Package ‘raer’

July 10, 2025

Type Package
Title RNA editing tools in R
Version 1.6.0

Description Toolkit for identification and statistical testing
of RNA editing signals from within R. Provides support for identifying
sites from bulk-RNA and single cell RNA-seq datasets, and general methods
for extraction of allelic read counts from alignment files. Facilitates annotation
and exploratory analysis of editing signals using Bioconductor packages and resources.

License MIT + file LICENSE

Imports stats, methods, GenomicRanges, IRanges, Rsamtools, BSgenome,
Biostrings, SummarizedExperiment, SingleCellExperiment,
S4Vectors, GenomelnfoDb, GenomicAlignments, GenomicFeatures,
BiocGenerics, BiocParallel, rtracklayer, Matrix, cli

Suggests testthat (>= 3.0.0), knitr, DESeq2, edgeR, limma, rmarkdown,
BiocStyle, ComplexHeatmap, TxDb.Hsapiens.UCSC.hg38.knownGene,
SNPIlocs.Hsapiens.dbSNP144.GRCh38,

BSgenome.Hsapiens. NCBI.GRCh38, scater, scran, scuttle,
AnnotationHub, covr, raerdata, txdbmaker

LinkingTo Rhtslib
SystemRequirements GNU make
VignetteBuilder knitr

Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

URL https://rnabioco.github.io/raer, https://github.com/rnabioco/raer

BugReports https://github.com/rnabioco/raer/issues

biocViews MultipleComparison, RNASeq, SingleCell, Sequencing,
Coverage, Epitranscriptomics, FeatureExtraction, Annotation,
Alignment

Config/Needs/website pkgdown, rnabioco/rbitemplate

1

https://rnabioco.github.io/raer
https://github.com/rnabioco/raer
https://github.com/rnabioco/raer/issues

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/raer
git_branch RELEASE_3_21

git_last_commit 9c382c2
git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-07-09

Author Kent Riemondy [aut, cre] (ORCID:
<https://orcid.org/0000-0003-0750-1273>),
Kristen Wells-Wrasman [aut] (ORCID:
<https://orcid.org/0000-0002-7466-8164>),
Ryan Sheridan [ctb] (ORCID: <https://orcid.org/0000-0003-4012-3147>),
Jay Hesselberth [ctb] (ORCID: <https://orcid.org/0000-0002-6299-179X>),
RNA Bioscience Initiative [cph, fnd]

Maintainer Kent Riemondy <kent.riemondy@gmail.com>

Contents

annot_from_gr L
ANNOL_SNPS . . .« . . Lo e e e e e e e e e e e e e e
calc_AEL e e
calc_confidence
calc_edit_frequency L
calc_scAEL e e
correct_strand L. e e e
filter_clustered_variants e e e e e e e
filter_multiallelic
filter_splice_variants e
find_de_Sites e e
find_mispriming_sites L
find_scde_Sites e e
get_overlapping_snpso e
get_splice_Sites
make_de_object
MOCK _IS€ o
pileup_cells
pileup_sites L
TACT . o v e e e e e e
raer_example
1€ad_SPAITAY« . o e e e e e e e e e e e e e e

Index

Contents

https://orcid.org/0000-0003-0750-1273
https://orcid.org/0000-0002-7466-8164
https://orcid.org/0000-0003-4012-3147
https://orcid.org/0000-0002-6299-179X

annot_from_gr 3

annot_from_gr Annotate sites using GRanges object

Description

Utility function to map annotations from GRanges to rowData of SummarizedExperiment or to
mcols of GRanges object. If multiple features overlap then they will be concatenated with the
specified separtor string.

Usage
annot_from_gr(obj, gr, cols_to_map, RLE = TRUE, sep = ",", ...)
Arguments
obj RangedSummarizedExperiment or GRanges object
gr GRanges with annotations to map to obj
cols_to_map character vector of columns from GRanges to map to SummarizedExperiment.
If the vector has names, the names will be the column names in the output.
RLE If TRUE, columns added will returned as S4Vectors: :Rle() vectors to reduce
memory
sep separator string, defaults to comma.
additional arguments to pass to GenomicRanges: : findOverlaps()
Value

Either a SummarizedExperiment or GRanges object with additional annotations provided by the
supplied GRanges object.

Examples

library(SummarizedExperiment)

rse_adar_ifn <- mock_rse()

gr <- GRanges(rep(c(”SSR3", "SPCS3"), c(5, 15)),
IRanges(seq(1, 500, by = 25), width = 50),
strand = "+"

)

gr$feature <- sample(1:100, size = 20)
gr$id <- sample(LETTERS, size = 20)

rse <- annot_from_gr(rse_adar_ifn, gr, c(feature_set = "feature”, "id"))
rowData(rse)

4 annot_snps

annot_snps Annotate known SNP positions

Description
This function will annotate a GRanges or the rowRanges of a SummarizedExperiment with SNPs
from a SNP package.

Usage
annot_snps(obj, ...)

S3 method for class 'GRanges'
annot_snps(

obj,
dbsnp,
chrom = NULL,
col_to_aggr = "RefSNP_id",
drop = FALSE,
genome = NULL,
RLE = TRUE,
)
S3 method for class 'SummarizedExperiment'
annot_snps(obj, ...)
Arguments
obj GRanges or SummarizedExperiment object

For the generic, further arguments to pass to specific methods. Unused for now.
dbsnp SNPIlocs package, see available packages from BSgenome: :available.SNPs()
chrom only operate on a specified chromosome

col_to_aggr column from SNPlocs package to add to input. If multiple SNPs overlap these
values will be concatenated as comma separated values.

drop If TRUE, remove sites overlapping SNPs

genome A BSgenome object, which if supplied, will be used to provide additional snp_ref_allele
and snp_alt_alleles columns containing the reference and alt allele sequences,
with respect to the positive strand. Additionally the snp sequences will be
checked against the allele at the site if a column named ALT is present in ob-
ject. The strand of the site will be used to determine if the ALT allele needs to
be complemented prior to comparing against the SNP db (which always returns
sequences w.r.t the plus strand).

