Package 'cfTools'

July 9, 2025

Type Package

Title Informatics Tools for Cell-Free DNA Study

Version 1.8.0

Description The cfTools R package provides methods for cell-free DNA (cfDNA) methylation data analysis to facilitate cfDNA-based studies. Given the methylation sequencing data of a cfDNA sample, for each cancer marker or tissue marker, we deconvolve the tumor-derived or tissue-specific reads from all reads falling in the marker region. Our read-based deconvolution algorithm exploits the pervasiveness of DNA methylation for signal enhancement, therefore can sensitively identify a trace amount of tumor-specific or tissue-specific cfDNA in plasma. cfTools provides functions for (1) cancer detection: sensitively detect tumor-derived cfDNA and estimate the tumor-derived cfDNA fraction (tumor burden); (2) tissue deconvolution: infer the tissue type composition and the cfDNA fraction of multiple tissue types for a plasma cfDNA sample. These functions can serve as foundations for more advanced cfDNA-based studies, including cancer diagnosis and disease monitoring.

License file LICENSE

Encoding UTF-8

Suggests BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

RoxygenNote 7.2.3

Imports Rcpp, utils, GenomicRanges, basilisk, R.utils, stats, cfToolsData, grDevices, graphics

StagedInstall no

biocViews Software, BiomedicalInformatics, Epigenetics, Sequencing, MethylSeq, DNAMethylation, DifferentialMethylation

VignetteBuilder knitr LinkingTo Rcpp, BH

URL https://github.com/jasminezhoulab/cfTools

BugReports https://github.com/jasminezhoulab/cfTools/issues

2 Contents

```
git_url https://git.bioconductor.org/packages/cfTools
git_branch RELEASE_3_21
git_last_commit c1e7735
git_last_commit_date 2025-05-31
Repository Bioconductor 3.21
Date/Publication 2025-07-09
Author Ran Hu [aut, cre] (ORCID: <a href="https://orcid.org/0000-0002-0563-8957">https://orcid.org/0000-0002-0563-8957</a>),
Mary Louisa Stackpole [aut] (ORCID: <a href="https://orcid.org/0000-0003-4432-6718">https://orcid.org/0000-0003-4432-6718</a>),
Shuo Li [aut] (ORCID: <a href="https://orcid.org/0000-0002-1960-6016">https://orcid.org/0000-0002-1960-6016</a>),
Xianghong Jasmine Zhou [aut] (ORCID: <a href="https://orcid.org/0000-0002-5029-8525">https://orcid.org/0000-0002-4522-7490</a>),
Wenyuan Li [aut] (ORCID: <a href="https://orcid.org/0000-0002-5029-8525">https://orcid.org/0000-0002-5029-8525</a>)
Maintainer Ran Hu <a href="https://orcid.org/0000-0002-5029-8525">https://orcid.org/0000-0002-5029-8525</a>)
```

Contents

Index

22

beta_matrix 3

beta_matrix

Beta value matrix

Description

A list of methylation levels (e.g., beta values), where each row is a sample and each column is a marker

Usage

```
data("beta_matrix")
```

Format

A tibble with 20 rows and 3 variables

marker1 Beta values of marker1 for all samplesmarker2 Beta values of marker2 for all samplesmarker3 Beta values of marker3 for all samples

Value

A tibble with 20 rows and 3 variables

Author(s)

Ran Hu <huran@ucla.edu>

CancerDetector

Cancer Detector

Description

Detect tumor-derived cfDNA and estimate the tumor burden.

```
CancerDetector(
  readsBinningFile,
  tissueMarkersFile,
  lambda = 0.5,
  id = "sample"
)
```

4 CancerDetector.markers

Arguments

```
readsBinningFile

a file of the fragment-level methylation states of reads that mapped to the markers.

tissueMarkersFile

a file of paired shape parameters of beta distributions for markers.

lambda a number controlling "confounding" markers' distance from average markers.

id the sample ID.
```

Value

a list containing the cfDNA tumor burden and the normal cfDNA fraction.

