# Package 'CARDspa'

July 27, 2025

**Title** Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics

**Version** 1.1.0 **Date** 2025-2-6

Description CARD is a reference-based deconvolution method that estimates cell type composition in spatial transcriptomics based on cell type specific expression information obtained from a reference scRNA-seq data. A key feature of CARD is its ability to accommodate spatial correlation in the cell type composition across tissue locations, enabling accurate and spatially informed cell type deconvolution as well as refined spatial map construction. CARD relies on an efficient optimization algorithm for constrained maximum likelihood estimation and is scalable to spatial transcriptomics with tens of thousands of spatial locations and tens of thousands of genes.

**License** GPL-3 + file LICENSE

**Encoding** UTF-8

**Roxygen** list(markdown = TRUE)

RoxygenNote 7.3.1

**Depends** R (>= 4.3.0)

Imports Rcpp (>= 1.0.7),RcppArmadillo, SummarizedExperiment, methods, MCMCpack, fields, wrMisc, concaveman, sp, dplyr, sf, Matrix, RANN, ggplot2, reshape2, RColorBrewer, S4Vectors, scatterpie, grDevices,ggcorrplot, stats, nnls, BiocParallel, RcppML, NMF, spatstat.random, gtools, SingleCellExperiment, SpatialExperiment

LazyData false

biocViews Spatial, SingleCell, Transcriptomics, Visualization

LinkingTo Rcpp, RcppArmadillo

Suggests knitr, rmarkdown, testthat, BiocStyle

VignetteBuilder knitr

URL https://github.com/YMa-lab/CARDspa

BugReports https://github.com/YMa-lab/CARDspa/issues

git\_url https://git.bioconductor.org/packages/CARDspa

git\_branch devel

2 Contents

| git_last_commit 8b194bb                                            |
|--------------------------------------------------------------------|
| git_last_commit_date 2025-04-15                                    |
| Repository Bioconductor 3.22                                       |
| Date/Publication 2025-07-27                                        |
| Author Ying Ma [aut], Jing Fu [cre]                                |
| Maintainer Jing Fu <jing_fu@brown.edu< th=""></jing_fu@brown.edu<> |

# **Contents**

Index

| assign_sc_cords         |
|-------------------------|
| CARD-class              |
| CARDfree                |
| CARDfree-class          |
| CARDref                 |
| CARD_deconvolution      |
| CARD_imputation         |
| CARD_refFree            |
| CARD_scmapping          |
| CARD_visualize_Cor      |
| CARD_visualize_gene     |
| CARD_visualize_pie      |
| CARD_visualize_prop     |
| CARD_visualize_prop_2CT |
| createCARDfreeObject    |
| createCARDObject        |
| create_ref              |
| get_high_res_cords      |
| get_weight_for_cell     |
| markerList              |
| mvn_cv                  |
| norm_coords_train_test  |
| sample_grid_within      |
| sc_count                |
| sc_meta                 |
| sc_QC                   |
| select_info             |
| show,CARD-method        |
| show,CARDfree-method    |
| Sigma                   |
| spatial_count           |
| spatial_location        |
|                         |

**28** 

assign\_sc\_cords 3

| assign_sc_cords | The function to assign the spatial location information for each single cell |
|-----------------|------------------------------------------------------------------------------|
|-----------------|------------------------------------------------------------------------------|

# Description

The function to assign the spatial location information for each single cell

# Usage

```
assign_sc_cords(mappint_spot_cell_cor, cords_new, numcell, sc_eset, ct_varname)
```

### **Arguments**

| ` |                 |                                                                                                                                                        |
|---|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | mappint_spot_ce | ell_cor                                                                                                                                                |
|   |                 | a mapped correlation matrix indicating the relashionship between each measured spatial location and the single cell in the scRNAseq reference          |
|   | cords_new       | output from the function get_high_res_cords                                                                                                            |
|   | numcell         | a numeric value indicating the number of single cells in each measured location, we suggest 20 for ST technology, 7 for 10x Viisum and 2 for Slide-seq |
|   | sc_eset         | a single cell experiment object stored in CARD object                                                                                                  |
|   | ct_varname      | character, the name of the column in metaData that specifies the cell type annotation information, stroed in CARD object                               |

# Value

Return the assigned spatial location information for the mapped single cell

| CARD-class | Each CARD object has a number of slots which store information. Key |
|------------|---------------------------------------------------------------------|
|            | slots to access are listed below.                                   |

# Description

Each CARD object has a number of slots which store information. Key slots to access are listed below.

