interest
(see example and vignettes). To make the profile, first we optionally take the absolute value of
‘signal (‘absVal‘ parameter). Then each expanded regionSet region is split into ‘binNum* bins. The
corresponding bins from each region (e.g. all binl’s, all bin2’s, etc.) are grouped. All overlapping
values from ‘signal® are aggregated in each bin group according to the ‘aggrMethod* parameter to
get a meta-region profile. Since DNA strand information is not considered, the profile is averaged
symmetrically around the center. A peak in the middle of this profile suggests that variability is
specific to the region set of interest and is not a product of the surrounding genome. A region set
can still be significant even if it does not have a peak. For example, some histone modification
region sets may be in large genomic blocks and not show a peak, despite having variation across
samples.

Value

A data.frame with the binned meta-region profile, one row per bin. columns: binID and one column
for each target variable in signalCol. The function will return NULL if there is no overlap between
signalCoord and any of the bin groups that come from regionSet (e.g. none of the bin1’s overlapped
signalCoord, NULL returned).

Examples

data("brcaATACCoord1")

data("brcaATACDatal")

data("esrl1_chr1")

featureContributionScores <- prcomp(t(brcaATACDatal))$rotation

esr1_chri_expanded <- resize(esr1_chrl, 12000, fix="center")

mrProfile <- getMetaRegionProfile(signal=featureContributionScores,
signalCoord=brcaATACCoord1,
regionSet=esri1_chri_expanded,
signalCol=c("PC1", "PC2"),
binNum=21)

getPermStat Get p-value or z-score based on permutation results

Description

This function starts with real COCOA scores for each region set and null distributions for each
region set that come from running COCOA on permuted data. Then this function uses the null dis-
tributions to get an empirical p-value or z-score for each region set. See vignettes for the workflow
that leads to this function. The calculation of the p-value/z-score does not include the real region
set score in the null distribution.

getPermStat

Usage

getPermStat(
rsScores,

19

nullDistList,

signalCol,
testType =
whichMetric

Arguments

rsScores

nullDistList

signalCol

testType

whichMetric

Value

greater”,
= MpvalH

data.frame. A data.frame with region set scores. The output of the ’aggregateS-
ignal GRList’ function. Each row is a region set. One column for each sample
variable of interest (e.g. PC or sample phenotype). Also can have columns with
info on the overlap between the region set and the epigenetic data. Rows should
be in the same order as the region sets in GRList (the list of region sets used to
create rsScores.)

List. one item per region set. Each item is a data.frame with the null distri-
bution/s for a single region set. Each column in the data.frame is for a target
variable (e.g. PC or phenotype), which is given by the ‘signalCol‘ parameter
(each target variable has a different null distribution for a given region set).

A character vector with the names of the sample variables of interest/target vari-
ables (e.g. PCs or sample phenotypes). Must be column names of rsScores.

non

Character. "greater", "lesser", "two-sided" Whether to create p values based on
one sided test or not. Only applies when whichMetric="pval".

Character. Can be "pval" or "zscore"

A data.table/data.frame. If whichMetric="pval", returns the empirical p-value for each region set in
‘rsScores‘. If the region set score is more extreme than all scores in the null distribution, a p-value
of 0 is returned but this simply means the p-value is the minimum detectable p-value with the given
number of permutations used to make the null distributions. If whichMetric="zscore", the function

returns a z-score
distribution)

Examples

for each region set score: ((region set score) - mean(null distribution)) / sd(null

fakeOriginalScores <- data.frame(PCl=abs(rnorm(6)), PC2=abs(rnorm(6)))
fakePermScores <- data.frame(PCl=abs(rnorm(6)), PC2=abs(rnorm(6)))

fakePermScores?2
fakePermScores3
permRSScores <-
nullDistList <-

<- data.frame(PCl1=abs(rnorm(6)), PC2=abs(rnorm(6)))
<- data.frame(PCl1=abs(rnorm(6)), PC2=abs(rnorm(6)))
list(fakePermScores, fakePermScores2, fakePermScores3)
convertToFromNullDist(permRSScores)

getPermStat(rsScores=fakeOriginalScores, nullDistlList=nullDistlist,
signalCol=c("PC1"”, "PC2"), whichMetric="pval")

getPermStat(rsScores=fakeOriginalScores, nullDistList=nullDistlList,
signalCol=c("PC1", "PC2"), whichMetric="zscore")

20 getTopRegions

getTopRegions Get regions that are most associated with target variable

Description

Get a GRanges with top regions from the region set based on average feature contribution scores for
the regions or the quantile of the region’s average feature contribution score based on the distribution
of all feature contribution scores for the target variable. Returns average feature contribution score
or quantile as GRanges metadata.

