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Chapter 1

Introduction

Oligo is a Bioconductor package for preprocessing oligonucleotide microarrays. It currently supports
chips produced by Affymetrix and NimbleGen and uses files provided by these manufacturers in their
native format. The package provides a unified framework for preprocessing and uses the data represen-
tation established by the Bioconductor project, which simplifies the interface with other packages in
the project.

The oligo package allows users to preprocess their microarray data using R. This is a convenient
approach as analysts can combine the preprocessed data with a number of tools already implemented
in R, like downstream analyses and visualization.

The software is designed to support large datasets and also provides parallel execution of common tasks
like background subtraction, normalization and summarization.

This guide describes oligo and its features as available on R Version 3.2.0 with BioConductor Version
3.1.
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Chapter 2

Preamble

2.1 Citing oligo

The oligo package is comprised of a collection of tools developed by different authors. Please cite their
work appropriately.

If you use oligo, please cite:

Carvalho and lIrizarry. A Framework for Oligonucleotide Microarray Preprocessing. Bioinformatics
(2010) vol. 16 (19) pp. 2363-2367.

If you use the SNPRMA and/or CRLMM algorithm implemented in oligo, please also cite:

Carvalho et al. Exploration, normalization, and genotype calls of high-density oligonucleotide SNP
array data. Biostatistics (2007) vol. 8 (2) pp. 485-99.

If you use the RMA algorithm, please cite:

Bolstad, B.M., Irizarry R. A., Astrand M., and Speed, T.P. (2003), A Comparison of Normalization
Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics
19(2):185-193;

Rafael. A. Irizarry, Benjamin M. Bolstad, Francois Collin, Leslie M. Cope, Bridget Hobbs and Terence
P. Speed (2003), Summaries of Affymetrix GeneChip probe level data Nucleic Acids Research
31(4):el5;

Irizarry, RA, Hobbs, B, Collin, F, Beazer-Barclay, YD, Antonellis, KJ, Scherf, U, Speed, TP (2003)
Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level
Data. Biostatistics .Vol. 4, Number 2: 249-264.

If you use the PLM algorithm, please cite:

Bolstad, BM (2004). Low Level Analysis of High-density Oligonucleotide Array Data: Background,
Normalization and Summarization. PhD Dissertation. University of California, Berkeley.

fixme: If you use the MAS5 Present/Absent calls...
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fixme: If you use the DABG Present/Absent calls...

2.2 Installation

The oligo package is available for download through the BioConductor project for all platforms. We
recommend the installation of the latest R in order to get the latest features available in the package,
which can be installed using biocLite as shown below:

source('http://www.bioconductor.org/biocLite.R')
biocLite('oligo')

oligo is in constant development and the users can obtain a summary of the changes by using the news
command:

news (package='oligo')

2.3 Requirements

oligo depends on a few packages that will be automatically installed if the instructions on Section 2.2
are used. These dependencies are available for all platforms and do not require any intervention for
their successful installation.

Once oligo is installed, the users will need to install the annotation packages associated to the data
they want to import. The annotation packages are built using the pdinfoBuilder package, but several
of them are available for download on the BioConductor website.

If a user tries to import a dataset for which an annotation package is not installed on the user’'s system,
oligo will search for it on the BioConductor website. If the annotation package is found, then oligo will
download and install it automatically. If the annotation package is not found, oligo will return an error
and the user is expected to build the one using the pdinfoBuilder package. After the package is built,
the user must install it before attempting to import the data.



Chapter 3

Getting Started

To get started with oligo, one must load the package, which can be achieved with the library
command:

library(oligo)

oligo can appropriately handle data files for Affymetrix and NimbleGen designs. The supported formats
are CEL (Affymetrix) and XYS (NimbleGen).

3.1 Importing Data

3.1.1 Affymetrix Data

Affymetrix distributes data using CEL files, to simplify the access to these files, oligo provides the
list.celfiles tool, which is a wrapper around 1ist.files (consult the documentation for list.files
to get detailed information on advanced usage). The list.celfiles command should be used to ob-
tain the list of CEL files at a given directory. We strongly recommend the use of fully qualified names
(i.e., including the whole path) for CEL files, to minimize the chance of problems. The snippet below
shows the syntax to list CEL files in the hypothetical directory myCELs:

celFiles <- list.celfiles('myCELs', full.names=TRUE)

The CEL files can be in either binary or text formats. Regardless the internal structure of the files,
oligo can import them transparently via the command read.celfiles as shown below:

rawData <- read.celfiles(celFiles)

3.1.2 NimbleGen Data

The NimbleGen data supported by oligo is provided as XYS files. They are produced through the
NimbleScan software from the TIFF image and NDF specification file. The list.xysfiles function

9
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can be used to simplify the access to the XYS files. If a hypothetical directory myXYSs contains the
XYS files for a given dataset, the suggested approach to point to these files is as follows:

xysFiles <- list.celfiles('myXYSs', full.names=TRUE)

The files listed in xysFiles can then be imported using the read.xysfiles command:

rawData <- read.xysfiles(xysFiles)

3.2 Containers for Raw Data

oligo uses different containers to store data at the feature-level, i.e. data imported from CEL and/or
XYS files, as Table 3.1 shows. This approach improves the flexibility of the package as it allows any
method to behave differently depending on the type of array from which the data were obtained. As
a consequence, the user benefits from the simplicity of the software, as algorithms should be able to
handle data appropriately independent of their origin.

Type Array
ExonFeatureSet Exon ST
ExpressionFeature | Expression
GeneFeatureSet | Gene ST
TilingFeatureSet Tiling
SnpFeatureSet SNP

Table 3.1: Types of containers for feature-level data used in oligo.

One simple example is the RMA algorithm. When it is applied to expression data, the software software
uses the usual definition of sets of features (often referred to as probesets) to group features together
for summarization. If the same method is applied to Affymetrix exon arrays, the software is able to
identify that and use the definition of meta-probesets given by Affymetrix to provide summaries at the
transcript level, if such behavior is requested.



Chapter 4

Visualization and QC Tools

On this chapter, we will demonstrate how oligo can be used for visualization of data at the feature-level.

To demonstrate the capabilities of the software, the affyExpressionFS dataset from the oligoData
package will be used.

library(oligoData)
data(affyExpressionFS)

This dataset is comprised of 59 samples on expression arrays provided by Affymetrix. This dataset is
the Human Genome U95 Data Set, used to validade preprocessing algorithms, as it contains genes that
were spiked-in in known concentrations. Below we create a table containing sample information, using
descriptors found on the Affymetrix website.