### Value

Return an object of CARD class

4 CARDfree

#### **Slots**

sc\_eset The filtered scRNA-seq data along with meta data stored in the format of SingleCellExperiment.

spatial\_countMat The filtered spatial count data.

spatial\_location The weights for combining p-values from multiple kernels.

Proportion\_CARD The estimated cell type proportion by CARD with each row is a spatial location and each column is a cell type.

project The name of the project, default is deconvolution.

info\_parameters The paramters that are used in model fitting.

algorithm\_matrix The intermediate matrices that are used in the model fitting step.

refined\_prop The refined cell type proportion matrix estimated by CARD for the newly grided spatial locations. The number of initial grids are defined by the user.

refined\_expression The refined predicted expression matrix (normalized) estimated by CARD for the newly grided spatial locations. The number of initial grids are defined by the user.

CARDfree

SpatialDeconv function based on Conditional Autoregressive model

### **Description**

SpatialDeconv function based on Conditional Autoregressive model

#### Usage

```
CARDfree(
  XinputIn,
  UIn,
  WIn,
  phiIn,
  max_iterIn,
  epsilonIn,
  initV,
  initb,
  initSigma_e2,
  initLambda
)
```

#### **Arguments**

XinputIn The input of normalized spatial data

UIn The input of cell type specific basis matrix B

WIn The constructed W weight matrix from Gaussian kernel

phiIn The phi value
max\_iterIn Maximum iterations
epsilonIn epsilon for convergence

initV Initial matrix of cell type compositions V initb Initial vector of cell type specific intercept

initSigma\_e2 Initial value of residual variance

initLambda Initial vector of cell type sepcific scalar.

CARDfree-class 5

#### Value

A list

CARDfree-class

Each CARDfree object has a number of slots which store information. Key slots to access are listed below.

### **Description**

Each CARDfree object has a number of slots which store information. Key slots to access are listed below

#### Value

Return an object of CARDfree class

#### **Slots**

spatial\_countMat The filtered spatial count data.

spatial\_location The weights for combining p-values from multiple kernels.

Proportion\_CARD The estimated cell type proportion by CARD with each row is a spatial location and each column is a cell type.

estimated\_refMatrix The estimated reference matrix by CARDfree with each row represents a gene and each column represents a cell type cluster.

project The name of the project, default is deconvolution.

markerList The nlist of cell type specific markers, with each element represents the vector of cell type specific markers

info\_parameters The paramters that are used in model fitting.

algorithm\_matrix The intermediate matrices that are used in the model fitting step.

refined\_prop The refined cell type proportion matrix estimated by CARD for the newly grided spatial locations. The number of initial grids are defined by the user.

refined\_expression The refined predicted expression matrix (normalized) estimated by CARD for the newly grided spatial locations. The number of initial grids are defined by the user.

CARDref

SpatialDeconv function based on Conditional Autoregressive model

### **Description**

SpatialDeconv function based on Conditional Autoregressive model

6 CARD\_deconvolution

### Usage

```
CARDref(
  XinputIn,
  UIn,
  WIn,
  phiIn,
  max_iterIn,
  epsilonIn,
  initV,
  initb,
  initSigma_e2,
  initLambda
)
```

### **Arguments**

XinputIn The input of normalized spatial data

UIn The input of cell type specific basis matrix B

WIn The constructed W weight matrix from Gaussian kernel

phiIn The phi value

max\_iterIn Maximum iterations
epsilonIn epsilon for convergence

initV Initial matrix of cell type compositions V
initb Initial vector of cell type specific intercept

initSigma\_e2 Initial value of residual variance

initLambda Initial vector of cell type sepcific scalar.

#### Value

A list

CARD\_deconvolution Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics by CARD

# Description

Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics by CARD

### Usage

```
CARD_deconvolution(
   sc_count,
   sc_meta,
   spatial_count,
   spatial_location,
   ct_varname,
   ct_select,
```

CARD\_deconvolution 7

```
sample_varname,
mincountgene = 100,
mincountspot = 5,
sce = NULL,
spe = NULL
)
```

#### **Arguments**

sc\_count Raw scRNA-seq count data, each column is a cell and each row is a gene.

sc\_meta data frame, with each row representing the cell type and/or sample information

of a specific cell. The row names of this data frame should match exactly with

the column names of the sc\_count data

spatial\_count Raw spatial resolved transcriptomics data, each column is a spatial location, and

each row is a gene.

spatial\_location

data frame, with two columns representing the x and y coordinates of the spatial location. The rownames of this data frame should match eaxctly with the

columns of the spatial\_count.

ct\_varname character, the name of the column in metaData that specifies the cell type anno-

tation information

ct\_select vector of cell type names that you are interested in to deconvolute, default as

NULL. If NULL, then use all cell types provided by single cell dataset;

sample\_varname character, the name of the column in metaData that specifies the sample infor-

mation. If NULL, we just use the whole as one sample.

mincountgene Minimum counts for each gene

mincountspot Minimum counts for each spatial location

sce a SingleCellExperiment object containing scRNA-seq count data in the counts

assay, and cell types and sample information in the colData.

spe a SpatialExperiment object containing spatial data in the counts assay, and

spatial coordinates in the spatial Coords.

