Package ‘biscuiteer’

July 9, 2025
Type Package

Title Convenience Functions for Biscuit

Description A test harness for bsseq loading of Biscuit output, summarization
of WGBS data over defined regions and in mappable samples, with or
without imputation, dropping of mostly-NA rows, age estimates, etc.

Version 1.22.0
Date 2024-03-01

URL https://github.com/trichelab/biscuiteer

BugReports https://github.com/trichelab/biscuiteer/issues
License GPL-3
Depends R (>=4.1.0), biscuiteerData, bsseq

Imports readr, qualV, Matrix, impute, HDF5Array, S4 Vectors, Rsamtools,
data.table, Biobase, GenomicRanges, [Ranges, BiocGenerics,
VariantAnnotation, DelayedMatrixStats, SummarizedExperiment,
GenomelnfoDb, Mus.musculus, Homo.sapiens, matrixStats,
rtracklayer, QDNAseq, dmrseq, methods, utils, R.utils, gtools,
BiocParallel

Suggests DSS, covr, knitr, rmarkdown, markdown, rlang, scmeth,
pkgdown, roxygen?2, testthat, QDNAseq.hg19, QDNAseq.mm10,
BiocStyle

biocViews Datalmport, MethylSeq, DNAMethylation
Encoding UTF-8

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/biscuiteer
git_branch RELEASE_3_21

git_last_commit 44c7542

git_last_commit_date 2025-04-15

https://github.com/trichelab/biscuiteer
https://github.com/trichelab/biscuiteer/issues

2 Contents

Repository Bioconductor 3.21
Date/Publication 2025-07-09

Author Tim Triche [aut],
Wanding Zhou [aut],
Benjamin Johnson [aut],
Jacob Morrison [aut, cre],
Lyong Heo [aut],

James Eapen [aut]

Maintainer Jacob Morrison <jacob.morrison@vai.org>

Contents
biscuiteer-package 3
atRegions 4
binCoverage 5
biscuiteer-methods L 6
biscuitMetadata 7
byChromArm 8
byExtremality 9
checkBiscuitBED 10
clocks 12
condenseSampleNames 12
CpGindex e 13
ENSR _subset.hgl9 14
ENSR subset.hg38 15
extremality e 15
fexpit . . . e 16
filterLoci e 16
iXAZE . . . e 17
AXNAS . . . e 18
flogit e 19
getClock L e 20
getLogitFracMeth 21
GRCh37.chromArm e 22
GRCh38.chromArm e 22
grToSeg e 23
HOstate23unmeth.hgl9o 24
HOstate23unmeth.hg38 24
hgl9.chromArm e 25
hg38.chromArm 25
HMM_CpG_islands.hgl9o 26
HMM_CpG_islands.hg38 26
makeBSseq L 27
readBiscuit 28
readEpibed L 30
RRBSeq o 31

segTOGT e 31

biscuiteer-package 3

seqinfo.hgl9 e 32
seqinfo.hg38 L L 33
seqinfoomm10 33
simplifySampleNames 34
summarizeBsSeqOver L. L 34
tabixRetrieve L 35
UNIONIZE o v vt e et et e e e e e e 36
WGBSage e 37
WGBSeq e e 39

Index 40

biscuiteer-package Convenience Functions for Biscuit
Description

A test harness for bsseq loading of Biscuit output, summarization of WGBS data over defined
regions and in mappable samples (with or without imputation, dropping mostly-NA rows, age esti-
mates, etc.)

Author(s)

Timothy J Triche Jr <Tim.Triche@vai.org>, Wanding Zhou <Wanding.Zhou@vai.org>, Ben John-
son <Ben. Johnson@vai.org>, Jacob Morrison <Jacob.Morrison@vai.org>, Lyong Heo <Lyong.Heo@vai.org>

See Also
Useful links:

* https://github.com/trichelab/biscuiteer

* Report bugs at https://github.com/trichelab/biscuiteer/issues

Examples

orig_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15.bed.gz",
package="biscuiteer")
orig_vcf <- system.file("extdata”, "MCF7_Cunha_header_only.vcf.gz",
package="biscuiteer")
bisc <- readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,
merged = FALSE)

https://github.com/trichelab/biscuiteer
https://github.com/trichelab/biscuiteer/issues

4 atRegions

atRegions Summarize a bsseq dataset over defined regions

Description

Calls summarizeBsSeqOver to summarize a bsseq object over provided DNA regions. Useful for
exploring genomic data using cBioPortal.

Usage
atRegions(bsseq, regions, mappings = NULL, nm = "POETICname”, ...)
Arguments
bsseq A bsseq object
regions A GRanges or GRangesList of regions
mappings A mapping table with rownames(mappings) == colnames(bsseq) (DEFAULT:
NULL)
nm Column of the mapping table to map to (DEFAULT: "POETICname")
Other arguments to pass to summarizeBsSeqOver
Value
GRanges with summarized information about the bsseq object
for the given DNA regions
Examples

orig_bed <- system.file("extdata”, "MCF7_Cunha_chr1ipi5.bed.gz",
package="biscuiteer")
orig_vcf <- system.file("extdata”, "MCF7_Cunha_header_only.vcf.gz",
package="biscuiteer")
bisc <- readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,
merged = FALSE)

reg <- GRanges(segnames = rep("chr11",5),
strand = rep("*x",5),
ranges = IRanges(start = c(0,2.8e6,1.17e7,1.38e7,1.69¢e7),
end= c(2.8e6,1.17e7,1.38e7,1.69e7,2.2e7))
)

regions <- atRegions(bsseq = bisc, regions = reg)

binCoverage

binCoverage

Bin CpG or CpH coverage to simplify and improve CNA "sketching"”

Description

Example usage for E-M

Usage
binCoverage(
bsseq,
bins,
which = NULL,

QDNAseq = TRUE,

readLen = 100
paired = TRUE

Arguments
bsseq
bins
which

QDNAseq

readlLen

paired

Details

’

A bsseq object - supplied to getCoverage()
Bins to summarize over - from tileGenome or QDNAseq.xxYY
Limit to specific regions? - functions as an import() (DEFAULT: NULL)

Return a QDNAseqReadCounts? - if FALSE, returns a GRanges (DEFAULT:
TRUE)

Correction factor for coverage - read length in bp (DEFAULT: 100)
Whether the data are from paired-end sequencing (DEFAULT: TRUE)

NOTE: As of early Sept 2019, QDNAseq did not have hg38 capabilities. If you desire to use the
hg38 genome, biscuiteer suggests you use a GRanges object to define your bins.

NOTE: As of late July 2020, biscuiteer has started implemented support for hg38, hgl19, mm10, and
mm0 for bisulfite-specific features, including adaptive GC-content computation and SV integration
for adjusting CNV ends.