RLE If TRUE, columns added will returned as S4Vectors: :Rle() vectors to reduce
memory usage.

calc_AEI 5

Value

Either a GRanges or SummarizedExperiment object with a new column added with information
from col_to_aggr and optionally snp_ref_allele, snp_alt_alleles, and snp_matches_site
annotations.

See Also
SNPlocs.Hsapiens.dbSNP144.GRCh38

Examples

if (require(SNPlocs.Hsapiens.dbSNP144.GRCh38)) {
gr <- GRanges(rep("22", 10),
IRanges(
seq(10510077,
10610077,
by = 1000
y[1:101,
width = 250
),

strand = "+

n

)
genome(gr) <- "GRCh38.p2"

annot_snps(gr, SNPlocs.Hsapiens.dbSNP144.GRCh38)

calc_AEI Calculate the Adenosine Editing Index (AEI)

Description

The Adenosine Editing Index describes the magnitude of A-to-I editing in a sample. The index
is a weighted average of editing events (G bases) observed at A positions. The vast majority A-
to-I editing occurs in ALU elements in the human genome, and these regions have a high A-to-I
editing signal compared to other regions such as coding exons. This function will perform pileup at
specified repeat regions and return a summary AEI metric.

Usage

calc_AEI(
bamfiles,
fasta,
alu_ranges = NULL,
txdb = NULL,
snp_db = NULL,
param = FilterParam(),
BPPARAM = SerialParam(),
verbose = FALSE

https://bioconductor.org/packages/release/data/annotation/html/SNPlocs.Hsapiens.dbSNP144.GRCh38.html

Arguments

bamfiles

fasta
alu_ranges
txdb

snp_db

param

BPPARAM

verbose

Value

calc_AEI

character vector of paths to indexed bam files. If a named character vector is
supplied the names will be used in the output.

fasta filename
GRanges with regions to query for calculating the AFEI, typically ALU repeats.

A TxDb object, if supplied, will be used to subset the alu_ranges to those found
overlapping genes. Alternatively a GRanges object with gene coordinates. If
the library_type, specified by FilterParam, is unstranded then the TxDb
will be used to correct the strandness relative to the reference and is a required
parameter.

either a SNPlocs, GPos, or GRanges object. If supplied, will be used to ex-
clude polymorphic positions prior to calculating the AEL If calc_AEI() will be
used many times, one will save time by first identifying SNPs that overlap the
supplied alu_ranges, and passing these as a GRanges to snp_db rather than
supplying all known SNPs (see get_overlapping_snps()).

object of class FilterParam() which specify various filters to apply to reads
and sites during pileup.

A BiocParallelParam object for specifying parallel options for operating over
chromosomes.

report progress on each chromosome?

A named list containing:

* AEI: a matrix of AEI index values computed for all allelic combinations, one row for each
supplied bam file.

* AEI_per_chrom: a data.frame containing values computed for each chromosome

References

Roth, S.H., Levanon, E.Y. & Eisenberg, E. Genome-wide quantification of ADAR adenosine-to-
inosine RNA editing activity. Nat Methods 16, 1131-1138 (2019). https://doi.org/10.1038/s41592-

019-0610-9

Examples

suppressPackageStartupMessages(library(Rsamtools))

bamfn <- raer_example("”SRR5564269_Aligned. sortedByCoord.out.md.bam")
bam2fn <- raer_example("SRR5564277_Aligned.sortedByCoord.out.md.bam")
bams <- c(bamfn, bam2fn)

names(bams) <- c("ADAR1KO", "WT")

fafn <- raer_example("human.fasta")
mock_alu_ranges <- scanFalIndex(fafn)

calc_confidence 7

res <- calc_AEI(bams, fafn, mock_alu_ranges)
res$AEI

calc_confidence Calculate confidence score for observing editing

Description

Calculate a confidence score based on a Bayesian inverse probability model as described by Wash-
burn et al. Cell Reports. 2015, and implemented in the SAILOR pipeline.

Usage

ca

lc_confidence(
se,
edit_to = "G",

edit_from = "A",
per_sample = FALSE,
exp_fraction = 0.01,

alpha = oL,
beta = 0L
)
Arguments
se SummarizedExperiment: : SummarizedExperiment containing editing sites
edit_to edited base
edit_from non-edited base
per_sample if TRUE, calculate confidence per sample, otherwise edited and non-edited counts
will be summed across all samples.
exp_fraction Numeric value between 0 and 1, specifying the expected error rate
alpha Pseudo-count to add to non-edited base counts
beta Pseudo-count to add to edited base counts
Value

SummarizedExperiment: :SummarizedExperiment with either a new assay or rowData column
named "confidence" depending on whether confidence is calculated per_sample.

References

Washburn MC, Kakaradov B, Sundararaman B, Wheeler E, Hoon S, Yeo GW, Hundley HA. The

ds
C.

RBP and inactive editor ADR-1 utilizes dsSRNA binding to regulate A-to-I RNA editing across the
elegans transcriptome. Cell Rep. 2014 Feb 27;6(4):599-607. doi: 10.1016/j.celrep.2014.01.011.

Epub 2014 Feb 6. PMID: 24508457; PMCID: PMC3959997.
SAILOR pipeline: https://github.com/YeoLab/sailor

8 calc_edit_frequency

Examples

rse_adar_ifn <- mock_rse()
calc_confidence(rse_adar_ifn)
calc_confidence(rse_adar_ifn, per_sample = TRUE)

calc_edit_frequency Adds editing frequencies

Description

Adds editing frequencies to an existing RangedSummarizedExperiment object (created by pileup_sites()).
The RangedSummarizedExperiment with a new assay for editing frequencies for each site (edit_freq),
depth of coverage computed using the indicated edited nucleotides (depth) and new colData

columns with the number of edited sites (n_sites) and the fraction of edits (edit_idx) is returned.