#### Value

Returns a SpatialExperiment object with estimated cell type proportion stored in object\$Proportion\_CARD.

#### **Examples**

```
library(RcppML)
library(NMF)
library(RcppArmadillo)
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(
    sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",</pre>
```

8 CARD\_imputation

```
ct_select = unique(sc_meta$cellType),
   sample_varname = "sampleInfo",
   mincountgene = 100,
   mincountspot = 5
)
```

CARD\_imputation

Construct an enhanced spatial expression map on the unmeasured tissue locations

# Description

Construct an enhanced spatial expression map on the unmeasured tissue locations

### Usage

```
CARD_imputation(CARD_object, num_grids, ineibor = 10, exclude = NULL)
```

# Arguments

| CARD_object | SpatialExperiment Object created by CARD_deconvolution with estimated cell type compositions on the original spatial resolved transcriptomics data.                                                                          |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| num_grids   | Initial number of newly grided spatial locations. The final number of newly grided spatial locations will be lower than this value since the newly grided spatial locations outside the shape of the tissue will be filtered |  |
| ineibor     | Numeric, number of neighbors used in the imputation on newly grided spatial locations, default is 10.                                                                                                                        |  |
| exclude     | Vector, the rownames of spatial location data on the original resolution that you want to exclude. This is to avoid the weird detection of the shape.                                                                        |  |

#### Value

Return a SpatialExperiment object with the refined cell type compositions estimated for newly grided spots and the refined predicted gene expression (normalized).

# **Examples**

```
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(
    sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",
    ct_select = unique(sc_meta$cellType),
    sample_varname = "sampleInfo",
    mincountgene = 100,
    mincountspot = 5
)</pre>
```

CARD\_refFree 9

```
CARD_obj <- CARD_imputation(
    CARD_obj,
    num_grids = 200,
    ineibor = 10,
    exclude = NULL
)</pre>
```

CARD\_refFree

Extension of CARD into a reference-free version of deconvolution: CARDfree.

# Description

Extension of CARD into a reference-free version of deconvolution: CARDfree.

### Usage

```
CARD_refFree(
  markerlist,
  spatial_count,
  spatial_location,
  mincountgene = 100,
  mincountspot = 5,
  spe = NULL
)
```

### **Arguments**

markerlist a list of marker genes, with each element of the list being the vector of cell type

specific marker genes

spatial\_count Raw spatial resolved transcriptomics data, each column is a spatial location, and

each row is a gene.

 ${\tt spatial\_location}$ 

data frame, with two columns representing the x and y coordinates of the spatial location. The rownames of this data frame should match eaxctly with the

columns of the spatial\_count.

mincountgene Minimum counts for each gene

mincountspot Minimum counts for each spatial location

spe a SpatialExperiment object containing spatial data in the counts assay, and

spatial coordinates in the spatialCoords.

#### Value

Returns a SpatialExperiment object with estimated cell type proportion stored in object\$Proportion\_CARD. Because this is a reference-free version, the columns of estimated proportion is not cell type but cell type cluster

10 CARD\_scmapping

#### **Examples**

```
library(RcppML)
library(NMF)
library(RcppArmadillo)
data(markerList)
data(spatial_count)
data(spatial_location)
CARDfree_obj <- CARD_refFree(
markerlist = markerList[8:16],
spatial_count = spatial_count[1:2500, ],
spatial_location = spatial_location,
mincountgene = 100,
mincountspot = 5
)</pre>
```

CARD\_scmapping

Extension of CARD into performing single cell Mapping from nonsingle cell spatial transcriptomics dataset.

#### **Description**

Extension of CARD into performing single cell Mapping from non-single cell spatial transcriptomics dataset.

