Package 'cfDNAPro'

July 9, 2025

```
Title cfDNAPro extracts and Visualises biological features from whole
     genome sequencing data of cell-free DNA
Version 1.14.0
biocViews Visualization, Sequencing, WholeGenome
Description cfDNA fragments carry important features for building cancer sample classifica-
     tion ML models, such as fragment size, and fragment end motif etc.
     Analyzing and visualizing fragment size metrics, as well as other biological features in a cu-
     rated, standardized, scalable, well-documented, and reproducible way might be time intensive.
     This package intends to resolve these problems and simplify the process. It of-
     fers two sets of functions for cfDNA feature characterization and visualization.
Depends R (>= 4.1.0), magrittr (>= 1.5.0)
Imports tibble, GenomicAlignments, IRanges, plyranges, GenomeInfoDb,
     GenomicRanges, BiocGenerics, stats, utils, dplyr (>= 0.8.3),
     stringr (>= 1.4.0), quantmod (>= 0.4), ggplot2 (>= 3.2.1),
     Rsamtools (>= 2.4.0), rlang (>= 0.4.0),
     BSgenome. Hsapiens. UCSC. hg38, BSgenome. Hsapiens. UCSC. hg19,
     BSgenome. Hsapiens. NCBI. GRCh38
Suggests scales, ggpubr, knitr (>= 1.23), rmarkdown (>= 1.14),
     devtools (>= 2.3.0), BiocStyle, testthat
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.2
VignetteBuilder knitr
URL https://github.com/hw538/cfDNAPro
BugRePORTS https://github.com/hw538/cfDNAPro/issues
BiocType Software
git_url https://git.bioconductor.org/packages/cfDNAPro
git_branch RELEASE_3_21
git_last_commit ba29cd2
```

Type Package

2 callMetrics

git_last_commit_date 2025-04-15
Repository Bioconductor 3.21
Date/Publication 2025-07-09
Author Haichao Wang [aut, cre], Hui Zhao [ctb],
Elkie Chan [ctb],
Christopher Smith [ctb],
Tomer Kaplan [ctb],
Florian Markowetz [ctb],
Nitzan Rosenfeld [ctb]
Maintainer Haichao Wang <hw538@cam ac="" uk=""></hw538@cam>

Contents

callMetrics	2
callMode	3
callPeakDistance	4
callSize	6
callValleyDistance	7
examplePath	8
plotAllToOne	8
plotMetrics	9
plotMode	10
plotModeSummary	11
plotPeakDistance	12
plotSingleGroup	13
plotValleyDistance	14
readBam	15
read_bam_insert_metrics	17
	19

callMetrics

Calculate the metrics of insert size

Description

Calculate the metrics of insert size

Usage

Index

```
callMetrics(
  path = getwd(),
  groups,
  fun = "all",
  outfmt = "df",
```

callMode 3

```
input_type,
...
)
```

Arguments

path The root folder containing all groups folders, default is the present working

folder.

groups The name of the groups, the input value should be vector, e.g. groups=c('group1','group2'),

default is all sub-folders in the 'path'.

fun String value, the types of metrics to be calculated. Default is 'all', which means

both median and mean values will be returned.

outfmt The output format, a 'list' or 'dataframe' or 'df', default is dataframe.

input_type Character. The input file format, should be one of these: 'picard', 'bam' or

'cfdnapro'. The bam files has to be marked duplicates.

... Further arguments passed to or from other methods.

Value

The inter valley distance in list or dataframe format.

Author(s)

Haichao Wang

Examples

```
# Get the path to example data.
path <- examplePath("groups_picard")
# Calculate the metrics.
df <- callMetrics(path = path)</pre>
```

callMode

Calculate the mode fragment size of each sample

Description

Calculate the mode fragment size of each sample

```
callMode(
  path,
  groups,
  outfmt = "df",
  order = groups,
  summary,
```

4 callPeakDistance

```
mincount,
  input_type,
  ...
)
```

Arguments

path	The root folder containing all groups folders, default is the present working folder.
groups	The name of the groups, the input value should be vector, e.g. groups=c('group1','group2'), default is all folders in the folder path.
outfmt	The output format, 'list' or 'dataframe' or 'df', default is dataframe.
order	The order in the sorted output, default value equals to 'groups' parameter.
summary	Summarize the dataframe result by calculating each mode size and its count number. Default value is False.
mincount	Minimum count number of each mode size in the summarized output. Only significant when 'summary = TRUE'.
input_type	Character. The input file format, should be one of these: 'picard', 'bam', 'cfd-napro'. The bam files has to be marked duplicates.
	Further arguments passed to or from other methods.

