Package ‘MICSQTL’

July 10, 2025
Type Package

Title MICSQTL (Multi-omic deconvolution, Integration and
Cell-type-specific Quantitative Trait Loci)

Version 1.6.0

Description Our pipeline, MICSQTL, utilizes scRNA-seq reference and bulk transcriptomes to esti-
mate cellular composition in the matched bulk proteomes. The expression of genes and pro-
teins at either bulk level or cell type level can be integrated by Angle-based Joint and Individ-
ual Variation Explained (AJIVE) framework. Meanwhile, MICSQTL can perform cell-type-
specic quantitative trait loci (QTL) mapping to proteins or transcripts based on the in-
put of bulk expression data and the estimated cellular composition per molecule type, with-
out the need for single cell sequencing. We use matched transcriptome-proteome from hu-
man brain frontal cortex tissue samples to demonstrate the input and output of our tool.

License GPL-3

Encoding UTF-8

Suggests testthat (>= 3.0.0), rmarkdown, knitr, BiocStyle
VignetteBuilder knitr

biocViews GeneExpression, Genetics, Proteomics, RNASeq, Sequencing,
SingleCell, Software, Visualization, CellBasedAssays, Coverage

Imports TCA, nnls, purrr, TOAST, magrittr, BiocParallel, ggplot2,
ggpubr, ggridges, glue, S4 Vectors, dirmult

Depends R (>=4.3.0), SummarizedExperiment, stats
RoxygenNote 7.2.3

LazyData false

Config/testthat/edition 3

URL https://bioconductor.org/packages/MICSQTL,
https://github.com/YuePan@27/MICSQTL

BugReports https://github.com/YuePan@27/MICSQTL/issues
git_url https://git.bioconductor.org/packages/MICSQTL
git_branch RELEASE_3_21

git_last_commit 8d88ac3

https://bioconductor.org/packages/MICSQTL
https://github.com/YuePan027/MICSQTL
https://github.com/YuePan027/MICSQTL/issues

2 ajive_decomp

git_last_commit_date 2025-04-15
Repository Bioconductor 3.21
Date/Publication 2025-07-09

Author Yue Pan [aut] (ORCID: <https://orcid.org/0000-0003-1958-2744>),
Qian Li [aut, cre] (ORCID: <https://orcid.org/0000-0001-9874-3555>),
Jain Carmichael [ctb]

Maintainer Qian Li<qgian.li@stjude.org>

Contents
ajive_decomp e e e 2
cSQTL e e e 4
deconv L e 5
feature_filter L 7
] 9

Index 10

ajive_decomp Integrative analysis for modes of joint variation
Description

This function returns a ‘SummarizedExperiment‘ object including results from AJIVE (Angle based
Joint and Individual Variation Explained), an integrative analysis tool, and common normalized
scored based on it. This implemented the AJIVE algorithm (see R version of AJIVE package
(https://github.com/idc9/r_jive) or detailed manuscript at https://arxiv.org/pdf/1704.02060.pdf) an
integrative analysis method. It is useful when there are multiple data matrices measured on the
same set of samples. It decomposes each data matrix as three parts: (1) Joint variation across
data types (2) Individual structured variation for each data type and (3) Residual noise. Common
normalized scores are one of the desirable output to explore the joint behavior that is shared by
different data sources.

Usage
ajive_decomp(

se,
ini_rank = c(20, 20),
test = "gene_data",
use_marker = FALSE,
level = "bulk"”,
plot = FALSE,
score = "cns_1",
group_var = "disease”,

scatter = FALSE,
scatter_x,

https://orcid.org/0000-0003-1958-2744
https://orcid.org/0000-0001-9874-3555

ajive_decomp

scatter_y,

refactor_loading = FALSE

)

Arguments

se

ini_rank

test

use_marker

level

plot

score

group_var

scatter

scatter_x

scatter_y

A ‘SummarizedExperiment® object with bulk expression data frame contained
in ‘counts slot. In addition, data measured on the same set of samples in ‘meta-
data‘ slot is required.

A vector with each element corresponds to a initial signal rank for AJIVE de-
composition. Please refer to the original paper (Feng, Qing, et al. "Angle-based
joint and individual variation explained." Journal of multivariate analysis 166
(2018): 241-265.) on the choice of initial ranks.

A character string indicate which data are used as a secondary data block mea-
sured on the same set of samples.

If TRUE, only markers contained in ‘ref_gene* are used.

A character string indicate if the integrative analysis should be done at cell type
specific level and which cell type should be used. By default, the integrative
analysis is done at bulk level.