Value

Binned read counts

6 biscuiteer-methods

Examples

bins <- GRanges(segnames = rep(“chr11"”,10),
strand = rep("*x",10),
ranges = IRanges(start=100000%0:9, width=100000)
)

reg <- GRanges(segnames = rep(”chr11",5),
strand = rep("*",5),
ranges = IRanges(start = c(0,2.8e6,1.17e7,1.38e7,1.69¢e7),
end= c(2.8e6,1.17e7,1.38e7,1.69e7,2.2e7))
)

orig_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15.bed.gz",
package="biscuiteer")
orig_vcf <- system.file("extdata”, "MCF7_Cunha_header_only.vcf.gz",
package="biscuiteer")
bisc <- readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,
merged = FALSE)

bc <- binCoverage(bsseq = bisc, bins = bins, which = reg, QDNAseq = FALSE)

biscuiteer-methods bsseq class methods (VCF-centric) added by biscuiteer

Description

See biscuiteer manpage for package description

Usage
S4 method for signature 'BSseq'
samples(object)

S4 method for signature 'BSseq'
header(x)

S4 method for signature 'BSseq'
meta(x)

S4 method for signature 'BSseq’
fixed(x)

S4 method for signature 'BSseq'’
info(x)

S4 method for signature 'BSseq,ANY'
geno(x)

biscuitMetadata 7

Arguments
object A bsseq object, preferably with !lis.null(metadata(x)$vcfHeader)
X A bsseq object, preferably with lis.null(metadata(x)$vcfHeader)
Details

biscuiteer adds VariantAnnotation methods to BSseq objects with VCF headers: samples,header,meta,fixed,info,geno

Due to inherited method signatures, the argument (singular) to the method may be named x or it
may be named object. Either way, it is a BSseq object.

These add to the existing methods defined in package bsseq for class BSseq: [,1ength,sampleNames,sampleNames<-,pData,|
Those add to the methods BSseq inherits from SummarizedExperiment, such as: colData,rowRanges,metadata,subset,sub:
Most of the biscuiteer methods operate on the VCF header, which readBiscuit likes to stuff into the

metadata slot of BSseq objects it produces. Some may be handy for populating a BSseq object

with QC stats, or querying those.

Value

Depends on the method - usually a List-like object of some sort

See Also
RangedSummarizedExperiment
VCFHeader-class

BSseq-class
BSseq

biscuitMetadata Biscuit metadata from VCF header

Description

Returns metadata from a Biscuit run using either a supplied VCF file or the vcfHeader metadata
element from the bsseq object

Usage
biscuitMetadata(bsseq = NULL, VCF = NULL)

getBiscuitMetadata(bsseq = NULL, VCF = NULL)

Arguments
bsseq A bsseq object with a vcfHeader element (DEFAULT: NULL)
VCF A tabix’ed VCF file (can just be the header information) from which the bsseq

vcfHeader element is derived (DEFAULT: NULL)

8 byChromArm

Value

Information regarding the Biscuit run

Functions

e getBiscuitMetadata(): Alias for biscuitMetadata

Examples

orig_bed <- system.file("extdata”, "MCF7_Cunha_chr1i1pi15.bed.gz",
package="biscuiteer")
orig_vcf <- system.file("extdata”, "MCF7_Cunha_header_only.vcf.gz",
package="biscuiteer")
bisc <- readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,
merged = FALSE)

meta <- biscuitMetadata(bisc)

byChromArm A simple parallization step

Description

This function splits an object by chromosome arm, which tends to make parallelization much eas-
ier, as cross-arm dependencies are unusual. Therefore, the larger chromosomes can be split across
processes or machines without worrying much about data starvation for processes on smaller chro-
mosomes.

Usage

byChromArm(x, arms = NULL)

Arguments

X Any object with a GRanges in it: bsseq, SummarizedExperiment...

arms Another GRanges, but specifying chromosome arms (DEFAULT: NULL)
Value

A list, List, or xlist, with pieces of x by chromosome arm

byExtremality 9

Examples

orig_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15.bed.gz",
package="biscuiteer")
orig_vcf <- system.file("extdata”, "MCF7_Cunha_header_only.vcf.gz",
package="biscuiteer"”)
bisc <- readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,
merged = FALSE)

reg <- GRanges(segnames = rep(”chr11",5),
strand = rep("x",5),
ranges = IRanges(start = c(0,2.8e6,1.17e7,1.38e7,1.69e7),
end= c(2.8e6,1.17e7,1.38e7,1.69e7,2.2e7))
)

names(reg) <- as.character(reg)

arms <- byChromArm(bisc, arms = reg)

byExtremality Choose loci or features by extremality

Description

This function finds the k most extremal features (features above a certain fraction of the Bernoulli
variance) in ’bsseq’ and returns their values.

Usage
byExtremality(bsseq, r = NULL, k = 500)

Arguments
bsseq A bsseq object
r Regions to consider - NULL covers all loci (DEFAULT: NULL)
k How many rows/regions to return (DEFAULT: 500)

Details

For DNA methylation, particularly when summarized across regions, we can do better (a lot bet-
ter) than MAD. Since we know: max(SD(X_j)) if X_j ~ Beta(a, b) < max(SD(X_j)) if X_j ~
Bernoulli(a/(a+b)) for X with a known mean and standard deviation (SD), then we can solve for
(a+b) by MoM. We can then define the extremality by: extremality = sd(X_j) / bernoulliSD(mean(X_j))

Value

A GRanges object with methylation values sorted by extremality

10

Examples

checkBiscuitBED

shuf_bed <- system.file("extdata”, "MCF7_Cunha_chr11pl15_shuffled.bed.gz",

package="biscuiteer")
orig_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15.bed.gz",
package="biscuiteer")
shuf_vcf <- system.file("extdata”,
"MCF7_Cunha_shuffled_header_only.vcf.gz",
package="biscuiteer")
orig_vcf <- system.file("extdata",
"MCF7_Cunha_header_only.vcf.gz",
package="biscuiteer")
biscl <- readBiscuit(BEDfile = shuf_bed, VCFfile = shuf_vcf,
merged = FALSE)
bisc2 <- readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,
merged = FALSE)

reg <- GRanges(segnames = rep("chr11”,5),
strand = rep("*",5),

ranges = IRanges(start = c(0,2.8e6,1.17e7,1.38e7,1.69e7),
end= c(2.8e6,1.17e7,1.38e7,1.69e7,2.2e7))

)
comb <- unionize(biscl, bisc2)

ext <- byExtremality(comb, r = reg)

checkBiscuitBED Inspect Biscuit VCF and BED files

Description

A BED checker for Biscuit CpG/CpH output (BED-like format with 2 or 3 columns per sample).
By default, files with more than 50 million loci will be processed iteratively, since data.table tends

to run into problems with gzipped joint CpH files.

Usage

checkBiscuitBED(
BEDfile,
VCFfile,
merged,
sampleNames = NULL,
chunkSize = 5e+07,
hdf5 = FALSE,
sparse = TRUE,
how = c("data.table”, "readr"),
chr = NULL

checkBiscuitBED

Arguments

BEDfile
VCFfile

merged

sampleNames

chunkSize

hdf5

sparse

how

chr

Details

11

A BED-like file - must be compressed and tabix’ed

A VCF file - must be compressed and tabix’ed. Only the header information is
needed.

