
Package ‘AneuFinder’
November 12, 2024

Type Package

Title Analysis of Copy Number Variation in Single-Cell-Sequencing Data

Version 1.35.0

Author Aaron Taudt, Bjorn Bakker, David Porubsky

Maintainer Aaron Taudt <aaron.taudt@gmail.com>

Description AneuFinder implements functions for copy-number detection,
breakpoint detection, and karyotype and heterogeneity analysis in
single-cell whole genome sequencing and strand-seq data.

Depends R (>= 3.5), GenomicRanges, ggplot2, cowplot, AneuFinderData

Imports methods, utils, grDevices, graphics, stats, foreach,
doParallel, BiocGenerics (>= 0.31.6), S4Vectors, GenomeInfoDb,
IRanges, Rsamtools, bamsignals, DNAcopy, ecp, Biostrings,
GenomicAlignments, reshape2, ggdendro, ggrepel, mclust

Suggests knitr, BiocStyle, testthat, BSgenome.Hsapiens.UCSC.hg19,
BSgenome.Mmusculus.UCSC.mm10

License Artistic-2.0

LazyLoad yes

VignetteBuilder knitr

biocViews ImmunoOncology, Software, Sequencing, SingleCell,
CopyNumberVariation, GenomicVariation, HiddenMarkovModel,
WholeGenome

URL https://github.com/ataudt/aneufinder.git

RoxygenNote 6.0.1

git_url https://git.bioconductor.org/packages/AneuFinder

git_branch devel

git_last_commit 42b7837

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2024-11-12

1

https://github.com/ataudt/aneufinder.git

2 Contents

Contents
AneuFinder-package . 3
aneuBiHMM . 4
Aneufinder . 5
aneuHMM . 7
annotateBreakpoints . 8
bam2GRanges . 9
bed2GRanges . 10
bi.edivisive.findCNVs . 11
biDNAcopy.findCNVs . 12
biHMM.findCNVs . 12
binned.data . 14
binning . 14
binReads . 14
blacklist . 16
clusterByQuality . 17
clusterHMMs . 19
collapseBins . 20
colors . 21
compareMethods . 22
compareModels . 23
consensusSegments . 24
correctGC . 24
DNAcopy.findCNVs . 26
edivisive.findCNVs . 26
estimateComplexity . 27
export . 28
filterSegments . 29
findCNVs . 30
findCNVs.strandseq . 32
findHotspots . 34
fixedWidthBins . 35
getBreakpoints . 36
getDistinctColors . 37
getQC . 38
getSCEcoordinates . 39
heatmapAneuploidies . 40
heatmapGenomewide . 41
heatmapGenomewideClusters . 42
HMM.findCNVs . 43
hotspotter . 44
hotspotter.variable . 45
importBed . 46
initializeStates . 47
karyotypeMeasures . 47
loadFromFiles . 49
mergeStrandseqFiles . 50

AneuFinder-package 3

plot.aneuBiHMM . 51
plot.aneuHMM . 51
plot.character . 52
plot.GRanges . 52
plot.GRangesList . 53
plotHeterogeneity . 53
plotHistogram . 55
plotKaryogram . 56
plotProfile . 56
plot_pca . 57
print.aneuBiHMM . 58
print.aneuHMM . 58
qualityControl . 59
readConfig . 60
refineBreakpoints . 60
simulateReads . 61
subsetByCNVprofile . 62
transCoord . 63
variableWidthBins . 63
writeConfig . 64
zinbinom . 65

Index 67

AneuFinder-package Copy-number detection in WGSCS and Strand-Seq data

Description

CNV detection in whole-genome single cell sequencing (WGSCS) and Strand-seq data using a Hid-
den Markov Model. The package implements CNV detection, commonly used plotting functions,
export to BED format for upload to genome browsers, and measures for assessment of karyotype
heterogeneity and quality metrics.

Details

The main function of this package is Aneufinder and produces several plots and browser files. If
you want to have more fine-grained control over the different steps (binning, GC-correction, HMM,
plotting) check the vignette Introduction to AneuFinder.

Author(s)

Aaron Taudt, David Porubsky

4 aneuBiHMM

aneuBiHMM Bivariate Hidden Markov Model

Description

The aneuBiHMM object is output of the function findCNVs.strandseq and is basically a list with
various entries. The class() attribute of this list was set to "aneuBiHMM". For a given hmm, the
entries can be accessed with the list operators ’hmm[[]]’ and ’hmm$’.