Usage
getTopRegions(
signal,
signalCoord,
regionSet,
signalCol = c("PC1", "PC2"),
cutoff = 0.8,
returnQuantile = TRUE
)
Arguments
signal Matrix of feature contribution scores (the contribution of each epigenetic feature
to each target variable). One named column for each target variable. One row for
each original epigenetic feature (should be same order as original data/signalCoord).
For (an unsupervised) example, if PCA was done on epigenetic data and the
goal was to find region sets associated with the principal components, you could
use the x$rotation output of prcomp(epigenetic data) as the feature contribution
scores/‘signal‘ parameter.
signalCoord A GRanges object or data frame with coordinates for the genomic signal/original
epigenetic data. Coordinates should be in the same order as the original data and
the feature contribution scores (each item/row in signalCoord corresponds to a
row in signal). If a data.frame, must have chr and start columns (optionally can
have end column, depending on the epigenetic data type).
regionSet A genomic ranges (GRanges) object with regions corresponding to the same
biological annotation.
signalCol A character vector with the names of the sample variables of interest/target vari-
ables (e.g. PCs or sample phenotypes).
cutoff Numeric. Only regions with at least this value will be returned (either above this

average ‘signal‘ value or above this quantile if returnQuantile=TRUE).

returnQuantile Logical. If FALSE, return region averages. If TRUE, for each region, return
the quantile of that region’s average value based on the distribution of individual
feature values in ‘signal‘ for that ‘signalCol".

nrfl_chrl 21

Value

A GRanges object with region coordinates for regions with scores/quantiles above "cutoff" for
any target variable in signalCol. The scores/quantiles for signalCol are given as metadata in the
GRanges.

Examples

data("brcaATACCoord1")

data("brcaATACDatal")

data("esr1_chr1")

featureContributionScores <- prcomp(t(brcaATACDatal))$rotation

topRegions <- getTopRegions(signal=featureContributionScores,
signalCoord=brcaATACCoord1,
regionSet=esri_chri,
returnQuantile = TRUE)

nrfl_chril Nrfl binding regions.

Description

Binding regions for Nifl. hg38 genome version. Only includes regions in chrl to keep the example
data small.

Usage

data(nrfi_chr1)

Format

A GRanges object

plotAnnoScoreDist Plot ranked region set scores, annotating groups of interest

Description

Visualize the distribution of region set scores for region set groups of interest.

22 plotAnnoScoreDist
Usage
plotAnnoScoreDist(
rsScores,
colToPlot,
pattern,
patternName = pattern,
rsNameCol = "rsName",
alpha = 0.5,
shape = 3
)
Arguments
rsScores data.frame. Each row should be a region set. Columns should include score
columns and a column that contains the name of each region set.
colToPlot character. Name of the column with region set scores to plot.
pattern character. Region sets that match each pattern will be given the same color.
Multiple patterns can be given as character objects in a vector (each will have a
different color). Regular expressions can be used (ignore.case=TRUE though).
For example, to search for ER or GATA3 and color with a single color, this
pattern can be given "ERIGATA3".
patternName character. A name for each string in "pattern” that will be used for the legend.
rsNameCol character. Column name of "rsScores" column that contains the name or de-
scription of each region set. This column will be searched for the pattern given
by the "pattern" parameter.
alpha numeric. Transparency of points. See ggplot documentation for further details.
shape integer. Shape of the points. See ggplot documentation for options.
Details
If the same region set matches two patterns, the later group will be assigned to that region set.
Value
ggplot object that can be modified using ggplot syntax. E.g. plot + ggplot_function
Examples

data(rsScores)

rsScores$rsName <- c("ER", "GATA3", "ER", "GATA3", "AP1")
plotAnnoScoreDist(rsScores, colToPlot="PC1", pattern="ER", alpha=1)
plotAnnoScoreDist(rsScores, colToPlot="PC2", pattern=c("ER", "GATA3"))

regionQuantileByTarget Var 23

regionQuantileByTargetVar
Visualize how individual regions are associated with target variable

Description

Visualize how much each region in a region set is associated with each target variable. For each
target variable (‘signalCol®), the average (absolute) signal value is calculated for each region in the
region set. Then for a given target variable, the average signal is converted to a percentile/quantile
based on the distribution of all signal values for that target variable. These values are plotted in a
heatmap.

Usage

regionQuantileByTargetVar(
signal,
signalCoord,
regionSet,
rsName = "",
signalCol = paste@("PC", 1:5),
maxRegionsToPlot = 8000,
cluster_rows = TRUE,
row_title = "Region”,
column_title = rsName,
column_title_side = "top”,
cluster_columns = FALSE,
name = "Percentile of Loading Scores in PC",
col = c("skyblue", "yellow"),
absVal = TRUE,

)
Arguments

signal Matrix of feature contribution scores (the contribution of each epigenetic feature
to each target variable). One named column for each target variable. One row for
each original epigenetic feature (should be same order as original data/signalCoord).
For (an unsupervised) example, if PCA was done on epigenetic data and the
goal was to find region sets associated with the principal components, you could
use the x$rotation output of prcomp(epigenetic data) as the feature contribution
scores/‘signal* parameter.

signalCoord A GRanges object or data frame with coordinates for the genomic signal/original

epigenetic data. Coordinates should be in the same order as the original data and
the feature contribution scores (each item/row in signalCoord corresponds to a
row in signal). If a data.frame, must have chr and start columns (optionally can
have end column, depending on the epigenetic data type).

24

regionQuantileByTargetVar

regionSet A genomic ranges (GRanges) object with regions corresponding to the same bi-
ological annotation. Must be from the same reference genome as the coordinates
for the actual data/samples (signalCoord). The regions that will be visualized.

rsName Character. Name of the region set. For use as a title for the heatmap.

signalCol A character vector with the names of the sample variables of interest/target vari-
ables (e.g. PCs or sample phenotypes).

maxRegionsToPlot

cluster_rows

row_title

column_title

How many top regions from region set to include in heatmap. Including too
many may slow down computation and increase memory use. If regionSet has
more regions than maxRegionsToPlot, a number of regions equal to maxRegion-
sToPlot will be randomly sampled from the region set and these regions will be
plotted. Clustering rows is a major limiting factor on how long it takes to plot
the regions so if you want to plot many regions, you can also set cluster_rows to
FALSE.

