
A quick overview of the S4 class system

Hervé Pagès
hpages.on.github@gmail.com

June 2016

mailto:hpages.on.github@gmail.com

What is S4?

S4 from an end-user point of view

Implementing an S4 class (in 4 slides)

Extending an existing class

What else?

Outline

What is S4?

S4 from an end-user point of view

Implementing an S4 class (in 4 slides)

Extending an existing class

What else?

The S4 class system

▶ The S4 class system is a set of facilities provided in R for OO
programming.

▶ Implemented in the methods package.
▶ On a fresh R session:

> sessionInfo()
...
attached base packages:
[1] stats graphics grDevices utils datasets
[6] methods base

▶ R also supports an older class system: the S3 class system.

A different world

The syntax

> foo(x, ...)

not:

> x.foo(...)

like in other OO programming languages.

The central concepts
▶ The core components: classes1, generic functions and methods
▶ The glue: method dispatch (supports simple and multiple dispatch)

1also called formal classes, to distinguish them from the S3 classes aka old style classes

The result
> ls('package:methods')

[1] "addNextMethod" "allGenerics"
[3] "allNames" "Arith"
[5] "as" "as<-"
[7] "asMethodDefinition" "assignClassDef"

...
[211] "testVirtual" "traceOff"
[213] "traceOn" "tryNew"
[215] "unRematchDefinition" "validObject"
[217] "validSlotNames"

▶ Rich, complex, can be intimidating
▶ The classes and methods we implement in our packages can be hard to

document, especially when the class hierarchy is complicated and multiple
dispatch is used

S4 in Bioconductor

▶ Heavily used. In BioC 3.3: 3158 classes and 22511 methods defined in 609
packages! (out of 1211 software packages)

▶ Top 10: 128 classes in ChemmineOB, 98 in flowCore, 79 in IRanges, 68 in
rsbml , 61 in ShortRead , 58 in Biostrings, 51 in rtracklayer , 50 in
oligoClasses, 45 in flowUtils, and 40 in BaseSpaceR.

▶ For the end user: it’s mostly transparent. But when something goes
wrong, error messages issued by the S4 class system can be hard to
understand. Also it can be hard to find the documentation for a specific
method.

▶ Most Bioconductor packages use only a small subset of the S4 capabilities
(covers 99.99% of our needs)

Outline

What is S4?

S4 from an end-user point of view

Implementing an S4 class (in 4 slides)

Extending an existing class

What else?

Where do S4 objects come from?

From a dataset
> library(graph)
> data(apopGraph)
> apopGraph

A graphNEL graph with directed edges
Number of Nodes = 50
Number of Edges = 59

From using an object constructor function

> library(IRanges)
> IRanges(start=c(101, 25), end=c(110, 80))

IRanges object with 2 ranges and 0 metadata columns:
start end width

<integer> <integer> <integer>
[1] 101 110 10
[2] 25 80 56

From a coercion
> library(Matrix)
> m <- matrix(3:-4, nrow=2)
> as(m, "Matrix")

2 x 4 Matrix of class "dgeMatrix"
[,1] [,2] [,3] [,4]

[1,] 3 1 -1 -3
[2,] 2 0 -2 -4

From using a specialized high-level constructor

> library(GenomicFeatures)
> makeTxDbFromUCSC("sacCer2", tablename="ensGene")

TxDb object:
Db type: TxDb
Supporting package: GenomicFeatures
Data source: UCSC
Genome: sacCer2
Organism: Saccharomyces cerevisiae
Taxonomy ID: 4932
UCSC Table: ensGene
UCSC Track: Ensembl Genes
...

From using a high-level I/O function

> library(ShortRead)
> path_to_my_data <- system.file(
+ package="ShortRead",
+ "extdata", "Data", "C1-36Firecrest", "Bustard", "GERALD")
> lane1 <- readFastq(path_to_my_data, pattern="s_1_sequence.txt")
> lane1

class: ShortReadQ
length: 256 reads; width: 36 cycles

Inside another object

> sread(lane1)

DNAStringSet object of length 256:
width seq

[1] 36 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT
[2] 36 GATTTCTTACCTATTAGTGGTTGAACAGCATCGGAC
[3] 36 GCGGTGGTCTATAGTGTTATTAATATCAATTTGGGT
[4] 36 GTTACCATGATGTTATTTCTTCATTTGGAGGTAAAA
[5] 36 GTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCTT
...

[252] 36 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAGT
[253] 36 GTTTTACAGACACCTAAAGCTACATCGTCAACGTTA
[254] 36 GATGAACTAAGTCAACCTCAGCACTAACCTTGCGAG
[255] 36 GTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTA
[256] 36 GCAATCTGCCGACCACTCGCGATTCAATCATGACTT

How to manipulate S4 objects?