The user must pay attention to the fact that the objects handled by oligo always carry information about
channels. This information must be reported on a metadata object, which is represented below by the
metadata data.frame. Because Affymetrix expression arrays are one-color devices and the information
we provide is valid for this channel, we fill the channel column with the value ALL.

affyExpressionFS

## ExpressionFeatureSet (storageMode: lockedEnvironment)
## assayData: 409600 features, 59 samples

##  element names: exprs

## protocolData: none

## phenoData

##  rowNames: 1521a99hpp_av06.CEL 1521b99hpp_av06.CEL ... 2353t99hpp_av08.CEL (59
## total)

##  varLabels: exprs

##  varMetadata: labelDescription channel

## featureData: none

## experimentData: use 'experimentData(object)'

## Annotation: pd.hg.u95av2

sns <- sampleNames(affyExpressionFS)

11
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## all 1521 were meant to be 1251

sns <- gsub('1521', '1251', sns)

## removing the 'r' (repeat) flag from the name

sns <- gsub('r\\.CEL$', '\\.CEL', sns)

wafer <- substr(sns, 1, 4)

experiment <- substr(sns, 5, 5)

tmp <- substr(sns, 6, 7)

complex <- rep('+', length(tmp))

complex[tmp == '00'] <- '-!

info <- data.frame(wafer=wafer, experiment=experiment, complex=complex)
rownames (info) <- sns

metadata <- data.frame(labelDescription=c('wafer', 'experiment', 'complex'), channel=facto:
sampleNames (affyExpressionFS) <- sns

pd <- new('AnnotatedDataFrame', data=info, varMetadata=metadata)
phenoData(affyExpressionFS) <- pd

rm(tmp, wafer, experiment, complex, pd, metadata)

4.1 Pseudo-image Plots

Pseudo-image plots are used to assess the spatial distribution of the data on the chips. Due to the
magnitude of the readings, pseudo-images using data on the original scale often mask spatial features
that may be present on the arrays. This is why we recommend the use of the default log,-scale of the
image method. One useful alternative for the log,-scale pseudo-image is the use of the ranks of the
observations. This can be achieved by setting the transfo argument on the image method.

2353p99hpp_av08.CEL - exprs
R T § gk AT, 2

(a) logy-intensities (b) Rank

Figure 4.1: Pseudo-images
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Figure 4.2: MA Plot using smoothScatter

4.2 MA Plots

Plotting log-ratios, M, versus average log-intensities, A, is a strategy to visualize the relationship
between these two variables. Both M and A are computed as a function of a reference. To illustrate
this, the definitions of log-ratios and average log-intensities of a generic sample, indexed by ¢, and a
given reference, R, are given below:

M;r = logl, —loglg (4.1)

)

An = 5 llog (1) + lo (Ix)] (4.2)

For one color arrays, one common approach is to create MA plots for every combination of two samples
on the (sub-)dataset of interest. On the snippet below, we use the pairs argument to generate MA
plots for pairs of samples (restricted to the first three samples, which belong to the same group).

xl <- c(2.8, 4)
yl <= c(-1, 1)
MAplot(affyExpressionFS[, 1:3], pairs=TRUE, ylim=yl, xlim=x1)

The standard approach to plot data used by MAplot is to use smoothScatter, which provides better
visualization through the use of 2-D smoothed densities. This behavior can be changed by setting the
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Figure 4.3: MA Plot using points

plotFun argument, as shown below. Valid values for this argument are functions that preferentially
take the same arguments as smoothScatter, like the plot function.

MAplot(affyExpressionFS[, 1:3], pairs=TRUE, ylim=yl, xlim=x1, plotFun=plot)

The MAplot method also allows the combination of data into groups. With the code below, the
investigator obtains the MA plot for the first levels of wafer, '1251', comparing the results against the
reference group, 2353. Note that wafer is a factor and that the definition of a reference group was
arbitrary and used here just to illustrate the software capabilities.

wafer <- affyExpressionFS$wafer
levels(wafer)

## [1] "1251" "1532" "2353"

MAplot(affyExpressionFS, groups=wafer, which=1, refSamples=3)

When the groups argument is not set and the pairs argument is set to FALSE, the MAplot method
estimates a pseudo-reference sample from the whole dataset passed to the function. The pseudo-
reference sample and the group summaries (if groups is defined) are estimated using the summaryFun
argument, which must be a function that takes an N x C' matrix and returns a vector of length N.
The default value for summaryFun is rowMedians.
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1251 vs 2353

24 Median: -0.121
24 - IQR:0.138
= 8 r\

Figure 4.4: MA Plot comparing groups

4.3 Boxplots

Boxplots are used to visualize key components on the distribution of the data and simplify the comparison
of such statistics across samples.

The call above produces a boxplot for the PM features. If the array contains other features types, the
boxplot method can be used to generate figures for specific probe types by using the which argument,
which take values ’pm’, mm’, ’bg’, *both’ and ’all’.

Data transformation can also be applied. The default is to log-transform (base 2) the data, but other
functions can be used, as long as they are passed through the transfo argument. The example below
presents the boxplot using the original scale.

The boxplot method for FeatureSet and ExpressionSet objects uses a sample of the data (of size
nsample) to produce the plot. Therefore small differences between consecutive calls to the method are
expected. Users interested in getting the exact same plot should specify a fixed seed through set.seed
prior to calling boxplot.
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Sample NimbleGen Dataset Data on Original Scale

log2-intensity
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1251a99hpp_av06.CEL  1532b99hpp_av04.CEL 2353d99hpp_av08.CEL 1251a99hpp_av06.CEL 1532b99hpp_av04.CEL 2353d99hpp_av08.CEL

(a) log-scale (b) original scale

Figure 4.5: Boxplots for intensity data: the visualization of the data is simplified if the logarithmic-scale
is used

4.4 Density Plots

Smoothed histograms are also used to assess the distribution of the data under analysis. They allow
the immediate visualization (possibly non-unique) modes, which can not be reliably detected through
the investigation of boxplots and other graphical tools.

Similar to the boxplot method described on Section 4.3, hist:

e allows subsetting by feature type, if such probes are available on the chip, through the which
argument;

e uses a random sample of the data to generate the plot, requiring the use of set.seed to create
reproducible charts. The size of the sample is determined by the nsample argument;

e permits the use of functions other than log, to transform the data prior to plotting. The argument
transfo is the one that handles the transformation function, which should return an object with
the same attributes as the input.

4.5 Accessing Probe Sequences

The annotation packages used by oligo store feature sequences. This is done through instances of
DNAStringSet objects implemented in the Biostrings package. The sequences for PM probes can be
easily accessed via the pmSequence function, as shown below.

pmSeq <- pmSequence(affyExpressionFS)
pmSeq[1:5]
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Density Estimate for log—intensities Density Estimate for intensities
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Figure 4.6: Density plots for intensity data: the visualization of the data is simplified if the logarithmic-
scale is used

## A DNAStringSet instance of length 5
#it width seq

## [1] 25 GCTGCCCACAGTGACCGACCAGGAG
## (2] 25 GCAGCCACCAGTGGACCTAGCCTGG
## [3] 25 CAGCCACCAGTGGACCTAGCCTGGA
## [4] 25 CGCATCCACGTGAACTTGAGCACTG
## [5] 25 GGCTTCACAGTCACTCGGCTCAGTG

When importing the data, oligo does not impose any transformation, so one needs to manually apply,
for example, the log, transform to the intensities of PM probes, which can be accessed with the pm
function, as needed. Below, we present how to centralize the log,-PM intensities for each sample in
affyExpressionFsS.

pmsLog2 <- log2(pm(affyExpressionFS))

The dependence of intensity on probe sequence is a well established fact on the microarray literature.
The use of the oligo package simplifies significantly the observation of this event, as it provides simple
access to both observed intensities and annotation. Below, we estimate the affinity splines coefficients

[1].

coefs <- getAffinitySplineCoefficients(pmsLog2, pmSeq)

On Figure 4.7, we show how the results above can be used to estimate the base-position effects on the
log,-intensities observed for the first sample in the dataset. The getBaseProfile function provides
a simple way of using the affinity coefficients to estimate the effects of interest. It accepts a plot
argument, which takes logical values, to make the plot and returns, invisibly, the estimated effects. All
the arguments that can be passed to the matplot function can also be passed to getBaseProfile.
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Figure 4.7: Sequence effect for the first sample in the dataset. These results have been reported in
detail elsewhere, but can be easily reproduced with the use of the oligo package.