Logical object, whether to cluster rows or not (may increase computation time
significantly for large number of rows)

Character object, row title

Character object, column title

column_title_side

cluster_columns

name

col

absVal

Value

Character object, where to put the column title: "top" or "bottom"

Logical object, whether to cluster columns. It is recommended to keep this as
FALSE so it will be easier to compare target variables that have a certain order
such as PCs (with cluster_columns = FALSE, they will be in the same specified
order in different heatmaps)

Character object, legend title

A vector of colors or a color mapping function which will be passed to the
ComplexHeatmap::Heatmap() function. See ?Heatmap (the "col" parameter)
for more details.

Logical. If TRUE, take the absolute value of values in signal. Choose TRUE if
you think there may be some genomic loci in a region set that will increase and
others will decrease (if there may be anticorrelation between regions in a region
set). Choose FALSE if you expect regions in a given region set to all change in
the same direction (all be positively correlated with each other).

Optional parameters for ComplexHeatmap::Heatmap()

A heatmap. Columns are signalCol’s, rows are regions. This heatmap allows you to see if some
regions are associated with certain target variables but not others. Also, you can see if a subset of
regions in the region set are associated with target variables while another subset are not associated
with any target variables To color each region, first the (absolute) signal values within that region
are averaged. Then this average is compared to the distribution of all (absolute) individual signal
values for the given target variable to get a quantile/percentile for that region. Colors are based on
this quantile/percentile. The output is a Heatmap object (ComplexHeatmap package).

rsRankingIndex 25

Examples

data("brcaATACCoord1")

data(”"brcaATACDatal")

data("esr1_chr1")

featureContributionScores <- prcomp(t(brcaATACDatal))$rotation

regionByPCHM <- regionQuantileByTargetVar(signal = featureContributionScores,
signalCoord = brcaATACCoord1,
regionSet = esrl_chri,
rsName = "Estrogen Receptor Chr1”,
signalCol=paste@("PC", 1:2),
maxRegionsToPlot = 8000,
cluster_rows = TRUE,
cluster_columns = FALSE,
column_title = rsName,
name = "Percentile of Loading Scores in PC")

rsRankingIndex Get indices for top scored region sets

Description

For each target variable, get index of original region sets but ordered by rsScores ranking for each
target variable. The original index refers to that region set’s position in the ‘GRList‘ param given
to ‘aggregateSignal GRList* which is also that region set’s row index in the COCOA output. The
first number in a given column of this function’s output will be the original index of the region set
ranked first for that target variable. The second row for a column will be the original index of the
region set that ranked second for that target variable, etc. You can use this function to make it easier
when you want to select the top region sets for further analysis or just for sorting the results. Region
set scores are sorted in decreasing or increasing order according to the ‘decreasing‘ parameter.

Usage

rsRankingIndex(rsScores, signalCol, decreasing = TRUE, newColName = signalCol)

Arguments

rsScores data.frame. A data.frame with region set scores. The output of the ’aggregateS-
ignal GRList’ function. Each row is a region set. One column for each sample
variable of interest (e.g. PC or sample phenotype). Also can have columns with
info on the overlap between the region set and the epigenetic data. Rows should
be in the same order as the region sets in GRList (the list of region sets used to
create rsScores.)

signalCol A character vector with the names of the sample variables of interest/target vari-
ables (e.g. PCs or sample phenotypes).

The columns in rsScores for which you want the indices of the original region
sets.

26 rsScoreHeatmap

decreasing Logical. Whether to sort rsScores in decreasing or increasing order.

newColName Character. The names of the columns of the output data.frame. The order should
correspond to the order of the input columns given by signalCol.

Value

A data.frame with one column for each ‘signalCol‘. Column names are given by ‘signalCol‘ or
‘newColName* (if used). Each column has been sorted by score for region sets for that target
variable (order given by ‘decreasing‘ param). Original indices for region sets that were used to
create rsScores are given. Region sets with a score of NA are counted as having the lowest scores
and indices for these region sets will be at the bottom of the returned data.frame (na.last=TRUE in
sorting)

Examples

data("rsScores”)

rsRankInd = rsRankingIndex(rsScores=rsScores,
signalCol=c("PC1", "PC2"))

region sets sorted by score for PC1

rsScores[rsRankInd$PC1, 1]

region sets sorted by score for PC2

rsScores[rsRankInd$PC2,]

rsScoreHeatmap Heatmap of region set scores

Description

Heatmap of the ranking of region set scores across target variables. A visualization of the rank of
region sets in each target variable, allowing the user to see if a region set is ranked highly for all
target variables or only a subset. Region sets will be ranked from highest scoring to lowest based
on their score for ‘orderByCol‘. The ComplexHeatmap package is used and additional parameters
for the ComplexHeatmap::Heatmap function may be passed to this function to modify the heatmap.