Usage

calc_edit_frequency(
rse,
edit_from = "A",
edit_to = "G",
drop = FALSE,
replace_na = TRUE,
edit_frequency = 0,
min_count = 1

)
Arguments

rse A RangedSummarizedExperiment object created by pileup_sites()

edit_from This should correspond to a nucleotide or assay (A, C, G, T, Ref, or Alt) you
expect in the reference. Ex. for A to I editing events, this would be A.

edit_to This should correspond to a nucleotide or assay (A, C, G, T, Ref, or Alt) you
expect in the editing site. Ex. for A to I editing events, this would be G.

drop If TRUE, the RangedSummarizedExperiment returned will only retain sites match-
ing the specified edit_from and edit_to bases.

replace_na If TRUE, NA and NaN editing frequencies will be coerced to @.

edit_frequency The edit frequency cutoff used when calculating the number of sites. Set to
0 to require any non-zero editing frequency. The number of sites is stored as
n_sites in the colData.

min_count The minimum number of reads required when enumerating number of editing
sites detected.

calc_scAEI 9

Value

RangedSummarizedExperiment supplemented with edit_freq and depth assay.

Examples

library(SummarizedExperiment)
rse_adar_ifn <- mock_rse()

rse <- calc_edit_frequency(rse_adar_ifn)
assay(rse, "edit_freq”)[1:5, 1]

calc_scAEI Calculate the Adenosine Editing Index (AEI) in single cells

Description

The Adenosine Editing Index describes the magnitude of A-to-I editing in a sample. The index is
a weighted average of editing events (G bases) observed at A positions. The vast majority A-to-I
editing occurs in ALU elements in the human genome, and these regions have a high A-to-I editing
signal compared to other regions such as coding exons. This function will examine enumerate
edited and non-edited base counts at the supplied sites and return summary AEI metric per cell.
Potential editing sites within repeat regions can be generated using get_scAEI_sites().

Usage

calc_scAEI(
bamfiles,
sites,
cell_barcodes,
param = FilterParam(),
edit_from = "A",
edit_to = "G",
output_dir = NULL,
return_sce = FALSE,

)

get_scAEI_sites(fasta, genes, alus, edit_from = "A", edit_to = "G")

Arguments
bamfiles a path to a BAM file (for 10x libraries), or a vector of paths to BAM files (smart-
seq2). Can be supplied as a character vector, BamFile, or BamFileList.
sites a GRanges object produced by get_scAEI_sites() containing sites to process.

cell_barcodes A character vector of single cell barcodes to process. If processing multiple
BAM files (e.g. smart-seq-2), provide a character vector of unique identifiers
for each input BAM, to name each BAM file in the output files.

10

param

edit_from

edit_to

output_dir

return_sce

fasta

genes

alus

Value

calc_scAEI

object of class FilterParam() which specify various filters to apply to reads
and sites during pileup.

This should correspond to the base (A, C, G, T) you expect in the reference. Ex.
for A to I editing events, this would be A.

This should correspond to the base (A, C, G, T) you expect in an edited site. Ex.
for A to I editing events, this would be G.

Output directory for nRef and nAlt sparseMatrix files. If NULL, a temporary
directory will be used.

if TRUE, data is returned as a SingleCellExperiment, if FALSE a DataFrame con-
taining computed AEI values will be returned.

additional arguments to pileup_cells()
Path to a genome fasta file

A GRanges object with gene coordinates.Alternatively a TxDb object, which if
supplied, will be used extract gene coordinates.

GRanges with repeat regions to query for calculating the AEI, typically ALU
repeats. The strand of the supplied intervals will be ignored for defining repeat
regions.

A DataFrame containing computed AEI values, count of editing events (n_alt), and count of ref-
erence events (n_ref) per cell. If return_sce is TRUE, then a SingleCellExperiment is returned
with the AEI values stored in the colData.

References

Roth, S.H., Levanon, E.Y. & Eisenberg, E. Genome-wide quantification of ADAR adenosine-to-
inosine RNA editing activity. Nat Methods 16, 1131-1138 (2019). https://doi.org/10.1038/s41592-

019-0610-9

Examples

suppressPackageStartupMessages(library(Rsamtools))
library(GenomicRanges)

bam_fn <- raer_example("5k_neuron_mouse_possort.bam")
bai <- indexBam(bam_fn)

cell barcodes to query
cbs <- c("TGTTTGTTCCATCCGT-1", "CAACCAACATAATCGC-1", "TGGAACTCAAGCTGTT-1")

genes used to infer transcribed strand
genes_gr <- GRanges(c(

"2:100-400:-",

"2:500-605:-",

"2:600-680:+"

))

correct_strand 11

alu intervals
alus_gr <- GRanges(c(
"2:110-380",
"2:510-600",
"2:610-670"

))

genome fasta file, used to find A bases
fa_fn <- raer_example("”mouse_tiny.fasta")

get positions of potential A -> G changes in alus
sites <- get_scAEI_sites(fa_fn, genes_gr, alus_gr)

fp <- FilterParam(
library_type = "fr-second-strand”,
min_mapq = 255

)

calc_scAEI(bam_fn, sites, cbs, fp)

correct_strand Apply strand correction using gene annotations

Description

Gene annotations are used to infer the likely strand of editing sites. This function will operate
on unstranded datasets which have been processed using "unstranded" library type which reports
variants with respect to the + strand for all sites. The strand of the editing site will be assigned
the strand of overlapping features in the genes_gr object. Sites with no-overlap, or overlapping
features with conflicting strands (+ and -) will be removed.

Usage

correct_strand(rse, genes_gr)

Arguments
rse RangedSummarizedExperiment object containing editing sites processed with
"unstranded" setting
genes_gr GRanges object containing reference features to annotate the strand of the edit-
ing sites.
Value

RangedSummarizedExperiment object containing pileup assays, with strand corrected based on
supplied genomic intervals.

12 filter_clustered_variants

Examples

suppressPackageStartupMessages(library("GenomicRanges"))

bamfn <- raer_example("”SRR5564269_Aligned. sortedByCoord.out.md.bam")
fafn <- raer_example(”"human.fasta")

fp <- FilterParam(library_type = "unstranded”)

rse <- pileup_sites(bamfn, fafn, param = fp)

genes <- GRanges(c(
"DHFR:200-400:+",
"SPCS3:100-200:-",
"SSR3:3-10:-",
"SSR3:6-12:+"

))

correct_strand(rse, genes)

filter_clustered_variants
Filter out clustered sequence variants

Description

Sequence variants of multiple allele types (e.g., A => G, A -> C) proximal to a putative editing site
can be indicative of a region prone to mis-alignment artifacts. Sites will be removed if variants
of multiple allele types are present within a given distance in genomic or transcriptome coordinate

space.
Usage
filter_clustered_variants(
rse,
txdb,
regions = c("transcript”, "genome"),
variant_dist = 100
)
Arguments
rse SummarizedExperiment: : SummarizedExperiment containing editing sites
txdb GenomicFeatures: : TxDb
regions One of transcript or genome, specifying the coordinate system for calculating

distances between variants.

variant_dist distance in nucleotides for determining clustered variants

filter_multiallelic 13

Value

SummarizedExperiment: : SummarizedExperiment with sites removed from object dependent on
filtering applied.