Is this merged CpG data?

Names of samples - NULL: create names, vector: assign names, data.frame:
make pData (DEFAULT: NULL)

For files longer than yieldSize number of lines long, chunk the file (DEFAULT:
5e7)

Use HDFS arrays for backing the data? Using HDF5-backed arrays stores the
data in a HDFS5 file on disk, rather than loading entire object into memory. This
allows for analyses to be done on memory-limited systems at the small cost of
slightly reduced return times. (DEFAULT: FALSE)

Use sparse Matrix objects for the data? If TRUE, use a Matrix object for sparse
matrices (matrices with many zeroes in them) (DEFAULT: TRUE)

How to load the data - "data.table" or "readr"? (DEFAULT: data.table)
Load a specific chromosome to rbind() later? (DEFAULT: NULL)

Input BED and VCF files must be tabix’ed. No exceptions!

Value

Parameters to be supplied to makeBSseq

See Also

readBiscuit

Examples

orig_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15.bed.gz",

package="biscuiteer")

orig_vcf <- system.file("extdata”, "MCF7_Cunha_header_only.vcf.gz",

package="biscuiteer")

params <- checkBiscuitBED(BEDfile = orig_bed, VCFfile = orig_vcf,

merged = FALSE)

12 condenseSampleNames

clocks clocks

Description

Epigenetic clock data

Usage

data(clocks, package="biscuiteer")

Details

Source: See inst/scripts/clocks.R for how the clocks data object was generated. For more informa-
tion about sources, see the descriptions in ?getClock and 7ZWGBSage. Return type: data.frame

condenseSampleNames Simplify sample names for a bsseq object

Description

Utility function for extracting sample names from tabix’ed sample columns, assuming a VCF-
naming scheme (such as Sample_1.foo, Sample_1.bar or Samplel_foo, Samplel_bar).

Usage

condenseSampleNames(tbx, stride, trailing = "\\.$")
Arguments

thx A TabixFile instance to parse

stride How many columns per sample

trailing Trailing character to trim (DEFAULT: "\.$")
Value

A character vector of sample names (longest common
substrings)
Examples
library(Rsamtools)

orig_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15.bed.gz",
package="biscuiteer")
if (length(headerTabix(orig_bed)$header) > 0) {
condenseSampleNames (orig_bed, 2)

3

CpGindex 13

CpGindex Measure methylation status for PRCs or PMDs

Description

WARNING: This function will be deprecated in the next Bioconductor release

Usage
CpGindex(bsseq, CGIs = NULL, PRCs = NULL, WCGW = NULL, PMDs = NULL)

Arguments
bsseq A BSseq object
CGIs A GRanges of CpG island regions - HMM CGlIs if NULL (DEFAULT: NULL)
PRCs A GRanges of Polycomb targets - H9 state 23 low-meth if NULL (DEFAULT:
NULL)
WCGW A GRanges of solo-WCGW sites - PMD WCGWs if NULL (DEFAULT: NULL)
PMDs A GRanges of hypomethylating regions - PMDs if NULL (DEFAULT: NULL)
Details

Measures hypermethylation at PRCs in CGIs or hypomethylation at WCGWs in PMDs

At some point in some conference call somewhere, a collaborator suggested that a simple index
of Polycomb repressor complex (PRC) binding site hyper- methylation and CpG-poor "partially
methylated domain" (PMD) hypomethylation would be a handy yardstick for both deterministic and
stochastic changes associated with proliferation, aging, and cancer. This function provides such an
index by compiling measures of aberrant hyper- and hypo-methylation along with the ratio of hyper-
to hypo-methylation. (The logic for this is that while the phenomena tend to occur together, there
are many exceptions) The resulting measures can provide a high-level summary of proliferation-,
aging-, and/or disease-associated changes in DNA methylation across samples.

The choice of defaults is fairly straightforward: in 2006, three independent groups reported recur-
rent hypermethylation in cancer at sites marked by both H3K4me3 (activating) and H3K27me3
(repressive) histone marks in embryonic stem cells; these became known as "bivalent" sites. The
Roadmap Epigenome project performed ChIP-seq on hundreds of normal primary tissues and cell
line results from the ENCODE project to generate a systematic catalog of "chromatin states" along-
side dozens of whole-genome bisulfite sequencing experiments in the same tissues. We used both
to generate a default atlas of bivalent (Polycomb-associated and transcriptionally-poised) sites from
HO9 human embryonic stem cells which retain low DNA methylation across normal (non-placental)
REMC tissues. In 2018, Zhou and Dinh (Nature Genetics) found isolated (AT)CG(AT) sites, or
"s0lo-WCGW" motifs, in common PMDs as the most universal barometer of proliferation- and
aging-associated methylation loss in mammalian cells, so we use their solo-WCGW sites in com-
mon PMDs as the default measure for hypomethylation. The resulting CpGindex is a vector of
length 3 for each sample: hypermethylation, hypomethylation, and their ratio.

14 ENSR_subset.hg19

We suggest fitting a model for the composition of bulk samples (tumor/normal, tissuel/tissue2, or
whatever is most appropriate) prior to drawing any firm conclusions from the results of this function.
For example, a mixture of two-thirds normal tissue and one-third tumor tissue may produce the same
or lower degree of hyper/hypomethylation than high-tumor-content cell-free DNA samples from
the blood plasma of the same patient. Intuition is simply not a reliable guide in such situations,
which occur with some regularity. If orthogonal estimates of purity/composition are available (flow
cytometry, ploidy, yield of filtered cfDNA), it is a Very Good Idea to include them.

The default for this function is to use the HMM-defined CpG islands from Hao Wu’s paper (Wu,
Caffo, Jaffee, Irizarry & Feinberg, Biostatistics 2010) as generic "hypermethylation" targets inside
of "bivalent" (H3K27me3+H3K4me3) sites (identified in H9 embryonic stem cells & unmethy-
lated across normals), and the solo-WCGW sites within common partially methylated domains
from Wanding Zhou and Huy Dinh’s paper (Zhou, Dinh, et al, Nat Genetics 2018) as genetic "hy-
pomethylation" targets (as above, obvious caveats about tissue specificity and user-supplied possi-
bilities exist, but the defaults are sane for many purposes, and can be exchanged for whatever targets
a user wishes).

The function returns all three components of the "CpG index", comprised of hyperCGI and hy-
poPMD (i.e. hyper, hypo, and their ratio). The PMD "score" is a base-coverage-weighted average
of losses to solo-WCGW bases within PMDs; the PRC score is similarly base-coverage-weighted
but across HMM CGI CpGs, within polycomb repressor complex sites (by default, the subset of
state 23 segments in the 25-state, 12-mark ChromImpute model for H9 which have less than 10
percent CpG methylation across the CpG-island-overlapping segment in all normal primary tissues
and cells from the Reference Epigenome project). By providing different targets and/or regions,
users can customize as needed.