#### Usage

```
CARD_scmapping(CARD_object, shapeSpot = "Square", numcell, ncore = 10)
```

### **Arguments**

shapeSpot a character indicating whether the sampled spatial coordinates for single cells

locating in a Square-like region or a Circle-like region. The center of this region is the measured spatial location in the non-single cell resolution spatial

transcriptomics data. The default is 'Square', the other shape is 'Circle'

numcell a numeric value indicating the number of single cells in each measured location,

we suggest 20 for ST technology, 7 for 10x Viisum and 2 for Slide-seq

ncore a numeric value indicating the number of cores used to accelerating the proce-

dure

### Value

Returns a SingleCellExperiment SCE object with the mapped expression at single cell resolution and the spatial location information of each single cell

CARD\_visualize\_Cor 11

#### **Examples**

```
library(SingleCellExperiment)
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(</pre>
    sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",
    ct_select = unique(sc_meta$cellType),
    sample_varname = "sampleInfo",
    mincountgene = 100,
    mincountspot = 5
)
scMapping <- CARD_scmapping(</pre>
CARD_obj,
shapeSpot = "Square",
numcell = 20,
ncore = 2)
print(scMapping)
```

CARD\_visualize\_Cor

Visualize the cell type proportion correlation

### **Description**

Visualize the cell type proportion correlation

### Usage

```
CARD_visualize_Cor(proportion, colors = colors)
```

# Arguments

 $proportion \qquad Data \ frame, cell \ type \ proportion \ estimated \ by \ CARD \ in \ either \ original \ resolution$ 

or enhanced resolution.

colors Vector of color names that you want to use, if NULL, we will use the default

color scale c("#91a28c","white","#8f2c37")

#### Value

Returns a ggcorrplot figure.

# Examples

```
library(ggplot2)
data(spatial_count)
data(spatial_location)
data(sc_count)
```

```
data(sc_meta)
CARD_obj <- CARD_deconvolution(
    sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",
    ct_select = unique(sc_meta$cellType),
    sample_varname = "sampleInfo",
    mincountgene = 100,
    mincountspot = 5
)
CARD_visualize_Cor(CARD_obj$Proportion_CARD, colors = NULL)</pre>
```

CARD\_visualize\_gene

Visualize the spatial distribution of cell type proportion

### **Description**

Visualize the spatial distribution of cell type proportion

# Usage

```
CARD_visualize_gene(
   spatial_expression,
   spatial_location,
   gene_visualize,
   colors = colors,
   NumCols
)
```

#### **Arguments**

spatial\_expression

Data frame, spatial gene expression in either original resolution or enhanced resolution.

spatial\_location

Data frame, spatial location information.

gene\_visualize Vector of selected gene names that are interested to visualize

colors Vector of color names that you want to use, if NULL, we will use the default

color scale in virdis palette

NumCols Numeric, number of columns in the figure panel, it depends on the number of

cell types you want to visualize.

#### Value

Returns a ggplot2 figure.

CARD\_visualize\_pie 13

#### **Examples**

```
library(ggplot2)
library(SummarizedExperiment)
library(SpatialExperiment)
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(</pre>
    sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",
    ct_select = unique(sc_meta$cellType),
    sample_varname = "sampleInfo",
    mincountgene = 100,
    mincountspot = 5
CARD_visualize_gene(
    spatial_expression = assays(CARD_obj)$spatial_countMat,
    spatial_location = spatialCoords(CARD_obj),
    gene_visualize = c("A4GNT", "AAMDC", "CD248"),
    colors = NULL,
    NumCols = 3
)
```

CARD\_visualize\_pie

Visualize the spatial distribution of cell type proportion in a geom scatterpie plot

### **Description**

Visualize the spatial distribution of cell type proportion in a geom scatterpie plot

### Usage

```
CARD_visualize_pie(proportion, spatial_location, colors = NULL, radius = NULL)
```

### **Arguments**

proportion Data frame, cell type proportion estimated by CARD in either original resolution

or enhanced resolution.

spatial\_location

Data frame, spatial location information.

colors Vector of color names that you want to use, if NULL, we will use the color

palette "Spectral" from RColorBrewer package.

radius Numeric value about the radius of each pie chart, if NULL, we will calculate it

inside the function.

#### Value

Returns a ggplot2 figure.

### **Examples**

```
library(ggplot2)
library(SpatialExperiment)
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(</pre>
   sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",
    ct_select = unique(sc_meta$cellType),
    sample_varname = "sampleInfo",
    mincountgene = 100,
    mincountspot = 5
colors <- c(
    "#FFD92F", "#4DAF4A", "#FCCDE5", "#D9D9D9", "#377EB8", "#7FC97F",
    "#BEAED4", "#FDC086", "#FFFF99", "#386CB0", "#F0027F", "#BF5B17"
    "#666666", "#1B9E77", "#D95F02", "#7570B3", "#E7298A", "#66A61E",
    "#E6AB02", "#A6761D"
)
CARD_visualize_pie(
    proportion = CARD_obj$Proportion_CARD,
    spatial_location = spatialCoords(CARD_obj),
    colors = colors,
    radius = 0.52
)
```

