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Abstract

This vignette introduces the use of the Bioconductor package SDAMS, which is designed for

differential abundance analysis for metabolomics and proteomics data from mass spectrometry

and differential expression analysis for single-cell RNA sequencing data. These data may contain

a large fraction of zero values and the non-zero part may not be normally distributed. SDAMS

considers a two-part semi-parametric model, a logistic regression for the zero proportion and a

semi-parametric log-linear model for the non-zero values. A kernel-smoothed likelihood method

is proposed to estimate regression coefficients in the two-part model and a likelihood ratio test is

constructed for differential abundant/expression analysis.

∗to whom correspondence should be addressed
†to whom correspondence should be addressed

1



The SDAMS package 2

Contents

1 Citation 3

2 Quick Start 3

3 Data Input 4

3.1 Create SummarizedExperiment object from csv files . . . . . . . . . . . . . . . . . . . 4

3.2 Create SummarizedExperiment object from seperate matrix . . . . . . . . . . . . . . . 6

4 Data Analysis 7

4.1 Proteomics example data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Single-cell RNA sequencing example data . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Theory for SDAMS 10

5.1 A two-part semi-parametric model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Identification of differentially abundant features based on data from mass spectrometry . 11

5.3 Identification of differentially expressed genes based on single-cell RNA sequencing data 11

6 Session Info 12



The SDAMS package 3

1 Citation

The package SDAMS implements statistical methods from the following publication. If you use SDAMS

in the published research, please cite:

Li, Y., Fan, T.W., Lane, A.N. et al. SDA: a semi-parametric differential abundance analysis method for

metabolomics and proteomics data. BMC Bioinformatics 20, 501 (2019).

Yuntong Li, Chi Wang and Li Chen: SDAMS: an R Package for differential expression analysis of

single-cell RNA sequencing data (Manuscript).

2 Quick Start

This section show the most basic SDAMS work flow for a differential abundance analysis for metabolomics

and proteomics data from mass spectrometry or differential expression analysis for single-cell RNA

sequencing data:

1. Create a SummarizedExperiment object using function createSEFromMatrix or createSEFromCSV.

In this section we use an example SummarizedExperiment object directly, which is an object of

SummarizedExperiment class named exampleSumExp contained in this package.

2. Perform a differential abundance analysis or differential expression analysis using SDA.

> library("SDAMS")

> data("exampleSumExp")

> results <- SDA(exampleSumExp)

Here, the SummarizedExperiment class object exampleSumExp contained in the package is the pro-

teomics dataset, which a matrix-like container for proteomic features with experimental subject grouping

information. There are 560 features for 202 experimental subjects with 49 prostate cancer subjects and

153 healthy subjects (0 for healthy control and 1 for patient in this case). This is a 10% subsample

of the original dataset. The features are stored as a matrix in the assay slot. Each row in this matrix

represents a proteomic feature and each column represents a subject. See Reference [1] for detailed

information regarding this dataset.

> data("exampleSingleCell")

> results_SC <- SDA(exampleSingleCell)

The SDAMS package also provides an example for single-cell RNA sequencing data in a SummarizedExperiment

class object exampleSingleCell. There are 92 single cells (48 mouse embryonic stem (ES) cells and

44 mouse embryonic fibroblasts (MEF) cells) that were analyzed. This example data in the form of
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TPM (transcripts per kilobase million) values contains 10% of genes which are randomly sampled from

the original dataset. See Reference [2] for detailed information regarding this dataset.

3 Data Input

3.1 Create SummarizedExperiment object from csv files

The proteomics or metabolomics data is stored as a matrix with each row being a feature and each

column corresponding to a subject. All data in this matrix are non-negative. Another information

required is the phenotype covariates. Here we focus on the binary grouping information, for example,

numeric 1 for control group and 0 for case group. But it can also be characters, such as "healthy" and

"disease". To utilize SDAMS package, we should have two separate csv files (for example ’feature.csv’

and ’group.csv’) as inputs for createSEfromCSV to creat a SummarizedExperiment object.

Note:

1. The 1st column in ’feature.csv’ represents feature names and the 1st row represents subject codes.

2. The 1st column in ’group.csv’ represents subject codes, for example, Subject1, Subject2....

The format for "csv files" should look like as Figure 1 and Figure 2:

Figure 1: Example of ’feature.csv’ pattern

After creating the two csv files, we need the paths for the two csv files:
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Figure 2: Example of ’group.csv’ pattern

> path1 <- "/path/to/your/feature.csv/"

> path2 <- "/path/to/your/group.csv/"

Here for demonstration purpose, we use the data stored in inst/extdata directory. This is the csv

format of the data in exampleSumExp which is a SummarizedExperiment object we described before.