Usage

rsScoreHeatmap(
rsScores,
signalCol = paste@("PC", 1:5),
orderByCol = "PC1",
rsNameCol = "rsName",
topX = 20,
col = c("red"”, "#EEEEEE", "blue"),
row_title = "Region Set”,
column_title = "Principal Component”,
column_title_side = "bottom”,
cluster_rows = FALSE,

rsScoreHeatmap 27

cluster_columns = FALSE,
show_row_names = TRUE,
row_names_max_width = unit(10000, "mm"),

name = "Rank within PC",
)
Arguments

rsScores data.frame. A data.frame with region set scores. The output of the ’aggregateS-
ignal GRList’ function. Each row is a region set. One column for each sample
variable of interest (e.g. PC or sample phenotype). Also can have columns with
info on the overlap between the region set and the epigenetic data. Rows should
be in the same order as the region sets in GRList (the list of region sets used to
create rsScores.)

signalCol A character vector with the names of the sample variables of interest/target vari-
ables (e.g. PCs or sample phenotypes). Must be column names of rsScores.

orderByCol A character object. Target variable to order by in heatmap (arranged in decreas-
ing order for scores so p values should be -log transformed). Must be the name
of a column in rsScores.

rsNameCol Character. Name of the column in rsScores that has the names/identifiers for the
region sets so these can be included in the plot as row names.

topX Number of top region sets to include in the heatmap

col A vector of colors or a color mapping function which will be passed to the
ComplexHeatmap::Heatmap() function. See ?Heatmap (the "col" parameter)
for more details. "#EEEEEE" is the code for a color similar to white.

row_title Character object, row title

column_title Character object, column title

column_title_side
Character object, where to put the column title: "top" or "bottom"

cluster_rows Logical object, whether rows should be clustered. This should be kept as FALSE
to keep the correct ranking of region sets.

cluster_columns
Logical object, whether to cluster columns. It is recommended to keep this as
FALSE so it will be easier to compare target variables that are ordered (such
as principal components). With cluster_columns = FALSE, they will be in the
same specified order in different heatmaps.

show_row_names Logical object, display row names (ie region set names)

row_names_max_width
"unit" object. The amount of room to allocate for row names. See ?grid::unit for
object type.

name Character object, legend title

Optional parameters for ComplexHeatmap::Heatmap().

28

runCOCOA

Value

A heatmap of region set scores across. Each row is a region set, each column is a target variable.
The color corresponds to the relative rank of a region set’s score for a given target variable out of
all tested region sets.

Examples

data("rsScores”)
scoreHeatmap <- rsScoreHeatmap(rsScores,
signalCol=paste@("PC", 1:2), orderByCol = "PC2")

rsScores Example COCOA Results (made up)

Description

A data.frame with example COCOA results. 5 region sets with names given by rsScores$rsName.
Each region set has a score for each PC. Scores for real region sets would normally be orders of
magnitude smaller.

Usage

data(rsScores)

Format

A data.frame object

runCOCOA Run COCOA: quantify inter-sample variation, score region sets

Description

This is a convenience function that does the two steps of COCOA: quantifying the epigenetic vari-
ation and scoring the region sets. This function will return the real COCOA scores if using the
default ‘sampleOrder* parameter values. This function also makes it easy to generate null distri-
butions in order to evaluate the statistical significance of the real COCOA results. You can use the
sampleOrder parameter to shuffle the samples, then run COCOA to get fake scores for each region
set. By doing this many times, you can build a null distribution for each region set composed of the
region set’s random scores from each permutation. There are multiple options for quantifying the
epigenetic variation, specified by the ‘variationMetric‘ parameter. Quantifying the variation for the
real/non-permuted COCOA scores should be done with the same variation metric as is used for the
random permutations. For an unsupervised analysis using dimensionality reduction, first, the di-
mensionality reduction is done outside ‘runCOCOA°, then the latent factors/principal components
are input to ‘runCOCOA ‘ as the sample labels (targetVar parameter) when calculating both the real
and also the permutated region set scores. For a supervised analysis, the target variables/phenotypes
are the targetVar. See the vignettes for examples.

runCOCOA 29

Usage

runCOCOA (
genomicSignal,
signalCoord,
GRList,
signalCol,
targetVvar,
sampleOrder = 1:nrow(targetVar),
variationMetric = "cor”,
scoringMetric = "default”,
verbose = TRUE,
absVal = TRUE,
olList = NULL,
pOlapList = NULL,
centerGenomicSignal = TRUE,
centerTargetVar = TRUE,
returnCovinfo = TRUE

Arguments

genomicSignal Matrix/data.frame. The genomic signal (e.g. DNA methylation levels) Columns
of genomicSignal should be samples/patients. Rows should be individual sig-
nal/features (each row corresponds to one genomic coordinate/range)

signalCoord A GRanges object or data frame with coordinates for the genomic signal/original
epigenetic data. Coordinates should be in the same order as the original data and
the feature contribution scores (each item/row in signalCoord corresponds to a
row in signal). If a data.frame, must have chr and start columns (optionally can
have end column, depending on the epigenetic data type).

GRList GRangesList object. Each list item is a distinct region set to test (region set: re-
gions that correspond to the same biological annotation). The region set database
must be from the same reference genome as the coordinates for the actual data/samples
(signalCoord).

signalCol A character vector with the names of the sample variables of interest/target vari-
ables (e.g. PCs or sample phenotypes).