The return value is a CpGindex object, which is really just a DataFrame that knows about the regions
at which it was summarized, and reminds the user of this when they implicitly call the show method
on it.

Value

A CpGindex (DataFrame w/cols “hyper™, “hypo™, “ratio™ + 2 GRs)

ENSR_subset.hg19 ENSR_subset data from hgl9 genome

Description

Subset of ENSEMBL regulatory build regions for hg19 genome

Usage
data(ENSR_subset.hg19, package="biscuiteer")

Details

Source URL: homo_sapiens.GRCh37.Regulatory_Build.regulatory_features.20161117.gff.gz (re-
gions that overlap Inifinium annotation manifests - described at http://zwdzwd.github.io/InfiniumAnnotation
- are selected for final GRanges) Source type: GFF Return type: GRanges

ENSR_subset.hg38 15

ENSR_subset.hg38 ENSR_subset data from hg38 genome

Description

Subset of ENSEMBL regulatory build regions for hgl19 genome

Usage

data(ENSR_subset.hg38, package="biscuiteer"”)

Details

Source URL: homo_sapiens.GRCh38.Regulatory_Build.regulatory_features.20161111.gff.gz (re-
gions that overlap Inifinium annotation manifests - described at http://zwdzwd.github.io/InfiniumAnnotation
- are selected for final GRanges) Source type: GFF Return type: GRanges

extremality Compute fraction of a Bernoulli variance

Description
Works efficiently on matrices and DelayedMatrix objects. Note that it is possible for "raw" ex-
tremality to be greater than 1, so this function does a second pass to correct for this.

Usage
extremality(x, raw = FALSE)

Arguments

X A rectangular object with proportions in it

raw Skip the correction pass? (DEFAULT: FALSE)
Value

The extremality of each row (if more than one) of the object

Examples

X <= rnorm(100, mean=0.5, sd=0.15)
X <= matrix(x, nrow=50, ncol=2)

ext <- extremality(x, raw=TRUE)

16 filterLoci

fexpit Helper function: expanded expit

Description

Helper function: expanded expit

Usage

fexpit(x, sqz = 1e-06)

Arguments

X a vector of values between -Inf and +Inf

sqz the amount by which we ’squoze’, default is .000001
Value

a vector of values between @ and 1 inclusive

Examples

set.seed(1234)
X <= rnorm(n=1000)
summary (x)

sqz <= 1 / (10*%6)
p <- fexpit(x, sqz=sqz)
summary (p)

all((abs(x - flogit(p)) / x) < sqz)
all(abs(x - flogit(fexpit(x))) < sqgz)

filterLoci Filter loci with zero coverage

Description

Function potentially used to be a part of dmrseq. Included here to avoid dmrseq failing due to any
number of reasons related to lack of coverage.

Usage

filterLoci(bsseq, testCovariate)

fixAge

Arguments

bsseq A bsseq object for filtering

testCovariate The name of the pData column dmrseq will test on

Details

The code is adapted from the precheck loop of dmrseq::dmrseq

Value

A bsseq object ready for dmrseq to use

See Also

dmrseq
WGBSeq
RRBSeq

Examples

shuf_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15_shuffled.bed.gz",
package="biscuiteer")
orig_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15.bed.gz",
package="biscuiteer")
shuf_vcf <- system.file("extdata”,
"MCF7_Cunha_shuffled_header_only.vcf.gz",
package="biscuiteer")
orig_vcf <- system.file("extdata",
"MCF7_Cunha_header_only.vcf.gz",
package="biscuiteer")
biscl <- readBiscuit(BEDfile = shuf_bed, VCFfile = shuf_vcf,
merged = FALSE)
bisc2 <- readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,
merged = FALSE)

comb <- unionize(biscl, bisc2)

filt <- filterLoci(comb, "sampleNames")

17

fixAge Turn ’epigenetic clock’ into actual age

Description

Uses Horvath-type ’epigenetic clock’ raw output to project into actual ages

18 fixNAs

Usage
fixAge(x, adult = 21)

Arguments
X Untransformed or raw prediction(s)
adult Age of adulthood (DEFAULT: 21)
Details

The ’Epigenetic Clock’ (Horvath 2012) and similar schemes use a number of CpG loci (or re-
gions, or perhaps CpH loci — it doesn’t really matter what) to estimate the chronological/biological
age of samples from DNA methylation with pre-trained feature weights (coefficients) for each re-
gion/locus.

All of these type of clocks use a nonlinear output transformation which switches from an exponen-
tial growth model for children into a linear model for adults, where adult is an arbitrary number
(by default and custom, that number is 21; elsewhere it can sometimes be seen as 20, but all known
epi-age transformation functions quietly add 1 to the constant internally).

This function implements the above standard output transformation step.

Value

Transformed prediction(s)

Examples

clock <- getClock(genome="hg38")
score <- clockgrscore

age <- fixAge(score)

fixNAs Replace NAs with another value

Description

Useful for coercing matrices into how bsseq is expecting the M matrix to be.

Usage
fixNAs(x, y = @, sparseMatrix = FALSE)

Arguments
X The matrix-like object containing NAs to fix
y The value to replace the NAs with (DEFAULT: 0)

sparseMatrix Make the result a Matrix object? (DEFAULT: FALSE)

flogit 19

Value

x with no NAs (possibly a sparse Matrix)

Examples

nom <- c(rep(c(1,4,NA,9,NA,NA,7,NA), 5))
no_nas <- fixNAs(nom)

flogit Helper function: squeezed logit

Description

Helper function: squeezed logit

Usage

flogit(p, sqz = 1e-06)

Arguments

p a vector of values between 0 and 1 inclusive

sqz the amount by which to ’squeeze’, default is .000001
Value

a vector of values between -Inf and +Inf

Examples

set.seed(1234)
p <- runif(n=1000)
summary (p)

sqz <= 1 / (10*%6)
x <- flogit(p, sqz=sqz)
summary (x)

all(abs(p - fexpit(x, sqz=sqz)) < sqz)
all(abs(p - fexpit(flogit(p, sqz=sqz), sqz=sqz)) < sqz)

20 getClock

getClock Retrieve ’epigenetic clock’ models

Description

Biscuiteer supports several ’epigenetic clock’ models. This function retrieves the various models.

Usage
getClock(
model = c("horvath”, "horvathshrunk”, "hannum”, "skinandblood”),
padding = 15,

genome = c("hg19"”, "hg38", "GRCh37", "GRCh38"),
useENSR = FALSE,
useHMMI = FALSE

)
Arguments
model One of "horvath", "horvathshrunk", "hannum", or "skinandblood"
padding How many base pairs (+/-) to expand a feature’s footprint (DEFAULT: 15)
genome One of "hg19", "GRCh37", "hg38", or "GRCh38" (DEFAULT: "hgl19")
useENSR Substitute ENSEMBL regulatory feature boundaries? (DEFAULT: FALSE)
useHMMI Substitute HMM-based CpG island boundaries? (DEFAULT: FALSE)
Details

The remapped coordinates for the Horvath (2012) and Hannum (2013) clocks, along with shrunken
Horvath (2012) and improved Horvath (2018) models, are provided as part of biscuiteer (visit
inst/scripts/clocks.R to find out how) along with some functionality to make them more usable
in RRBS/WGBS data of varying coverage along varying genomes. For example, the HMM-based
CpG island model introduced by Wu (2010) can be used to assign to within-island features the
methylation rate of their associated island, and ENSEMBL regulatory build features (ENSR fea-
tures, for short) such as CTCF binding sites can have their coordinates substituted for the default
padded boundaries of a feature.