See Also

Other se-filters: filter_multiallelic(), filter_splice_variants()

Examples

if(require("txdbmaker")){
rse_adar_ifn <- mock_rse()
rse <- rse_adar_ifn[seqnames(rse_adar_ifn) == "SPCS3"]

mock up a txdb with genes
gr <- GRanges(c(
"SPCS3:100-120:-",
"SPCS3:325-350:-"
D)
gr$source <- "raer”
gr$type <- "exon”
gr$source <- NA
gr$phase <- NA_integer_
gr$gene_id <- c(1, 2)
gr$transcript_id <- c("1.1", "2.1")
txdb <- txdbmaker: :makeTxDbFromGRanges(gr)

rse <- filter_multiallelic(rse)
filter_clustered_variants(rse, txdb, variant_dist = 10)

filter_multiallelic Filter out multi-allelic sites

Description
Remove sites with multiple variant bases from a SummarizedExperiment. rowData() gains a new
column, ALT, that contains the variant allele detected at each site.

Usage

filter_multiallelic(se)

Arguments

se SummarizedExperiment: :SummarizedExperiment

14 filter_splice_variants

Value

SummarizedExperiment: : SummarizedExperiment with multiallelic sites removed. A new col-
umn,ALT will be added to rowData() indicating the single allele present at the site.

See Also

Other se-filters: filter_clustered_variants(), filter_splice_variants()

Examples

rse_adar_ifn <- mock_rse()
filter_multiallelic(rse_adar_ifn)

filter_splice_variants
Filter out sites near splice sites

Description

Remove editing sites found in regions proximal to annotated splice junctions.

Usage

filter_splice_variants(rse, txdb, splice_site_dist = 4, ignore.strand = FALSE)

Arguments
rse SummarizedExperiment: : SummarizedExperiment with editing sites
txdb GenomicFeatures: :TxDb

splice_site_dist
distance to splice site

ignore.strand if TRUE, ignore strand when comparing editing sites to splice sites

Value

SummarizedExperiment: : SummarizedExperiment with sites adjacent to splice sites removed.

See Also

Other se-filters: filter_clustered_variants(), filter_multiallelic()

find_de_sites 15

Examples

if(require("txdbmaker")) {
rse_adar_ifn <- mock_rse()

mock up a txdb with genes
gr <- GRanges(c(
"DHFR:310-330:-",
"DHFR:410-415:-",
"SSR3:100-155:-",
"SSR3:180-190:-"
)
gr$source <- "raer”
gr$type <- "exon”
gr$source <- NA
gr$phase <- NA_integer_
gr$gene_id <- c(1, 1, 2, 2)
gr$transcript_id <- rep(c(”1.1", "2.1"), each = 2)
txdb <- txdbmaker: :makeTxDbFromGRanges(gr)

filter_splice_variants(rse_adar_ifn, txdb)

find_de_sites Perform differential editing

Description

Use edgeR or DESeq2 to perform differential editing analysis. This will work for designs that have
1 treatment and 1 control group. For more complex designs, we suggest you perform your own

modeling.
Usage
find_de_sites(
deobj,
test = c("edgeR"”, "DESeq2"),
sample_col = "sample”,
condition_col = "condition”,

condition_control = NULL,
condition_treatment = NULL

Arguments

deobj A RangedSummarizedExperiment object prepared for differential editing anal-
ysis by make_de_object()

16 find_de_sites

test Indicate if edgeR or DESeq2 should be run.

sample_col The name of the column from colData(deobj) that contains your sample in-
formation. Default is sample. If you do not have a column named "sample", you
must provide the appropriate sample column

condition_col The name of the column from colData(deobj) that contains your treatment in-
formation. Default is condition, If you do not have a column named "condition",
you must provide the appropriate condition column

condition_control
The name of the control condition. This must be a variable in your condition_col
of colData(deobj). No default provided.

condition_treatment

The name of the treatment condition. This must be a variable in your condition_col
of colData(deobj).

Value

A named list:

* de_obj: The edgeR or deseq object used for differential editing analysis
* results_full: Unfiltered differential editing results
* sig_results: Filtered differential editing (FDR < 0.05)

* model_matrix: The model matrix used for generating DE results

Examples

library(SummarizedExperiment)

bamfn <- raer_example("”SRR5564269_Aligned. sortedByCoord.out.md.bam")
bam2fn <- raer_example("SRR5564277_Aligned.sortedByCoord.out.md.bam")
fafn <- raer_example("human.fasta")

bams <- rep(c(bamfn, bam2fn), each = 3)
sample_ids <- paste@(rep(c("K0", "WT"), each = 3), 1:3)
names(bams) <- sample_ids

fp <- FilterParam(only_keep_variants = TRUE)
rse <- pileup_sites(bams, fafn, param = fp)
rse$condition <- substr(rse$sample, 1, 2)

rse <- calc_edit_frequency(rse)

dse <- make_de_object(rse)

res <- find_de_sites(dse,
condition_control = "WT",
condition_treatment = "KO"

)
res$sig_results[1:3,]

find_mispriming_sites 17

find_mispriming_sites Find regions with oligodT mispriming

Description

OligodT will prime at A-rich regions in an RNA. Reverse transcription from these internal priming
sites will install an oligodT sequence at the 3’ end of the cDNA. Sequence variants within these
internal priming sites are enriched for variants converting the genomic sequence to the A encoded
by the oligodT primer. Trimming poly(A) from the 3’ ends of reads reduces but does not eliminate
these signals

This function will identify regions that are enriched for mispriming events. Reads that were trimmed
to remove poly(A) (encoded in the pa tag by 10x Genomics) are identified. The aligned 3’ positions
of these reads are counted, and sites passing thresholds (at least 2 reads) are retained as possible
sites of mispriming. Be default regions 5 bases upstream and 20 bases downstream of these putative
mispriming sites are returned.

