
KC-SMART Vignette

Jorma de Ronde, Christiaan Klijn

April 15, 2025

1 Introduction
In this Vignette we demonstrate the usage of the KCsmart R package. This R
implementation is based on the original implementation coded in Matlab and
first published in January 2008 [1].

KC-Sor finding recurrent gains and losses from a set of tumor samples mea-
sured on an array Comparative Genome Hybridization (aCGH) platform. In-
stead of single tumor aberration calling, and subsequent minimal common re-
gion definition, KC-SMART takes an approach based on the continuous raw
log2 values

Briefly: we apply Gaussian locally weighted regression to the summed totals
positive and negative log2 ratios separately. This result is corrected for uneven
probe spaceing as present on the given array. Peaks in the resulting normalized
KC score are tested against a randomly permuted background. Regions of
significant recurrent gains and losses are determined using the resulting, multiple
testing corrected, significance threshold.

2 Basic Functionality
After installing the KCsmart package via Bioconductor, load the KCsmart code
into R.

> library(KCsmart)

Load some sample aCGH data. We supply an example dataset of an old 3000
probe BAC clone experiment. KC-SMART has no problem running on modern
300k+ probe datasets, but this dataset is supplied to keep downloading times
at a minimum. This dataset can be a simple dataframe, DNAcopy object or a
CGHbase object, and not contain any missing values. If the data contains missing
values, we advise the user to either impute the missing values using the mean
of the two neighboring probes or to discard probes containing missing values.

> data(hsSampleData)

This data is the simplest form available to use in KCSMART. As can be observed
using:

> str(hsSampleData)

1

'data.frame': 3268 obs. of 22 variables:
$ chrom : chr "1" "1" "1" "1" ...
$ maploc : num 200000 200050 3284807 4542451 7103443 ...
$ sample 1 : num 1.326 0.0368 0.4335 1.8879 1.2002 ...
$ sample 2 : num 1.1155 -0.0478 0.641 0.456 0.831 ...
$ sample 3 : num 0.4204 0.6486 -0.3638 -0.2573 0.0953 ...
$ sample 4 : num 0.06313 -0.00108 0.13552 0.57361 -0.09144 ...
$ sample 5 : num 0.816 0.843 0.893 1.275 0.686 ...
$ sample 6 : num 0.471 1.262 0.4 0.987 0.725 ...
$ sample 7 : num 1.296 0.471 0.614 1.007 1.041 ...
$ sample 8 : num 0.835 0.522 0.643 0.572 0.953 ...
$ sample 9 : num 1.98 -0.529 0.808 -0.165 1.668 ...
$ sample 10: num 0.668 0.313 1.083 0.7 1.782 ...
$ sample 11: num 0.338 -0.118 0.205 1.402 0.299 ...
$ sample 12: num 0.688 -0.187 0.593 0.941 0.625 ...
$ sample 13: num 0.4127 0.5349 0.9524 0.9948 0.0954 ...
$ sample 14: num 0.938 0.254 0.599 0.615 0.466 ...
$ sample 15: num 0.0481 -0.141 0.9038 0.5821 0.2582 ...
$ sample 16: num 0.4 -0.306 0.198 0.652 0.589 ...
$ sample 17: num 1.178 0.72 0.731 1.192 0.287 ...
$ sample 18: num 0.2878 0.5926 1.3355 0.6192 -0.0581 ...
$ sample 19: num 0.738 0.489 0.739 1.075 -0.109 ...
$ sample 20: num 1.552 0.439 0.264 0.841 0.218 ...

The user can easily model their data in this format, basically only requiring a
column named chrom containing the chromosome on which the probe is located
and a column named maploc containing the chromosomal location of the probe.
Alternatively, DNAcopy, CGHraw and CGHbase objects can be used as direct input
for the calcSpm function discussed below.