Examples

```
## input files
demo.dir <- system.file("data", package="cfTools")
readsBinningFile <- file.path(demo.dir, "CancerDetector.reads.txt.gz")
tissueMarkersFile <- file.path(demo.dir, "CancerDetector.markers.txt.gz")
lambda <- 0.5
id <- "test"

CancerDetector(readsBinningFile, tissueMarkersFile, lambda, id)</pre>
```

CancerDetector.markers

Cancer-specific marker parameter

Description

The paired shape parameters of beta distributions for cancer-specific markers

Usage

```
data("CancerDetector.markers")
```

Format

A tibble with 1266 rows and 3 variables

markerName Name of the marker

tumor Paired beta distribution shape parameters for tumor samples

normalPlasma Paired beta distribution shape parameters for normal plasma samples

Value

A tibble with 1266 rows and 3 variables

CancerDetector.reads 5

Author(s)

Ran Hu <huran@ucla.edu>

CancerDetector.reads Fragment-level methylation state for cancer detection

Description

The fragment-level methylation states of reads that mapped to the cancer-specific markers

Usage

```
data("CancerDetector.reads")
```

Format

A tibble with 9991 rows and 2 variables

markerName Name of the marker

methState Fragment-level methylation states, which are represented by a sequence of binary values (0 represents unmethylated CpG and 1 represents methylated CpG on the same fragment)

Value

A tibble with 9991 rows and 2 variables

Author(s)

Ran Hu <huran@ucla.edu>

cfDeconvolve

cfDNA methylation read deconvolution

Description

Infer the tissue-type composition of plasma cfDNA.

```
cfDeconvolve(
  readsBinningFile,
  tissueMarkersFile,
  numTissues,
  emAlgorithmType = "em.global.unknown",
  likelihoodRatioThreshold = 2,
  emMaxIterations = 100,
  randomSeed = 0,
  id = "sample"
)
```

6 cfDeconvolve.markers

Arguments

```
readsBinningFile
                  a file of the fragment-level methylation states of reads that mapped to the mark-
                  ers. Either in plain text or compressed form.
tissueMarkersFile
                  a file of paired shape parameters of beta distributions for markers.
numTissues
                  a number of tissue types.
emAlgorithmType
                  a read-based tissue deconvolution EM algorithm type: em.global.unknown (de-
                  fault), em.global.known, em.local.unknown, em.local.known.
likelihoodRatioThreshold
                  a positive float number. Default is 2.
emMaxIterations
                  a number of EM algorithm maximum iteration. Default is 100.
randomSeed
                  a random seed that initialize the EM algorithm. Default is 0.
                  the sample ID.
id
```

Value

a list containing the cfDNA fractions of different tissue types and an unknown class.

Examples

```
## input files
demo.dir <- system.file("data", package="cfTools")
readsBinningFile <- file.path(demo.dir, "cfDeconvolve.reads.txt.gz")
tissueMarkersFile <- file.path(demo.dir, "cfDeconvolve.markers.txt.gz")
numTissues <- 7
emAlgorithmType <- "em.global.unknown"
likelihoodRatioThreshold <- 2
emMaxIterations <- 100
randomSeed <- 0
id <- "test"

cfDeconvolve(readsBinningFile, tissueMarkersFile, numTissues, emAlgorithmType, likelihoodRatioThreshold, emMaxIterations, randomSeed, id)</pre>
```

cfDeconvolve.markers Tissue-specific marker parameter

Description

The paired shape parameters of beta distributions for tissue-specific markers

cfDeconvolve.reads 7

Usage

```
data("cfDeconvolve.markers")
```

Format

A tibble with 10 rows and 8 variables

markerName Name of the marker

tissue1 Paired beta distribution shape parameters for tissue1 samples

tissue2 Paired beta distribution shape parameters for tissue2 samples

tissue3 Paired beta distribution shape parameters for tissue3 samples

tissue4 Paired beta distribution shape parameters for tissue4 samples

tissue5 Paired beta distribution shape parameters for tissue5 samples

tissue6 Paired beta distribution shape parameters for tissue6 samples

tissue7 Paired beta distribution shape parameters for tissue7 samples

Value

A tibble with 10 rows and 8 variables

Author(s)

Ran Hu <huran@ucla.edu>

cfDeconvolve.reads

Fragment-level methylation state for tissue deconvolution

Description

The fragment-level methylation states of reads that mapped to the tissue-specific markers

Usage

```
data("cfDeconvolve.reads")
```

Format

A tibble with 942 rows and 2 variables

markerName Name of the marker

methState Fragment-level methylation states, which are represented by a sequence of binary values (0 represents unmethylated CpG and 1 represents methylated CpG on the same fragment)

Value

A tibble with 942 rows and 2 variables

8 cfsort_markers

Author(s)

Ran Hu <huran@ucla.edu>

cfSort

cfSort: tissue deconvolution

Description

Tissue deconvolution in cfDNA using DNN models.

Usage

```
cfSort(readsBinningFile, id = "sample")
```

Arguments

readsBinningFile

a file of the fragment-level methylation states of reads that mapped to the cfSort markers. In compressed form.

id

the sample ID.

Value

the tissue composition of the cfDNA sample.

