A quick overview of the S4 class system

Hervé Pages
hpages.on.github@gmail.com

June 2016

mailto:hpages.on.github@gmail.com

What is S47

S4 from an end-user point of view

Implementing an S4 class (in 4 slides)

Extending an existing class

What else?

Outline

What is S47

The S4 class system

» The 54 class system is a set of facilities provided in R for OO
programming.

» Implemented in the methods package.

» On a fresh R session:

> sessionInfo()

attached base packages:

[1] stats graphics grDevices utils datasets
[6] methods Dbase

» R also supports an older class system: the S3 class system.

A different world

The syntax

> foo(x, ...)
not:

> x.foo(...)

like in other OO programming languages.

The central concepts

> The core components: classes®, generic functions and methods

» The glue: method dispatch (supports simple and multiple dispatch)

Lalso called formal classes, to distinguish them from the S3 classes aka old style classes

The result
> 1s('package:methods"')

[1] "addNextMethod" "allGenerics"

[3] "allNames" "Arith"

[5] "as" "as<— "

[7] "asMethodDefinition" "assignClassDef"
[211] "testVirtual" "traceOff"
[213] "traceOn" "tryNew"
[215] "unRematchDefinition" "validObject"

[217] "validSlotNames"

» Rich, complex, can be intimidating

» The classes and methods we implement in our packages can be hard to
document, especially when the class hierarchy is complicated and multiple
dispatch is used

S4 in Bioconductor

» Heavily used. In BioC 3.3: 3158 classes and 22511 methods defined in 609
packages! (out of 1211 software packages)

» Top 10: 128 classes in ChemmineOB, 98 in flowCore, 79 in IRanges, 68 in
rsbml, 61 in ShortRead, 58 in Biostrings, 51 in rtracklayer, 50 in
oligoClasses, 45 in flowUtils, and 40 in BaseSpaceR.

» For the end user: it's mostly transparent. But when something goes
wrong, error messages issued by the S4 class system can be hard to
understand. Also it can be hard to find the documentation for a specific
method.

» Most Bioconductor packages use only a small subset of the S4 capabilities
(covers 99.99% of our needs)

Outline

S4 from an end-user point of view

Where do S4 objects come from?

From a dataset

> library(graph)

> data(apopGraph)

> apopGraph

A graphNEL graph with directed edges
Number of Nodes = 50

Number of Edges = 59

From using an object constructor function

> library(IRanges)
> IRanges(start=c(101, 25), end=c(110, 80))

IRanges object with 2 ranges and O metadata columns:

start end width
<integer> <integer> <integer>
[1] 101 110 10

[2] 25 80 56

From a coercion

> library(Matrix)
> m <- matrix(3:-4, nrow=2)
> as(m, "Matrix")

2 x 4 Matrix of class "dgeMatrix"
(,11 [,2] [,3] [,4]

[1,] 3 1 -1 -3

[2,] 2 0o -2 -4

From using a specialized high-level constructor

> library(GenomicFeatures)
> makeTxDbFromUCSC("sacCer2", tablename="ensGene")

TxDb object:

Db type: TxDb

Supporting package: GenomicFeatures
Data source: UCSC

Genome: sacCer2

Organism: Saccharomyces cerevisiae
Taxonomy ID: 4932

UCSC Table: ensGene

UCSC Track: Ensembl Genes

H OH H H B H H H

From using a high-level 1/O function

> library(ShortRead)

> path_to_my_data <- system.file(

+ package="ShortRead",

+ "extdata'", "Data", "C1-36Firecrest'", "Bustard", "GERALD")

> lanel <- readFastq(path_to_my_data, pattern="s_1_sequence.txt”)
> lanel

class: ShortReadQ
length: 256 reads; width: 36 cycles

Inside another object

> sread(lanel)

DNAStringSet object of length 256:
width seq
[1] 36 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT
[2] 36 GATTTCTTACCTATTAGTGGTTGAACAGCATCGGAC
[3] 36 GCGGTGGTCTATAGTGTTATTAATATCAATTTGGGT
[4] 36 GTTACCATGATGTTATTTCTTCATTTGGAGGTAAAA
[5] 36 GTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCTT

[252] 36 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAGT
[253] 36 GTTTTACAGACACCTAAAGCTACATCGTCAACGTTA
[254] 36 GATGAACTAAGTCAACCTCAGCACTAACCTTGCGAG

How to manipulate S4 objects?