Value

ID An identifier that is used in various AneuFinder functions.

bins A GRanges-class object containing the genomic bin coordinates, their read count
and state classification.

segments A GRanges-class object containing regions and their state classification.

weights Weight for each component.
transitionProbs

Matrix of transition probabilities from each state (row) into each state (column).
transitionProbs.initial

Initial transitionProbs at the beginning of the Baum-Welch.

startProbs Probabilities for the first bin
startProbs.initial

Initial startProbs at the beginning of the Baum-Welch.

distributions Estimated parameters of the emission distributions.
distributions.initial

Distribution parameters at the beginning of the Baum-Welch.
convergenceInfo

Contains information about the convergence of the Baum-Welch algorithm.
convergenceInfo$eps

Convergence threshold for the Baum-Welch.
convergenceInfo$loglik

Final loglikelihood after the last iteration.
convergenceInfo$loglik.delta

Change in loglikelihood after the last iteration (should be smaller than eps)
convergenceInfo$num.iterations

Number of iterations that the Baum-Welch needed to converge to the desired
eps.

convergenceInfo$time.sec

Time in seconds that the Baum-Welch needed to converge to the desired eps.

See Also

findCNVs.strandseq

Aneufinder 5

Aneufinder Wrapper function for the AneuFinder package

Description

This function is an easy-to-use wrapper to bin the data, find copy-number-variations, locate break-
points, plot genomewide heatmaps, distributions, profiles and karyograms.

Usage

Aneufinder(inputfolder, outputfolder, configfile = NULL, numCPU = 1,
reuse.existing.files = TRUE, binsizes = 1e+06, stepsizes = binsizes,
variable.width.reference = NULL, reads.per.bin = NULL,
pairedEndReads = FALSE, assembly = NULL, chromosomes = NULL,
remove.duplicate.reads = TRUE, min.mapq = 10, blacklist = NULL,
use.bamsignals = FALSE, reads.store = FALSE, correction.method = NULL,
GC.BSgenome = NULL, method = c("edivisive"), strandseq = FALSE,
R = 10, sig.lvl = 0.1, eps = 0.01, max.time = 60, max.iter = 5000,
num.trials = 15, states = c("zero-inflation", paste0(0:10, "-somy")),
confint = NULL, refine.breakpoints = FALSE, hotspot.bandwidth = NULL,
hotspot.pval = 0.05, cluster.plots = TRUE)

Arguments

inputfolder Folder with either BAM or BED files.

outputfolder Folder to output the results. If it does not exist it will be created.

configfile A file specifying the parameters of this function (without inputfolder, outputfolder
and configfile). Having the parameters in a file can be handy if many samples
with the same parameter settings are to be run. If a configfile is specified, it
will take priority over the command line parameters.

numCPU The numbers of CPUs that are used. Should not be more than available on your
machine.

reuse.existing.files

A logical indicating whether or not existing files in outputfolder should be
reused.

binsizes An integer vector with bin sizes. If more than one value is given, output files
will be produced for each bin size.

stepsizes A vector of step sizes the same length as binsizes. Only used for method="HMM".
variable.width.reference

A BAM file that is used as reference to produce variable width bins. See variableWidthBins
for details.

reads.per.bin Approximate number of desired reads per bin. The bin size will be selected
accordingly. Output files are produced for each value.

pairedEndReads Set to TRUE if you have paired-end reads in your BAM files (not implemented
for BED files).

6 Aneufinder

assembly Please see getChromInfoFromUCSC for available assemblies. Only necessary
when importing BED files. BAM files are handled automatically. Alternatively
a data.frame with columns ’chromosome’ and ’length’.

chromosomes If only a subset of the chromosomes should be imported, specify them here.
remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=NA
to keep all reads.

blacklist A GRanges-class or a bed(.gz) file with blacklisted regions. Reads falling into
those regions will be discarded.

use.bamsignals If TRUE the bamsignals package will be used for binning. This gives a tremen-
dous performance increase for the binning step. reads.store and calc.complexity
will be set to FALSE in this case.

reads.store Set reads.store=TRUE to store read fragments as RData in folder ’data’ and as
BED files in ’BROWSERFILES/data’. This option will force use.bamsignals=FALSE.

correction.method

Correction methods to be used for the binned read counts. Currently only 'GC'.