CARD\_visualize\_prop Visualize the spatial distribution of cell type proportion

#### **Description**

Visualize the spatial distribution of cell type proportion

### Usage

```
CARD_visualize_prop(
  proportion,
  spatial_location,
  ct_visualize = ct_visualize,
  colors = c("lightblue", "lightyellow", "red"),
  NumCols,
  pointSize = 3
)
```

#### **Arguments**

proportion Data frame, cell type proportion estimated by CARD in either original resolution

or enhanced resolution.

spatial\_location

Data frame, spatial location information.

colors Vector of color names that you want to use, if NULL, we will use the default

color scale c("lightblue","lightyellow","red")

NumCols Numeric, number of columns in the figure panel, it depends on the number of

cell types you want to visualize.

pointSize Size of each point used for plotting

#### Value

Returns a ggplot2 figure.

### **Examples**

```
library(ggplot2)
library(SpatialExperiment)
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(</pre>
    sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",
    ct_select = unique(sc_meta$cellType),
    sample_varname = "sampleInfo",
    mincountgene = 100,
    mincountspot = 5
ct_visualize <- c(
    "Acinar_cells", "Cancer_clone_A", "Cancer_clone_B",
    "Ductal_terminal_ductal_like", "Ductal_CRISP3_high-centroacinar_like",
    "Ductal_MHC_Class_II", "Ductal_APOL1_high-hypoxic", "Fibroblasts"
CARD_visualize_prop(
    proportion = CARD_obj$Proportion_CARD,
    spatial_location = spatialCoords(CARD_obj),
    ct_visualize = ct_visualize,
    colors = c("lightblue", "lightyellow", "red"),
    NumCols = 4,
    pointSize = 3.0
)
```

```
CARD_visualize_prop_2CT
```

Visualize the spatial distribution of two cell type proportions on the same plot

#### **Description**

Visualize the spatial distribution of two cell type proportions on the same plot

#### Usage

```
CARD_visualize_prop_2CT(
  proportion,
  spatial_location,
  ct2_visualize = ct2_visualize,
  colors = NULL
)
```

# **Arguments**

 $\begin{array}{c} \text{proportion} & \text{Data frame, cell type proportion estimated by CARD in either original resolution} \\ & \text{or enhanced resolution.} \\ \\ \text{spatial\_location} \end{array}$ 

Data frame, spatial location information.

ct2\_visualize Vector of selected two cell type names that are interested to visualize, here we

only focus on two cell types

colors list of color names that you want to use for each cell type, if NULL, we will use

 $the\ default\ color\ scale\ list\ list\ (c ("lightblue","lightyellow","red"), c ("lightblue","lightyellow","black")$ 

### Value

Returns a ggplot2 figure.

#### **Examples**

```
library(ggplot2)
library(SpatialExperiment)
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(</pre>
    sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",
    ct_select = unique(sc_meta$cellType),
    sample_varname = "sampleInfo",
    mincountgene = 100,
    mincountspot = 5
)
```

createCARDfreeObject

```
CARD_visualize_prop_2CT(
    proportion = CARD_obj$Proportion_CARD,
    spatial_location = spatialCoords(CARD_obj),
    ct2_visualize = c("Cancer_clone_A", "Cancer_clone_B"),
    colors = list(c("lightblue", "lightyellow", "red"), c(
        "lightblue", "lightyellow",
        "black"
    ))
)
```

#### **Description**

Create the CARD object

### Usage

```
createCARDfreeObject(
  markerlist,
  spatial_count,
  spatial_location,
  mincountgene = 100,
  mincountspot = 5,
  spe = NULL
)
```

### **Arguments**

markerlist a list of marker genes, with each element of the list being the vector of cell type

specific marker genes

spatial\_count Raw spatial resolved transcriptomics data, each column is a spatial location, and

each row is a gene.

spatial\_location

data frame, with two columns representing the x and y coordinates of the spatial location. The rownames of this data frame should match eaxctly with the

columns of the spatial\_count.

mincountgene Minimum counts for each gene

mincountspot Minimum counts for each spatial location

spe a SpatialExperiment object containing spatial data in the counts assay, and

spatial coordinates in the spatial Coords.

#### Value

Returns CARDfree object with filtered spatial count and marker gene list.