Usage

find_mispriming_sites(
bamfile,
fasta,
pos_5p = 5,
pos_3p = 20,
min_reads = 2,
tag = "pa”,
tag_values = 3:300,
n_reads_per_chunk = 1e+06,
verbose = TRUE

)

Arguments
bamfile path to bamfile
fasta path to fasta file
pos_5p distance 5 of mispriming site to define mispriming region
pos_3p distance 3’ of mispriming site to define mispriming region
min_reads minimum required number of reads at a mispriming site
tag bam tag containing number of poly(A) bases trimmed
tag_values range of values required for read to be considered

n_reads_per_chunk
number of reads to process in memory, see Rsamtools: :BamFile()

verbose if true report progress

18 find_scde_sites

Value

A GenomicsRanges containing regions enriched for putative mispriming events. The n_reads col-
umn specifies the number of polyA trimmed reads overlapping the mispriming region. mean_pal
indicates the mean length of polyA sequence trimmed from reads overlapping the region. The
n_regions column specifies the number overlapping independent regions found in each chunk
(dictated by n_reads_per_chunk). The A_freq column indicates the frequency of A bases within
the region.

Examples

bam_fn <- raer_example("5k_neuron_mouse_possort.bam")
fa_fn <- raer_example("mouse_tiny.fasta")
find_mispriming_sites(bam_fn, fa_fn)

find_scde_sites Identify sites with differential editing between cells in single cell
datasets

Description

Compare editing frequencies between clusters or celltypes. REF and ALT counts from each cluster
are pooled to create pseudobulk estimates. Each pair of clusters are compared using fisher exact
tests. Statistics are aggregated across each pairwise comparison using scran::combineMarkers.

Usage
find_scde_sites(sce, group, rowData = FALSE, BPPARAM = SerialParam(), ...)
Arguments
sce SingleCellExperiment object with nRef and nAlt assays.
group column name from colData used to define groups to compare.
rowData if TRUE, rowData from the input SingleCellExperiment will be included in the
output DataFrames
BPPARAM BiocParallel backend for control how parallel computations are performed.
Additional arguments passed to scran::combineMarkers
Value

A named list of DataFrames containing results for each cluster specified by group. The difference
in editing frequencies between cluster pairs are denoted as dEF. See scran::combineMarkers for a
description of additional output fields.

get_overlapping_snps 19

Examples

generate example data #i#

library(Rsamtools)
library(GenomicRanges)
bam_fn <- raer_example("5k_neuron_mouse_possort.bam")

gr <- GRanges(c("2:579:-", "2:625:-", "2:645:-", "2:589:-", "2:601:-"))
gr$REF <_ C(rep(”A”’ 4), HTH)
gr$ALT <- c(rep("G", 4), "C")

cbs <- unique(scanBam(bam_fn, param = ScanBamParam(tag = "CB"))[[1]1]1tagCB)
cbs <- na.omit(cbs)

outdir <- tempdir()
bai <- indexBam(bam_fn)

fp <- FilterParam(library_type = "fr-second-strand")
sce <- pileup_cells(bam_fn, gr, cbs, outdir, param = fp)

mock some clusters

set.seed(42)

sce$clusters <- paste@("cluster_", sample(1:3, ncol(sce), replace = TRUE))
res <- find_scde_sites(sce, "clusters")

res[[1]]

n

get_overlapping_snps Retrieve SNPs overlapping intervals

Description
This function will find SNPs overlapping supplied intervals using a SNPlocs package. The SNPs
can be returned in memory (as GPos objects) or written to disk as a bed-file (optionally compressed).
Usage
get_overlapping_snps(gr, snpDb, output_file = NULL)

Arguments
gr Intervals to query
snpDb A reference ot a SNPlocs database

output_file A path to an output file. If supplied the file can be optionally compressed by
including a ".gz" suffix. If not supplied, SNPS will be returned as a Genomi-
cRanges::GPos object

Value

GPos object containing SNPs overlapping supplied genomic intervals

20 get_splice_sites

Examples

if (require(SNPlocs.Hsapiens.dbSNP144.GRCh38)) {
gr <- GRanges(rep("22", 10),
IRanges(seq(10510077, 10610077, by = 1000)[1:10], width = 250),

strand = "+
)
get_overlapping_snps(gr, SNPlocs.Hsapiens.dbSNP144.GRCh38)
3
get_splice_sites Extract regions surrounding splice sites
Description

Extract intervals at splice sites and their adjacent regions.

Usage

get_splice_sites(txdb, slop = 4)

Arguments

txdb GenomicFeatures: : TxDb

slop The number of bases upstream and downstream of splice site to extract
Value

GenomicRanges: : GRanges containing positions of splice sites, with flanking bases.

Examples

if (require(TxDb.Hsapiens.UCSC.hg38.knownGene)) {
txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
res <- get_splice_sites(txdb)
res[1:5]

make_de_object

21

make_de_object

Make summarized experiment object for differential editing analysis

Description

Generates a RangedSummarizedExperiment object for use with edgeR or DESeq2 . Will generate a
counts assay with a matrix formatted with 2 columns per sample, representing the reference and
editing allele counts.

Usage

make_de_object(

rse,

edit_from = "A",
edit_to = "G",

min_prop =

max_prop

min_samples

Arguments

rse
edit_from

edit_to
min_prop
max_prop

min_samples

Value

=1

A RangedSummarizedExperiment object

This should correspond to a nucleotide or assay (A, C, G, T, Ref, or Alt) you
expect in the reference. Ex. for A to I editing events, this would be A.

This should correspond to a nucleotide or assay (A, C, G, T, Ref, or Alt) you
expect in the editing site. Ex. for A to I editing events, this would be G.

The minimum required proportion of reads edited at a site. Atleastmin_samples
need to pass this to keep the site.

The maximum allowable proportion of reads edited at a site. Atleastmin_samples
need to pass this to keep the site.