> directory1 <- system.file("extdata", package = "SDAMS", mustWork = TRUE)

> path1 <- file.path(directory1, "ProstateFeature.csv")

> directory2 <- system.file("extdata", package = "SDAMS", mustWork = TRUE)

> path2 <- file.path(directory2, "ProstateGroup.csv")

then use the function createSEFromCSV after loading the SDAMS package.

> library("SDAMS")

> exampleSE1 <- createSEFromCSV(path1, path2)

> exampleSE1

class: SummarizedExperiment

dim: 560 202

metadata(0):

assays(1): counts

rownames(560): 93922 87209 ... 180624 130855

rowData names(0):
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colnames(202): 9512 9963 ... 49341 49586

colData names(1): grouping

The feature data and grouping information can be accessed using SummarizedExperiment commands:

> head(assay(exampleSE1)[,1:10])

9512 9963 9965 9975 9979 9997 10015 10034 10044 10047

93922 0.00 0.00 0.00 0.00 0.00 0.00 68.97 0.00 0.00 0.00

87209 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 43.87

29633 0.00 0.00 0.00 0.00 0.00 0.00 0.00 57.21 0.00 0.00

40225 0.00 226.40 0.00 19.65 0.00 0.00 0.00 0.00 0.00 0.00

126342 0.00 0.00 0.00 0.00 0.00 20.43 0.00 0.00 109.93 0.00

42832 52.32 137.76 70.25 0.00 453.23 92.20 0.00 352.55 496.71 0.00

> head(colData(exampleSE1)$grouping)

[1] 0 1 1 1 1 1

3.2 Create SummarizedExperiment object from seperate matrix

If the two datasets have already been cleaned and loaded into R as matrices, then we can use

createSEFromMatrix to create a SummarizedExperiment object. Note that groupInfo is the de-

sign matrix. The first colomn of this design matrix is the cell subpopulation, and the following columns

could be additional covariates.

> set.seed(100)

> featureInfo <- matrix(runif(8000, -2, 5), ncol = 40)

> featureInfo[featureInfo<0] <- 0

> rownames(featureInfo) <- paste("gene", 1:200, sep = '')

> colnames(featureInfo) <- paste('cell', 1:40, sep = '')

> groupInfo <- data.frame(grouping=matrix(sample(0:1, 40, replace = TRUE),

+ ncol = 1))

> rownames(groupInfo) <- colnames(featureInfo)

> exampleSE2 <- createSEFromMatrix(feature = featureInfo, colData = groupInfo)

> exampleSE2

class: SummarizedExperiment

dim: 200 40
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metadata(0):

assays(1): counts

rownames(200): gene1 gene2 ... gene199 gene200

rowData names(0):

colnames(40): cell1 cell2 ... cell39 cell40

colData names(1): grouping

> head(assay(exampleSE2)[,1:10])

cell1 cell2 cell3 cell4 cell5 cell6 cell7

gene1 0.1543628 0.5871725 1.5786619 0.000000 0.000000 0.0000000 4.8142065

gene2 0.0000000 4.6942599 0.0000000 2.057938 0.000000 0.0000000 3.4021976

gene3 1.8662570 4.3950366 0.5245985 0.000000 1.105383 2.3676080 1.4648599

gene4 0.0000000 3.7633544 1.0626950 0.000000 1.609934 2.6975726 0.7482424

gene5 1.2798450 0.2363751 3.6214671 0.000000 4.474260 0.5612595 0.0000000

gene6 1.3863951 4.1439023 1.6442681 4.393398 0.000000 0.0000000 0.4924940

cell8 cell9 cell10

gene1 2.857807 0.6332892 1.9930932

gene2 0.000000 0.0000000 1.3506317

gene3 1.655411 4.7851556 0.1505902

gene4 3.693774 0.0000000 4.1987980

gene5 4.413107 2.2631995 1.7927709

gene6 4.624719 0.0000000 0.9549322

> head(colData(exampleSE2)$grouping)

[1] 0 1 1 1 0 1

>

4 Data Analysis

4.1 Proteomics example data

Finally, we perform differential abundance analyais using SummarizedExperiment object created in

previous section. This can be done by using function SDA. The theory behind SDA can be reached at

section 5. A list with point estimates, p-values, q-values and corresponding feature names is returned.

Below are the results generated by using the SummarizedExperiment object exampleSE1.



The SDAMS package 8

> results <- SDA(exampleSE1)

> head(results$gamma[,1])

[1] 0.1100009 0.8629447 -0.7151261 0.2876821 -0.1251631 0.6292037

> head(results$pv_gamma[,1])

[1] 0.8290701 0.1703578 0.2356975 0.5571851 0.7227301 0.1248023

> head(results$qv_gamma[,1])

[1] 0.4092097 0.1914385 0.2191259 0.3505466 0.3887992 0.1651784

In this example , there is only one group covariate applied to each subject. Here Xi is one dimension.