GC.BSgenome A BSgenome object which contains the DNA sequence that is used for the GC
correction.

method Any combination of c('HMM','dnacopy','edivisive'). Option method='HMM'
uses a Hidden Markov Model as described in doi:10.1186/s13059-016-0971-7 to
call copy numbers. Option 'dnacopy' uses segment from the DNAcopy pack-
age to call copy numbers similarly to the method proposed in doi:10.1038/nmeth.3578,
which gives more robust but less sensitive results compared to the HMM. Option
'edivisive' (DEFAULT) works like option 'dnacopy' but uses the e.divisive
function from the ecp package for segmentation.

strandseq A logical indicating whether the data comes from Strand-seq experiments. If
TRUE, both strands carry information and are treated separately.

R method-edivisive: The maximum number of random permutations to use in each
iteration of the permutation test (see e.divisive). Increase this value to in-
crease accuracy on the cost of speed.

sig.lvl method-edivisive: The level at which to sequentially test if a proposed change
point is statistically significant (see e.divisive). Increase this value to find
more breakpoints.

eps method-HMM: Convergence threshold for the Baum-Welch algorithm.

max.time method-HMM: The maximum running time in seconds for the Baum-Welch al-
gorithm. If this time is reached, the Baum-Welch will terminate after the current
iteration finishes. Set max.time = -1 for no limit.

max.iter method-HMM: The maximum number of iterations for the Baum-Welch algo-
rithm. Set max.iter = -1 for no limit.

num.trials method-HMM: The number of trials to find a fit where state most.frequent.state
is most frequent. Each time, the HMM is seeded with different random initial
values.

aneuHMM 7

states method-HMM: A subset or all of c("zero-inflation","0-somy","1-somy","2-somy","3-somy","4-somy",...).
This vector defines the states that are used in the Hidden Markov Model. The
order of the entries must not be changed.

confint Desired confidence interval for breakpoints. Set confint=NULL to disable confi-
dence interval estimation. Confidence interval estimation will force reads.store=TRUE.

refine.breakpoints

A logical indicating whether breakpoints from the HMM should be refined with
read-level information. refine.breakpoints=TRUE will force reads.store=TRUE.

hotspot.bandwidth

A vector the same length as binsizes with bandwidths for breakpoint hotspot
detection (see hotspotter for further details). If NULL, the bandwidth will be
chosen automatically as the average distance between reads.

hotspot.pval P-value for breakpoint hotspot detection (see hotspotter for further details).
Set hotspot.pval = NULL to skip hotspot detection.

cluster.plots A logical indicating whether plots should be clustered by similarity.

Value

NULL

Author(s)

Aaron Taudt

Examples

Not run:
The following call produces plots and genome browser files for all BAM files in "my-data-folder"
Aneufinder(inputfolder="my-data-folder", outputfolder="my-output-folder")
End(Not run)

aneuHMM Hidden Markov Model

Description

The aneuHMM object is output of the function findCNVs and is basically a list with various entries.
The class() attribute of this list was set to "aneuHMM". For a given hmm, the entries can be accessed
with the list operators ’hmm[[]]’ and ’hmm$’.

Value

ID An identifier that is used in various AneuFinder functions.

bins A GRanges-class object containing the genomic bin coordinates, their read count
and state classification.

8 annotateBreakpoints

segments A GRanges-class object containing regions and their state classification.

weights Weight for each component.
transitionProbs

Matrix of transition probabilities from each state (row) into each state (column).
transitionProbs.initial

Initial transitionProbs at the beginning of the Baum-Welch.

startProbs Probabilities for the first bin
startProbs.initial

Initial startProbs at the beginning of the Baum-Welch.

distributions Estimated parameters of the emission distributions.
distributions.initial

Distribution parameters at the beginning of the Baum-Welch.
convergenceInfo

Contains information about the convergence of the Baum-Welch algorithm.
convergenceInfo$eps

Convergence threshold for the Baum-Welch.
convergenceInfo$loglik

Final loglikelihood after the last iteration.
convergenceInfo$loglik.delta

Change in loglikelihood after the last iteration (should be smaller than eps)
convergenceInfo$num.iterations

Number of iterations that the Baum-Welch needed to converge to the desired
eps.

convergenceInfo$time.sec

Time in seconds that the Baum-Welch needed to converge to the desired eps.