KC-SMART uses mirroring of the probes at the ends of chromosomes and
near centromeres to prevent signal decay by the convolution. The locations of
the centromeres and the lengths of the chromosomes are therefore necessary
information. Hard-coded information about the human and mouse genome is
supplied, but the user can easily provide the coordinates themselves in R. The
’mirrorLocs’ object is a list with vectors containing the start, centromere (op-
tional) and end of each chromosome as the list elements. Additionally it should
contain an attribute ’chromNames’ listing the chromosome names of each re-
spective list element.

To load the presupplied information use:

> data(hsMirrorLocs)

For an analysis in mouse data(mmMirrorLocs) is used. Using the calcSpm
command the convolution is performed at the given parameters and stored in a
samplepoint matrix. Here we perform the convolution at two different kernel-
widths (first the default sigma = 1Mb, and a second 4Mb sigma). We apply the
default parameters to run the convolution.

> spm1mb <- calcSpm(hsSampleData, hsMirrorLocs)
> spm4mb <- calcSpm(hsSampleData, hsMirrorLocs, sigma=4000000)

2

Now we plot the chromosome-wide view of the convolution for both the gains
and the losses for the 1Mb kernelwidth analysis. Since the samplepoint matrix
we just created is an S4 object we can just apply the plot command to it to
visualize the results.

> plot(spm1mb)
0.

0
0.

4
0.

8

Gains

Genomic position (in mb)

N
or

m
al

iz
ed

 K
C

 s
co

re

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 171819202122X Y

0 500 1000 1500 2000 2500 3000

−
0.

20
−

0.
05

Losses

Genomic position (in mb)

N
or

m
al

iz
ed

 K
C

 s
co

re

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 171819202122X Y

0 500 1000 1500 2000 2500 3000

It is possible to select only particular chromosomes in the plot command,
and to only display the gains or only the losses. We will now visualize the
KCsmart output for gains of chromosomes 1, 12 and X.

> plot(spm1mb, chromosomes=c(1, 12, "X"), type="g")

3

0.
0

0.
2

0.
4

0.
6

0.
8

Gains

Genomic position (in mb)

N
or

m
al

iz
ed

 K
C

 s
co

re

1

0 50 100 200

12

0 50 100

X

0 50 100

As can be seen, in this particular (synthetic) dataset chromosome 1 shows
a large recurrent gain compared to other chromosomes. How significant is this
gain? We can determine a significance level based on permutation to deter-
mine this. In this example we will permute the data 10 times and determine a
threshold at p < 0.05. We recommend 1000 permutations if you want to do a
definitive analysis of a dataset. Since our dataset is quite low resolution we will
use the 4Mb kernel size.

> sigLevel4mb <- findSigLevelTrad(hsSampleData, spm4mb, n=10, p=0.05)

[1] "Calculating alpha = 0.05 significance cut-off"
[1] "Found 170 pos peaks and 174 neg peaks in observed sample point matrix"
[1] "Calculating Mirror Positions"
[1] "Starting permutations .."

At iteration 1 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 2 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 3 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

4

At iteration 4 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 5 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 6 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 7 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 8 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 9 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 10 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

We can now plot the significance level we just calculated in the genomewide
view of the KCsmart result using the sigLevels= parameter of the plot func-
tion. This time, we’ll use the type=1 parameter. This will plot the gains and
losses in a single frame.

> plot(spm4mb, sigLevels=sigLevel4mb, type=1)

5

0.
0

0.
2

0.
4

0.
6

Gains and losses

Genomic position (in mb)

N
or

m
al

iz
ed

 K
C

 s
co

re

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 171819202122X Y

0 500 1000 1500 2000 2500 30000 500 1000 1500 2000 2500 3000

Let’s take a closer look at the gains of chromosome 1, 12 and X again, now
with the added significance level.