Low-level: getters and setters

> ir <- IRanges(start=c(101, 25), end=c(110, 80))
> width(ir)

[1] 10 56

> width(ir) <- width(ir) - 5
> ir

IRanges object with 2 ranges and 0 metadata columns:
start end width

<integer> <integer> <integer>
[1] 101 105 5
[2] 25 75 51

High-level: plenty of specialized methods

> qa1 <- qa(lane1, lane="lane1")
> class(qa1)

[1] "ShortReadQQA"
attr(,"package")
[1] "ShortRead"

How to find the right man page?

▶ class?graphNEL or equivalently ?`graphNEL-class` for accessing the man
page of a class

▶ ?qa for accessing the man page of a generic function
▶ The man page for a generic might also document some or all of the

methods for this generic. The See Also: section might give a clue. Also
using showMethods() can be useful:
> showMethods("qa")
Function: qa (package ShortRead)
dirPath="ShortReadQ"
dirPath="SolexaPath"
dirPath="character"
dirPath="list"

▶ ?`qa,ShortReadQ-method` to access the man page for a particular method
(might be the same man page as for the generic)

▶ In doubt: ??qa will search the man pages of all the installed packages and
return the list of man pages that contain the string qa

Inspecting objects and discovering methods

▶ class() and showClass()
> class(lane1)
[1] "ShortReadQ"
attr(,"package")
[1] "ShortRead"
> showClass("ShortReadQ")
Class "ShortReadQ" [package "ShortRead"]

Slots:

Name: quality sread id
Class: QualityScore DNAStringSet BStringSet

Extends:
Class "ShortRead", directly
Class ".ShortReadBase", by class "ShortRead", distance 2

Known Subclasses: "AlignedRead"

▶ str() for compact display of the content of an object
▶ showMethods() to discover methods
▶ selectMethod() to see the code

Outline

What is S4?

S4 from an end-user point of view

Implementing an S4 class (in 4 slides)

Extending an existing class

What else?

Class definition and constructor

Class definition
> setClass("SNPLocations",
+ slots=c(
+ genome="character", # a single string
+ snpid="character", # a character vector of length N
+ chrom="character", # a character vector of length N
+ pos="integer" # an integer vector of length N
+)
+)

Constructor
> SNPLocations <- function(genome, snpid, chrom, pos)
+ new("SNPLocations", genome=genome, snpid=snpid, chrom=chrom, pos=pos)

> snplocs <- SNPLocations("hg19",
+ c("rs0001", "rs0002"),
+ c("chr1", "chrX"),
+ c(224033L, 1266886L))

Getters

Defining the length method
> setMethod("length", "SNPLocations", function(x) length(x@snpid))

> length(snplocs) # just testing

[1] 2

Defining the slot getters
> setGeneric("genome", function(x) standardGeneric("genome"))
> setMethod("genome", "SNPLocations", function(x) x@genome)

> setGeneric("snpid", function(x) standardGeneric("snpid"))
> setMethod("snpid", "SNPLocations", function(x) x@snpid)

> setGeneric("chrom", function(x) standardGeneric("chrom"))
> setMethod("chrom", "SNPLocations", function(x) x@chrom)

> setGeneric("pos", function(x) standardGeneric("pos"))
> setMethod("pos", "SNPLocations", function(x) x@pos)

> genome(snplocs) # just testing

[1] "hg19"

> snpid(snplocs) # just testing

[1] "rs0001" "rs0002"

Defining the show method
> setMethod("show", "SNPLocations",
+ function(object)
+ cat(class(object), "instance with", length(object),
+ "SNPs on genome", genome(object), "\n")
+)

> snplocs # just testing

SNPLocations instance with 2 SNPs on genome hg19

Defining the validity method
> setValidity("SNPLocations",
+ function(object) {
+ if (!is.character(genome(object)) ||
+ length(genome(object)) != 1 || is.na(genome(object)))
+ return("'genome' slot must be a single string")
+ slot_lengths <- c(length(snpid(object)),
+ length(chrom(object)),
+ length(pos(object)))
+ if (length(unique(slot_lengths)) != 1)
+ return("lengths of slots 'snpid', 'chrom' and 'pos' differ")
+ TRUE
+ }
+)

> snplocs@chrom <- LETTERS[1:3] # a very bad idea!
> validObject(snplocs)

Error in validObject(snplocs) :
invalid class "SNPLocations" object: lengths of slots 'snpid', 'chrom'
and 'pos' differ