Tools implemented in other packages can be used in conjunction with oligo to investigate different
hypothesis. The example below shows how the alphabetFrequency function, defined by the Biostrings
can be used to determine the GC content of the probe sequences accessed by oligo.

counts <- Biostrings::alphabetFrequency(pmSeq, baseOnly=TRUE)
GCcontent <- ordered(counts[, "G"]+counts[, "C"])

In addition to Figure 4.7, we can also plot the log,-intensities as a function of the GC content computed

above. Figure 4.8 presents the strong dependency of log,-intensities on GC contents for sample 1, which
is also present in all other samples.

4.6 Probe Level Models

Using the fitProbeLevelModel method, the user is able to fit Probe Level Models (PLMs) with probe-
level and sample-level parameters. The resulting object is an oligoPLM object, which stores parameter
estimates, residuals and weights.

4.6.1 Fitting PLMs

The simplest call to adjust a probe level model is as simple as

fitl <- fitProbeLevelModel (affyExpressionFS)
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Figure 4.8: On this boxplot stratified by GC content, we can observe the strong dependency of log,-
intensities on the number of G or C bases observed in the probe sequency.

## Background correcting... UK
## Normalizing... OK

## Summarizing... OK

## Extracting. ..

## Estimates... OK

## StdErrors... UK

## Weights..... OK

## Residuals... OK

## Scale....... OK

and will fit a model that accounts for probe (feature) and sample effects, whose estimates and standard
errors can be recovered, respectively, with the coef and se methods, as shown below.

coef (fit1)[1:4, 1:2]

#it 1251a99%hpp_av06.CEL 1251b99hpp_av06.CEL
## 100_g_at 7.500033 7.386941
## 1000_at 6.818087 6.569597
## 1001_at 4.952848 4.899599
## 1002_f_at 5.341271 5.264827

se(fit1)[1:4, 1:2]

#i#t 1251a99%hpp_av06.CEL 1251b99%hpp_av06.CEL
## 100_g_at 0.05769347 0.05841853
## 1000_at 0.07123716 0.07192502

## 1001_at 0.09138853 0.09233888
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## 1002_f_at 0.09297926 0.09170566

4.6.2 Visualizing fitProbelLevelModel Results

One of the most used QC metrics is the Relative Log Expression (RLE), which is computed (for
each sample on every probeset) by comparing the expression level of one probeset against the median
expression of that probeset across samples.

The estimates obtained via RLE can be accessed by setting the argument type to values. By setting
this argument to stats, the user will be able to access the statistics (quantiles) for each sample.

RLE(fitl, type='stats')[, 1:2]

#i# 1251a99hpp_av06.CEL 1251b99%hpp_av06.CEL
## 0% -6.979272632 -6.507382388
## 25, -0.070293591 -0.100300464
## 50% 0.006905502 0.001414062
## 75% 0.082904157 0.105041242
## 1007 1.390826287 2.179719560

RLE(fitl, type='values')[1:4, 1:2]

#Hit 1251a99%hpp_av06.CEL 1251b99hpp_av06.CEL
## 100_g_at 0.12183567 0.008743574
## 1000_at 0.08703757 -0.161453002
## 1001_at -0.18044837 -0.233698152
## 1002_f_at 0.08315700 0.006713455

Generating a boxplot of the RLE values is the default behavior of the method.

Another useful tool for QC is the Normalized Unscaled Standard Errors (NUSE). To determine NUSE,
the standard error estimates are standardized across arrays so that the median standard error for that
probeset is 1 across all arrays. Therefore, arrays whose NUSE values are significantly higher than other
samples are often lower quality chips. Similarly to RLE, the statistics, values and boxplot of NUSE can
be obtained by appropriately setting the type argument of the NUSE method.

NUSE(fitl, type='stats')[, 1:2]

#it 1251a99%hpp_av06.CEL 1251b99hpp_av06.CEL
## 0% 0.9506179 0.9301493
## 257 0.9789673 0.9823609
## 50% 0.9878402 0.9927843
## 75% 0.9983611 1.0039378
## 1007 1.2025932 1.1917781

NUSE(fitl, type='values')[1:4, 1:2]
it 1251299hpp_av06.CEL 1251b99hpp_av06.CEL
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## 100_g_at 0.9700310 0.9822220
## 1000_at 0.9835805 0.9930779
## 1001_at 0.9780951 0.9882664
## 1002_f_at 1.0115476 0.9976917

0.5

RLE
0.0
NUSE

-0.5
1

T T T T T T T T T T T T T T T T T T T T T T T T, H\\H\\H\\H\\H\H\\H\\H\\H\\HHHHHHHHHHHM
1251a99hpp_av06.CEL  1532b99hpp_av04.CEL 2353d99hpp_av08.CEL 1251a99hpp_av06.CEL  1532b99hpp_av04.CEL 2353d99hpp_av08.CEL

(a) RLE (b) NUSE

Figure 4.9: Visualization of PLM results

The use of PLMs also permits the inspection of the spatial distribution of the data on the chip. The
current implementation allows the visualization of the estimated weights and residuals. Residuals can
be further decomposed in 4 types: residuals, positive residuals, negative residuals and residual signs.
Figures 4.10(a)-4.10(e) show these plots for the dataset used as example here.
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Weights — 2353p99hpp_av08.CEL Residuals - 2353p99hpp_av08.CEL

(a) Weights (b) Residuals
Positive Residuals — 2353p99hpp_av08.CEL Negative Residuals — 2353p99hpp_av08.CEL
(c) Positive Residuals (d) Negative Residuals

Sign of Residuals - 2353p99hpp_av08.CEL

(e) Residual Signs

Figure 4.10: Pseudo-images for PLM objects



Chapter 5

Preprocessing

Preprocessing refers to a series of complex statistical procedures applied to microarray data prior to
dowstream analyses. These steps are required mainly for two reasons: A) technical artifacts are known
to affect results, so background subtraction and normalization are used to minimize these issues; and
B) there are multiple probes per probeset, therefore summarization to the probeset level is needed, so
downstream analyses can be carried on.