> plot(spm4mb, chromosomes=c(1, 12, "X"), type="g", sigLevels=sigLevel4mb)

6

0.
0

0.
2

0.
4

0.
6

Gains

Genomic position (in mb)

N
or

m
al

iz
ed

 K
C

 s
co

re

1

0 50 100 200

12

0 50 100

X

0 50 100

We’ve also implemented a less stringently corrected version of the permu-
tation algorithm that was shown above. This approach doesn’t calculate the
Bonferroni corrected significance level, but the False Discovery Rate (FDR).
The command to find the FDR for this particular dataset would be FDR1mb <-
findSigLevelFdr(hsSampleData, spm1mb, n=10, fdrTarget = 0.05). In gen-
eral the FDR is less conservative, and caution must be taken when using this
as a threshold.kile

Now we have our significance level we would like to get usable informa-
tion back about which regions are found to be significantly abberrant and
which probes of the original dataset are contained in these regions. Using the
getSigSegments function we can input a samplepoint matrix and our calculated
significance level to get back the relevant information.

> sigRegions4mb <- getSigSegments(spm4mb,sigLevel4mb)

Now let’s have a look at the information contained in sigRegions1mb, it is
again an S4 object and will display its contents if you just type its name.

> sigRegions4mb

Significantly gained and lost segments
Cutoff value was 0.284240536554693 for gains and -0.152970410488382 for losses
A total of 2 gains and 0 losses were detected

Use 'write.table' to write the file to disk

You could write the infomation contained in sigRegions1mb to a file us-
ing write.table(sigRegions1mb, file=’sig.txt’). You can also access the

7

information in R using subsetting. For example, if you wanted to find the probe-
names of the probes contained in the first significantly gained region you can
get them like this:

> sigRegions4mb@gains[[1]]$probes

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
[55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
[73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
[91] 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

[109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
[127] 127 128 129 130

Using str(sig.regions.1mb) you can find out more about the way the
significant regions are stored in the sigRegions object.

3 Multi-scale analysis
One of the powerful features of KC-SMART is the ability to perform multi-scale
analysis. The algorithm can be run using different kernel widths, where small
kernel widths will allow you to detect small regions of aberration and vice versa
using large kernel widths large regions of aberration can be detected. Remember
our convolution step? We calculated the convolution at two sigma’s: 1Mb and
4Mb. We will now calculate a significance level for the 1Mb samplepoint matrix
and plot the results of both kernelwidths in a scale space figure.

> sigLevel1mb <- findSigLevelTrad(hsSampleData, spm1mb, n=10)

[1] "Calculating alpha = 0.05 significance cut-off"
[1] "Found 580 pos peaks and 600 neg peaks in observed sample point matrix"
[1] "Calculating Mirror Positions"
[1] "Starting permutations .."

At iteration 1 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 2 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 3 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 4 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

8

At iteration 5 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 6 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 7 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 8 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 9 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

At iteration 10 of 10[1] "Permuting"
[1] "Combining"
[1] "Returning"

Now you can plot the scalespace of the two different kernel widths using
plotScaleSpace. A scale space can show you small and large significant regions
in one plot, as well as give you insight within a single significant region. Darker
red means more significant. As an option you can plot either the gains or the
losses or both. When plotting both, two x11 devices will be opened. Using the
’chromosomes’ parameter the chromosomes to be plotted can be set.

> plotScaleSpace(list(spm1mb, spm4mb), list(sigLevel1mb, sigLevel4mb), type='g')

9

Scale space gains

Genomic position (in mb)

S
ca

le
 s

pa
ce

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16171819202122 X Y

0 250 750 1250 1750 2250 2750

1 Mb

4 Mb

4 Comparative KC-SMART
Using KC-SMART you can also find regions of significant different copy num-
ber change between two specific groups of samples. The resulting regions of
significant difference are not required to be significantly recurrent in the entire
tumor set. We employ kernel smoothing on a single tumor basis, followed by
either a permutation based significance analysis using the signal to noise ratio
of the sample point matrices or the use of the siggenes package to determine
significance.

The main function of the comparative version of KC-SMART is calcSpmCollection,
this function requires the data to be in the same form as needed by calcSpm,
but it also requires a class vector. This is a vector of ones and zeros, with as
many elements as there are samples in the dataset. The ones denote one class,
and the zeros the other.