The minimum number of samples passing the min_prop and max_prop cutoffs
to keep a site.

RangedSummarizedExperiment for use with edgeR or DESeq2. Contains a counts assay with a
matrix formatted with 2 columns per sample (ref and alt counts).

Examples

library(SummarizedExperiment)

rse_adar_ifn <- mock_rse()

rse <- calc_edit_frequency(rse_adar_ifn)
dse <- make_de_object(rse, min_samples = 1)
assay(dse, "counts")[1:5,]

dse

22 pileup_cells

mock_rse Generate a small RangedSummarizedExperiment object for tests and
examples

Description
A RangedSummarizedExperiment containing a subset of data from an RNA-seq experiment to mea-
sure the effects of IFN treatment of cell lines with wild-type or ADAR1-KO.

Usage

mock_rse()

Value

RangedSummarizedExperiment populated with pileup data

Source

https://www.ncbi.nlm.nih.gov/bioproject/PRINA386593

References

https://pubmed.ncbi.nlm.nih.gov/29395325/

Examples

mock_rse()

pileup_cells Generate base counts per cell

Description

This function processes scRNA-seq library to enumerate base counts for Reference (unedited) or
Alternate (edited) bases at specified sites in single cells. pileup_cells can process droplet sScCRNA-
seq libraries, from a BAM file containing a cell-barcode and UMI, or well-based libraries that do
not contain cell-barcodes.

The sites parameter specifies sites to quantify. This must be a GRanges object with 1 base inter-
vals, a strand (+ or -), and supplemented with metadata columns named REF and ALT containing the
reference and alternate base to query. See examples for the required format.

At each site, bases from overlapping reads will be examined, and counts of each ref and alt base enu-
merated for each cell-barcode present. A single base will be counted once for each UMI sequence
present in each cell.

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA386593
https://pubmed.ncbi.nlm.nih.gov/29395325/

pileup_cells 23

Usage

pileup_cells(
bamfiles,
sites,
cell_barcodes,
output_directory,
chroms = NULL,
umi_tag = "UB",
cb_tag = "CB",
param = FilterParam(),
BPPARAM = SerialParam(),
return_sce = TRUE,
verbose = FALSE

)
Arguments
bamfiles a path to a BAM file (for droplet scRNA-seq), or a vector of paths to BAM files
(Smart-seq2). Can be supplied as a character vector, BamFile, or BamFileList.
sites a GRanges object containing sites to process. See examples for valid formatting.

cell_barcodes A character vector of single cell barcodes to process. If processing multiple
BAM files (e.g. Smart-seq2), provide a character vector of unique identifiers for
each input BAM, to name each BAM file in the output files.

output_directory
Output directory for output matrix files. The directory will be generated if it
doesn’t exist.

chroms A character vector of chromosomes to process. If supplied, only sites present in
the listed chromosomes will be processed

umi_tag tag in BAM containing the UMI sequence
cb_tag tag in BAM containing the cell-barcode sequence
param object of class FilterParam() which specify various filters to apply to reads

and sites during pileup. Note that the min_depth and min_variant_reads pa-

rameters if set > 0 specify the number of reads from any cell required in order to

report a site. E.g. if min_variant_reads is set to 2, then at least 2 reads (from

any cell) must have a variant in order to report the site. Setting min_depth and
min_variant_reads to O reports all sites present in the sites object. The fol-

lowing options are not enabled for pileup_cells(): max_mismatch_type, homopolymer_len,
and min_allelic_freq.

BPPARAM BiocParallel instance. Parallel computation occurs across chromosomes.

return_sce if TRUE, data is returned as a SingleCellExperiment, if FALSE a character vector
of the output files, specified by outfile_prefix, will be returned.

verbose Display messages

24 pileup_cells

Value

Returns either a SingleCellExperiment or character vector of paths to the sparseMatrix files pro-
duced. The SingleCellExperiment object is populated with two assays, nRef and nAlt, which
represent base counts for the reference and alternate alleles. The rowRanges() will contain the ge-
nomic interval for each site, along with REF and ALT columns. The rownames will be populated with
the format site_[seqnames]_[position(1-based)]_[strand]_[allele], with strand being
encoded as 1 =+, 2 =-, and 3 = *, and allele being REF + ALT.

If return_sce is FALSE then a character vector of paths to the sparseMatrix files (barcodes. txt.gz,
sites.txt.gz, counts.mtx.gz), will be returned. These files can be imported using read_sparray().

See Also

Other pileup: pileup_sites()

Examples

library(Rsamtools)
library(GenomicRanges)
bam_fn <- raer_example("5k_neuron_mouse_possort.bam")

gr <- GRanges(c("2:579:-", "2:625:-", "2:645:-", "2:589:-", "2:601:-"))
gr$REF <_ C(rep(”A”, 4)’ HTH)
gr$ALT <- c(rep("G", 4), "C")

cbs <- unique(scanBam(bam_fn, param = ScanBamParam(tag = "CB"))[[1]1]tagCB)
cbs <- na.omit(cbs)

outdir <- tempdir()
bai <- indexBam(bam_fn)

fp <- FilterParam(library_type = "fr-second-strand”)
sce <- pileup_cells(bam_fn, gr, cbs, outdir, param = fp)
sce

example of processing multiple Smart-seq2 style libraries

many_small_bams <- rep(bam_fn, 10)
bam_ids <- LETTERS[1:10]

for unstranded libraries, sites and alleles should be provided on + strand
gr <- GRanges(c("2:579:+", "2:625:+", "2:645:+", "2:589:+", "2:601:+"))
gr$REF <- c(rep("T", 4), "A")

gr$ALT <- c(rep("C", 4), "G")

fp <- FilterParam(
library_type = "unstranded"”,
remove_overlaps = TRUE

)

sce <- pileup_cells(many_small_bams,
sites = gr,

pileup_sites 25

cell_barcodes = bam_ids,
cb_tag = NULL,

umi_tag = NULL,

outdir,

param = fp

sce

unlink(bai)

pileup_sites Generate base counts using pileup

Description

This function uses a pileup routine to examine numerate base counts from alignments at specified
sites, regions, or across all read alignments, from one or more BAM files. Alignment and site
filtering options are controlled by the FilterParam class. A RangedSummarizedExperiment object
is returned, populated with base count statistics for each supplied BAM file.