18 createCARDObject

createCARDObject

Create the CARD object

#### **Description**

Create the CARD object

#### Usage

```
createCARDObject(
    sc_count,
    sc_meta,
    spatial_count,
    spatial_location,
    ct_varname,
    ct_select,
    sample_varname,
    mincountgene = 100,
    mincountspot = 5,
    sce = NULL,
    spe = NULL
)
```

#### **Arguments**

sc\_count Raw scRNA-seq count data, each column is a cell and each row is a gene.

sc\_meta data frame, with each row representing the cell type and/or sample information

of a specific cell. The row names of this data frame should match exactly with

the column names of the sc\_count data

spatial\_count Raw spatial resolved transcriptomics data, each column is a spatial location, and

each row is a gene.

spatial\_location

data frame, with two columns representing the x and y coordinates of the spatial location. The rownames of this data frame should match eaxctly with the

columns of the spatial\_count.

ct\_varname character, the name of the column in metadata that specifies the cell type anno-

tation information

ct\_select vector of cell type names that you are interested in to deconvolute, default as

NULL. If NULL, then use all cell types provided by single cell dataset;

sample\_varname character, the name of the column in metadata that specifies the sample informa-

tion. If NULL, we just use the whole as one sample.

mincountgene Minimum counts for each gene

mincountspot Minimum counts for each spatial location

sce a SingleCellExperiment object containing scRNA-seq count data in the counts

assay, and cell types and sample information in the colData.

spe a SpatialExperiment object containing spatial data in the counts assay, and

spatial coordinates in the spatialCoords.

create\_ref 19

### Value

Returns CARD object with filtered spatial count and single cell RNA-seq dataset.

| create_ref Construct the mean gene expression basis matrix (B), this is the faster version | create_ref | Construct the mean gene expression basis matrix (B), this is the faster version |
|--------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------|

# Description

Construct the mean gene expression basis matrix (B), this is the faster version

# Usage

```
create_ref(sc_eset, ct_select = NULL, ct_varname, sample_varname = NULL)
```

# **Arguments**

| sc_eset        | S4 class for storing data from single-cell experiments. This format is usually created by the package SingleCellExperiment with stored counts, along with the usual metadata for genes and cells. |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ct_select      | vector of cell type names that you are interested in to deconvolute, default as NULL. If NULL, then use all cell types provided by single cell dataset;                                           |
| ct_varname     | character, the name of the column in metaData that specifies the cell type annotation information                                                                                                 |
| sample_varname | character,the name of the column in metaData that specifies the sample information. If NULL, we just use the whole as one sample.                                                                 |

#### Value

Return a list of basis (B) matrix

| 0 - 0 | The function to sample the spatial location information for each single cell |
|-------|------------------------------------------------------------------------------|
|-------|------------------------------------------------------------------------------|

# Description

The function to sample the spatial location information for each single cell

# Usage

```
get_high_res_cords(cords, numcell, shape = "Square")
```

20 get\_weight\_for\_cell

#### **Arguments**

cords The spatial location information in the measure spatial locations, with the first

and second columns represent the 2-D x-y coordinate system

numcell a numeric value indicating the number of single cells in each measured location,

we suggest 20 for ST technology, 7 for 10x Viisum and 2 for Slide-seq

shape a character indicating whether the sampled spatial coordinates for single cells

locating in a Square-like region or a Circle-like region. The center of this region is the measured spatial location in the non-single cell resolution spatial

transcriptomics data. The default is 'Square', the other shape is 'Circle'

#### Value

Returns a dataframe with the sampled spatial location information for each single cell

## **Description**

The function to estimate the cell type composition signature for each single cell in the scRNaseq reference data

# Usage

```
get_weight_for_cell(sc_eset, ct_varname, ct_select, sample_varname, B)
```

#### **Arguments**

sc\_eset the sc\_eset stored in the CARD object

ct\_varname character, the name of the column in metaData that specifies the cell type anno-

tation information, stored in the CARD object

ct\_select vector of cell type names that you are interested in to deconvolute, default as

NULL. stored in the CARD object

sample\_varname character,the name of the column in metaData that specifies the sample infor-

mation. stored in the CARD object

B reference basis matrix stored in the CARD object.

#### Value

Returns a matrix of the cell type composition signature for each single cell in the scRNaseq reference

markerList 21

markerList marker gene list

### **Description**

The marker gene list is a list format with each element of the list being the cell type specific gene markers.