Value

The function returns the inter valley distance in list or dataframe format.

Author(s)

Haichao Wang

Examples

```
# Get the path to example data.
path <- examplePath("groups_picard")
# Calculate the mode.
df <- callMode(path = path)</pre>
```

callPeakDistance

Calculate the inter-peak distance of insert size

Description

Calculate the inter-peak distance of insert size

callPeakDistance 5

Usage

```
callPeakDistance(
  path = getwd(),
  groups,
  limit,
  outfmt,
  summary,
  mincount,
  input_type,
  ...
)
```

Arguments

path	The root folder containing all groups folders. Default is the present working folder.
groups	The name of the groups, the input value should be vector, e.g. groups=c('group1','group2'). Default is all folders in the folder path.
limit	The insert size range that will be focused on. Default value is 'limit = $c(35,135)$ '.
outfmt	The output format, a 'list' or 'dataframe'. Default is dataframe.
summary	If TRUE, summarize the output.
mincount	The minimum count value of inter-peak distance in the summary.
input_type	Character. The input file format, should be one of these: 'picard', 'bam', 'cfd-napro'. The bam files has to be marked duplicates.
	Further arguments passed to or from other methods.

Value

The function returns the inter peak distance in list or dataframe format.

Author(s)

Haichao Wang

```
# Get the path to example data.
path <- examplePath("groups_picard")
# Calculate the inter-peak distance.
df <- callPeakDistance(path = path)</pre>
```

6 callSize

callSize	Calculate the insert size metrics (i.e. prop, cdf, 1-cdf) or each group
callSize	Calculate the insert size metrics (i.e. prop, cdf, 1-cdf) or each group

Description

Calculate the insert size metrics (i.e. prop, cdf, 1-cdf) or each group

Usage

```
callSize(path, groups, outfmt, input_type, ...)
```

Arguments

path	The root folder containing all groups folders, default is the present working folder.
groups	The name of the groups, the input value should be vector, e.g. 'groups=c('group1','group2')', default is all folders in the folder path.
outfmt	The output format, could specify as 'list' or 'dataframe' or 'df', default is dataframe.
input_type	Character. The input file format, should be one of these: 'picard', 'bam', 'cfd-napro'. The bam files has to be marked duplicates.
	Further arguments passed to or from other methods.

Value

The function returns the insert size metrics of each group in list or dataframe format.

Author(s)

Haichao Wang

```
# Get the path to example data.
path <- examplePath("groups_picard")
# Calculate the size.
df <- callSize(path = path)</pre>
```

callValleyDistance 7

callValleyDistance

Calculate the inter-valley distance of insert size

Description

Calculate the inter-valley distance of insert size

Usage

```
callValleyDistance(
  path = getwd(),
  groups,
  limit,
  outfmt,
  summary,
  mincount,
  input_type,
  ...
)
```

Arguments

path	The root folder containing all groups folders, default is the present working folder.
groups	The name of the groups, the input value should be vector, e.g. groups = $c('group1', 'group2')$, default is all folders in the folder path.
limit	The insert size range that will be focused on, default value is 'limit = $c(35,135)$ '.
outfmt	The output format, could specify as 'list' or 'dataframe' or 'df', default is dataframe.
summary	If TRUE, summarize the output.
mincount	The minimum count value of inter-valley distance.
input_type	Character. The input file format should be 'picard' or 'bam', or 'cfdnapro'. The bam files has to be marked duplicates.
	Further arguments passed to or from other methods.

Value

The inter-valley distance in a list or dataframe.