Our sample data contains an amplification on chromosome 4 that is specific
to a subset of the samples, namely the last 10 samples. We will now calculate
the significant difference between the first 10 samples and the last 10 samples
in the example dataset using comparative KC-SMART

First we’ll want to calculate a sample point matrix collection, the starting
point for a comparative analysis. The class vector we use is just 10 zeros followed
by 10 ones. Note that this procedure can take a long time if you have a large
dataset! Make sure you do it only once. If you have multiple subgroups within
a dataset you can define alternative class vectors later in the analysis. You can
perform this analysis again on different scales, here we use a sigma of 1 Mb.

10

> spmc1mb <- calcSpmCollection(hsSampleData, hsMirrorLocs, cl=c(rep(0,10),rep(1,10)), sigma=1000000)

[1] "Mirror locations looking fine"
Processing sample 1 / 20
Processing sample 2 / 20
Processing sample 3 / 20
Processing sample 4 / 20
Processing sample 5 / 20
Processing sample 6 / 20
Processing sample 7 / 20
Processing sample 8 / 20
Processing sample 9 / 20
Processing sample 10 / 20
Processing sample 11 / 20
Processing sample 12 / 20
Processing sample 13 / 20
Processing sample 14 / 20
Processing sample 15 / 20
Processing sample 16 / 20
Processing sample 17 / 20
Processing sample 18 / 20
Processing sample 19 / 20
Processing sample 20 / 20

We get a few warnings that some sample points are listed as NA. These
sample points are the mirrored sample points that fall outside the chromo-
some boundaries, so they will not be used in the analysis. The next step is to
calculate the significance of the diffences between the subgroups. We use the
compareSpmCollection command for this. Using a parameter called method
we define the method to determine significance. The option "perm" will use
class label permutation to define an empirical null-distribution against which
the actual differences are measured. The "siggenes" option will utilise the
siggenes package to determine the significance, this option is both faster and
uses less memory.

> spmc1mb.sig <- compareSpmCollection(spmc1mb, nperms=3, method=c("siggenes"))
> spmc1mb.sig

Comparison of 20 samples (10 vs. 10)
Using siggenes to find significant regions

Now we can use the getSigRegionsCompKC command to extract the signifi-
cant regions from the original data spmc1mb using the significance information
contained in spmc1mb.sig.

> spmc1mb.sig.regions <- getSigRegionsCompKC(spmc1mb.sig)
> spmc1mb.sig.regions

Significantly different regions using siggenes
delta value was 1.614894 , FDR = 0.01

startrow endrow chromosome startposition endposition

11

1 14770 17195 4 48800001 170050001
2 17207 17604 4 170650001 190500001
3 21641 21662 6 20250001 21300001
4 37261 37266 11 49750001 50000001
5 42375 42403 13 38700001 40100001
6 43300 43323 13 84950001 86100001
7 54439 54457 20 13700001 14600001
8 58787 58809 X 72150001 73250001
Use 'write.table' to write the file to disk

The information contained in spmc1mb.sig.regions variable can be saved
to disk using the write.table command if further processing in other programs
is required. An overview of the comparative analysis can also be plotted using
the plot function.

> plot(spmc1mb.sig, sigRegions=spmc1mb.sig.regions)

0.
0

0.
5

1.
0

Genomic position (in mb)

ro
w

M
ea

ns
 s

pm
C

ol
le

ct
io

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 171819202122X Y

0 500 1000 1500 2000 2500 3000

5 References
1. Klijn et. al. Identification of cancer genes using a statistical framework
for multiexperiment analysis of nondiscretized array CGH data. Nucleic Acids
Research. 36 No. 2, e13.

2. de Ronde et. al. KC-SMARTR: An R package for detection of statistically
significant aberrations in multi-experiment aCGH data. BMC Research Notes.
11 No. 3, 298.

12