If TRUE, visualization on common normalized scores across different data sources
will be stored as an element (‘cns_plot*) in ‘metadata‘ slot.

A character of variable name indicating which common normalized score is used
for boxplot and ridge plot (valid if plot = TRUE).

A character of variable name indicating which variable is used as the group
variable to compare common normalized scores (valid if plot = TRUE).

A logical value indicating whether to make scatter plot or not. Only valid when
the joint rank is at least two (valid if plot = TRUE).

A character of variable name indicating which common normalized scores on
horizontal axis (valid if plot = TRUE).

A character of variable name indicating which common normalized scores on
vertical axis (valid if plot = TRUE).

refactor_loading

Value

A logical value indicating whether to output the refactor joint loadings for each
data source. A smaller value indicates features with the highest variance ex-
plained within the joint space.

A ‘SummarizedExperiment‘. The results from AJIVE will be stored as an element (‘ajive_res‘) in
‘metadata‘ slot. The generated common normalized scores will be stored as an element (‘cns‘) in
‘metadata‘ slot. The visualization of the common normalized scores will be stored as an element
(‘cns_plot‘) in ‘metadata‘ slot.

Examples

data(se)

csQTL

metadata(se)$gene_data <- metadata(se)$gene_datalseq_len(100),] #reduce time
se <- ajive_decomp(se, use_marker = TRUE)

csQTL

Cell-type-specific differential expression (csQTL)

Description

This function returns a ‘SummarizedExperiment‘ object including csQTL proteins based on sam-

ples’ genotype.

Usage

csQTL(se, BPPARAM = bpparam())

Arguments

se

BPPARAM

Details

A ‘SummarizedExperiment* object with bulk protein expression data frame con-
tained in ‘counts® slot. The information from genetic variants should be stored
in a P (the number of SNP) by N (the number of samples, should match the
sample in ‘counts‘ slot) matrix contained as an element (‘SNP_data‘) in ‘meta-
data‘ slot. Each matrix entry corresponds to the genotype group indicator (0, 1
or 2) for a sample at a genetic location. The annotations of these SNP should
be stored as an element (‘anno_SNP‘) in ‘metadata‘ slot. It should include at
least the following columns: "CHROM" (which chromosome the SNP is on),
"POS" (position of that SNP) and "ID" (a unique identifier for each SNP, usu-
ally a combination of chromosome and its position). The information on cellular
composition is required and stored as ‘prop‘ in ‘metadata‘ slot. It is an N (the
number of samples, should match the sample in ‘counts® slot) by K (the number
of cell types) matrix. This can be obtained by running ‘deconv()‘ before any
filtering steps, or use any source data directly.

For applying ‘bplapply*.

This is a function developed to implement cell-type-specific differential expression using ‘“TOAST".

Value

A ‘SummarizedExperiment‘. The csQTL results will be stored as an element (‘TOAST_output®) in

‘metadata‘ slot.

deconv

Examples

data(se)

se
ta
se

<- deconv(se, source = "protein”, method = "nnls"”, use_refactor

rget_protein <- c("ABCA1")
<- feature_filter(se,
target_protein = target_protein,

filter_method = c("allele”, "distance"), filter_allele
filter_geno = 0.05, ref_position = "TSS"

= NULL)

)
se <- csQTL(se)
deconv Estimation of cellular composition in high-throughput data from het-
erogeneous tissues
Description

This function returns a ‘SummarizedExperiment* object including cell-type proportion estimates
for each sample.

Usage
de

conv (

se,

source = "cross”,

method = c(”"nnls”, "JNMF", "TCA"),
use_refactor = c(1000, NULL),

Step = c(10*(-8), 10*(-6)),

Eps = 10%(-4),
Iter = 500,
cell_counts = NULL,
pinit = "nnls",
ref_pnl = NULL

)

Arguments
se

A ‘SummarizedExperiment‘ object with bulk protein expression data frame con-
tained in assay, a bulk transcript expression data frame (‘gene_data‘) contained
in ‘metadata‘ slot (can be rescaled using either log or MinMax transformations,
but need to be consistent between two bulk data). A "signature matrix" func-
tions as a reference containing known cellular signatures (either ‘ref_protein‘ or
‘ref_gene‘ as an element in the ‘metadata‘ slot) may be necessary for certain
‘source‘and ‘method‘ options. To ensure the reliability of the results obtained,
we strongly recommend that the "signature matrix" should exclusively comprise
markers that have been previously validated in the literature.

source

method

use_refactor

Step

Eps

Iter

cell_counts

pinit

ref_pnl

Details

deconv

A character string denotes which molecular profiles to be deconvoluted. The set-
ting of ‘proteins‘or ‘transcript’ means single-source deconvolution with source-
specific signature matrix, while ‘cross‘ means proteome deconvolution based on
transcriptome-proteome with matched samples.