The net result of this process is that, while the default settings simply swap in a 30-bp stretch
centered on the selected clock’s CpG (and/or CpH) loci, add the intercept, and ship out the model,
much more flexibility is available to the user. This function provides a single point for tuning of
such options in the event that defaults don’t work well for a user.

The precedence of options is as follows:
1. If a feature has neither ENSR nor HMMI IDs, it is padded (only) +/- bp.

2. If it has an HMMI but not ENSR ID or ENSR==FALSE, the HMM island is used.
3. If a feature has an ENSR ID, and ENSR==TRUE, the ENSR feature is used.

getLogitFracMeth 21

If a feature has both an ENSR ID and an HMMI ID, and both options are TRUE, then the ENSR
start and end coordinates will take precedence over its HMMI.

The above shenanigans produce the GRanges object returned as gr in a List. The intercept value
returned with the model is its fixed (BO) coefficient. The cleanup function returned with the model
transforms its raw output.
Value
a List with elements “model™, “gr~, “intercept”,
and “cleanup®
Examples

clock <- getClock(model="horvathshrunk”, genome="hg38")

getlLogitFracMeth Helper function for compartment inference

Description

Want an object with nominally Gaussian error for compartment inference, so this function uses
’suitable’ (defaults to to 3 or more reads in 2 or more samples) measurements. Using Dirichlet
smoothing (adding 'k’ reads to M and U), these measurements are then turned into lightly moder-
ated, logit-transformed methylated-fraction estimates for compartment calling.

Usage
getlLogitFracMeth(x, minCov = 3, minSamp = 2, k = 0.1, r = NULL)

getMvals(x, minCov = 3, minSamp = 2, k = 0.1, r = NULL)

Arguments
X A bsseq object with methylated and total reads
minCov Minimum read coverage for landmarking samples (DEFAULT: 3)
minSamp Minimum landmark samples with at least minCov (DEFAULT: 2)
k Pseudoreads for smoothing (DEFAULT: 0.1)
r Regions to collapse over - if NULL, do it by CpG (DEFAULT: NULL)
Value

Smoothed logit(M / Cov) GRanges with coordinates as row names

Functions

» getMvals(): Alias for getLogitFracMeth

22 GRCh38.chromArm

Examples

orig_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15.bed.gz",
package="biscuiteer")
orig_vcf <- system.file("extdata”, "MCF7_Cunha_header_only.vcf.gz",
package="biscuiteer")
bisc <- readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,
merged = FALSE)

reg <- GRanges(segnames = rep(”chr11",5),
strand = rep("x",5),
ranges = IRanges(start = c(0,2.8e6,1.17e7,1.38e7,1.69e7),
end= c(2.8e6,1.17e7,1.38e7,1.69e7,2.2e7))
)

frac <- getlLogitFracMeth(bisc, minSamp = 1, r = reg)

GRCh37.chromArm GRCh37.chromArm

Description

Chromosome arm locations for GRCh37 genome

Usage

data(GRCh37.chromArm, package="biscuiteer”)

Details

Source URL: https://genome.ucsc.edu/cgi-bin/hgTables (Cytogenic bands were retrieved using the
UCSC Table Browser. The output was then exported to a TXT file, where the chromosome arms
were combined and formed into a GRanges) Source type: TXT Return type: GRanges

GRCh38.chromArm GRCh38.chromArm

Description

Chromosome arm locations for GRCh38 genome

Usage

data(GRCh38.chromArm, package="biscuiteer")

grToSeg 23

Details

Source URL: https://genome.ucsc.edu/cgi-bin/hgTables (Cytogenic bands were retrieved using the
UCSC Table Browser. The output was then exported to a TXT file, where the chromosome arms
were combined and formed into a GRanges) Source type: TXT Return type: GRanges

grToSeg Dump GRanges to segmented data data.frame

Description

Output data.frame can be written to a .seg file if supplied with filename input argument

Usage

grToSeg(gr, filename = NULL, minAbs = NULL)

Arguments
gr A GRanges or GRangesList to dump to .seg file
filename Where to save the result - unsaved if NULL (DEFAULT: NULL)
minAbs Minimum absolute gain/loss cutoff (DEFAULT: NULL)

Value

A data.frame with columns:
(ID, chrom, loc.start, loc.end, num.mark, seg.mean)

See Also

segToGr

Examples

clock <- getClock(model="horvathshrunk”, genome="hg38")
gr <- clock$gr

df <- grToSeg(gr = gr)

24 H9state23unmeth.hg38

H9state23unmeth.hg19 HYstate23unmeth.hgl9

Description

Hypermethylated targets in bivalent histone sites from H9 embryonic stem cells which were un-
methylated across normal cells for hg19 genome
Usage

data(H9state23unmeth.hg19, package="biscuiteer")

Details

GRanges was generated by taking the HMM-derived CpG islands (described in 7HMM_CpG_islands.hg19)
and overlapping with regions that were unmethylated in normal H9 stem cells and had a ChromHMM

state of 2 or 3 (see https://www.nature.com/articles/nmeth.1906#MOESM 194 for a description of
ChromHMM) Return type: GRanges

H9state23unmeth.hg38 HYstate23unmeth.hg38

Description

Hypermethylated targets in bivalent histone sites from H9 embryonic stem cells which were un-
methylated across normal cells for hg38 genome
Usage

data(H9state23unmeth.hg38, package="biscuiteer")

Details

GRanges was generated by taking the HMM-derived CpG islands (described in 7THMM_CpG_islands.hg38)
and overlapping with regions that were unmethylated in normal H9 stem cells and had a ChromHMM

state of 2 or 3 (see https://www.nature.com/articles/nmeth.1906#MOESM 194 for a description of
ChromHMM) Return type: GRanges

hg19.chromArm 25

hg19.chromArm hgl19.chromArm

Description

Chromosome arm locations for hg19 genome

Usage

data(hg19.chromArm, package="biscuiteer")

Details

Source URL: http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz (Chromo-
some arms were combined to form the final GRanges) Source type: TXT Return type: GRanges

hg38.chromArm hg38.chromArm

Description

Chromosome arm locations for hg38 genome

Usage

data(hg38.chromArm, package="biscuiteer")

Details

Source URL: http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/cytoBand.txt.gz (Chromo-
some arms were combined to form the final GRanges) Source type: TXT Return type: GRanges