The columns in ‘sampleLabels* for which to calculate the variation related to
the epigenetic data (e.g. correlation) and then to run COCOA on.

targetVar Matrix or data.frame. Rows should be samples. Columns should be the target
variables (whatever variable you want to test for association with the epigenetic
signal: e.g. PC scores),

sampleOrder numeric. A vector of length (number of samples). If sampleOrder is 1:(num-
ber of samples) then this function will return the real COCOA scores. To gen-
erate random COCOA scores in order to make null distributions, shuffle the
samples in a random order. E.g. sampleOrder = sample(1:ncol(genomicSignal),
ncol(genomicSignal)) where ncol(genomicSignal) is the number of samples. Set
the seed with set.seed() before making sampleOrder to ensure reproducibility.

30

variationMetric

scoringMetric

verbose

absVal

olList

runCOCOA

Character. The metric to use to quantify the association between each feature in
genomicSignal and each target variable in sampleLabels. Either "cor" (Pearson
correlation), "cov" (covariation), or "spearmanCor" (Spearman correlation).

A character object with the scoring metric. There are different methods avail-
able for signalCoordType="singleBase" vs signalCoordType="multiBase". For
"singleBase", the available methods are "regionMean", "regionMedian", "sim-
pleMean", and "simpleMedian". The default method is "regionMean". For
"multiBase", the methods are "proportionWeightedMean", "simpleMean", and
"simpleMedian". The default is "proportionWeightedMean". "regionMean" is
a weighted average of the signal, weighted by region (absolute value of sig-
nal if absVal=TRUE). First the signal is averaged within each regionSet region,
then all the regions are averaged. With "regionMean" method, be cautious in
interpretation for region sets with low number of regions that overlap signalCo-
ord. The "regionMedian" method is the same as "regionMean" but the median
is taken at each step instead of the mean. The "simpleMean" method is just the
unweighted average of all (absolute) signal values that overlap the given region
set. For multiBase data, this includes signal regions that overlap a regionSet
region at all (1 base overlap or more) and the signal for each overlapping region
is given the same weight for the average regardless of how much it overlaps.
The "simpleMedian" method is the same as "simpleMean" but takes the median
instead of the mean. "proportionWeightedMean" is a weighted average of all
signalCoord regions that overlap with regionSet regions. For each signalCoord
region that overlaps with a regionSet region, we calculate what proportion of the
regionSet region is covered. Then this proportion is used to weight the signal
value when calculating the mean. The denominator of the mean is the sum of all
the proportion overlaps.

A "logical" object. Whether progress of the function should be shown. One bar
indicates the region set is completed.

Logical. If TRUE, take the absolute value of values in signal. Choose TRUE if
you think there may be some genomic loci in a region set that will increase and
others will decrease (if there may be anticorrelation between regions in a region
set). Choose FALSE if you expect regions in a given region set to all change in
the same direction (all be positively correlated with each other).

list. Each list item should be a "SortedByQueryHits" object (output of findOver-
laps function). Each hits object should have the overlap information between
signalCoord and one item of GRList (one unique region set). The region sets
from GRList must be the "subject" in findOverlaps and signalCoord must be the
"query". E.g. findOverlaps(subject=regionSet, query=signalCoord). Providing
this information can greatly improve permutation speed since the overlaps will
not have to be calculated for each permutation. The "runCOCOAPerm" func-
tion calculates this information only once, internally, so this does not have to
be provided when using that function. When using this parameter, signalCo-
ord, genomicSignal, and each region set must be in the same order as they were
when olList was created. Otherwise, the wrong genomic loci will be referenced
(e.g. if epigenetic features were filtered out of genomicSignal after olList was
created.)

runCOCOA

pOlapList

31

list. This parameter is only used if the scoring metric is "proportionWeighted-
Mean" and olList is also provided as an argument. Each item of the list should be
a vector that contains the proportion overlap between signalCoord and regions
from one region set (one item of GRList). Specifically, each value should be the
proportion of the region set region that is overlapped by a signalCoord region.
The proportion overlap values should be in the same order as the overlaps given
by olList for the corresponding region set.

centerGenomicSignal

centerTargetVar

returnCovInfo

Value

Logical. Should rows in genomicSignal be centered based on their means? (sub-
tracting row mean from each row)

Logical. Should columns in targetVar be centered based on their means? (sub-
tract column mean from each column)

logical. If TRUE, the following coverage and region set info will be calculated
and included in function output: regionSetCoverage, signalCoverage, totalRe-
gionNumber, and meanRegionSize. For the proportionWeightedMean scoring
method, sumProportionOverlap will also be calculated.

data.frame. The output of aggregateSignal GRList for one permutation.

Examples

data("esri_chr1")
data("nrfi_chr1")

data("brcaMethylDatal")
data("brcaMCoord1")

pcScores <- prcomp(t(brcaMethylDatal))$x
targetVarCols <- c("PC1", "PC2")
targetVar <- pcScores[, targetVarCols]

give the actual order of samples to “runCOCOA™ to get the real scores
correctSampleOrder=1:nrow(targetVar)
realRSScores <- runCOCOA(genomicSignal=brcaMethylDatal,

realRSScores

signalCoord=brcaMCoord1,
GRList=GRangesList(esr1_chrl, nrfi_chrl),
signalCol=c("PC1", "PC2"),
targetVar=targetVar,
sampleOrder=correctSampleOrder,
variationMetric="cor")

give random order of samples to get random COCOA scores

so you start building a null distribution for each region set

(see vignette for example of building a null distribution with ~runCOCOA™)
randomOrder <- sample(1:nrow(targetVar),

size=nrow(targetVar),
replace=FALSE)