### Usage

```
data(markerList)
```

#### **Format**

An object of class list of length 20.

mvn\_cv Imputation and Construction of High-Resolution Spatial Maps for Cell
Type Composition and Gene Expression by the spatial correlation
structure between original spatial locations and new grided spatial

locations

#### **Description**

Imputation and Construction of High-Resolution Spatial Maps for Cell Type Composition and Gene Expression by the spatial correlation structure between original spatial locations and new grided spatial locations

# Usage

```
mvn_cv(
  vtrain,
  location_orig,
  train_ind,
  test_ind,
  B,
  xinput_norm,
  optimal_b,
  optimal_phi,
  lambda,
  ineibor
)
```

# Arguments

vtrain Matrix, estimated V matrix from CARD

location\_orig Data frame, spatial location data frame of the original spatial resolved transcrip-

tomics dataset, stored in the spatialCoords(CARD\_object)

train\_ind Vector, index of the original spatial locations

Vector, index of the newly grided spatial locations

Matrix, used in the deconvolution as the reference basis matrix

xinput\_norm

Matrix, used in the deconvolution as the normalized spatial count data

optimal\_b

Vector, vector of the intercept for each cel type estimated based on the original spatial resolution

optimal\_phi

Numeric, the optimal phi value stored in CARD\_object

lambda

Vector, vector of cell type specific scalar in the CAR model

ineibor Numeric, number of neighbors used in the imputation on newly grided spatial

locations, default is 10.

#### Value

Return a list with the imputed Cell type composition Vtest matrix on the newly grided spatial locations and predicted normalized gene expression

norm\_coords\_train\_test

Normalize the new spatial locations without changing the shape and relative positions

## **Description**

Normalize the new spatial locations without changing the shape and relative positions

### Usage

```
norm_coords_train_test(location_orig, train_ind, test_ind)
```

### **Arguments**

location\_orig Data frame, spatial location data frame of the original spatial resolved transcrip-

tomics dataset, stored in the spatialCoords(CARD\_object)

train\_ind Vector, Index of the original spatial locations

test\_ind Vector, Index of the newly grided spatial locations

#### Value

Return the normalized spatial location data frame

sample\_grid\_within 23

| sample_grid_within | Make new spatial locations on unmeasured tissue through grids. |  |
|--------------------|----------------------------------------------------------------|--|
| . •                |                                                                |  |

# Description

Make new spatial locations on unmeasured tissue through grids.

# Usage

```
sample_grid_within(location, num_sample, concavity = 2)
```

# Arguments

| location   | Data frame, spatial location data frame of the original spatial resolved transcriptomics dataset, stored in the spatialCoords(CARD_object)                                            |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| num_sample | Numeric, approximate number of cells in grid within the shape of the spatial location data frame                                                                                      |
| concavity  | Numeric, a relative measure of concavity. The default is 2.0, which can prodecure detailed enough shapes. Infinity results in a convex hull while 1 results in a more detailed shape. |

# Value

Return a list of data frame with newly grided points

| sc_count | scRNA-seq count data |  |
|----------|----------------------|--|
|          |                      |  |

# Description

The scRNA-seq count data must be in the format of matrix or sparseMatrix, while each row represents a gene and each column represents a cell.

# Usage

```
data(sc_count)
```

#### **Format**

An object of class  $dgCMatrix\ with\ 7000\ rows\ and\ 1926\ columns.$ 

 $sc\_QC$ 

| sc_meta s | scRNAseq meta data |
|-----------|--------------------|
|-----------|--------------------|

#### **Description**

The scRNAseq meta data must be in the format of data frame while each row represents a cell. The rownames of the scRNAseq meta data should match exactly with the column names of the scR-NAseq count data. The sc\_meta data must contain the column indicating the cell type assignment for each cell (e.g., "cellType" column in the example sc\_meta data). Sample/subject information should be provided, if there is only one sample, we can add a column by sc\_meta\$sampleInfo = "sample1".

### Usage

```
data(sc_meta)
```

#### **Format**

An object of class data. frame with 1926 rows and 3 columns.

sc\_QC

Quality control of scRNA-seq count data

### **Description**

Quality control of scRNA-seq count data

# Usage

```
sc_QC(
  counts_in,
  metadata,
  ct_varname,
  ct_select,
  sample_varname = NULL,
  min_cells = 0,
  min_genes = 0
)
```

### **Arguments**

| counts_in  | Raw scRNAseq count data, each column is a cell and each row is a gene.                                                                                  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| metadata   | data frame, metadata with "ct_varname" specify the cell type annotation information and "sample_varname" specify the sample information                 |
| ct_varname | character, the name of the column in metadata that specifies the cell type annotation information                                                       |
| ct_select  | vector of cell type names that you are interested in to deconvolute, default as NULL. If NULL, then use all cell types provided by single cell dataset; |

select\_info 25

| sample_varname | character,the name | of the column | in metadata | that specifies | the sample informa- |
|----------------|--------------------|---------------|-------------|----------------|---------------------|
|----------------|--------------------|---------------|-------------|----------------|---------------------|

tion. If NULL, we just use the whole as one sample.

min\_cells numeric, we filtered out the non-expressed cells.
min\_genes numeric we filtered out the non-expressed genes