The covariate effect on the fraction of zero values for certain feature is γ, which is estimated to be 0.11

for the first feature, and 0.86 for the second feature, etc. The corresponding hypothesis is H0: γ = 0

vs. H1: γ ̸= 0. The p-values calculated from likelihood ratio test are returned in pv_gamma. Users can

determine their own significance level to make inference, such as 0.05 nominal level. We also provide a

FDR adjustment method [3] used in SDA for multiple comparison issues. Those results for γ are stored

in qv_gamma.

> head(results$beta[,1])

[1] -0.04912170 -1.11354659 -1.30566809 0.02484749 0.53967121 -0.22075205

> head(results$pv_beta[,1])

[1] 0.88988924 0.11334266 0.06081223 0.95500620 0.06770261 0.13832035

> head(results$qv_beta[,1])

[1] 0.7466379 0.2979437 0.2525717 0.7599717 0.2673415 0.3235222

The model parameter β is the log fold change in the non-zero abundance comparing different values

of the single group covariate for certain feature. The corresponding two-sided hypothesis is H0: β = 0

vs. H1: β ̸= 0. Again, SDA will return p-values and adjusted p-values (q-values) for parameter β, and

they are stored in pv_beta and qv_beta respectively.

> head(results$pv_2part[,1])

[1] 0.96764635 0.11153821 0.08538208 0.84038731 0.17695215 0.10266642

> head(results$qv_2part[,1])

[1] 0.4622205 0.1380966 0.1192246 0.4323376 0.1806273 0.1345612
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Hypothesis testing on overall effect of group covariate on certain feature is performed by assessing γ

and β. The null hypothesis H0 : γ = 0 and β = 0 against alternative hypothesis H1 : at least one

of the two parameters is non-zero. The p-values are calculated based on chi-square distribution with

2 degrees of freedom. And the corresponding q-values are calculated using the same procedure as in

one-part test.

> head(results$feat.names)

[1] "93922" "29633" "40225" "126342" "42832" "127351"

A vector of feature names is returned for convenience which corresponds to the results in the other

components.

4.2 Single-cell RNA sequencing example data

SDAMS can also perform differential expression analysis for single-cell RNA sequencing data.

In this section, we will use the example data generated in Section 3.2. This toy data set has 200 genes

and 40 cells. The first column of the design matrix is the cell subpopulation, and additional covariates

can be added into the design matrix. We are interested in identifying genes that are differentially

expressed in two different cell subpopulations, which is quantified by γZ and βZ . The γZ is the log odds

ratio comparing rate of expression, and βZ is the log fold change comparing the mean gene expression

of the expressed cells between the two cell subpopulations.

> results_SC <- SDA(exampleSE2)

> head(results_SC$pv_gamma[,1])

[1] 0.49647690 0.86968362 0.49647690 0.91895776 0.05805587 0.78112357

> head(results_SC$qv_gamma[,1])

[1] 0.9547633 0.9716152 0.9547633 0.9716152 0.6450652 0.9716152

> head(results_SC$pv_beta[,1])

[1] 0.4309475 0.5854066 0.8645949 0.6506803 0.7257676 0.7586484

> head(results_SC$qv_beta[,1])

[1] 0.9878665 0.9878665 0.9878665 0.9878665 0.9878665 0.9878665

> head(results_SC$pv_2part[,1])

[1] 0.5819540 0.8502325 0.7821025 0.8978987 0.1560542 0.9177733
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> head(results_SC$qv_2part[,1])

[1] 0.998765 0.998765 0.998765 0.998765 0.998765 0.998765

> head(results_SC$feat.names)

[1] "gene1" "gene2" "gene3" "gene4" "gene5" "gene6"

Three types of hypotheses can be tested through function SDA: H1
0 : βZ = 0, H2

0 : γZ = 0, and

H3
0 : γZ = 0 and βZ = 0. Likelihood ratio test is conducted for each test and p-value is returned by

SDA for each single gene. The corresponding q-values are also calculated to address multiple comparison

correction. For Hypothesis H1
0 , the p-value and corresponding q-value for each gene are returned in

pv_beta and qv_beta. For Hypothesis H2
0 , the p-value and corresponding q-value for each gene

are returned in pv_gamma and qv_gamma. For example, the p-value for testing the covariate effect on

comparing the proportion of drop-outs for Gene 1 is 0.496, which is not significant under 0.05 level. The

corresponding q-value is 0.955. For testing whether there is difference in either the rate of expression

or mean expression for the expressed cells, H3
0 , the p-value and corresponding q-value for each gene are

returned in pv_2part and qv_2part.