See Also

findCNVs

annotateBreakpoints Annotate breakpoints

Description

Annotate breakpoints as sister-chromatid-exchange (SCE), copy-number-breakpoint (CNB).

Usage

annotateBreakpoints(breakpoints)

Arguments

breakpoints A GRanges-class as returned by getBreakpoints.

bam2GRanges 9

Value

The input GRanges-class with additinal column ’type’.

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Bin the data into bin size 1Mp
readfragments <- binReads(bedfile, assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'), reads.return=TRUE)
binned <- binReads(bedfile, assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'))
Fit the Hidden Markov Model
model <- findCNVs.strandseq(binned[[1]])
Add confidence intervals
breakpoints <- getBreakpoints(model, readfragments)

bam2GRanges Import BAM file into GRanges

Description

Import aligned reads from a BAM file into a GRanges-class object.

Usage

bam2GRanges(bamfile, bamindex = bamfile, chromosomes = NULL,
pairedEndReads = FALSE, remove.duplicate.reads = FALSE, min.mapq = 10,
max.fragment.width = 1000, blacklist = NULL, what = "mapq")

Arguments

bamfile A sorted BAM file.

bamindex BAM index file. Can be specified without the .bai ending. If the index file does
not exist it will be created and a warning is issued.

chromosomes If only a subset of the chromosomes should be imported, specify them here.

pairedEndReads Set to TRUE if you have paired-end reads in your BAM files (not implemented
for BED files).

remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=NA
to keep all reads.

max.fragment.width

Maximum allowed fragment length. This is to filter out erroneously wrong frag-
ments due to mapping errors of paired end reads.

10 bed2GRanges

blacklist A GRanges-class or a bed(.gz) file with blacklisted regions. Reads falling into
those regions will be discarded.

what A character vector of fields that are returned. Uses the Rsamtools::scanBamWhat
function. See Rsamtools::ScanBamParam to see what is available.

Value

A GRanges-class object containing the reads.

Examples

Get an example BAM file with single-cell-sequencing reads
bamfile <- system.file("extdata", "BB150803_IV_074.bam", package="AneuFinderData")
Read the file into a GRanges object
reads <- bam2GRanges(bamfile, chromosomes=c(1:19,'X','Y'), pairedEndReads=FALSE,

min.mapq=10, remove.duplicate.reads=TRUE)
print(reads)

bed2GRanges Import BED file into GRanges

Description

Import aligned reads from a BED file into a GRanges-class object.

Usage

bed2GRanges(bedfile, assembly, chromosomes = NULL,
remove.duplicate.reads = FALSE, min.mapq = 10,
max.fragment.width = 1000, blacklist = NULL)

Arguments

bedfile A file with aligned reads in BED format. The columns have to be c(’chromosome’,’start’,’end’,’description’,’mapq’,’strand’).
assembly Please see getChromInfoFromUCSC for available assemblies. Only necessary

when importing BED files. BAM files are handled automatically. Alternatively
a data.frame with columns ’chromosome’ and ’length’.

chromosomes If only a subset of the chromosomes should be imported, specify them here.
remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.
min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=NA

to keep all reads.
max.fragment.width

Maximum allowed fragment length. This is to filter out erroneously wrong frag-
ments.

blacklist A GRanges-class or a bed(.gz) file with blacklisted regions. Reads falling into
those regions will be discarded.

bi.edivisive.findCNVs 11

Value

A GRanges-class object containing the reads.

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Read the file into a GRanges object
reads <- bed2GRanges(bedfile, assembly='mm10', chromosomes=c(1:19,'X','Y'),

min.mapq=10, remove.duplicate.reads=TRUE)
print(reads)

bi.edivisive.findCNVs Find copy number variations (edivisive, bivariate)

Description

Classify the binned read counts into several states which represent copy-number-variation. The
function uses the e.divisive function to segment the genome.

Usage

bi.edivisive.findCNVs(binned.data, ID = NULL, CNgrid.start = 0.5, R = 10,
sig.lvl = 0.1)

Arguments

binned.data A GRanges-class object with binned read counts.