5.1 Background Subtraction

The oligo package implements background subtraction through the backgroundCorrect command.
The method currently available is the one used in RMA, which treats the PM intensities as a convolution
of noise and true signal. Additional methods will be available on future releases and choices will be
made with the method argument (currently, the default is >rma’).

backgroundCorrectionMethods ()

## [1] "rma" "mas" "LESN"

bgDatal <- backgroundCorrect(affyExpressionFS)
## Background correcting... UK

bgData2 <- backgroundCorrect (affyExpressionFS, method='mas')

Because the input was an ExpressionFeatureSet object, the output bgDatal is also an ExpressionFea-
tureSet. Below, we show a boxplot of the corrected data, which can be compared to Figure ?7.

boxplot (bgDatal)

23
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Figure 5.1: Boxplot of background corrected data

5.2 Normalization
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The Rmethodnormalize method provided by oligo allows the user to normalize the input data. Different
normalization methods are available. The available options are given by normalizationMethods and
the argument method in normalize is used to select the normalization approach to be used.

normData <- normalize(bgDatal)

## Normalizing... OK

5.3 Summarization

fixme: to finish



Chapter 6

Workflows

6.1 Preprocessing Affymetrix Expression Arrays

To preprocess expression data, oligo implements the RMA algorithm [2, 3]. The rma method, as shown
below, proceeds with background subtraction, normalization and summarization using median-polish.

ppData <- rma(affyExpressionFS)

The results are returned in an ExpressionSet instance and used in downstream analyses, as currently
done by several strategies for microarray data analysis and described elsewhere.

class(ppData)

## [1] "ExpressionSet"
## attr(,"package")
## [1] "Biobase"

At this point, the user can proceed with, for example, differential expression analyses. The methodologies
involved in this step make use of several other packages, like /imma and genefilter. When preprocessing
the data, oligo stores the summaries in a matrix called exprs, present in the assayData data slot
of the ExpressionSet object. Therefore, the only restriction the additional strategies used with the
preprocessed data have is to be aware that the processed data can be easily accessed with the exprs
method.

6.2 Preprocessing NimbleGen Expression Arrays

This section presents a non-trivial use of the oligo Package for the analysis of NimbleGen Expression
data. This vignette follows the structure of the chapter From CEL files to a list of interesting genes
by R. A. Irizarry in Bioinformatics and Computational Biology Solutions Using R and Bioconductor,
which shows a case study for Affymetrix Expression arrays.

25
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In order to analyze microarray data using oligo, the user is expected to have installed on the system
a package with the annotation for the particular array design on which the experiment was performed.
For the example in question here, the design is hgl8 60mer_expr and the annotation package associated
to it is pd.hgl18.60mer.expr, which is built by using the pdinfoBuilder package.

Initialization of the environment

On this particular example, we will read XYS files instead of loading the FeatureSet object already
available through the oligoData package (the maqc object that we will create below is exactly the
nimbleExpressionFS data object provided by the oligoData package). We start by loading the pack-
ages that are going to be used in this session. The maqcExpressiondplex package provides a set of
six samples on the MAQC Study; the set is comprised of samples on two groups: universal reference
and brain. The remaining packages offer additional functionality, like tools for filtering, plotting and
visualization.

library(oligo)

library(maqcExpressiondplex)
BH [ mmm e \
## | SAMPLE EXPRESSION DATA - MAQC/ HG18 - NGS |/
e /

## | Data provided by NimbleGen Systems (NGS). |
## | This package is meant to be used only for |/
## | demonstration of BioConductor packages. /[

i /
## | The contents of this package are provided |/
## | in good faith and the maintainer does not |
## | warrant their accuracy. /

library(genefilter)

##

## Attaching package: ’genefilter’

##

## The following object is masked from ’package:base’:
##

## anyNA

library(limma)

##

## Attaching package: ’limma’

##

## The following object is masked from ’package:oligo’:
##

## backgroundCorrect
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##

## The following object is masked from ’package:BiocGenerics’:
##

## plotMA

Once the package is loaded, we can easily get the location of the XYS files that contain the intensities
by calling 1ist.xysfiles, which takes the same arguments as 1ist.files. To minimize the chance
of problems, we strongly recommend the use of full.names=TRUE.

extdata <- system.file("extdata", package="maqcExpressiondplex")

xys.files <- list.xysfiles(extdata, full.names=TRUE)

basename (xys.files)

## [1] "9868701_532.xys" "9868901_532.xys" "9869001_532.xys" "9870301_532.xys"
## [5] "9870401_532.xys" "9870601_532.xys"

To read the XYS files, we provide the read . xysfiles function, which also takes phenoData, experimentData
and featureData objects and returns an appropriate subclass of FeatureSet.

theData <- data.frame(Key=rep(c("brain", "universal reference"), each=3))
rownames (theData) <- basename(xys.files)

lvls <- c("exprs", "_ALL_")

vMtData <- data.frame(channel=factor('exprs', levels=lvls),

labelDescription="Sample type")
pd <- new("AnnotatedDataFrame", data=theData, varMetadata=vMtData)
maqc <- read.xysfiles(xys.files, phenoData=pd)

## Loading required package: pd.hgl8.60mer.expr

## Platform design info loaded.

## Checking designs for each XYS
## Allocating memory... Done.

## Reading /Library/Frameworks/R.
## Reading /Library/Frameworks/R.
## Reading /Library/Frameworks/R.
## Reading /Library/Frameworks/R.
## Reading /Library/Frameworks/R.
## Reading /Library/Frameworks/R.

class(maqc)

## [1] "ExpressionFeatureSet"
## attr(,"package")
## [1] "oligoClasses"

file... Done.

framework/Versions/3.
framework/Versions/3.
framework/Versions/3.
framework/Versions/3.
framework/Versions/3.
framework/Versions/3.

2/Resources/library/maqcExpressiondp
2/Resources/library/maqcExpressiondp
2/Resources/library/maqcExpression4p
2/Resources/library/maqcExpression4p
2/Resources/library/maqcExpressiondp
2/Resources/library/maqcExpressiondp
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Exploring the feature-level data

The read.xysfiles function returns, in this case, an instance of ExpressionFeatureSet and the inten-
sities of these files are stored in its exprs slot, which can be accessed with a method with the same
name.

exprs (maqgc) [10001:10010, 1:2]

## 9868701_532.xys 9868901_532.xys
## 10001 734.67 742 .22
## 10002 4786.11 4434 .67
## 10003 25600.33 26154.89
## 10004 1078.56 1092.78
## 10005 3056.44 3128.33
## 10006 310.22 385.00
## 10007 NA NA
## 10008 NA NA
## 10009 599.44 713.00
## 10010 28711.67 29794 .67

The boxplot method can be used to produce boxplots for the feature-level data.

MAQC Sample Data

14
|

12
|

10
|

T T T T T T
9868701_532.xys 9869001_532.xys 9870401_532.xys

Figure 6.1: Distribution of log,-intensities of samples on the MAQC dataset.

Similarly, a smoothed histogram for the feature-level data can be obtained with the hist method.

RMA algorithm

The RMA algorithm can be applied to the raw data of expression arrays. It is available via the rma
method. The algorithm will perform background subtraction, quantile normalization and summarization
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Figure 6.2: Smoothed histogram of log,-intensities of samples on the MAQC dataset.
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via median polish. The result of rma is an instance of ExpressionSet class, which also contains an exprs

slot and method.
eset <- rma(maqc)

## Background correcting
## Normalizing
## Calculating Expression

class(eset)

## [1] "ExpressionSet"
## attr(,"package")
## [1] "Biobase"

show(eset)

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 24000 features, 6 samples

##  element names: exprs
## protocolData

##  rowNames: 9868701_532.xys 9868901_532.xys ...
##  varLabels: exprs dates
##  varMetadata: labelDescription channel

## phenoData

##  rowNames: 9868701_532.xys 9868901_532.xys ...

##  varLabels: Key

##  varMetadata: channel labelDescription

## featureData: none

9870601_532.xys (6 total)

9870601_532.xys (6 total)
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## experimentData: use 'experimentData(object)'

## Annotation: pd.hgl8.60mer.expr

##
#i#
H#
##
##
#Hi#t
#i#t
#
##
##
#i#

exprs(eset) [1:10, 1:2]

9868701_532.xys 9868901_532.xys

NM_000014
NM_000015
NM_000016
NM_000017
NM_000018
NM_000019
NM_000020
NM_000021
NM_000022
NM_000023

12.286393
4.455020
12.386405
8.516991
12.578168
11.698035
8.910401
11.763186
8.918243
8.937284

12.
4.
12.
8.
12.