Defining slot setters
> setGeneric("chrom<-", function(x, value) standardGeneric("chrom<-"))
> setReplaceMethod("chrom", "SNPLocations",
+ function(x, value) {x@chrom <- value; validObject(x); x})

> chrom(snplocs) <- LETTERS[1:2] # repair currently broken object

> chrom(snplocs) <- LETTERS[1:3] # try to break it again

Error in validObject(x) :
invalid class "SNPLocations" object: lengths of slots 'snpid', 'chrom'
and 'pos' differ

Defining a coercion method
> setAs("SNPLocations", "data.frame",
+ function(from)
+ data.frame(snpid=snpid(from), chrom=chrom(from), pos=pos(from))
+)

> as(snplocs, "data.frame") # testing

snpid chrom pos
1 rs0001 A 224033
2 rs0002 B 1266886

Outline

What is S4?

S4 from an end-user point of view

Implementing an S4 class (in 4 slides)

Extending an existing class

What else?

Slot inheritance

▶ Most of the time (but not always), the child class will have additional slots:
> setClass("AnnotatedSNPs",
+ contains="SNPLocations",
+ slots=c(
+ geneid="character" # a character vector of length N
+)
+)

▶ The slots from the parent class are inherited:
> showClass("AnnotatedSNPs")
Class "AnnotatedSNPs" [in ".GlobalEnv"]

Slots:

Name: geneid genome snpid chrom pos
Class: character character character character integer

Extends: "SNPLocations"
▶ Constructor:

> AnnotatedSNPs <- function(genome, snpid, chrom, pos, geneid)
+ {
+ new("AnnotatedSNPs",
+ SNPLocations(genome, snpid, chrom, pos),
+ geneid=geneid)
+ }

Method inheritance

▶ Let’s create an AnnotatedSNPs object:
> snps <- AnnotatedSNPs("hg19",
+ c("rs0001", "rs0002"),
+ c("chr1", "chrX"),
+ c(224033L, 1266886L),
+ c("AAU1", "SXW-23"))

▶ All the methods defined for SNPLocations objects work out-of-the-box:
> snps
AnnotatedSNPs instance with 2 SNPs on genome hg19

▶ But sometimes they don’t do the right thing:
> as(snps, "data.frame") # the 'geneid' slot is ignored

snpid chrom pos
1 rs0001 chr1 224033
2 rs0002 chrX 1266886

▶ Being a SNPLocations object vs being a SNPLocations instance:
> is(snps, "AnnotatedSNPs") # 'snps' is an AnnotatedSNPs object
[1] TRUE
> is(snps, "SNPLocations") # and is also a SNPLocations object
[1] TRUE
> class(snps) # but is *not* a SNPLocations *instance*
[1] "AnnotatedSNPs"
attr(,"package")
[1] ".GlobalEnv"

▶ Method overriding: for example we could define a show method for
AnnotatedSNPs objects. callNextMethod can be used in that context to
call the method defined for the parent class from within the method for
the child class.

▶ Automatic coercion method:
> as(snps, "SNPLocations")
SNPLocations instance with 2 SNPs on genome hg19

Incremental validity method

▶ The validity method for AnnotatedSNPs objects only needs to validate
what’s not already validated by the validity method for SNPLocations
objects:
> setValidity("AnnotatedSNPs",
+ function(object) {
+ if (length(object@geneid) != length(object))
+ return("'geneid' slot must have the length of the object")
+ TRUE
+ }
+)

▶ In other words: before an AnnotatedSNPs object can be considered valid,
it must first be a valid SNPLocations object.

Outline

What is S4?

S4 from an end-user point of view

Implementing an S4 class (in 4 slides)

Extending an existing class

What else?

Other important S4 features
▶ Virtual classes: equivalent to abstract classes in Java
▶ Class unions (see ?setClassUnion)
▶ Multiple inheritance: a powerful feature that should be used with caution.

If used inappropriately, can lead to a class hierarchy that is very hard to
maintain

Resources
▶ Man pages in the methods package: ?setClass, ?showMethods,

?selectMethod, ?getMethod, ?is, ?setValidity, ?as
▶ The Extending RangedSummarizedExperiment section of the

SummarizedExperiment vignette in the SummarizedExperiment package.
▶ Note: S4 is not covered in the An Introduction to R or The R language

definition manuals2

▶ The Writing R Extensions manual for details about integrating S4 classes
to a package

▶ The R Programming for Bioinformatics book by Robert Gentleman3

2http://cran.fhcrc.org/manuals.html
3http://bioconductor.org/help/publications/books/r-programming-for-bioinformatics/

	What is S4?
	S4 from an end-user point of view
	Implementing an S4 class (in 4 slides)
	Extending an existing class
	What else?