ID An identifier that will be used to identify this sample in various downstream
functions. Could be the file name of the binned.data for example.

CNgrid.start Start parameter for the CNgrid variable. Very empiric. Set to 1.5 for normal
data and 0.5 for Strand-seq data.

R method-edivisive: The maximum number of random permutations to use in each
iteration of the permutation test (see e.divisive). Increase this value to in-
crease accuracy on the cost of speed.

sig.lvl method-edivisive: The level at which to sequentially test if a proposed change
point is statistically significant (see e.divisive). Increase this value to find
more breakpoints.

Value

An aneuHMM object.

12 biHMM.findCNVs

biDNAcopy.findCNVs Find copy number variations (DNAcopy, bivariate)

Description

biDNAcopy.findCNVs classifies the binned read counts into several states which represent copy-
number-variation using read count information from both strands.

Usage

biDNAcopy.findCNVs(binned.data, ID = NULL, CNgrid.start = 0.5)

Arguments

binned.data A GRanges-class object with binned read counts.

ID An identifier that will be used to identify this sample in various downstream
functions. Could be the file name of the binned.data for example.

CNgrid.start Start parameter for the CNgrid variable. Very empiric. Set to 1.5 for normal
data and 0.5 for Strand-seq data.

Value

An aneuHMM object.

biHMM.findCNVs Find copy number variations (bivariate)

Description

biHMM.findCNVs finds CNVs using read count information from both strands.

Usage

biHMM.findCNVs(binned.data, ID = NULL, eps = 0.01, init = "standard",
max.time = -1, max.iter = -1, num.trials = 1, eps.try = NULL,
num.threads = 1, count.cutoff.quantile = 0.999,
states = c("zero-inflation", paste0(0:10, "-somy")),
most.frequent.state = "1-somy", algorithm = "EM", initial.params = NULL,
verbosity = 1)

biHMM.findCNVs 13

Arguments

binned.data A GRanges-class object with binned read counts. Alternatively a GRangesList
object with offsetted read counts.

ID An identifier that will be used to identify this sample in various downstream
functions. Could be the file name of the binned.data for example.

eps method-HMM: Convergence threshold for the Baum-Welch algorithm.

init method-HMM: One of the following initialization procedures:

standard The negative binomial of state ’2-somy’ will be initialized with mean=mean(counts),
var=var(counts). This procedure usually gives good convergence.

random Mean and variance of the negative binomial of state ’2-somy’ will be
initialized with random values (in certain boundaries, see source code). Try
this if the standard procedure fails to produce a good fit.

max.time method-HMM: The maximum running time in seconds for the Baum-Welch al-
gorithm. If this time is reached, the Baum-Welch will terminate after the current
iteration finishes. Set max.time = -1 for no limit.

max.iter method-HMM: The maximum number of iterations for the Baum-Welch algo-
rithm. Set max.iter = -1 for no limit.

num.trials method-HMM: The number of trials to find a fit where state most.frequent.state
is most frequent. Each time, the HMM is seeded with different random initial
values.

eps.try method-HMM: If code num.trials is set to greater than 1, eps.try is used for
the trial runs. If unset, eps is used.

num.threads method-HMM: Number of threads to use. Setting this to >1 may give increased
performance.

count.cutoff.quantile

method-HMM: A quantile between 0 and 1. Should be near 1. Read counts
above this quantile will be set to the read count specified by this quantile. Filter-
ing very high read counts increases the performance of the Baum-Welch fitting
procedure. However, if your data contains very few peaks they might be filtered
out. Set count.cutoff.quantile=1 in this case.

states method-HMM: A subset or all of c("zero-inflation","0-somy","1-somy","2-somy","3-somy","4-somy",...).
This vector defines the states that are used in the Hidden Markov Model. The
order of the entries must not be changed.

most.frequent.state

method-HMM: One of the states that were given in states. The specified state
is assumed to be the most frequent one. This can help the fitting procedure to
converge into the correct fit.

algorithm method-HMM: One of c('baumWelch','EM'). The expectation maximization
('EM') will find the most likely states and fit the best parameters to the data, the
'baumWelch' will find the most likely states using the initial parameters.

initial.params method-HMM: A aneuHMM object or file containing such an object from which
initial starting parameters will be extracted.

verbosity method-HMM: Integer specifying the verbosity of printed messages.