A character string specifies the deconvolution method to be employed. In the
current version, only 'nnls’ is supported for single-source deconvolution. Be-
sides the bulk data, ‘ref_protein‘ or ‘ref_gene‘ is required for protein or gene
deconvolution, respectively. For cross-source deconvolution, ‘JINMF* or ‘TCA
are valid options. If ‘INMF*, an external reference containing cell counts in a
similar tissue type (typically obtainable from small-scale single-cell or flow cy-
tometry experiments) is necessary if ‘pinit = "rdirichlet"‘; A "signature matrix"
is required for other methods. If “TCA°, an input of pre-estimated transcriptome
proportions, denoted as ‘prop_gene‘ as an element in the ‘metadata‘ slot, is re-
quired. This input can be derived from single-source deconvolution using ‘nnls*
included in this package, or from an external source.

A numeric value indicate the number of proteins included for proportion esti-
mates based on refactor values. Note that ‘ajive_decomp® with ‘refactor_loading
= TRUE" required if this method applied. If NULL, then all proteins included
in assay will be used.

A numeric vector indicates the step size in projected gradient descent for cell
count fraction parameter and cell size parameter, respectively. Only valid if
‘method = JINMF*.

A numeric value indicates the convergence criteria for projected gradient de-
scent. Only valid if ‘method = JNMF*.

A numeric value indicates the maximum iteration time for projected gradient
descent. Only valid if ‘method = JNMF*.

A matrix containing cell counts across multiple subjects, where subjects are
represented as rows and cell types as columns. Each entry (i, j) in the matrix
indicates the count of cells belonging to the ith subject and jth cell type. Only
required if ‘method = JNMF* and ‘pinit = "rdirichlet".

Accepts either a numeric matrix or a character indicating the method for ini-
tializing initial values for cellular fraction. If ‘pinit‘ is a numeric matrix (pre-
estimated transcriptome proportions using other methods), each row represents
the cellular fraction for each sample across various cell types. The resulting cel-
lular fraction will match the cell types defined in ‘pinit‘. Alternatively, ‘pinit’
can be generated using either the ‘rdirichlet‘ or ‘nnls‘ method.

A "signature matrix" functions as a reference containing known cellular sig-
natures. It is optional. If provided, the initial values for purified data will be
generated based on ‘ref_pnl‘. Otherwise, the initial values for purified data will
be generated using a normal distribution based on bulk data. Please note that
the input signature matrix should have the same rescaling transformation as the
bulk transcriptomes/proteomic.

This is a function developed to implement cell-type proportion deconvolution using either single or

Cross sources.

feature_filter 7

Value

A ‘SummarizedExperiment‘. The cell-type proportion estimates for each sample are stored as el-
ements starting with prop in the metadata slot. If ‘method = INMF*, then the cellular fractions
obtained from proteomics and transcriptomics are stored in the ‘prop‘ and ‘prop2‘ elements, respec-
tively, within the metadata slot. The purified data is stored in a list with the same length as the num-
ber of subjects (the number of columns in the assay). For subject i, the purified protein expression
data can be obtained by accessing ‘se_sim@metadata$purified[[i]][["X1"]]‘, and similarly, the puri-
fied transcript expression data can be obtained by accessing ‘se_sim @metadata$purified[[i]][["X2"]‘].

Examples
data(se)
se <- deconv(se, source = "protein”, method = "nnls"”, use_refactor = NULL)
feature_filter Feature filtering
Description

This function returns a ‘SummarizedExperiment* object including SNPs used to test for each protein
in downstream analysis.