Examples

```
## input files
demo.dir <- system.file("data", package="cfTools")
readsBinningFile <- file.path(demo.dir, "cfsort_reads.txt.gz")
id <- "test"

cfSort(readsBinningFile, id)</pre>
```

cfsort_markers

cfSort markers

Description

Marker information for the cfSort function, where each row is the information about a marker

```
data("cfsort_markers")
```

cfsort_reads 9

Format

A tibble with 51035 rows and 4 variables

marker_index The marker index used in cfSort method alpha_threshold The alpha threshold for each marker pair The pair of tissues used for identifying the marker group The group number for each marker

Value

A tibble with 51035 rows and 4 variables

Author(s)

Ran Hu <huran@ucla.edu>

cfsort_reads

Fragment-level methylation state for cfSort tissue deconvolution

Description

The fragment-level methylation states of reads that mapped to the cfSort markers

Usage

```
data("cfsort_reads")
```

Format

A tibble with 99999 rows and 2 variables

markerName Name of the cfSort marker

methState Fragment-level methylation states, which are represented by a sequence of binary values (0 represents unmethylated CpG and 1 represents methylated CpG on the same fragment)

Value

A tibble with 99999 rows and 2 variables

Author(s)

Ran Hu <huran@ucla.edu>

10 CpG_OB_demo

cfTools

cfTools: a versatile package for analyzing cell-free DNA data

Description

Given the methylation sequencing data of a cell-free DNA (cfDNA) sample, for each cancer marker or tissue marker, we deconvolve the tumor-derived or tissue-specific reads from all reads falling in the marker region. Our read-based deconvolution algorithm exploits the pervasiveness of DNA methylation for signal enhancement, therefore can sensitively identify a trace amount of tumor-specific or tissue-specific cfDNA in plasma.

Details

Specifically, cfTools can deconvolve different sources of cfDNA fragments (or reads) in two contexts:

- 1. Cancer detection: separate cfDNA fragments into tumor-derived fragments and background normal fragments (2 classes), and estimate the tumor-derived cfDNA fraction.
- 2. Tissue deconvolution: separate cfDNA fragments from different tissues (> 2 classes), and estimate the cfDNA fraction of different tissue types (including an unknown type) for a plasma cfDNA sample.

These functions can serve as foundations for more advanced cfDNA-based studies, including cancer diagnosis and disease monitoring.

For an overview of the functionality provided by the package, please see the vignette: vignette(package="cfTools")

Author(s)

Ran Hu <huran@ucla.edu>, Mary Louisa Stackpole, Shuo Li, Xianghong Jasmine Zhou <XJZhou@mednet.ucla.edu>, Wenyuan Li <WenyuanLi@mednet.ucla.edu>

See Also

CancerDetector, cfDeconvolve, cfSort, MergeCpGs, MergePEReads, GenerateFragMeth, GenerateMarkerParam, PlotFractionPie

CpG_OB_demo

Methylation information for CpG on the original bottom strand (OB)

Description

Methylation information for CpG on the original bottom strand (OB), which is one of the outputs from 'bismark methylation extractor'

```
data("CpG_OB_demo")
```

CpG_OT_demo

Format

A tibble with 2224 rows and 5 variables

sequence ID ID of the sequence

methylation state Methylated or unmethylated CpG site

chromosome name Chromosome name

chromosome start Chromosome start position

methylation call Methylation call

Value

A tibble with 2224 rows and 5 variables

Author(s)

Ran Hu <huran@ucla.edu>

CpG_OT_demo

Methylation information for CpG on the original top strand (OT)

Description

Methylation information for CpG on the original top strand (OT), which is one of the outputs from 'bismark methylation extractor'

Usage

```
data("CpG_OT_demo")
```

Format

A tibble with 2556 rows and 5 variables

sequence ID ID of the sequence

methylation state Methylated or unmethylated CpG site

chromosome name Chromosome name

chromosome start Chromosome start position

methylation call Methylation call

Value

A tibble with 2556 rows and 5 variables

Author(s)

Ran Hu <huran@ucla.edu>

```
demo.fragment_level.meth.bed
```

Fragment-level methylation information

Description

A BED file of fragment-level methylation information

Usage

```
data("demo.fragment_level.meth.bed")
```

Format

A tibble with 552 rows and 9 variables

chr Chromosome

start Chromosome start

end Chromosome end

name ID of the sequence

fragmentLength Fragment length

strand Strand

cpgNumber Number of CpG sites on the fragment

cpgPosition Postions of CpG sites on the fragment

methState A string of methylation states of CpG sites on the fragment

Value

A tibble with 552 rows and 9 variables

Author(s)