randomRSScores <- runCOCOA(genomicSignal=brcaMethylDatal,

signalCoord=brcaMCoord1,

32 runCOCOAPerm

GRList=GRangesList(esr1_chrl, nrfi_chr1),
signalCol=c("PC1", "PC2"),
targetVar=targetVvar,
sampleOrder=randomOrder,
variationMetric="cor")

randomRSScores

runCOCOAPerm Run COCOA permutations to get p-values

Description

This is a convenience function that runs multiple steps of the permutation process together: it runs
COCOA permutations, converts these to null distributions, gets the empirical p value (which is
limited by the number of permutations), gets z scores, and fits a gamma distribution to each null
distribution to estimate p values (not limited by the number of permutations), Requires that the user
has previously calculated the real COCOA scores. See these individual functions for more info on
each step: runCOCOA, convertToFromNullDist, getPermStat, and getGammaPVal.

Usage

runCOCOAPerm(
genomicSignal,
signalCoord,
GRList,
rsScores,
targetvar,
signalCol = c("PC1", "PC2"),
scoringMetric = "default”,
absVal = TRUE,
olList = NULL,
centerGenomicSignal = TRUE,
centerTargetVar = TRUE,
variationMetric = "
nPerm = 300,
useSimpleCache = TRUE,
cacheDir = getwd(),

n

cor”,

datalD = "",
testType = "greater”,
gammaFitMethod = "mme”,

realScoreInDist = TRUE,
force = FALSE,
verbose = TRUE,
returnCovIinfo = FALSE,

runCOCOAPerm 33

Arguments

genomicSignal Matrix/data.frame. The genomic signal (e.g. DNA methylation levels) Columns
of genomicSignal should be samples/patients. Rows should be individual sig-
nal/features (each row corresponds to one genomic coordinate/range)

signalCoord A GRanges object or data frame with coordinates for the genomic signal/original
epigenetic data. Coordinates should be in the same order as the original data and
the feature contribution scores (each item/row in signalCoord corresponds to a
row in signal). If a data.frame, must have chr and start columns (optionally can
have end column, depending on the epigenetic data type).

GRList GRangesList object. Each list item is a distinct region set to test (region set: re-
gions that correspond to the same biological annotation). The region set database
must be from the same reference genome as the coordinates for the actual data/samples
(signalCoord).

rsScores data.frame. A data.frame with region set scores. The output of the ’aggregateS-
ignalGRList’ function. Each row is a region set. One column for each sample
variable of interest (e.g. PC or sample phenotype). Also can have columns with
info on the overlap between the region set and the epigenetic data. Rows should
be in the same order as the region sets in GRList (the list of region sets used to
create rsScores.)

targetVar Matrix or data.frame. Rows should be samples. Columns should be the target
variables (whatever variable you want to test for association with the epigenetic
signal: e.g. PC scores),

signalCol A character vector with the names of the sample variables of interest/target vari-
ables (e.g. PCs or sample phenotypes).

The columns in ‘sampleLabels for which to calculate the variation related to
the epigenetic data (e.g. correlation) and then to run COCOA on.

scoringMetric A character object with the scoring metric. There are different methods avail-
able for signalCoordType="singleBase" vs signalCoordType="multiBase". For
"singleBase", the available methods are "regionMean", "regionMedian", "sim-
pleMean", and "simpleMedian". The default method is "regionMean". For
"multiBase", the methods are "proportionWeightedMean", "simpleMean", and
"simpleMedian". The default is "proportionWeightedMean". "regionMean" is
a weighted average of the signal, weighted by region (absolute value of sig-
nal if absVal=TRUE). First the signal is averaged within each regionSet region,
then all the regions are averaged. With "regionMean" method, be cautious in
interpretation for region sets with low number of regions that overlap signalCo-
ord. The "regionMedian" method is the same as "regionMean" but the median
is taken at each step instead of the mean. The "simpleMean" method is just the
unweighted average of all (absolute) signal values that overlap the given region
set. For multiBase data, this includes signal regions that overlap a regionSet
region at all (1 base overlap or more) and the signal for each overlapping region
is given the same weight for the average regardless of how much it overlaps.
The "simpleMedian" method is the same as "simpleMean" but takes the median
instead of the mean. "proportionWeightedMean" is a weighted average of all
signalCoord regions that overlap with regionSet regions. For each signalCoord
region that overlaps with a regionSet region, we calculate what proportion of the

34

runCOCOAPerm

regionSet region is covered. Then this proportion is used to weight the signal
value when calculating the mean. The denominator of the mean is the sum of all
the proportion overlaps.

absVal Logical. If TRUE, take the absolute value of values in signal. Choose TRUE if
you think there may be some genomic loci in a region set that will increase and
others will decrease (if there may be anticorrelation between regions in a region
set). Choose FALSE if you expect regions in a given region set to all change in
the same direction (all be positively correlated with each other).

ollList list. Each list item should be a "SortedByQueryHits" object (output of findOver-
laps function). Each hits object should have the overlap information between
signalCoord and one item of GRList (one unique region set). The region sets
from GRList must be the "subject" in findOverlaps and signalCoord must be the
"query". E.g. findOverlaps(subject=regionSet, query=signalCoord). Providing
this information can greatly improve permutation speed since the overlaps will
not have to be calculated for each permutation. The "runCOCOAPerm" func-
tion calculates this information only once, internally, so this does not have to
be provided when using that function. When using this parameter, signalCo-
ord, genomicSignal, and each region set must be in the same order as they were
when olList was created. Otherwise, the wrong genomic loci will be referenced
(e.g. if epigenetic features were filtered out of genomicSignal after olList was
created.)