Usage

feature_filter(
se,
target_protein = NULL,
target_SNP = NULL,
filter_method = c("allele”, "distance”, "null”),
filter_allele = 0.25,
filter_geno = 0.05,
ref_position = c("TSS", "genebody"),
BPPARAM = bpparam()

Arguments

se A ‘SummarizedExperiment‘ object with bulk protein expression data frame con-
tained in ‘counts‘ slot. Annotations on each row (protein) should be stored
in rowData() with protein symbol as row names The first column should be a
character vector indicating which chromosome each protein is on. A "Start"
column with numeric values indicating the start position on that chromosome
and a "Symbol" column as a unique name for each protein is also required.
The information from genetic variants should be stored in a P (the number of
SNP) by N (the number of samples, should match the sample in ‘counts‘ slot)
matrix contained as an element (‘SNP_data‘) in ‘metadata‘ slot. Each matrix

8 feature_filter

entry corresponds to the genotype group indicator (0, 1 or 2) for a sample at
a genetic location. The annotations of these SNP should be stored as an ele-
ment (‘anno_SNP‘) in ‘metadata‘ slot. It should include at least the following
columns: "CHROM" (which chromosome the SNP is on), "POS" (position of
that SNP) and "ID" (a unique identifier for each SNP, usually a combination of
chromosome and its position).

target_protein A character vector contains proteins names that will be used for downstream
analysis. By default, all proteins in ‘counts‘ slot will be used.

target_SNP A character vector contains SNP IDs that will be used for downstream analysis.
If not provided, all SNPs will be used for further filtering.

filter_method A character string denotes which filtering method will be used to filter out un-
related SNPs. If "allele”, then the minor allele frequency below argument ‘fil-
ter_allele® will be filtered out. If "distance", then only cis-acting SNPs for each
protein (defined as SNPs on the same chromosome and within 1M base pair (bp)
range of that protein) will be included for downstream analysis. if "null", then
the same SNPs will be used for each protein.

filter_allele A numeric value denotes the threshold for minor allele frequency. Only works
when ‘filter_method‘ contains "allele".

filter_geno A numeric value denotes the threshold for minimum genotype group proportion.
Only works when ‘filter_method* contains "allele".

ref_position A character string denotes the reference position on protein when ‘filter_method*
contains "distance", where "TSS" refers to transcription start site, and "gene-
body" refers to the middle point of "Start" and "End" position.

BPPARAM For applying ‘bplapply*.

Details

This is a function developed to filter unwanted proteins or SNPs with less variation among samples
for downstream analysis.

Value

A ‘SummarizedExperiment‘. The results after filtering will be stored as an element (‘choose_SNP_list®)
in ‘metadata‘ slot. ‘choose_SNP_list‘ is a list with the length of the number of proteins for down-
stream analysis. Each element stores the index of SNPs to be tested for corresponding protein. The
proteins with no SNPs correspond to it will be removed from the returned list.

Examples

data(se)
target_protein <- rowData(se)[rowData(se)$Chr == 9, J[seq_len(3), "Symbol"]
se <- feature_filter(se,

target_protein = target_protein,

filter_method = c("allele”, "distance"),

filter_allele = 0.15, filter_geno = 0.05, ref_position = "TSS"

se 9
se Example data
Description
The example input files are organized as a ‘SummarizedExperiment‘object.
Format

A ‘SummarizedExperiment ‘object with following example data:

protein_data An example proteomics data (on log scale) with 2,242 rows (protein) and 127 columns
(sample).

anno_protein A data frame with 2242 rows and 4 columns (Chr, Start, End, Symbol) as annota-
tions of each protein from ‘protein_data“.

ref_protein A signature matrix with 2242 rows (protein) and 4 columns (cell types), which serves
as a reference of known cellular signatures.

gene_data A data frame with 2867 rows (genes) and 127 columns (sample).

prop_gene A pre-defined deconvoluted transcriptome proportion matrix.

ref_gene A signature matrix with 4872 rows (genes) and 5 columns (cell types), which serves as a
reference of known cellular signatures.

SNP_data A sparse matrix with 2000 rows (SNP), which stores the information of genetic variants
at each location from one chromosome and 127 columns (sample, should match the sample in
‘protein_data‘). Each matrix entry corresponds to the genotype group indicator (0, 1 or 2) for
a sample at a genetic location.

anno_SNP A data frame with 2000 rows and 3 columns (CHROM, POS, ID), which stores Anno-
tations of each SNP from ‘SNP_data“

meta A data frame with 127 rows (sample) and 2 columns (disease status and gender) as metadata.

prop An example cellular composition by running ‘deconv‘ function.

cell_counts A matrix containing cell counts across multiple subjects, where subjects are repre-
sented as rows and cell types as columns. Each entry (i, j) in the matrix indicates the count of
cells belonging to the ith subject and jth cell type.

Value
A ‘SummarizedExperiment ‘object.
Examples

data(se)

Index

x datasets
se, 9

ajive_decomp, 2
csQTL, 4

deconv, 5
feature_filter,7

se, 9

10

	ajive_decomp
	csQTL
	deconv
	feature_filter
	se
	Index