Usage

pileup_sites(
bamfiles,
fasta,
sites = NULL,
region = NULL,
chroms = NULL,
param = FilterParam(),
BPPARAM = SerialParam(),

umi_tag = NULL,
verbose = FALSE
)
FilterParam(

max_depth = 10000,

min_depth = 1L,

min_base_quality = 20L,

min_mapq = @L,

library_type = "fr-first-strand”,
bam_flags = NULL,
only_keep_variants = FALSE,

trim_5p = 0oL,
trim_3p = 0oL,
ftrim_5p = 0,
ftrim_3p = 0,

indel_dist = oL,

26

pileup_sites

splice_dist = oL,
min_splice_overhang = 0L,
homopolymer_len = 0oL,
max_mismatch_type = c(@L, oL),
read_bqual = c(0, 0),
min_variant_reads = 0L,
min_allelic_freq = 0,
report_multiallelic = TRUE,
remove_overlaps = TRUE

Arguments

bamfiles

fasta

sites

region
chroms
param
BPPARAM
umi_tag

verbose
max_depth
min_depth

a character vector, BamFile or BamFileList indicating 1 or more BAM files to
process. If named, the names will be included in the colData of the Ranged-
SummarizedExperiment as a sample column, otherwise the names will be taken
from the basename of the BAM file.

path to genome fasta file used for read alignment. Can be provided in com-
pressed gzip or bgzip format.

a GRanges object containing regions or sites to process.

samtools region query string (i.e. chr1:100-1000). Can be combined with sites,
in which case sites will be filtered to keep only sites within the region.

chromosomes to process, provided as a character vector. Not to be used with the
region parameter.

object of class FilterParam() which specify various filters to apply to reads
and sites during pileup.

A BiocParallel class to control parallel execution. Parallel processing occurs per
chromosome and is disabled when run on a single region.

The BAM tag containing a UMI sequence. If supplied, multiple reads with the
same UMI sequence will only be counted once per position.

if TRUE, then report progress and warnings.
maximum read depth considered at each site

min read depth needed to report site

min_base_quality

min_mapq

library_type

bam_flags

min base quality score to consider read for pileup

minimum required MAPQ score. Values for each input BAM file can be pro-
vided as a vector.

read orientation, one of fr-first-strand, fr-second-strand, and unstranded.
Unstranded library type will be reported with variants w.r.t the + strand. Values
for each input BAM file can be provided as a vector.

bam flags to filter or keep, use Rsamtools: : scanBamFlag() to generate.

only_keep_variants

if TRUE, then only variant sites will be reported (FALSE by default). Values for
each input BAM file can be provided as a vector.

pileup_sites 27

trim_5p Bases to trim from 5’ end of read alignments

trim_3p Bases to trim from 3’ end of read alignments

ftrim_5p Fraction of bases to trim from 5’ end of read alignments

ftrim_3p Fraction of bases to trim from 3’ end of read alignments

indel_dist Exclude read if site occurs within given distance from indel event in the read
splice_dist Exclude read if site occurs within given distance from splicing event in the read

min_splice_overhang
Exclude read if site is located adjacent to splice site with an overhang less than
given length.
homopolymer_len
Exclude site if occurs within homopolymer of given length
max_mismatch_type
Exclude read if it has X different mismatch types (e.g A-to-G, G-to-C, C-to-G,
is 3 mismatch types) or Y # of mismatches, must be supplied as a integer vector
of length 2. e.g. ¢(X, Y).

read_bqual Exclude read if more than X percent of the bases have base qualities less than Y.
Numeric vector of length 2. e.g. ¢(0.25, 20)

min_variant_reads
Required number of reads containing a variant for a site to be reported. Calcu-
lated per bam file, such that if 1 bam file has >= min_variant_reads, then the site
will be reported.

min_allelic_freq
minimum allelic frequency required for a variant to be reported in ALT assay.

report_multiallelic
if TRUE, report sites with multiple variants passing filters. If FALSE, site will
not be reported.

remove_overlaps
if TRUE, enable read pair overlap detection, which will count only 1 read in
regions where read pairs overlap using the htslib algorithm. In brief for each
overlapping base pair the base quality of the base with the lower quality is set to
0, which discards it from being counted.

Value

A RangedSummarizedExperiment object populated with multiple assays:

* ALT: Alternate base(s) found at each position

* nRef: # of reads supporting the reference base
* nAlt: # of reads supporting an alternate base
* nA: # of reads with A

* nT: # of reads with T

* nC: # of reads with C

* nG: # of reads with G

28

pileup_sites

The rowRanges () contains the genomic interval for each site, along with:

e REF: The reference base

* rpbz: Mann-Whitney U test of Read Position Bias from bcftools, extreme negative or positive
values indicate more bias.

* vdb: Variant Distance Bias for filtering splice-site artifacts from bcftools, lower values indicate
more bias.

 sor Strand Odds Ratio Score, strand bias estimated by the Symmetric Odds Ratio test, based

on GATK code. Higher values indicate more bias.

The rownames will be populated with the format site_[seqnames]_[position(1-based)]_[strand],
with strand being encoded as 1 =+,2 =-,and 3 = *.

See Also

Other pileup: pileup_cells()

Examples

library(SummarizedExperiment)

bamfn <- raer_example("”SRR5564269_Aligned.sortedByCoord.out.md.bam")
bam2fn <- raer_example("SRR5564277_Aligned.sortedByCoord.out.md.bam")
fafn <- raer_example("human.fasta")

rse <- pileup_sites(bamfn, fafn)

fp <- FilterParam(only_keep_variants = TRUE, min_depth = 55)
pileup_sites(bamfn, fafn, param = fp)

using multiple bam files

bams <- rep(c(bamfn, bam2fn), each = 3)

sample_ids <- paste@(rep(c("K0", "WT"), each = 3), 1:3)

names(bams) <- sample_ids

fp <- FilterParam(only_keep_variants = TRUE)

rse <- pileup_sites(bams, fafn, param = fp)

rse

rse$condition <- substr(rse$sample, 1, 2)
assays(rse)

colData(rse)
rowRanges(rse)
specifying regions to query using GRanges object

sites <- rowRanges(rse)
rse <- pileup_sites(bams, fafn, sites = sites)

raer 29

rse

rse <- pileup_sites(bams, fafn, chroms = c("SPCS3", "DHFR"))
rse

rse <- pileup_sites(bams, fafn, region
rse

"DHFR:100-101")

raer raer: RNA editing tools in R

Description

Toolkit for identification and statistical testing of RNA editing signals from within R. Provides
support for identifying sites from bulk-RNA and single cell RNA-seq datasets, and general methods
for extraction of allelic read counts from alignment files. Facilitates annotation and exploratory
analysis of editing signals using Bioconductor packages and resources.