Author(s)

Haichao Wang

8 plotAllToOne

Examples

```
# Get the path to example data.
path <- examplePath("groups_picard")
# Calculate the inter-valley distance.
df <- callValleyDistance(path = path)</pre>
```

examplePath

Get path to cfDNAPro example folder.

Description

cfDNAPro package has sample files in 'inst/extdata' directory. This function helps get the path to the data.

Usage

```
examplePath(data = NULL)
```

Arguments

data

Name of data set. Such as "groups_picard" or "step6". If 'NULL', the path of extdata folder will be returned.

Value

```
A string. (i.e. the path.)
```

Examples

```
examplePath()
examplePath("groups_picard")
examplePath("step6")
```

plotAllToOne

Plot the raw fragment size metrics (e.g. proportion, cdf and 1-cdf) of all groups with different colors in a single plot

Description

Plot the raw fragment size metrics (e.g. proportion, cdf and 1-cdf) of all groups with different colors in a single plot

```
plotAllToOne(x, order, plot, vline, xlim, ylim, ...)
```

plotMetrics 9

Arguments

X	A long-format dataframe contains the metrics of different cohort.
order	The groups show in the final plot, the input value should be vector, e.g. 'groups=c('group1','group2')', default is all folders in the folder path.
plot	The plot type, default is 'all' which means all of proportion, cdf and 1-cdf plots will be shown.
vline	Vertical dashed lines, default value is 'c(81,167)'.
xlim	The x axis range shown in the plot. Default is 'c(0,500)'.
ylim	The y axis range shown in the fraction of fragment size plots. Default is ' $c(0,0.035)$ '.
	Further arguments passed to or from other methods.

Value

The function returns a list plots.

Author(s)

Haichao Wang

Examples

```
# Get the path to example data.
path <- examplePath("groups_picard")
# Calculate the sizes.
df <- callSize(path = path)
# Plot all samples from multiple groups into one figure.
plot <- plotAllToOne(df)</pre>
```

plotMetrics Plot the fragment size metrics (i.e. proportion, cdf and 1-cdf)

Description

Plot the fragment size metrics (i.e. proportion, cdf and 1-cdf)

```
plotMetrics(x, order, plot, vline, xlim, ylim, ...)
```

10 plotMode

Arguments

X	A long-format dataframe contains the metrics of different cohort.
order	The groups show in the final plot, the input value should be vector, e.g. 'groups $= c('group1','group2')''$, default is all folders in the folder path
plot	The plot type, default is 'all': both median and mean metrics will be shown. They will include: mean_prop, mean_cdf, mean_1-cdf, median_prop, median_cdf, median_1-cdf. Could also specify as "median" or "mean".
vline	Vertical dashed lines, default value is c(81,167).
xlim	The x axis range shown in the plot. Default is $c(0,500)$.
ylim	The y axis range shown in the fraction of fragment size plots. Default is $c(0,0.0125)$.
	Further arguments passed to or from other methods.

Value

The function returns a list plots.

Author(s)

Haichao Wang

Examples

```
# Get the path to example data.
path <- examplePath("groups_picard")
# Calculate the metrics.
df <- callMetrics(path = path)
# Plot metrics.
plot <- plotMetrics(df,
    plot = "median",
    order = c("cohort_1", "cohort_2")
)</pre>
```

plotMode

Plot mode fragment size

Description

Plot mode fragment size

```
plotMode(x, order, type, mincount, hline, ...)
```

plotModeSummary 11

Arguments

X	A long-format dataframe contains the interpeak distance, a template please refer to the result of "callPeakdist" function.
order	The groups show in the final plot, the input value should be vector, e.g. 'groups = $c("group1","group2")$ ', default is all folders in the folder path.
type	The plot type, could choose "bin" or "stacked" chart. Default is bin plot.
mincount	Minimum count of mode fragment size that will be included. Count number smaller than this value will be removed first, then proportion of each count value will be calculated. Default value is 0.
hline	The horizontal lines added to the bin plot. Default lines will be ' $c(81,112,170)$ '.
	Further arguments passed to or from other methods.

Value

The function returns the plot.