11

11

272719
625539
203391
541788
414070

.636985
OF
.810772
8.
9.

209599

445262
075812

The boxplot and hist methods are also implemented for ExpressionSet objects. Note that rma's
output is in the log, scale, so we call such methods using the argument transfo=identity, so the
data are not transformed in any way.

Assessing differential expression

After RMA

density
0.06 0.08 0.10 0.12

0.04

0.02

0.00

T
9868701_532.xys

9869001_532.xys 9870401_532.xys

After RMA

4 6 8 10 12 14 16

log—intensity

Figure 6.3: Boxplot and smoothed histogram for MAQC data after preprocessing.

One simple approach to assess differential expression is to flag units with log-ratios greater (in absolute
value) than 1, i.e. a change greater than 2-fold when comparing brain vs. universal reference.
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e <- exprs(eset)

index <- which(eset[["Key"]] == "brain")

d <- rowMeans (e[, index])-rowMeans(e[, -index])
a <- rowMeans(e)

sum(abs (d)>1)

## [1] 10043

Another approach is to use t-tests to infer whether or not there is differential expression.

tt <- rowttests(e, factor(eset[["Key"]]))
lod <- -loglO(tt[["p.value"]])

The MA plot can be used to visualize the behavior of the log-ratio as a function of average log-

intensity. Features with log-ratios greater (in absolute value) than 1 are candidates for being classified
as differentially expressed.

MAQC Sample Data

Log-ratio
0

4 6 8 10 12 14 16

Average Intensity

Figure 6.4: MA plot for Brain vs. Universal Reference. The red lines show the threshold for fold-change
of 2, up or down, which correspond to log- fold-change of 1 and —1, respectively.

The use of t-tests allows us to use the volcano plot to visualize candidates for differential expression.
Below, we highlight, in blue, the top 25 in log-ratio and, in red, the top 25 in effect size.

The limma Package can also be used to assess difference in expression between the two groups.

design <- model.matrix(~“factor(eset[["Key"]]))
fit <- 1lmFit(eset, design)

ebayes <- eBayes(fit)

lod <- -loglO(ebayes[["p.value"]][,2])
mtstat<- ebayes[["t"]][,2]
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Figure 6.5: Volcano plot for Brain vs. Universal Reference. The vertical red lines show the threshold
for fold-change of 2 (up or down), while the horizontal red line shows the threshold for p-values at the
1072 level. The probesets shown in solid blue diamonds are the top-25 probesets for log-ratio. The
probesets highlighted in red are the top-25 in p-value.

The Empirical Bayes approach implemented in /imma provides moderated ¢-statistic, shown to have a
better performance when compared to the standard ¢-statistic. Below, we reconstruct the volcano plot,
but using the moderated ¢-statisic.

The topTable command provides us a way of ranking genes for further evaluation. In the case below,
we adjust for multiple testing by FDR and look at the Top-10 genes.

tab <- topTable(ebayes, coef=2,

tab
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Moderated t

Log-ratio

Figure 6.6: Volcano plot for Brain vs. Universal Reference using moderated t-tests. The vertical red
lines show the threshold for fold-change of 2 (up or down), while the horizontal red line shows the
threshold for p-values at the 10~2 level. The probesets shown in solid blue diamonds are the top-25
probesets for log-ratio. The probesets highlighted in red are the top-25 in p-value (for the moderated
t-test). Note that there is more overlap between the top-25 for both log-ratio and p-value.

6.3 Obtaining Genotype Calls from SNP Arrays

The oligo package can genotype, using the CRLMM algorithm, several Affymetrix SNP arrays. To
do so, the user will need, in addition to the oligo package, an annotation data package specific to
the designed used in the experiment. Although these annotation packages are created using the pdin-
foBuilder package, the CRLMM algorithm requires additional hand-curated data, which are included
in the packages made available through the BioConductor website. Table 6.1 describes the supported
designs and the respective annotation packages.

Design Annotation Package
Mapping 50K XBA | pd.mapping50k.xba240
Mapping 50K HIND | pd.mapping50k.hind240
Mapping 250K NSP pd.mapping250k.nsp
Mapping 250K STY pd.mapping250k.sty

Genomewide SNP 5.0 | pd.genomewidesnp.5
Genomewide SNP 6.0 | pd.genomewidesnp.6

Table 6.1: SNP array designs currently supported by the oligo package and their respective annotation
packages. These annotation packages are made available through the BioConductor website and contain
hand-curated data, required by the CRLMM algorithm.
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As an example, we will use the 269 CEL files, on the XBA array, available on the HapMap website®,
which were downloaded and saved, uncompressed, to a subdirectory called snpData. Therefore, we
need to instruct the software to look for the files at the correct location. An output directory should
also be defined and that is the place where the summary files, including genotype calls and confidences
are stored. This output directory, which we chose to call crlmmResults, must not exist prior to the
CRLMM call, the software will take care of this task.

library("oligo")

path <- system.file('celFiles', package='hapmapl100kxba')
fullFilenames <- list.celfiles(path, full.names=TRUE)
outputDir <- file.path(getwd(), "crlmmResults")

Given the always increasing density of the SNP arrays, we developed efficient methods to process these
chips, reducing the required amount of memory even for large studies. Using this approach, we process
batches of SNPs at a time, saving partial results to disk. We refer the interested reader to [4] for
detailed information on the CRLMM algorithm. The genotyping strategy, in summary, has three steps:
A) quantile normalizes against a known reference distribution; B) summarizes the data to the SNP-allele
level using median polish; C) uses estimated parameters to classify the samples in genotype groups using
Mahalanobis distance.

The summaries are average intensities and log-ratios, defined as across allele and within strand, ie:

AS _ QA,S _g QB,S (61)

Ms = QA,S_QB757 (62)

where s defines the strand (antisense or sense). On the genomewide designs, SNP 5.0 and 6.0, the
strand information is dropped. These summaries can be obtained via getA and getM methods, which
return arrays with dimensions corresponding to SNPs, samples and strands (if applicable), respectively.
These measures are later used for genotyping.