26 HMM_CpG _islands.hg38

HMM_CpG_islands.hg19 HMM_CpG_islands.hgl9

Description

Hidden Markov Model-derived CpG islands from hg19 genome

Usage

data(HMM_CpG_islands.hg19, package="biscuiteer”)

Details

Source URL: https://www.ncbi.nlm.nih.gov/pubmed/20212320 (Hidden Markov Model CpG is-
lands were produced using the method described in this paper. The hgl9 genome was used for
the CpG island production.) Source type: hgl9 genome and procedure described in paper Return
type: GRanges

HMM_CpG_islands.hg38 HMM_CpG_islands.hg38

Description

Hidden Markov Model-derived CpG islands from hg38 genome

Usage

data(HMM_CpG_islands.hg38, package="biscuiteer”)

Details

Source URL: https://www.ncbi.nlm.nih.gov/pubmed/20212320 (Hidden Markov Model CpG is-
lands were produced using the method described in this paper. The hgl9 genome was used for
the CpG island production.) Source type: hgl9 genome and procedure described in paper Return
type: GRanges

makeBSseq 27

makeBSseq Make an in-memory bsseq object from a biscuit BED

Description

Beware that any reasonably large BED files may not fit into memory!

Usage

makeBSseq(tbl, params, simplify = FALSE, verbose = FALSE)

Arguments
tbl A tibble (from read_tsv) or a data.table (from fread)
params Parameters from checkBiscuitBED
simplify Simplify sample names by dropping .foo.barhg19? (or similar) (DEFAULT:
FALSE)
verbose Print extra statements? (DEFAULT: FALSE)
Value

An in-memory bsseq object

Examples

library(data.table)
library(R.utils)

orig_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15.bed.gz",
package="biscuiteer"”)
orig_vcf <- system.file("extdata”, "MCF7_Cunha_header_only.vcf.gz",
package="biscuiteer"”)
params <- checkBiscuitBED(BEDfile = orig_bed, VCFfile = orig_vcf,
merged = FALSE, how = "data.table")

select <- grep(”\\.context”, params$colNames, invert=TRUE)
tbl <- fread(gunzip(paramstbxpath, remove = FALSE), sep="\t", sep2=",",

fill=TRUE, na.strings=".", select=select)

unzippedName <- sub("\\.gz$", "", params$tbx$path)
if (file.exists(unzippedName)) {

file.remove(unzippedName)
}
if (params$hasHeader == FALSE) names(tbl) <- params$colNames[select]
names(tbl) <- sub("*#", "", names(tbl))
tbl <- tbl[rowSums(is.na(tbl)) == 0,]

bsseq <- makeBSseq(tbl = tbl, params = params)

28 readBiscuit

readBiscuit Read biscuit output into bsseq object

Description

Takes BED-like format with 2 or 3 columns per sample. Unmerged CpG files have 2 columns
(beta values and coverage), whereas merged CpG files have 3 columns (beta values, coverage, and
context).

Usage

readBiscuit(
BEDfile,
VCFfile,
merged,
sampleNames = NULL,
simplify = FALSE,
genome = "hgl9"”,
how = c("data.table"”, "readr"),
hdf5 = FALSE,
hdf5dir = NULL,
sparse = FALSE,
chunkSize = 1e+06,
chr = NULL,
which = NULL,
verbose = FALSE

)

loadBiscuit(
BEDfile,
VCFfile,
merged,
sampleNames = NULL,
simplify = FALSE,
genome = "hgl9"”,
how = c("data.table”, "readr"),
hdf5 = FALSE,
hdf5dir = NULL,
sparse = FALSE,
chunkSize = 1e+06,
chr = NULL,
which = NULL,
verbose = FALSE

Arguments

BEDfile A BED-like file - must be compressed and tabix’ed

readBiscuit

VCFfile

merged

sampleNames

simplify

genome
how
hdf5

hdf5dir
sparse
chunkSize
chr

which

verbose

Details

29

A VCF file - must be compressed and tabix’ed. Only the header information is
needed.

Is this merged CpG data?

Names of samples - NULL: create names, vector: assign names, data.frame:
make pData (DEFAULT: NULL)

Simplify sample names by dropping .foo.barhgl19? (or similar) (DEFAULT:
FALSE)

Genome assembly the runs were aligned against (DEFAULT: "hg19")
How to load data - either data.table or readr (DEFAULT: "data.table")

Make the object HDF5-backed - CURRENTLY NOT AVAILABLE (DEFAULT:
FALSE)

Directory to store HDF? files if "hdf5’ = TRUE (DEFAULT: NULL)

Use sparse Matrix objects for the data? (DEFAULT: FALSE)

Number of rows before readr reading becomes chunked (DEFAULT: 1e6)
Load a specific chromosome? (DEFAULT: NULL)

A GRanges of regions to load - NULL loads them all (DEFAULT: NULL)
Print extra statements? (DEFAULT: FALSE)

NOTE: Assumes alignment against hg19 (use genome argument to override). NOTE: Requires
header from VCEF file to detect sample names

Value

A bsseq: :BSseq object

Functions

¢ loadBiscuit(): Alias for readBiscuit

See Also

bsseq

checkBiscuitBED

Examples

orig_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15.bed.gz",

package="biscuiteer")

orig_vcf <- system.file("extdata”, "MCF7_Cunha_header_only.vcf.gz",

package="biscuiteer"”)

bisc <- readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,

merged = FALSE)

30 readEpibed

readEpibed Read in and decode the RLE representation of the epibed format out
of biscuit epiread

Description

Read in and decode the RLE representation of the epibed format out of biscuit epiread

Usage
readEpibed(
epibed,
genome = NULL,
chr = NULL,
start = 1,
end = 228,
fragment_level = TRUE
)
Arguments
epibed The path to the epibed file (must be bgzip and tabix indexed)
genome What genome did this come from (e.g. *hg19’) (default: NULL)
chr Which chromosome to retrieve (default: NULL)
start The starting position for a region of interest (default: 1)
end The end position for a region of interest (default: 228)

fragment_level Whether to collapse reads to the fragment level (default: TRUE)

Value

A GRanges object

Examples

epibed.nome <- system.file("extdata”, "hct116.nome.epibed.gz", package="biscuiteer"”)
epibed.bsseq <- system.file("extdata”, "hct116.bsseq.epibed.gz", package="biscuiteer")

epibed.nome.gr <- readepibed(epibed = epibed.nome, genome = "hg19", chr = "chr1")
epibed.bsseq.gr <- readEpibed(epibed = epibed.bsseq, genome = "hgl19", chr = "chr1")

RRBSeq 31

RRBSeq (e)RRBS settings for dmrseq

Description

(e)RRBS settings for dmrseq

Usage
RRBSeq(bsseq, testCovariate, cutoff = 0.2, bpSpan = 750, ...)
Arguments
bsseq A bsseq object
testCovariate The pData column to test on
cutoff The minimum CpG-wise difference to use (DEFAULT: 0.2)
bpSpan Span of smoother AND max gap in DMR CpGs (DEFAULT: 750)