Author(s)

Haichao Wang

Examples

```
# Get the path to example data.
path <- examplePath("groups_picard")
# Calculate the modes.
df <- callMode(path = path)
# Plot modes.
plot <- plotMode(df, hline = c(80, 111, 170))</pre>
```

plotModeSummary

Summarize and plot mode fragment size in a stacked bar chart

Description

Summarize and plot mode fragment size in a stacked bar chart

```
plotModeSummary(x, order, summarized, mode_partition, ...)
```

12 plotPeakDistance

Arguments

A long-format dataframe contains mode fragment size, a template please refer

to the result of 'callMode' function.

order The groups show in the final plot, the input value should be vector, e.g. 'groups

= c('group1','group2')', default is all folders in the folder path.

summarized Logical value, default is False.

mode_partition This should be a list. This decides how the modes are partitioned in each stacked

bar. Default value is 'list(c(80, 81), c(111, 112), c(167))'. Also this function will automatically calculate an 'Others' group which includes the modes not

mentioned by users.

. . . Further arguments passed to or from other methods.

Value

The function returns the plot.

Author(s)

Haichao Wang

Examples

plotPeakDistance

Plot the inter-peak distance of fragment size distance distribution

Description

Plot the inter-peak distance of fragment size distance distribution

```
plotPeakDistance(x, summarized, order, type, mincount, xlim, ...)
```

plotSingleGroup 13

Arguments

X	A long-format dataframe contains the inter-peak distance, a template please refer to the result of 'callPeakDistance' function.
summarized	Logical value, describe whether the x is summarzied already. summarized means the count and proportion of each interpeak_dist.
order	The groups show in the final plot, the input value should be vector, e.g. 'groups $= c('group1','group2')'$, default is all folders in the folder path.
type	The plot type, default is line plot, now only support line plot. Don't change this parameter in this version, keep it as default.
mincount	Minimum count value of inter peak distance, count number less than this value will be removed first, then proportion of each count value will be calculated. Default value is 0.
xlim	The x axis range shown in the plot. Default is $c(8,13)$.
	Further arguments passed to or from other methods.

Value

The function returns the line plot of inter peak distance.

Author(s)

Haichao Wang

Examples

plotSingleGroup

Plot the raw fragment size metrics of single group in a single plot, colored by samples.

Description

Plot the raw fragment size metrics of single group in a single plot, colored by samples.

14 plotValleyDistance

Usage

```
plotSingleGroup(x, xlim, ylim, vline, order, plot, ...)
```

Arguments

X	A long-format dataframe contains the metrics of different cohort.
xlim	The x axis range shown in the plot. Default is 'c(0,500)'.
ylim	The y axis range shown in the fraction of fragment size plots. Default is ' $c(0,0.035)$ '.
vline	Vertical dashed lines, default value is 'c(81,167)'.
order	The groups show in the final plot, the input value should be vector, e.g. 'order = $c('group1')$ '', default is all groups/cohorts in the folder path.
plot	The plot type, default is 'all' which means both proportion, cdf and 1-cdf plots will be shown.
	Further arguments passed to or from other methods.

Value

The function returns a list plots.

Author(s)

Haichao Wang

Examples

```
# Get the path to example data.
path <- examplePath("groups_picard")

# Calculate the metrics.
df <- callMetrics(path = path)

# Plot the only the group specified..
plot <- plotSingleGroup(x = df, order = c("cohort_1"))</pre>
```

plotValleyDistance

Plot the inter-valley distance of fragment size distance distribution

Description

Plot the inter-valley distance of fragment size distance distribution

```
plotValleyDistance(x, order, type, mincount, xlim, ...)
```

readBam 15

Arguments

X	A long-format dataframe contains the inter-valley distance, a template please refer to the result of 'callValleyDistance' function.
order	The groups show in the final plot, the input value should be vector, e.g. 'groups=c('group1','group2')', default is all folders in the folder path.
type	The plot type, default is line plot, now only support line plot. Don't change this parameter in this version, keep it as default.
mincount	Minimum count value of inter valley distance, count number less than this value will be removed first, then proportion of each count value will be calculated. Default value is 0.
xlim	The x axis range shown in the plot. Default is $c(8,13)$.
	Further arguments passed to or from other methods.