Ran Hu <huran@ucla.edu>

demo.refo_frag.bed

demo.refo_frag.bed

Fragment-level information

Description

A BED file of fragment-level information

Usage

```
data("demo.refo_frag.bed")
```

Format

A tibble with 559 rows and 6 variables

chr Chromosome

start Chromosome start

end Chromosome end

fragmentLength Fragment length

strand Strand

name ID of the sequence

Value

A tibble with 559 rows and 6 variables

Author(s)

Ran Hu <huran@ucla.edu>

 ${\tt demo.refo_meth.bed}$

Methylation information on fragments

Description

A BED file of methylation information on fragments

```
data("demo.refo_meth.bed")
```

14 demo.sorted.bed

Format

A tibble with 552 rows and 8 variables

chr Chromosome

cpgStart Start postion of first CpG on the fragment

cpgEnd End postion of first CpG on the fragment

strand Strand

cpgNumber Number of CpG sites on the fragment

cpgPosition Postions of CpG sites on the fragment

methState A string of methylation states of CpG sites on the fragment

name ID of the sequence

Value

A tibble with 552 rows and 8 variables

Author(s)

Ran Hu <huran@ucla.edu>

demo.sorted.bed

Paired-end sequencing reads

Description

Paired-end sequencing reads information

Usage

```
data("demo.sorted.bed")
```

Format

A tibble with 1117 rows and 6 variables

chr Chromosome name

start Chromosome start

end Chromosome end

name Sequence ID

score Mapping quality score

strand Strand

Value

A tibble with 1117 rows and 6 variables

GenerateFragMeth 15

Author(s)

Ran Hu <huran@ucla.edu>

GenerateFragMeth	Generate fragment-level information about methylation states
201101 4201 1 48.10 511	concretely, agreed to early and a second states

Description

Join two lists containing the fragment information and the methylation states on each fragment into one list.

Usage

```
GenerateFragMeth(frag_bed, meth_bed, output.dir = "", id = "")
```

Arguments

frag_bed	a BED file containing information for every fragment, which is the output of MergePEReads().
meth_bed	a BED file containing methylation states on every fragment, which is the output of $MergeCpGs()$.
output.dir	a path to the output directory. Default is "", which means the output will not be written into a file.
id	an ID name for the input data. Default is "", which means the output will not be written into a file.

Value

a list in BED file format and/or written to an output BED file.

Examples

```
## input files
demo.dir <- system.file("data", package="cfTools")
frag_bed <- read.delim(file.path(demo.dir, "demo.refo_frag.bed.txt.gz"),
colClasses = "character")
meth_bed <- read.delim(file.path(demo.dir, "demo.refo_meth.bed.txt.gz"),
colClasses = "character")
output <- GenerateFragMeth(frag_bed, meth_bed)</pre>
```

16 GenerateMarkerParam

GenerateMarkerParam

Generate the methylation pattern of markers

Description

Output paired shape parameters of beta distributions for methylation markers.

Usage

```
GenerateMarkerParam(x, sample.types, marker.names, output.file = "")
```

Arguments

Х	a list of methylation levels (e.g., beta values), where each row is a sample and each column is a marker.
sample.types	a vector of sample types (e.g., tumor or normal, tissue types) corresponding to the rows of the list.
marker.names	a vector of marker names corresponding to the columns of the list.
output.file	a character string naming the output file. Default is "", which means the output will not be written into a file.

Value

a list containing the paired shape parameters of beta distributions for markers and/or written to an output file.

Examples

```
## input files
demo.dir <- system.file("data", package="cfTools")
methLevel <- read.table(file.path(demo.dir, "beta_matrix.txt.gz"),
row.names=1, header = TRUE)
sampleTypes <- read.table(file.path(demo.dir, "sample_type.txt.gz"),
row.names=1, header = TRUE)$sampleType
markerNames <- read.table(file.path(demo.dir, "marker_index.txt.gz"),
row.names=1, header = TRUE)$markerIndex

output <- GenerateMarkerParam(methLevel, sampleTypes, markerNames)</pre>
```

markers.bed 17

markers.bed

Genomic postions of markers

Description

A BED file of genomic regions of markers

Usage

```
data("markers.bed")
```

Format

A tibble with 3 rows and 4 variables

chr Chromosome

start Chromosome start

end Chromosome end

markerName Marker name

Value

A tibble with 3 rows and 4 variables

Author(s)

Ran Hu <huran@ucla.edu>

marker_index

Marker name

Description

A vector of marker names corresponding to the columns of the list of methylation levels.