Other arguments to pass along to dmrseq

Value

A GRanges object (same as from dmrseq)

Examples

data(BS.chr21, package="dmrseq")
dat <- BS.chr21

rrbs <- RRBSeq(dat[1:500,], "Rep”, cutoff = 0.05, BPPARAM=BiocParallel: :SerialParam())

segToGr Import a segmentation file into GRanges object

Description

Reverse of grToSeg

Usage

segToGr(seg, genome = "hgl19", name = "ID", score = "seg.mean")

32 seqinfo.hg19

Arguments
seg The .seg filename
genome Genome against which segments were annotated (DEFAULT: "hg19")
name .seg file column to use as $name metadata (DEFAULT: "ID")
score .seg file column to use as $score metadata (DEFAULT: "seg.mean")
Value

A GRanges object

See Also

grToSeg

Examples

clock <- getClock(model="horvathshrunk”, genome="hg38")
gr <- clock$gr

df <- grToSeg(gr = gr, file = "test_grToSeg.seg")
segs <- segToGr("test_grToSeg.seg”, genome="hg38")

if (file.exists("test_grToSeg.seg")) file.remove("test_grToSeg.seg")

seqinfo.hg19 seqinfo.hgl9

Description

Seqinfo for hg19 genome

Usage

data(seqinfo.hgl19, package="biscuiteer")

Details

Source URL: http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.chrom.sizes (The out-
put from this site was downloaded into a TXT file and then loaded into a sorted Seqinfo table)
Source type: TXT Return type: Seqinfo

seqinfo.hg38 33

seginfo.hg38 seqinfo.hg38

Description

Seqinfo for hg38 genome

Usage

data(seqinfo.hg38, package="biscuiteer”)

Details

Source URL.: http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.chrom.sizes (The out-
put from this site was downloaded into a TXT file and then loaded into a sorted Seqinfo table)
Source type: TXT Return type: Seqinfo

seqinfo.mm10 seqinfo.mmli0

Description

Seqinfo for mm10 genome

Usage

data(seqinfo.mm1@, package="biscuiteer")

Details

Source URL: http://hgdownload.cse.ucsc.edu/goldenPath/mm10/bigZips/mm10.chrom.sizes (The
output from this site was downloaded into a TXT file and then loaded into a sorted Seqinfo ta-
ble) Source type: TXT Return type: Seqinfo

34 summarizeBsSeqOver

simplifySampleNames Simplify bsseq sample names

Description

Tries using the longest common subsequence to figure out what can be dropped. Usually used for
VCF columns.

Usage

simplifySampleNames(x)

Arguments

X A SummarizedExperiment-derived object, or a character vector

Value

The input object, but with simplified sample names

Examples

orig_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15.bed.gz",
package="biscuiteer")
orig_vcf <- system.file("extdata”, "MCF7_Cunha_header_only.vcf.gz",
package="biscuiteer")
bisc <- readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,
merged = FALSE)

bisc <- simplifySampleNames(bisc)

summarizeBsSeqOver Summarize methylation over provided regions

Description

Used for bsseq objects. Mostly a local wrapp for getMeth.

Usage

summarizeBsSeqOver (bsseq, segs, dropNA = FALSE, impute = FALSE)

tabixRetrieve

Arguments
bsseq The bsseq object to summarize
segs Regions to summarize over (GRanges object, no GRangesList yet)
dropNA Whether to drop rows if more than half of samples are NA (DEFAULT: FALSE)
impute Whether to impute NAs/NaNs (DEFAULT: FALSE)
Value

A matrix of regional methylation fractions

Examples

orig_bed <- system.file("extdata”, "MCF7_Cunha_chr1ipi5.bed.gz",
package="biscuiteer")
orig_vcf <- system.file("extdata”, "MCF7_Cunha_header_only.vcf.gz",
package="biscuiteer")
bisc <- readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,
merged = FALSE)

reg <- GRanges(segnames = rep("”chr11",5),
strand = rep("x",5),
ranges = IRanges(start = c(0,2.8e6,1.17e7,1.38e7,1.69¢e7),
end= c(2.8e6,1.17e7,1.38e7,1.69e7,2.2e7))
)

summary <- summarizeBsSeqOver(bsseq = bisc, segs = reg, dropNA = TRUE)

tabixRetrieve Read from tabix-indexed bed file to list objects

Description

Read from tabix-indexed bed file to list objects

Usage

tabixRetrieve(
paths,
chr,
start =1,
end = 2728,
sample_names = NULL,
is.epibed = FALSE,
BPPARAM = SerialParam()

36

Arguments

paths

chr

start

end
sample_names
is.epibed

BPPARAM

Value

unionize

path(s) to the bed files

chromosome name

start coordinate of region of interest

end coordinate of region of interest

sample names, just use paths if not specified
whether the input is epibed format

how to parallelize

a list object with DNA methylation level and depth

unionize

Combine bsseq objects together without losing information

Description

Wrapper for the combine(bsseql, ...) method in bsseq

Usage

unionize(bs1,

Arguments

bs1

Details

A bsseq object

One or more bsseq objects to combine with bsl

Takes provided bsseq objects, the union of their GRanges, fills out the sites not in the union with
0M/0Cov, and returns the even-sparser bsseq holding all of them.

Value

A larger and more sparse bsseq object

WGBSage

Examples
shuf_bed

orig_bed

shuf_vcf

orig_vcf

biscl <-

bisc2 <-

readBiscuit(BEDfile = shuf_bed, VCFfile

system.file("extdata”, "MCF7_Cunha_chr11p15_shuffled.bed.gz",

package="biscuiteer")

system.file("extdata"”, "MCF7_Cunha_chr11p15.bed.gz",

package="biscuiteer")

system.file("extdata",

"MCF7_Cunha_shuffled_header_only.vcf.gz",
package="biscuiteer"”)

system.file("extdata",

"MCF7_Cunha_header_only.vcf.gz",
package="biscuiteer")

shuf_vcf,
merged = FALSE)

readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,

merged = FALSE)

comb <- unionize(biscl, bisc2)

37

WGBSage

Guess ages using Horvath-style 'clock’ models

Description

See Horvath, Genome Biology, 2013 for more information

Usage

WGBSage (
bsseq,
model = c("horvath”, "horvathshrunk”, "hannum”, "skinandblood”),
padding = 15,
useENSR = FALSE,
useHMMI = FALSE,
minCovg = 5,

impute = FALSE,
minSamp = 5,
genome = NULL,
dropBad = FALSE,

Arguments
bsseq A bsseq object (must have assays named M and Cov)
model Which model ("horvath", "horvathshrunk", "hannum", "skinandblood")
padding How many bases +/- to pad the target CpG by (DEFAULT: 15)

38 WGBSage

useENSR Use ENSEMBL regulatory region bounds instead of CpGs (DEFAULT: FALSE)
useHMMI Use HMM CpG island boundaries instead of padded CpGs (DEFAULT: FALSE)
minCovg Minimum regional read coverage desired to estimate SmC (DEFAULT: 5)
impute Use k-NN imputation to fill in low-coverage regions? (DEFAULT: FALSE)
minSamp Minimum number of non-NA samples to perform imputation (DEFAULT: 5)
genome Genome to use as reference, if no genome(bsseq) is set (DEFAULT: NULL)
dropBad Drop rows/cols with > half missing pre-imputation? (DEFAULT: FALSE)

Arguments to be passed to impute.knn, such as rng.seed

Details

Note: the accuracy of the prediction will increase or decrease depending on how various hyper-
parameters are set by the user. This is NOT a hands-off procedure, and the defaults are only a
starting point for exploration. It will not be uncommon to tune padding, minCovg, and minSamp for
each WGBS or RRBS experiment (and the latter may be impacted by whether dupes are removed
prior to importing data). Consider yourself forewarned. In the near future we may add support
for arbitrary region-coefficient inputs and result transformation functions, which of course will just
make the problems worse.