Low-level: getters and setters

> ir <- IRanges(start=c(101, 25), end=c(110, 80))
> width(ir)

[1] 10 56

> width(ir) <- width(ir) - 5

> ir

IRanges object with 2 ranges and O metadata columns:

start end width
<integer> <integer> <integer>

[1] 101 105 5
[2] 25 75 51

High-level: plenty of specialized methods
> gal <- qa(lanel, lane="lanel")

> class(qal)

[1] "ShortReadQQA"

attr(, "package")
[1] "ShortRead"

How to find the right man page?

» class?graphNEL or equivalently 7" graphNEL-class™ for accessing the man
page of a class

> 7qa for accessing the man page of a generic function

» The man page for a generic might also document some or all of the
methods for this generic. The See Also: section might give a clue. Also
using showMethods() can be useful:
> showMethods ("qa")

Function: qa (package ShortRead)
dirPath="ShortReadQ"
dirPath="SolexaPath"
dirPath="character"
dirPath="1ist"

» ?°ga,ShortReadQ-method™ to access the man page for a particular method
(might be the same man page as for the generic)

» In doubt: ?7qa will search the man pages of all the installed packages and
return the list of man pages that contain the string qa

Inspecting objects and discovering methods

» class() and showClass()
> class(lanel)

[1] "ShortReadQ"
attr(,"package")
[1] "ShortRead"

> showClass("ShortReadQ")
Class "ShortReadQ" [package "ShortRead"]

Slots:

Name: quality sread id
Class: QualityScore DNAStringSet BStringSet

Extends:
Class "ShortRead", directly
Class ".ShortReadBase", by class "ShortRead", distance 2

Known Subclasses: "AlignedRead"
» str() for compact display of the content of an object
» showMethods() to discover methods

» selectMethod() to see the code

Outline

Implementing an S4 class (in 4 slides)

Class definition and constructor

Class definition

> setClass("SNPLocations",

+ slots=c(

+ genome="character", # a single string

+ snpid="character", # a character vector of length N

+ chrom="character", # a character vector of length N

+ pos="integer" # an integer vector of length N

+)

+)

Constructor

> SNPLocations <- function(genome, snpid, chrom, pos)

+ new("SNPLocations", genome=genome, snpid=snpid, chrom=chrom, pos=pos)

> snplocs <- SNPLocations("hg19",

+ c("rs0001", "rs0002"),
+ c("chr1l", "chrX"),

+ c(224033L, 1266886L))

Getters

Defining the 1ength method

> setMethod("length", "SNPLocations", function(x) length(x@snpid))
> length(snplocs) # just testing
[1]1 2

Defining the slot getters
setGeneric("genome", function(x) standardGeneric("genome"))
setMethod ("genome", "SNPLocations", function(x) x@genome)

setGeneric("snpid", function(x) standardGeneric("snpid"))
setMethod("snpid", "SNPLocations", function(x) x@snpid)
setGeneric("chrom", function(x) standardGeneric("chrom"))
setMethod ("chrom", "SNPLocations", function(x) x@chrom)

setGeneric("pos", function(x) standardGeneric("pos"))
setMethod ("pos", "SNPLocations", function(x) x@pos)

VV VV VvV Vvyv

> genome (snplocs) # just testing
[1] "hgi9"

> snpid(snplocs) # just testing
[1] "rs0001" "rs0002"

Defining the show method

> setMethod ("show", "SNPLocations",

+ function(object)

+ cat(class(object), "instance with", length(object),
+ "SNPs on genome", genome(object), "\n")

+)

> snplocs # just testing

SNPLocations instance with 2 SNPs on genome hgil9

Defining the validity method

> setValidity("SNPLocations",

+ function(object) {

+ if (!is.character(genome(object)) ||

+ length(genome (object)) != 1 || is.na(genome(object)))
+ return("'genome' slot must be a single string")

+ slot_lengths <- c(length(snpid(object)),

+ length(chrom(object)),

+ length(pos(object)))

+ if (length(unique(slot_lengths)) != 1)

+ return("lengths of slots 'snpid', 'chrom' and 'pos' differ")
+ TRUE

+

+)

> snplocs@chrom <- LETTERS[1:3] # a very bad idea!