Usage

```
data("marker_index")
```

Format

A tibble with 3 rows and 1 variables

markerIndex Marker name

MergeCpGs

Value

A tibble with 3 rows and 1 variables

Author(s)

Ran Hu <huran@ucla.edu>

Mor	200	`nCa
mer	gec	CpGs

Generate fragment-level methylation states of CpGs

Description

Merge the methylation states of all CpGs corresponding to the same fragment onto one line in output.

Usage

```
MergeCpGs(CpG_OT, CpG_OB, output.dir = "", id = "")
```

Arguments

CpG_OT	a file of methylation information for CpG on the original top strand (OT), which is one of the outputs from 'bismark methylation extractor'.
CpG_OB	a file of methylation information for CpG on the original bottom strand (OB), which is one of the outputs from 'bismark methylation extractor'.
output.dir	a path to the output directory. Default is "", which means the output will not be written into a file.
id	an ID name for the input data. Default is "", which means the output will not be written into a file.

Value

a list in BED file format and/or written to an output BED file.

Examples

```
## input files
demo.dir <- system.file("data", package="cfTools")
CpG_OT <- file.path(demo.dir, "CpG_OT_demo.txt.gz")
CpG_OB <- file.path(demo.dir, "CpG_OB_demo.txt.gz")
output <- MergeCpGs(CpG_OT, CpG_OB)</pre>
```

MergePEReads 19

	١ ـ .			\sim	`	ads
ľ	$\boldsymbol{\omega}$	r 0	e	' -	(0)	ากร

Generate fragment-level information for paired-end sequencing reads

Description

Merge BED file (the output of 'bedtools bamtobed') to fragment-level for paired-end sequencing reads.

Usage

```
MergePEReads(bed_file, output.dir = "", id = "")
```

Arguments

bed_file a (sorted) BED file of paired-end reads.

output.dir a path to the output directory. Default is "", which means the output will not be

written into a file.

id an ID name for the input data. Default is "", which means the output will not be

written into a file.

Value

a list in BED file format and/or written to an output BED file.

Examples

```
## input files
demo.dir <- system.file("data", package="cfTools")
PEReads <- file.path(demo.dir, "demo.sorted.bed.txt.gz")
output <- MergePEReads(PEReads)</pre>
```

PlotFractionPie

Plot Pie Chart

Description

Generate a pie chart for a vector of class fractions (e.g., tissue composition or cfDNA fractions). Automatically filters small values into an "Other" group, and allows for custom colors and font size control.

20 sample_type

Usage

```
PlotFractionPie(
  fraction_vector,
  title = "Composition",
  threshold = 0.01,
  class_colors = NULL,
  font_size = 1
)
```

Arguments

fraction_vector

a named numeric vector or one-row data.frame, where each value represents a

class proportion.

title the title of the plot.

threshold a numeric value. Classes with fraction values below this threshold will be

grouped into "Other".

class_colors a named character vector assigning colors to specific class names (e.g., c("tumor"

= "red")).

font_size numeric, font scaling factor (default is 1.0).

Value

A pie chart is plotted to the current device.

Examples

```
df <- data.frame(
    WBC = 0.93,
    Liver = 0.04,
    Lung = 0.02,
    Muscle = 1.2345e-4,
    Stomach = 9.87655e-03
)
PlotFractionPie(df, title = "cfDNA Composition", font_size = 1.2)</pre>
```

sample_type

Sample type

Description

A vector of sample types (e.g., tumor or normal, tissue types) corresponding to the rows of the list of methylation levels.

sample_type 21

Usage

```
data("sample_type")
```

Format

A tibble with 20 rows and 1 variables

sampleType Sample type

Value

A tibble with 20 rows and 1 variables

Author(s)

Ran Hu <huran@ucla.edu>

Index

```
* internal
    cfTools, 10
beta_matrix, 3
CancerDetector, 3, 10
CancerDetector.markers, 4
CancerDetector.reads, 5
cfDeconvolve, 5, 10
cfDeconvolve.markers, 6
cfDeconvolve.reads, 7
cfSort, 8, 10
{\tt cfsort\_markers}, {\color{red} 8}
cfsort_reads, 9
cfTools, 10
CpG_OB_demo, 10
CpG_OT_demo, 11
demo.fragment_level.meth.bed, 12
demo.refo_frag.bed, 13
demo.refo_meth.bed, 13
demo.sorted.bed, 14
GenerateFragMeth, 10, 15
GenerateMarkerParam, 10, 16
marker_index, 17
markers.bed, 17
MergeCpGs, 10, 18
MergePEReads, 10, 19
PlotFractionPie, 10, 19
sample_type, 20
```