Also, please cite the appropriate papers for the Epigenetic Clock(s) you use:

For the "horvath’ or horvathshrunk’ clocks, cite Horvath, Genome Biology 2013. For the hannum’
clock, cite Hannum et al, Molecular Cell 2013. For the ’skinandblood’ clock, cite Horvath et al,
Aging 2018.

Last but not least, keep track of the parameters YOU used for YOUR estimates. The call element
in the returned list of results is for this exact purpose. If you need recover the GRanges object used
to average(or impute) DNAme values for the model, try granges(result$methcoefs) on a result.
The methylation fraction and coefficients for each region can be found in the GRanges object,
result$methcoefs, where each sample has a corresponding column with the methylation fraction
and the coefficients have their own column titled "coefs". Additionally, the age estimates are stored
in result$age (named, in case dropBad == TRUE).

Value

A list with call, methylation estimates, coefs, age estimates

Examples

shuf_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15_shuffled.bed.gz",
package="biscuiteer")

orig_bed <- system.file("extdata”, "MCF7_Cunha_chr11p15.bed.gz",
package="biscuiteer")

shuf_vcf <- system.file("extdata”,
"MCF7_Cunha_shuffled_header_only.vcf.gz",
package="biscuiteer")

orig_vcf <- system.file("extdata",
"MCF7_Cunha_header_only.vcf.gz",
package="biscuiteer")

biscl <- readBiscuit(BEDfile = shuf_bed, VCFfile = shuf_vcf,

WGBSeq

merged = FALSE)
bisc2 <- readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,
merged = FALSE)

comb <- unionize(biscl, bisc2)
ages <- WGBSage(comb, "horvath")

39

WGBSeq Wrapper for WGBS settings for dmrseq

Description

Wrapper for WGBS settings for dmrseq

Usage

WGBSeq(bsseq, testCovariate, bpSpan = 1000, ...)
Arguments

bsseq A bsseq object

testCovariate The pData column to test on
bpSpan Span of smoother AND 2x max gap in DMR CpGs (DEFAULT: 1000)

Other arguments to pass along to dmrseq

Value

A GRanges object (same as from dmrseq)

Examples

data(BS.chr21, package="dmrseq")
dat <- BS.chr21

wghs <- WGBSeq(dat[1:500, 1, "CellType"”, cutoff = 0.05,
BPPARAM=BiocParallel::SerialParam())

Index

+ Biscuit
biscuiteer-package, 3

* DNAMethylation
biscuiteer-package, 3

+x Datalmport
biscuiteer-package, 3

* data
clocks, 12
ENSR_subset.hgl9, 14
ENSR_subset.hg38, 15
GRCh37.chromArm, 22
GRCh38.chromArm, 22
H9state23unmeth.hgl9, 24
H9state23unmeth.hg38, 24
hg19.chromArm, 25
hg38.chromArm, 25
HMM_CpG_islands.hg19, 26
HMM_CpG_islands.hg38, 26
seginfo.hg19, 32
seqinfo.hg38, 33
seqinfo.mm10, 33

_PACKAGE (biscuiteer-package), 3

atRegions, 4

binCoverage, 5

biscuiteer (biscuiteer-package), 3
biscuiteer-methods, 6
biscuiteer-package, 3
biscuitMetadata, 7

BSseq-methods (biscuiteer-methods), 6
byChromArm, 8

byExtremality, 9

checkBiscuitBED, 10

clocks, 12
condenseSampleNames, 12
coverage (biscuiteer-methods), 6
CpGindex, 13

ENSR_subset.hgl9, 14

40

ENSR_subset.hg38, 15
extremality, 15

fexpit, 16

filterLoci, 16

fixAge, 17

fixed,BSseq-method
(biscuiteer-methods), 6

fixNAs, 18

flogit, 19

geno,BSseq, ANY-method
(biscuiteer-methods), 6

getBiscuitMetadata (biscuitMetadata), 7

getClock, 20

getlLogitFracMeth, 21

getMvals (getLogitFracMeth), 21

GRCh37.chromArm, 22

GRCh38.chromArm, 22

grToSeg, 23

H9state23unmeth.hg19, 24
H9state23unmeth.hg38, 24
header (biscuiteer-methods), 6
header,BSseq-method
(biscuiteer-methods), 6
hg19.chromArm, 25
hg38.chromArm, 25
HMM_CpG_islands.hg19, 26
HMM_CpG_islands.hg38, 26

info,BSseg-method (biscuiteer-methods),
6

loadBiscuit (readBiscuit), 28

makeBSseq, 27
meta,BSseq-method (biscuiteer-methods),
6

readBiscuit, 28

INDEX

readEpibed, 30
reference (biscuiteer-methods), 6
RRBSeq, 31

samples,BSseq-method
(biscuiteer-methods), 6
segToGr, 31
seqinfo.hgl9, 32
seginfo.hg38, 33
seqinfo.mm10, 33
simplifySampleNames, 34
summarizeBsSeqOver, 34

tabixRetrieve, 35
unionize, 36

WGBSage, 37
WGBSeq, 39

41

	biscuiteer-package
	atRegions
	binCoverage
	biscuiteer-methods
	biscuitMetadata
	byChromArm
	byExtremality
	checkBiscuitBED
	clocks
	condenseSampleNames
	CpGindex
	ENSR_subset.hg19
	ENSR_subset.hg38
	extremality
	fexpit
	filterLoci
	fixAge
	fixNAs
	flogit
	getClock
	getLogitFracMeth
	GRCh37.chromArm
	GRCh38.chromArm
	grToSeg
	H9state23unmeth.hg19
	H9state23unmeth.hg38
	hg19.chromArm
	hg38.chromArm
	HMM_CpG_islands.hg19
	HMM_CpG_islands.hg38
	makeBSseq
	readBiscuit
	readEpibed
	RRBSeq
	segToGr
	seqinfo.hg19
	seqinfo.hg38
	seqinfo.mm10
	simplifySampleNames
	summarizeBsSeqOver
	tabixRetrieve
	unionize
	WGBSage
	WGBSeq
	Index