> validObject (snplocs)

Error in validObject(snplocs)
invalid class "SNPLocations" object: lengths of slots 'snpid', 'chrom'
and 'pos' differ

Defining slot setters

setGeneric("chrom<-", function(x, value) standardGeneric("chrom<-"))
setReplaceMethod ("chrom", "SNPLocations",
function(x, value) {x@chrom <- value; validObject(x); x})

chrom(snplocs) <- LETTERS[1:2] # repair currently broken object
chrom(snplocs) <- LETTERS[1:3] # try to break it again

vV V + Vv Vv

Error in validObject(x)
invalid class "SNPLocations" object: lengths of slots 'snpid', 'chrom'
and 'pos' differ

Defining a coercion method

> setAs("SNPLocations", "data.frame",

+ function(from)

+ data. frame (snpid=snpid(from), chrom=chrom(from), pos=pos(from))
+

>

)
as(snplocs, "data.frame") # testing

snpid chrom pos
1 rs0001 A 224033
2 rs0002 B 1266886

Outline

Extending an existing class

Slot inheritance

» Most of the time (but not always), the child class will have additional slots:
> setClass("AnnotatedSNPs",

+ contains="SNPLocations",

+ slots=c(

+ geneid="character" # a character vector of length N
+)

+)

» The slots from the parent class are inherited:
> showClass("AnnotatedSNPs")
Class "AnnotatedSNPs" [in ".GlobalEnv"]

Slots:

Name: geneid genome snpid chrom pos
Class: character character character character integer

Extends: "SNPLocations"
» Constructor:

> AnnotatedSNPs <- function(genome, snpid, chrom, pos, geneid)

+ 1

+ new("AnnotatedSNPs",

+ SNPLocations (genome, snpid, chrom, pos),
+ geneid=geneid)

+

Method inheritance

» Let's create an AnnotatedSNPs object:
> snps <- AnnotatedSNPs("hg19"

+ c("rs0001", "rs0002"),
+ c("chrl", "chrX"),
+ c(224033L, 1266886L),
+ c("AAUL", "SXW-23"))
» All the methods defined for SNPLocations objects work out-of-the-box:
> snps

AnnotatedSNPs instance with 2 SNPs on genome hgl9
» But sometimes they don't do the right thing:
> as(snps, "data.frame") # the 'geneid' slot is ignored

snpid chrom pos
1 rs0001 chrl 224033
2 rs0002 chrX 1266886

» Being a SNPLocations object vs being a SNPLocations instance:

> is(snps, "AnnotatedSNPs") # 'snps' is an AnnotatedSNPs object

[1] TRUE

> is(snps, "SNPLocations") # and is also a SNPLocations object

[1] TRUE

> class(snps) # but is *not* a SNPLocations *instancex

[1] "AnnotatedSNPs"
attr(,"package")
[1] ".GlobalEnv"

» Method overriding: for example we could define a show method for
AnnotatedSNPs objects. callNextMethod can be used in that context to
call the method defined for the parent class from within the method for
the child class.

» Automatic coercion method:
> as(snps, "SNPLocations")

SNPLocations instance with 2 SNPs on genome hgl9

Incremental validity method

» The validity method for AnnotatedSNPs objects only needs to validate
what's not already validated by the validity method for SNPLocations

objects:

> setValidity("AnnotatedSNPs",

+ function(object) {

+ if (length(object@geneid) != length(object))

+ return("'geneid' slot must have the length of the object")
+ TRUE

+ }

+)

» In other words: before an AnnotatedSNPs object can be considered valid,
it must first be a valid SNPLocations object.

Outline

What else?

Other important S4 features

>
| 2
>

Virtual classes: equivalent to abstract classes in Java
Class unions (see ?setClassUnion)

Multiple inheritance: a powerful feature that should be used with caution.
If used inappropriately, can lead to a class hierarchy that is very hard to
maintain

Resources

| 4

>

Man pages in the methods package: ?setClass, ?showMethods,
?selectMethod, 7getMethod, 7is, 7setValidity, ?as

The Extending RangedSummarizedExperiment section of the
SummarizedExperiment vignette in the SummarizedExperiment package.

Note: S4 is not covered in the An Introduction to R or The R language
definition manuals?

The Writing R Extensions manual for details about integrating S4 classes
to a package

The R Programming for Bioinformatics book by Robert Gentleman®

2http://cran.fhcre.org/manuals.html
3http://bioconductor.org/help/publications/books/r-programming-for-bioinformatics/

	What is S4?
	S4 from an end-user point of view
	Implementing an S4 class (in 4 slides)
	Extending an existing class
	What else?