CRLMM involves running an EM algorithm to adjust for average intensity and fragment length in the
log-ratio scale. These adjustments may take long time to run, depending on the combination of number
of samples and computer resources available. Below, we show the simplest way to call CRLMM, which
requires only the file names and output directory.

if (!file.exists(outputDir))
crlmm(fullFilenames, outputDir)

## Loading required package: pd.mappingb0k.xzbals0
## Preparing environment for normalization.

## Normalization.

## Genotyping.

http://www.hapmap.org
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The crlmm method does not return an object to the R session. Instead, it saves the objects to disk,
as not all systems are guaranteed to meet the memory requirements that SnpSuperSet objects might
need. For the user's convenience, the getCrlmmSummaries will read the information from disk and
make a SnpCallSetPlus or SnpCnvCallSetPlus object available to the user.

crlmmOut <- getCrlmmSummaries(outputDir)
calls(crlmmOut[1:5,1:2])

#Hit NA06985.CEL NA06991.CEL
## SNP_A-1507972 3 3
## SNP_A-1510136 3 3
## SNP_A-1511055 3 3
## SNP_A-1518245 2 3
## SNP_A-1641749 3 3

confs(crlmmOut[1:5,1:2])

#i#t NAO6985.CEL NA06991.CEL
## SNP_A-1507972 0.0009994257 0.0009993900
## SNP_A-1510136 0.0009994257 0.0009994257
## SNP_A-1511055 0.0009994257 0.0009994257
## SNP_A-1518245 0.0009992808 0.0009994257
## SNP_A-1641749 0.0009992852 0.0009992566

The genotype calls are represented by 1 (AA), 2 (AB) and 3 (BB). The confidence is the predicted
probability that the algorithm made the right call.

Summaries generated by the algorithm can also be accessed from the R session. The options for sum-
maries are "alleleA", "alleleB", "alleleA-sense", "alleleA-antisense", "alleleB-sense",
"alleleB-antisense". The options "alleleA" and "alleleB" are only available for SNP 5.0 and
SNP 6.0 platforms. The other options are to be used with 50K and 250K arrays.

Below, we choose two SNPs to show the different configurations of the genotype groups.

snps <- paste("SNP_A-", c(1703121, 1725330), sep="")
LIM <- c(-4, 4)

Figure 6.7(a) represents a SNP for which genotyping is simplified by the good discrimination of both
strands. Figure 6.7(b) shows a SNP for which features on the antisense strand have very good discrim-
ination power, while no information (for classification) can be extracted from the sense strand.

CRLMM was shown to outperform competing genotyping tools. We refer the reader to [5] for further
details on this subject. The genotypes provided by CRLMM, and in this example stored in crlmmOut,
can be easily used with other BioConductor tools, like the snpStats package, for downstream analyses.
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(a) SNP_A-1703121 has very good discrimination on (b) SNP_A-1725330 presents poor discrimination on

both strands and, as competing algorithms, CRLMM the sense strand. Because CRLMM does not average

has excelent performance on scenarios like this. On this across strands, it can perfectly predict the genotype

plot, genotype calls provided by oligo are represented in cluster each sample belongs to. On similar scenarios,

different colors (black: AA; red: AB; green: BB) competing algorithms are known to fail. Color scheme
follows Figure 6.7(a).

6.4 Preprocessing Exon Arrays

On this section, we use colon cancer sample data for exon arrays, available on the Affymetrix website?,
to demonstrate the use of the oligo package to preprocess these data. The interested reader can
download the CEL files and use read.celfiles to import the data. Here, however, we will use the
oligoData package to load this dataset, as shown below.

library(oligoData)
data(affyExonFS)

As already noted, oligo implements different classes depending on the nature of the data. Therefore, a
quick inspection, as in the snippet below, shows that affyExonFS is an ExonfeatureSet object. This
is a especially interesting feature, as it allows methods to behave differently depending on the object
class.

affyExonFS
## Loading required package: pd.huex.1.0.st.v2
Generally, RMA will background correct, quantile normalize and summarize to the probeset level, as

defined in the annotation packages. When working with an ExonFeatureSet object, processing to the
probeset level provides expression summaries at the exon level and can be obtained by setting the

2http://www.affymetrix.com/support/technical/sample_data/exon_array_data.affx
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argument target to "probeset", as presented below.

probesetSummaries <- rma(affyExonFS, target="probeset")

For Exon arrays, Affymetrix provides additional annotation files that define meta-probesets (MPSs), used
to summarize the data to the gene level. These MPSs are classified in three groups — core, extended and
full — depending on the level of confidence of the sources used to generate such annotations. Additional
values allowed for the target argument are "core", "extended" and "full". The example below
shows how gene level summaries can be obtained through oligo.

geneSummaries <- rma(affyExonFS, target="core"

The results obtained from analyses performed with oligo can be easily combined with features offered
by other packages. As an example, we use the biomaRt package to obtain IDs of probesets on the
Human Exon array that map to Entrez Gene ID 10948 (ENSG00000131748).

library(RCurl)
## Loading required package: bitops

options(RCurlOptions=list(http.version=HTTP_VERSION_1_0))
library(biomaRt)
ensembl <- useMart("ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl",
host='may2009.archive.ensembl.org')
theIDs <- getBM(attributes="affy_huex_1_0_st_v2", filters="entrezgene",
values=10948, mart=ensembl)
names (theIDs) <- 'psets'

Combining this information with the annotation package associated to the data in affyExonFS, we
can get detailed facts on the probesets found to map to Entrez Gene ID 10948. Below, we obtain,
respectively, the MPS IDs, probeset IDs, probe IDs and start/stop positions for the probesets identified
above.

library(AnnotationDbi)
## Loading required package: GenomelInfoDb

conn <- db(affyExonFS)
fields <- 'meta_fsetid, pmfeature.fsetid, fid, start, stop'
tables <- 'featureSet, pmfeature, core_mps'
sql <- paste("SELECT", fields,
"FROM", tables,
"WHERE pmfeature.fsetid=featureSet.fsetid",
"AND featureSet.fsetid=core_mps.fsetid",
"AND pmfeature.fsetid=:psets")
probesetInfo <- dbGetPreparedQuery(conn, sql, theIDs)

The availability of start and stop positions of the probesets improves the visualization of the summaries
at the exon level. If genomic coordinates were available for probes themselves, visualization could be
improved even more. To achieve this, we first obtain the sequences for the probes identified above. We



38 oligo User's Guide

saw that the pmSequence method provides the sequences for all PM probes identified on the chip but,
instead, we directly load the Biostrings object used to store the sequence information for these probes.
This gives us access not only to the sequences, but also to the probe IDs linked to them.

library(Biostrings)
data(pmSequence, package=annotation(affyExonFS))

Because probe IDs are available in the pmSequence object, we can easily restrict our search to the
probes listed in the probesetInfo object.

idx <- match(probesetInfol[["fid"]], pmSequence[["fid"]])
pmSequence <- pmSequence [idx,]

The pmSequence object behaves like a data.frame, but it is comprised of complex data structures
defined in Biostrings. Below, we modify its representation to make it a regular data.frame object.

pmSequence <- data.frame(fid=pmSequencel[["fid"]],
sequence = as.character(pmSequence[["sequence"]]),
stringsAsFactors=FALSE)

By joining the probesetInfo and pmSequence objects, we centralize the available probe annotation.

probeInfo <- merge(probesetInfo, pmSequence)

The genomic coordinates in probeInfo refer to the probesets. To better visualize the observed probe
intensities, we would be better off if the coordinates were relative to the probes. Below, we use the
BSgenome.Hsapiens.UCSC.hg18 to obtain up-to-date genomic coordinates. The coordinates are found
by aligning the probe sequences to the reference genome made available through the package. Because
Entrez Gene ID 10948 is located on chromosome 17, the search is limited to this region.