centerGenomicSignal
Logical. Should rows in genomicSignal be centered based on their means? (sub-
tracting row mean from each row)

centerTargetVar
Logical. Should columns in targetVar be centered based on their means? (sub-
tract column mean from each column)

variationMetric
Character. The metric to use to quantify the association between each feature in
genomicSignal and each target variable in sampleLabels. Either "cor" (Pearson
correlation), "cov" (covariation), or "spearmanCor" (Spearman correlation).

nPerm Numeric. The number of permutations to do.

useSimpleCache Logical. Whether to use save caches. Caches will be created for each permuta-
tion so that if the function is disrupted it can restart where it left off. The final
results are also saved as a cache. See simpleCache package for more details.

cacheDir Character. The path for the directory in which the caches should be saved.

datalD Character. A unique identifier for this dataset (for saving results with simple-
Cache)

testType Character. Parameter for ‘getPermStat’. Whether to create p values based on

one a two sided test or a lesser/greater one sided test. Options are: "greater",

non

"lesser", "two-sided"

gammaFitMethod Character. method to use for fitting the gamma distribution to null distribu-
tion. Options are "mme" (moment matching estimation), "mle" (maximum like-
lihood estimation), "qme" (quantile matching estimation), and "mge" (maxi-
mum goodness-of-fit estimation). See ?COCOA::getGammaPVal and ?fitdis-
trplus::fitdist() for more info.

runCOCOAPerm

realScorelInDist

force

verbose

returnCovInfo

Details

35

Logical. Should the actual score (from test with no permutations) be included in
the null distribution when fitting the gamma distribution. realScoreInDist=TRUE
is recommended.

Logical. If force=TRUE, when fitting the gamma distribution returns an error
(as may happen when a method other than "mme" is used) then allow the error.
If force=FALSE, when fitting the gamma distribution returns an error then don’t
return an error but instead use the "mme" method for fitting that specific gamma
distribution.

A "logical" object. Whether progress of the function should be shown. One bar
indicates the region set is completed.

logical. If TRUE, the following coverage and region set info will be calculated
and included in function output: regionSetCoverage, signalCoverage, totalRe-
gionNumber, and meanRegionSize. For the proportionWeightedMean scoring
method, sumProportionOverlap will also be calculated.

Character. Optional additional arguments for simpleCache.

For reproducibility, set seed with ’set.seed()’ function before running.

Value

Returns a list with the following 4 items: 1. alist of length nPerm where each item is a data.frame of
the COCOA scores from a single permutation. Each data.frame is the output of ‘runCOCOA()‘ 2. a
data.table/data.frame of empirical p-values (the output of ‘getPermStat‘) 3. a data.table/data.frame
of z-scores (the output of ‘getPermStat‘. 4. a data.frame of p-values based on the gamma approxi-
mation (the output of getGammaPVal().

Examples

data("esri_chr1™)
data("nrfi_chr1")

data("brcaMethylDatal")
data("brcaMCoord1")

pcScores <- prcomp(t(brcaMethylDatal))$x
targetVarCols <- c("PC1", "PC2")
targetVar <- pcScores[, targetVarCols]

give the actual order of samples to “runCOCOA™ to get the real scores
correctSampleOrder=1:nrow(targetVar)
realRSScores <- runCOCOA(genomicSignal=brcaMethylDatal,

signalCoord=brcaMCoord1,
GRList=GRangesList(esr1_chr1, nrfi_chr1),
signalCol=c("PC1", "PC2"),
targetVar=targetVvar,
sampleOrder=correctSampleOrder,
variationMetric="cor")

give random order of samples to get random COCOA scores

36

so you start building a

signalAlongAxis

null distribution for each region set

(see vignette for example of building a null distribution with ~runCOCOA™)
randomOrder <- sample(1:nrow(targetVar),

size=nrow(targetVar),

replace=FALSE)
randomRSScores <- runCOCOA(genomicSignal=brcaMethylData1l,

runCOCOAPerm

signalCoord=brcaMCoord1,
GRList=GRangesList(esr1_chrl, nrfi_chrl),
signalCol=c("PC1", "PC2"),
targetVar=targetvar,
sampleOrder=randomOrder,
variationMetric="cor")

permResults <- runCOCOAPerm(genomicSignal=brcaMethylDatal,

signalCoord=brcaMCoord1,
GRList=GRangesList(esr1_chr1, nrfi_chr1l),
rsScores=realRSScores,
targetVar=targetVvar,

signalCol=c("PC1", "PC2"),
variationMetric="cor",

nPerm = 10,

useSimpleCache=FALSE)

permResults
signalAlongAxis Visualize how genomic signal in a region set changes along a given
axis
Description

Look at genomic signal (e.g.

, DNA methylation values) in regions of interest across samples, with

samples ordered according to a variable of interest (e.g. PC score). The ComplexHeatmap package
is used and additional parameters for the ComplexHeatmap::Heatmap function may be passed to
this function to modify the heatmap.