Value

The function returns the line plot of inter valley distance.

Author(s)

Haichao Wang

Examples

readBam

Read bam file into a curated GRanges object

Description

Read bam file into a curated GRanges object

16 readBam

Usage

```
readBam(
  bamfile,
  chromosome_to_keep = paste0("chr", 1:22),
  strand_mode = 1,
  genome_label = "hg19",
  outdir = NA,
  ...
)
```

Arguments

bamfile The bam file name.

chromosome_to_keep

Should be a character vector containing the seqnames to be kept in the GRanges

object. Default is paste0("chr", 1:22).

strand_mode Usually the strand_mode = 1 means the First read is aligned to positive strand.

Details please see GenomicAlignments docs.

genome_label The Genome you used in the alignment. Should be "hg19" or "hg38" or "hg38-

NCBI. Default is "hg19". Note: "hg19" will load BSgenome.Hsapiens.UCSC.hg19 package, which is Full genome sequences for Homo sapiens (Human) as provided by UCSC (hg19, based on GRCh37.p13) and stored in Biostrings objects; "hg38" will load BSgenome.Hsapiens.UCSC.hg38 package, which is Full genome sequences for Homo sapiens (Human) as provided by UCSC (hg38, based on GRCh38.p13) and stored in Biostrings objects. "hg38-NCBI" will load BSgenome.Hsapiens.NCBI.GRCh38 package, which is full genome sequences for Homo sapiens (Human) as provided by NCBI (GRCh38, 2013-12-17) and

stored in Biostrings objects.

outdir The path for saving rds file. Default is NA, i.e. not saving.

... Further arguments passed to or from other methods.

Value

This function returns curated GRanges object.

Author(s)

Haichao Wang

```
read_bam_insert_metrics
```

Calculate insert sizes from a curated GRanges object

Description

Calculate insert sizes from a curated GRanges object

Usage

```
read_bam_insert_metrics(
  bamfile,
  chromosome_to_keep = paste0("chr", 1:22),
  strand_mode = 1,
  genome_label = "hg19",
 outdir = NA,
  isize_min = 1L,
  isize_max = 1000L,
)
```

Arguments

The bam file name. bamfile

chromosome_to_keep

Should be a character vector containing the sequames to be kept in the GRanges

object. Default is paste0("chr", 1:22).

strand_mode

Usually the strand_mode = 1 means the First read is aligned to positive strand. Details please see GenomicAlignments docs.

genome_label

The Genome you used in the alignment. Should be "hg19" or "hg38" or "hg38-NCBI. Default is "hg19". Note: "hg19" will load BSgenome. Hsapiens. UCSC. hg19 package, which is Full genome sequences for Homo sapiens (Human) as provided by UCSC (hg19, based on GRCh37.p13) and stored in Biostrings objects; "hg38" will load BSgenome. Hsapiens. UCSC. hg38 package, which is Full genome sequences for Homo sapiens (Human) as provided by UCSC (hg38, based on GRCh38.p13) and stored in Biostrings objects. "hg38-NCBI" will load BSgenome. Hsapiens. NCBI. GRCh38 package, which is full genome sequences for Homo sapiens (Human) as provided by NCBI (GRCh38, 2013-12-17) and

stored in Biostrings objects.

outdir The path for saving rds file. Default is NA, i.e. not saving.

min fragment length to keep, default is 1L. isize_min max fragment length to keep, default is 1000L. isize_max

Further arguments passed to or from other methods.

Value

This function returns a dataframe with two columns: "insert_size" and "All_Reads.fr_count".

Author(s)

Haichao Wang

```
## Not run:
object <- read_bam_insert_metrics(bamfile = "/path/to/bamfile.bam")
## End(Not run)</pre>
```

Index

```
callMetrics, 2
callMode, 3
callPeakDistance, 4
callSize, 6
callValleyDistance, 7
examplePath, 8
plotAllToOne, 8
plotMetrics, 9
plotMode, 10
plotPeakDistance, 12
plotSingleGroup, 13
plotValleyDistance, 14
read_bam_insert_metrics, 17
readBam, 15
```