library("BSgenome.Hsapiens.UCSC.hgl8")

## Loading required package: BSgenome
## Loading required package: GenomicRanges
## Loading required package: riracklayer

chr17 <- Hsapiens[["chr17"]]

seqgs <- complement (DNAStringSet (probeInfo[["sequence"]]))
seqs <- PDict(seqs)

matches <- matchPDict(seqs, chri7)

After matching the sequences, we update the genomic coordinates.

probeInfo[["start"]] <- unlist(startIndex(matches))
probeInfo[["stop"]] <- unlist(endIndex(matches))

With the updated coordinates, we reorder the probe information object, probeInfo, and extract the
probe intensities in the same order. The probe ID field, fid in probeInfo, provides direct access to
the probes of interest. The exprs method is used to access the intensity matrix of the affyExonFS
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object and immediately subsetted to the probes of interest. After subsetting the observed intensities,
we log,-transform the data.

probeInfo <- probelnfo[order(probelnfol[["start"]]),]
probeData <- exprs(affyExonFS) [probeInfol[["fid"]],]
probeData <- log2(probeData)

We use the updated genomic to estimate the probeset coverage. This information will be used when
plotting the data and will provide approximate delimiters of the probesets.

attach(probelInfo)
probesetStart <- aggregate(as.data.frame(start), list(fsetid=fsetid), min)
names (probesetStart) <- c("fsetid", "start")

probesetStop <- aggregate(as.data.frame(stop), list(fsetid=fsetid), max)
names (probesetStop) <- c("fsetid", "stop")
detach(probeInfo)

The psInfo object will store the probeset information (probeset ID, start and stop positions), as shown
below. After ordering appropriately the data, the psInfo probeset is attached, to simplify its usage
during the R session.

psInfo <- merge(probesetStart, probesetStop)

psInfo <- psInfolorder(psInfo[["start"]]),]
psInfo[["fsetid"]] <- as.character(psInfo[["fsetid"]])
attach(psInfo)

probesetData <- exprs(probesetSummaries[fsetid,])
detach(psInfo)

To visualize the data processed by oligo, we will use the GenomeGraphs package. To match the genome
build used to update the probe coordinates, an archived version of the database will be queried.

library(GenomeGraphs)
## Loading required package: grid

probeids <- as.character(probeInfol[["fsetid"]])

ensembl <- useMart("ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl", host='may2009.
## ensembl = useMart("ensembl"”, dataset="hsapiens_gene_ensembl")

geneid <- "ENSG00000131748"

title <- makeTitle(text=geneid, color="darkred")

The raw data, in the log, scale, will be represented by the raw object below, created with the
makeExonArray constructor.

attach(probelInfo)

raw <- makeExonArray(intensity=probeData,
probeStart=start,
probeEnd=stop,
probeld=probeids,
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nProbes=rep(1, nrow(probelnfo)),
dp=DisplayPars(color="blue", mapColor="dodgerblue2"),
displayProbesets=FALSE)

detach(probeIlnfo)

The summarized data is also represented through an object created by makeExonArray. The structure
is identical to the one used above.

attach(psInfo)

exon <- makeExonArray(intensity=probesetData,
probeStart=start,
probeEnd=stop,
probeld=fsetid,
nProbes=rep(1, nrow(psInfo)),
dp=DisplayPars(color="seagreen",

mapColor="seagreen"),

displayProbesets=FALSE)

To represent the probesets designed by Affymetrix, we use an AnnotationTrack object.

affyModel <- makeAnnotationTrack(start = start,

end = stop,

feature = "gene_model",

group = geneid,

dp = DisplayPars(gene_model="darkgreen"))
detach(psInfo)

The gene and transcripts representations are build as follows. Affymetrix probes will be represented in
green, while the gene will be in orange; transcripts are represented in blue.

gene <- makeGene(id=geneid, biomart=ensembl)
transcript <- makeTranscript(id=geneid, biomart=ensembl)
legend <- makelLegend(c("Affymetrix", "Gene"), fill=c("darkgreen", "orange"))

Figure 6.7, generated with the gdPlot function, shows the representation of the log,-intensities and
summaries at the exon level. It also shows probesets, gene and transcripts on the region of interest.

Below, we identify the meta-probeset ID associated to the probes used above. Once that is known, we
can extract the proper gene-level summaries stored in geneSummaries.

mps <- unique(probelInfo[["meta_fsetid"]])
mps <- as.character (mps)
mps

## [1] "3720343"
Therefore, the standard accessors can be used to obtain the gene summaries for the unit above. Fig-

ure 6.8 shows the expressions for gene ENSG00000131748 across the 33 samples available on this
dataset.
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Figure 6.7: Visual representation of observed log,-intensities and summarized data at the exon level for
gene ENSG00000131748. The probes, gene and transcript are also represented, respectively, in green,
orange and blue.
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Figure 6.8: Expression levels estimated through RMA at the gene level.

6.5 Interfacing with ACME to Find Enriched Regions Using
Tiling Arrays

On this Section, we demonstrate how oligo can be easily combined with tools that rely on the structure
implemented in the Biobase package. Using a sample ChIP-chip dataset kindly provided by NimbleGen,
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we could use the getNgsColorsInfo function to obtain the information regarding channels and sample
names for the XYS files saved on disk. The getNgsColorsInfo parses the file names and, using the
_532 and _635 strings in the names, suggests channels and sample names for each XYS file available.

library(oligo)
info <- getNgsColorsInfo("tilingData", full=TRUE)

Combining the results in info with read.xyfiles2, we read the XYS files using a data structure that
simplifies the data management across different channels.

nimbleTilingFS <- read.xysfiles2(info[,2], info[,1], sampleNames=infol[,3])

However, on this example, we will load the aforementioned dataset from the oligoData package, as
described below:

library(oligoData)
data(nimbleTilingFS)
nimbleTilingFS

## Loading required package: pd.2006.07.18.hgl8.refseq.promoter

The user can access the channel specific data by calling the channel method. The resulting object is
an ExpressionSet object that the user can use as required.

cl <- channel(nimbleTilingFS, "channell")
c2 <- channel(nimbleTilingFS, "channel2")

Detailed information on the PM probes available on the array can be obtained by directly querying the
annotation package. The call below will extract the fid, fsetid, chromosome and start position of
each probe from the annotation package and order the results by chromosome and start position.

fields <- 'fid, fsetid, chrom as chromosome, position as start'
sql <- paste("SELECT", fields,
"FROM pmfeature INNER JOIN featureSet USING(fsetid)",
"ORDER BY chrom, position")
annotPM <- dbGetQuery(db(nimbleTilingFS), sql)

Using the probe sequence, the end position of the probe can be easily obtained. We load the sequences
directly, so the fid field can be used to order the sequences appropriately.

data(pmSequence, package=annotation(nimbleTilingFS))
idx <- match(annotPM[["fid"]], pmSequence[["fid"]])
pmSequence <- pmSequence[idx,]

To obtain the end position, we use width, defined in the Biostrings package.