5 Theory for SDAMS

As mentioned in the abstract, metabolomics and proteomics data from mass spectrometry or single-cell

RNA sequencing data maybe a mixture of zero intensity values and possibly non-normally distributed

non-zero intensity values. Therefore, the differential abundance/expression analysis needs to be per-

formed to compare both the zero proportion and the mean of non-zero values between groups and

also allows adjustment of covariates. SDA is a two-part model which addresses these issues that uses a

logistic regression model to characterize the zero proportion and a semiparametric model to characterize

non-zero values.

5.1 A two-part semi-parametric model

The differential abundance/expression analysis in SDAMS has the following forms. For binary part:

log(
πi

1− πi

) = γ0 + γX i,

For continuous non-zero part:

log(Yi) = βX i + εi,
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where Yi (i = 1, 2, ..., N) is a random variable and πi = Pr(Yi = 0). X i is a vector of covariates. The

corresponding model parameters γ quantify the covariates effects on the fraction of zero values and γ0

is the intercept. β are the model parameters quantifying the covariates effects on the non-zero values,

and εi (i = 1, 2, ..., N) are independent error terms with a common but completely unspecified density

function f . Importantly, we do not impose any distributional assumption on f . Without assuming

a specific parametric distribution for εi, this model is much more flexible to characterize data with

unknown and possibly non-normal distribution. We replace f by its kernel density estimator in the

likelihood function. The maximum likelihood estimator is obtained through a trust region maximization

algorithm.

5.2 Identification of differentially abundant features based on data from

mass spectrometry

In this case, Yi represents the abundance of certain feature for subject i, πi = Pr(Yi = 0) is the prob-

ability of point mass. X i = (Xi1, Xi2, ..., XiQ)
T is a Q-vector covariates that specifies the treatment

conditions applied to subject i. The corresponding Q-vector of model parameters γ = (γ1, γ2, ..., γQ)
T

and β = (β1, β2, ..., βQ) quantify the covariates effects for certain feature.

For each feature, the likelihood ratio test is performed on the null hypothesis H0 : γq = 0 and βq = 0

against alternative hypothesis H1 : at least one of the two parameters is non-zero. We also consider

the hypotheses for testing γq = 0 and βq = 0 separately. To adjust for multiple comparisons across

features, the false discovery discovery rate (FDR) q-value is calculated based on the qvalue function

in qvalue package in R/Bioconductor (See Reference [3] for details).

5.3 Identification of differentially expressed genes based on single-cell

RNA sequencing data

In this case, Yi represents the expression (TPM value) of certain gene in the ith cell, 1−πi = Pr(Yi > 0)

is the rate of expression. X i = (Zi,W i)
T is a vector of covariates with Zi being a binary indicator of

the cell population under comparison and W i being a vector of other covariates, e.g. batch and cellular

detection rate, and γ = (γZ ,γW ) and β = (βZ ,βW ) are model parameters.

We are interested in identifying genes that are differentially expressed in two different cell subpopulations,

as quantified by γZ and βZ . For each gene, three null hypotheses, i.e. βZ = 0, γZ = 0, and

βZ = 0 and γZ = 0, are examined based on likelihood ratio tests. Multiple comparison correction is

addressed by calculating the false discovery discovery rate (q-values) (See Reference [3] for details).
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6 Session Info

> toLatex(sessionInfo())

• R version 4.5.0 RC (2025-04-04 r88126), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,

LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,

LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,

LC_IDENTIFICATION=C

• Time zone: America/New_York

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.2 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

• Other packages: Biobase 2.68.0, BiocGenerics 0.54.0, GenomeInfoDb 1.44.0,

GenomicRanges 1.60.0, IRanges 2.42.0, MatrixGenerics 1.20.0, S4Vectors 0.46.0,

SDAMS 1.28.0, SummarizedExperiment 1.38.0, generics 0.1.3, matrixStats 1.5.0

• Loaded via a namespace (and not attached): DelayedArray 0.34.0, GenomeInfoDbData 1.2.14,

Matrix 1.7-3, R6 2.6.1, Rcpp 1.0.14, S4Arrays 1.8.0, SparseArray 1.8.0, UCSC.utils 1.4.0,

XVector 0.48.0, abind 1.4-8, cli 3.6.4, colorspace 2.1-1, compiler 4.5.0, crayon 1.5.3, dplyr 1.1.4,

ggplot2 3.5.2, glue 1.8.0, grid 4.5.0, gtable 0.3.6, httr 1.4.7, jsonlite 2.0.0, lattice 0.22-7,

lifecycle 1.0.4, magrittr 2.0.3, munsell 0.5.1, pillar 1.10.2, pkgconfig 2.0.3, plyr 1.8.9,

qvalue 2.40.0, reshape2 1.4.4, rlang 1.1.6, scales 1.3.0, splines 4.5.0, stringi 1.8.7, stringr 1.5.1,

tibble 3.2.1, tidyselect 1.2.1, tools 4.5.0, trust 0.1-8, vctrs 0.6.5
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