Author(s)
Maintainer: Kent Riemondy <kent.riemondy@gmail.com> (ORCID)
Authors:
» Kristen Wells-Wrasman <kristen.wells-wrasman@cuanschutz.edu> (ORCID)

Other contributors:

* Ryan Sheridan <ryan.sheridan@cuanschutz.edu> (ORCID) [contributor]
 Jay Hesselberth <jay.hesselberth@gmail.com> (ORCID) [contributor]

* RNA Bioscience Initiative [copyright holder, funder]

See Also
Useful links:
e https://rnabioco.github.io/raer

e https://github.com/rnabioco/raer

* Report bugs at https://github.com/rnabioco/raer/issues

https://orcid.org/0000-0003-0750-1273
https://orcid.org/0000-0002-7466-8164
https://orcid.org/0000-0003-4012-3147
https://orcid.org/0000-0002-6299-179X
https://rnabioco.github.io/raer
https://github.com/rnabioco/raer
https://github.com/rnabioco/raer/issues

30

read_sparray

raer_example Provide working directory for raer example files.

Description

Provide working directory for raer example files.

Usage

raer_example(path)

Arguments

path path to file

Value

Character vector will path to an internal package file.

Examples

raer_example("human.fasta")

read_sparray Read sparseMatrix produced by pileup_cells()

Description

Read in tables produced by pileup_cells() which are an extension of the matrixMarket sparse

matrix format to store values for more than 1 matrix.

The .mtx.gz files are formatted with columns:

1. row index (0 based)

2. column index (0 based)

3. values for sparseMatrix #1 (nRef)
4. values for sparseMatrix #2 (nAlt)

Usage

read_sparray(mtx_fn, sites_fn, bc_fn, site_format = c("coordinate”, "index"))

read_sparray 31

Arguments
mtx_fn .mtx.gz file path
sites_fn sites.txt.gz file path
bc_fn bes.txt.gz file path
site_format one of coordinate or index, coordinate will populate a SingleCellExperi-
ment with rowRanges and rownames corresponing to genomic intervals, whereas
‘index‘* will only add row indices to the rownames.
Value

a SingleCellExperiment object populated with nRef and nAlt assays.

Examples

library(Rsamtools)
library(GenomicRanges)
bam_fn <- raer_example("5k_neuron_mouse_possort.bam")

gr <- GRanges(c("2:579:-", "2:625:-", "2:645:-", "2:589:-", "2:601:-"))
gr$REF <- c(rep("A", 4), "T")
gr$ALT <- c(rep("G", 4), "C")

cbs <- unique(scanBam(bam_fn, param = ScanBamParam(tag = "CB"))[[1]1]tagCB)
cbs <- na.omit(chs)

outdir <- tempdir()
bai <- indexBam(bam_fn)

fp <- FilterParam(library_type = "fr-second-strand")

mtx_fns <- pileup_cells(bam_fn, gr, cbs, outdir, return_sce = FALSE)
sce <- read_sparray(mtx_fns[1], mtx_fns[2], mtx_fns[3])

sce

unlink(bai)

Index

* internal
raer, 29

* pileup
pileup_cells, 22
pileup_sites, 25

x se-filters
filter_clustered_variants, 12
filter_multiallelic, 13
filter_splice_variants, 14

annot_from_gr, 3
annot_snps, 4

BamFile, 23, 26
BamFilelList, 23, 26
BiocParallel, 26
BiocParallelParam, 6
BSgenome: :available.SNPs(), 4

calc_AEI, 5
calc_confidence, 7
calc_edit_frequency, 8
calc_scAEI, 9
colData, 26
correct_strand, 11

DataFrame, /8

filter_clustered_variants, 12, /14
filter_multiallelic, 13,13, 14
filter_splice_variants, 13, 14, 14
FilterParam (pileup_sites), 25
FilterParam(), 6, 10, 23, 26
find_de_sites, 15
find_mispriming_sites, 17
find_scde_sites, 18

GenomicRanges: : findOverlaps(), 3
GenomicRanges: :GPos, 19
get_overlapping_snps, 19
get_overlapping_snps(), 6

32

get_scAEI_sites (calc_scAEI), 9
get_scAEI_sites(), 9
get_splice_sites, 20

GPos, 6

GRanges, 4, 6, 22, 26

make_de_object, 21
make_de_object(), 15
mock_rse, 22

pileup_cells, 22, 28
pileup_cells(), 10
pileup_sites, 24, 25
pileup_sites(), 8

raer, 29
raer-package (raer), 29
raer_example, 30

RangedSummarizedExperiment, 8, 9, 15, 21,

25-27
read_sparray, 30
read_sparray(), 24
rowData, /8
rowRanges(), 24, 28
Rsamtools: :BamFile(), 17
Rsamtools: :scanBamFlag(), 26

S4Vectors::Rle(), 3, 4
scran: :combineMarkers, 18
SingleCellExperiment, I8, 24
SNPlocs, 6
SummarizedExperiment, 4

TxDb, 6

	annot_from_gr
	annot_snps
	calc_AEI
	calc_confidence
	calc_edit_frequency
	calc_scAEI
	correct_strand
	filter_clustered_variants
	filter_multiallelic
	filter_splice_variants
	find_de_sites
	find_mispriming_sites
	find_scde_sites
	get_overlapping_snps
	get_splice_sites
	make_de_object
	mock_rse
	pileup_cells
	pileup_sites
	raer
	raer_example
	read_sparray
	Index