attach(annotPM)

library(Biostrings)

annotPM[["end"]] <- start+width(pmSequence[["sequence"]])-1
head (annotPM)
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H## fid fsetid chromosome start end
## 1 392369 5622 chrl 56753 56808
## 2 286872 5622 chrl 56853 56909
## 3 229027 5622 chrl 56953 57007
## 4 386658 5622 chrl 57053 57114
## 5 85534 5622 chrl 57153 57202
## 6 170025 5622 chrl 57253 57307

The fid field corresponds to the row number in the nimbleTilingFS object. When applied to the
raw data object, the getM function returns a matrix with the log,-ratio of the intensities. Below, we
get the log,-ratios corresponding to the PM probes described in the annotPM object.

ratioPM <- getM(nimbleTilingFS) [fid,]
dimnames (ratioPM) <- NULL
detach(annotPM)

class (ratioPM)

## [1] "matrix"

By converting annotPM to an AnnotatedDataFrame, it can be used in the featureData slot of eSet-like
objects.

annotPM <- as(annotPM, "AnnotatedDataFrame")

We will use the ACME package to calculate enrichment, using algorithms that are insensitive to nor-
malization strategies and array noise. To work with this package, we need to create, first, an ACMESet
object, which contains chromosome, start and end positions in the featureData slot.

library (ACME)

##

## Attaching package: ’ACME’

##

## The following object is masked from ’package:oligoClasses’:
##

## chromosome

acme <- new("ACMESet", exprs=ratioPM, featureData=annotPM)

The do.aGFF.calc function processes the ACMESet object, using a window size and threshold to
identify the positive probes in the object.

calc <- do.aGFF.calc(acme, window=1000, thresh=0.95)

The calc object is then used to find enriched regions with the findRegions function, as shown below.

regs <- findRegions(calc)
head(regs)
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Start End
56753 356721
356821 357621
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Median
5.164068e-01
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9.630698e-05



Chapter 7

High Performance Computing Features

Starting on series 1.12.x, the oligo package offers high performance computing features:

e Support to larger datasets; and
e Support to parallel computing.

These features are initially available for RMA methods on Expression/Gene/Exon arrays and will be
implemented in other methods as necessity arrives.

The use of such features is as simple as loading the required packages (and registering a parallel backend,
if parallel computing is desired). The methods themselves are able to detect if these experimental
features are enabled and use them if possible, without any modification of the method call.

7.1 Support to large datasets

The oligo package uses the features implemented by the f/ package to provide a better support to large
datasets. If the user prefers not to use the ff package, then regular R objects are used and the usual
memory restrictions apply.

The support to large datasets is enabled by simply loading the ff package. Once that is done, oligo
saves ff files to the directory pointed by 1dPath().

library(oligo)
library(ff)
1dPath()

Methods (rma) uses batches to process data. When possible (eg., background correction), it uses at
most ocSamples() samples simultaneously at processing. For procedures that process probes (like
summarization), a maximum of ocProbesets() are used simultaneously. Therefore, the user should
tune these parameters for a better performance.

ocSamples ()
ocSamples (50)
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ocProbesets ()
ocProbesets(100) ## changing default to 100

library(oligo)

library(£ff)

rawData <- read.celfiles(list.celfiles())
rmaRes <- rma(rawData)

exprs (rmaRes) [1:10,]

7.2 Parallel computing

The oligo package can make use of a parallel environment (with rma in the meantime) set via foreach
package, as long as the user:

e enables support to large datasets (load f);
e loads the foreach package;
e register a parallel backend (for example, through one of the doMPI, doMC, doSNOW packages).

A simple example is shown below:

library(ff)
library(foreach)
library(doMC)
registerDoMC(2)
library(oligo)

rawData <- read.celfiles(list.celfiles())
rmaRes <- rma(rawData)
rmaRes

7.3 Parallel Computing on Multicore Machines

On multicore machines, one alternative for parallel preprocessing is shown below. It assumes that the
machine has enough RAM to deal with the dataset and that the ff package is NOT loaded. The snippet
compares the performance between a single-threaded run of rma, although fitProbeLevelModel would
also benefit from it, and a run using 4 threads (which is enabled by setting the R_THREADS environment
variable).

library(oligoData)
data(affyExonFS)
t0 <- system.time(resO <- rma(affyExonFS))

## Background correcting



oligo User's Guide

## Normalizing
## Calculating Expression

Sys.setenv (R_THREADS=4)
tl <- system.time(resl <- rma(affyExonFS))

## Background correcting
## Normalizing
## Calculating Expression

all.equal(res0O, resl)

## [1] TRUE
t0
Hit user system elapsed

## 11.968 0.593 13.459
t1

Hit user system elapsed
## 17.536 0.950 6.849
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Chapter 8

Session Info

##
#i#t
H
##
##
##
#i#
H
##
##
#Hi#t
##
##
##
##
##
H
##
##
#Hi#t
##
##
##
##
##t
H#
##
##
Hi#
##

R version 3.2.0 beta (2015-04-05 r68152)
Platform: x86_64-apple-darwinl0.8.0 (64-bit)

Running under: 0S X 10.8.5 (Mountain Lion)

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:

[1] grid stats4 parallel methods
[9] datasets base

other attached packages:
[1] ACME_2.23.0
[3] GenomeGraphs_1.27.0
[5] BSgenome_1.35.20
[7] GenomicRanges_1.19.52
[9] GenomeInfoDb_1.3.18
[11] RCurl_1.95-4.5
[13] pd.huex.1.0.st.v2_3.12.0
[15] pd.hgl8.60mer.expr_3.12.0
[17] genefilter_1.49.2
[19] pd.hg.u95av2_3.12.0
[21] DBI_0.3.1
[23] oligo_1.31.7
[256] XVector_0.7.4
[27] S4Vectors_0.5.23
[29] oligoClasses_1.29.6
[31] knitr_1.9

loaded via a namespace (and not attached):
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stats graphics grDevices utils

pd.2006.07.18.hgl8.refseq.promoter_1.8.1
BSgenome .Hsapiens.UCSC.hgl18_1.3.1000
rtracklayer_1.27.12
AnnotationDbi_1.29.23

biomaRt_2.23.5

bitops_1.0-6
pd.mappingb0k.xba240_3.12.0
limma_3.23.13
maqcExpressiondplex_1.11.1
RSQLite_1.0.0

oligoData_1.8.0

Biostrings_2.35.12

IRanges_2.1.44

Biobase_2.27.3

BiocGenerics_0.13.11



50

#Hi#
##
##
##
Hi#t
#Hi#
##
##
#i#
Hi#t

(1]

(4]

(7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]

futile.logger_1.4

highr _0.4.1

tools_3.2.0

bit_1.1-12
preprocessCore_1.29.0
stringr_0.6.2
XML_3.98-1.1
GenomicAlignments_1.3.34
splines_3.2.0
KernSmooth_2.23-14

BiocInstaller_1.17.7
futile.options_1.0.0
zlibbioc_1.13.3
annotate_1.45.4
ff_2.2-13
affxparser_1.39.4
survival_2.38-1
Rsamtools_1.19.52
BiocStyle_1.5.4
affyio_1.35.0

oligo User's Guide

formatR_1.1
iterators_1.0.7
digest_0.6.8
evaluate_0.5.5
foreach_1.4.2
BiocParallel_1.1.27
lambda.r_1.1.7
codetools_0.2-11
xtable_1.7-4
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