### Value

Return the filtered scRNA-seq data and meta data stored in a S4 class (SingleCellExperiment)

| select_info Select Informative Genes used in the deconvolution |  |
|----------------------------------------------------------------|--|
|----------------------------------------------------------------|--|

# Description

Select Informative Genes used in the deconvolution

# Usage

```
select_info(basis, sc_eset, commongene, ct_select, ct_varname)
```

### **Arguments**

| basis      | Reference basis matrix.                                                                                                                                 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| sc_eset    | scRNAseq data along with meta data stored in the S4 class format (SingleCell-Experiment).                                                               |
| commongene | common genes between scRNAseq count data and spatial resolved transcriptomics data.                                                                     |
| ct_select  | vector of cell type names that you are interested in to deconvolute, default as NULL. If NULL, then use all cell types provided by single cell dataset; |
| ct_varname | character, the name of the column in metaData that specifies the cell type annotation information                                                       |

### Value

a vector of informative genes selected

| ow, CARD-method Sh | w method for the CARD class |
|--------------------|-----------------------------|
| ·                  | v                           |

# Description

This method provides a concise summary of an object of class CARD, displaying key information including the project name, the number of spots, the number of cell types, and a sample of the Proportion\_CARD matrix.

### Usage

```
## S4 method for signature 'CARD'
show(object)
```

26 Sigma

#### **Arguments**

object An object of class CARD.

#### Value

A concise summary of the CARD object is printed to the console.

show, CARDfree-method Show method for the CARDfree class

# Description

This method provides a concise summary of an object of class CARDfree, displaying key information including the project name, the number of spots, the number of cell types, and a sample of the Proportion\_CARD matrix.

### Usage

```
## S4 method for signature 'CARDfree'
show(object)
```

# **Arguments**

object An object of class CARDfree.

#### Value

A concise summary of the CARDfree object is printed to the console.

Sigma Calculate the variance covariance matrix used in the imputation of the new grided locations

#### **Description**

Calculate the variance covariance matrix used in the imputation of the new grided locations

#### Usage

```
Sigma(location_orig, train_ind, test_ind, optimal_phi, ineibor)
```

#### **Arguments**

| location_orig | Data frame, spatial location data frame of the original spatial resolved transcriptomics dataset, stored in the spatialCoords(CARD_object) |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| train_ind     | Vector, index of the original spatial locations                                                                                            |
| test_ind      | Vector, index of the newly grided spatial locations                                                                                        |
| optimal_phi   | Numeric, the optimal phi value stored in CARD_object                                                                                       |
| ineibor       | Numeric, number of neighbors used in the imputation on newly grided spatial locations, default is 10.                                      |

spatial\_count 27

#### Value

Return a list with the imputed Cell type composition Vtest matrix on the newly grided spatial locations and predicted normalized gene expression

spatial\_count

Spatial transcriptomics count data

### **Description**

The spatial transcriptomics count data must be in the format of matrix or sparseMatrix, while each row represents a gene and each column represents a spatial location. The column names of the spatial data can be in the "XcoordxYcoord" (i.e., 10x10) format, but you can also maintain your original spot names, for example, barcode names.

### Usage

```
data(spatial_count)
```

#### **Format**

An object of class dgCMatrix with 11000 rows and 428 columns.

spatial\_location

Spatial location data

## Description

The spatial location data must be in the format of data frame while each row represents a spatial location, the first column represents the x coordinate and the second column represents the y coordinate. The rownames of the spatial location data frame should match exactly with the column names of the spatial\_count.

### Usage

```
data(spatial_location)
```

#### **Format**

An object of class data. frame with 428 rows and 2 columns.

# **Index**

```
* datasets
    markerList, 21
    sc_count, 23
    sc_meta, 24
    spatial_count, 27
    spatial_location, 27
assign_sc_cords, 3
CARD-class, 3
CARD_deconvolution, 6
CARD_imputation, 8
CARD_refFree, 9
CARD_scmapping, 10
{\tt CARD\_visualize\_Cor}, 11
CARD_visualize_gene, 12
CARD_visualize_pie, 13
CARD_visualize_prop, 14
CARD_visualize_prop_2CT, 16
CARDfree, 4
CARDfree-class, 5
CARDref, 5
create_ref, 19
create CARD free Object, 17
createCARDObject, 18
get_high_res_cords, 19
get_weight_for_cell, 20
markerList, 21
mvn_cv, 21
norm_coords_train_test, 22
sample_grid_within, 23
sc_count, 23
sc_meta, 24
sc_QC, 24
select_info, 25
show, CARD-method, 25
show, CARDfree-method, 26
Sigma, 26
spatial_count, 27
spatial_location, 27
```