Usage

signalAlongAxis(
genomicSignal,
signalCoord,
regionSet,
sampleScores,
orderByCol = "PC1",
topXVariables = NULL,
variableScores = NULL
decreasing = TRUE,

’

signalAlongAxis

37

cluster_columns = FALSE,
cluster_rows = FALSE,

row_title = "Sample”,

column_title = "Genomic Signal”,
column_title_side = "bottom”,

name = "Genomic Signal Value",

col = c("blue”, "#EEEEEE", "red"),

Arguments

genomicSignal

signalCoord

regionSet

sampleScores

orderByCol

topXVariables

variableScores

decreasing

cluster_columns

Matrix/data.frame. The genomic signal (e.g. DNA methylation levels) Columns
of genomicSignal should be samples/patients. Rows should be individual sig-
nal/features (each row corresponds to one genomic coordinate/range) Must have
sample names/IDs as column names, These same sample names must be row
names of sampleScores.

A GRanges object or data frame with coordinates for the genomic signal/original
epigenetic data. Coordinates should be in the same order as the original data and
the feature contribution scores (each item/row in signalCoord corresponds to a
row in signal). If a data.frame, must have chr and start columns (optionally can
have end column, depending on the epigenetic data type).

A genomic ranges (GRanges) object with regions corresponding to the same bi-
ological annotation. Must be from the same reference genome as the coordinates
for the actual data/samples (signalCoord). The regions that will be visualized.

A matrix. Must contain a column for the variable of interest/target variable. E.g.
The variable of interest could be the principal component scores for the samples.
‘sampleScores‘ must have sample names/IDs as row names, These same sample
names must be column names of genomicSignal.

A character object. A variable to order samples by (order rows of heatmap by
variable, from high to low value). Must be the name of a column in sample-
Scores. For instance, if doing unsupervised COCOA with PCA, orderByCol
might be the name of one of the PCs (e.g. "PC1"). If doing supervised COCOA,
orderByCol might be the name of the target variable of the supervised analysis.

Numeric. The number of variables from genomicSignal to plot. The variables
with the highest scores according to variableScores will be plotted. Can help to
reduce the size of the plot.

Numeric. A vector that has a numeric score for each variable in genomicSig-
nal (length(variableScores) should equal nrow(genomicSignal)). Only used if
topX Variables is given. The highest ‘topXVariables‘ will be plotted.

Logical. Whether samples should be sorted in decreasing order of ‘orderByCol*
or not (FALSE is increasing order).

Logical. Whether to cluster columns (the genomic signal, e.g. DNA methylation
values for each CpG).

38

signalAlongAxis

cluster_rows Logical. Whether rows should be clustered. This should be kept as FALSE
to keep the correct ranking of samples/observations according to their target
variable score.

row_title Character object, row title

column_title Character object, column title
column_title_side

Character object, where to put the column title: "top" or "bottom"
name Character object, legend title

col A vector of colors or a color mapping function which will be passed to the
ComplexHeatmap::Heatmap() function. See ?Heatmap (the "col" parameter)
for more details. "#EEEEEE" is the code for a color similar to white.

Optional parameters for ComplexHeatmap::Heatmap()

Value

A heatmap of genomic signal values (eg DNA methylation levels) in regions of interest (region-
Set), with rows ordered by the column of sampleScores given with ‘orderByCol‘. Each row is a
patient/sample and each column is an individual genomic signal value.

Examples

data("brcaMethylDatal")

data("brcaMCoord1™)

data("esrli_chr1")

data("brcaPCScores”)

signalHM <- signalAlongAxis(genomicSignal=brcaMethylDatal,
signalCoord=brcaMCoord1,
regionSet=esri_chr1,
sampleScores=brcaPCScores,
orderByCol="PC1", cluster_columns=TRUE)

Index

+ datasets
atf3_chr1, 8
brcaATACCoord1, 9
brcaATACDatal, 9
brcaMCoord1, 10
brcaMetadata, 10
brcaMethylDatal, 11
brcaPCScores, 11
brcaPCScores657, 12
esrl_chri, 14
gata3_chri, 14
nrfl_chri, 21
rsScores, 28

aggregateSignal, 3
aggregateSignalGRList, 5
atf3_chrl, 8

brcaATACCoord1, 9
brcaATACDatal, 9
brcaMCoord1, 10
brcaMetadata, 10
brcaMethylDatal, 11
brcaPCScores, 11
brcaPCScores657, 12

COCOA, 12
convertToFromNullDist, 13

esr1_chri, 14
gata3_chri, 14
getGammaPVal, 15
getMetaRegionProfile, 16
getPermStat, 18
getTopRegions, 20
nrfl_chri, 21

plotAnnoScoreDist, 21

39

regionQuantileByTargetVar, 23
rsRankingIndex, 25
rsScoreHeatmap, 26
rsScores, 28

runCOCOA, 28

runCOCOAPerm, 32

signalAlongAxis, 36

	aggregateSignal
	aggregateSignalGRList
	atf3_chr1
	brcaATACCoord1
	brcaATACData1
	brcaMCoord1
	brcaMetadata
	brcaMethylData1
	brcaPCScores
	brcaPCScores657
	COCOA
	convertToFromNullDist
	esr1_chr1
	gata3_chr1
	getGammaPVal
	getMetaRegionProfile
	getPermStat
	getTopRegions
	nrf1_chr1
	plotAnnoScoreDist
	regionQuantileByTargetVar
	rsRankingIndex
	rsScoreHeatmap
	rsScores
	runCOCOA
	runCOCOAPerm
	signalAlongAxis
	Index