14 binReads

Value

An aneuBiHMM object.

binned.data Binned read counts

Description

A GRanges-class object which contains binned read counts as meta data column reads. It is output
of the various binning functions.

binning Bin the genome

Description

Please see functions fixedWidthBins and variableWidthBins for further details.

binReads Convert aligned reads from various file formats into read counts in
equidistant bins

Description

Convert aligned reads in .bam or .bed(.gz) format into read counts in equidistant windows.

Usage

binReads(file, assembly, ID = basename(file), bamindex = file,
chromosomes = NULL, pairedEndReads = FALSE, min.mapq = 10,
remove.duplicate.reads = TRUE, max.fragment.width = 1000,
blacklist = NULL, outputfolder.binned = "binned_data", binsizes = 1e+06,
stepsizes = NULL, reads.per.bin = NULL, reads.per.step = NULL,
bins = NULL, variable.width.reference = NULL, save.as.RData = FALSE,
calc.complexity = TRUE, call = match.call(), reads.store = FALSE,
outputfolder.reads = "data", reads.return = FALSE,
reads.overwrite = FALSE, reads.only = FALSE, use.bamsignals = FALSE)

binReads 15

Arguments

file A file with aligned reads. Alternatively a GRanges-class with aligned reads.

assembly Please see getChromInfoFromUCSC for available assemblies. Only necessary
when importing BED files. BAM files are handled automatically. Alternatively
a data.frame with columns ’chromosome’ and ’length’.

ID An identifier that will be used to identify the file throughout the workflow and
in plotting.

bamindex BAM index file. Can be specified without the .bai ending. If the index file does
not exist it will be created and a warning is issued.

chromosomes If only a subset of the chromosomes should be binned, specify them here.

pairedEndReads Set to TRUE if you have paired-end reads in your BAM files (not implemented
for BED files).

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=NA
to keep all reads.

remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.
max.fragment.width

Maximum allowed fragment length. This is to filter out erroneously wrong frag-
ments due to mapping errors of paired end reads.

blacklist A GRanges-class or a bed(.gz) file with blacklisted regions. Reads falling into
those regions will be discarded.

outputfolder.binned

Folder to which the binned data will be saved. If the specified folder does not
exist, it will be created.

binsizes An integer vector with bin sizes. If more than one value is given, output files
will be produced for each bin size.

stepsizes A vector of step sizes the same length as binsizes. Only used for method="HMM".

reads.per.bin Approximate number of desired reads per bin. The bin size will be selected
accordingly. Output files are produced for each value.

reads.per.step Approximate number of desired reads per step.

bins A named list with GRanges-class containing precalculated bins produced
by fixedWidthBins or variableWidthBins. Names must correspond to the
binsize.

variable.width.reference

A BAM file that is used as reference to produce variable width bins. See variableWidthBins
for details.

save.as.RData If set to FALSE, no output file will be written. Instead, a GenomicRanges ob-
ject containing the binned data will be returned. Only the first binsize will be
processed in this case.

calc.complexity

A logical indicating whether or not to estimate library complexity.

call The match.call() of the parent function.

16 blacklist

reads.store If TRUE processed read fragments will be saved to file. Reads are processed
according to min.mapq and remove.duplicate.reads. Paired end reads are
coerced to single end fragments. Will be ignored if use.bamsignals=TRUE.

outputfolder.reads

Folder to which the read fragments will be saved. If the specified folder does
not exist, it will be created.

reads.return If TRUE no binning is done and instead, read fragments from the input file are
returned in GRanges-class format.

reads.overwrite

Whether or not an existing file with read fragments should be overwritten.
reads.only If TRUE only read fragments are stored and/or returned and no binning is done.
use.bamsignals If TRUE the bamsignals package will be used for binning. This gives a tremen-

dous performance increase for the binning step. reads.store and calc.complexity
will be set to FALSE in this case.

Details

Convert aligned reads from .bam or .bed(.gz) files into read counts in equidistant windows (bins).
This function uses GenomicRanges::countOverlaps to calculate the read counts.

Value

The function produces a list() of GRanges-class or GRangesList objects with meta data columns
’counts’, ’mcounts’, ’pcounts’ that contain the total, minus and plus read count. This binned data
will be either written to file (save.as.RData=FALSE) or given as return value (save.as.RData=FALSE).

See Also

binning

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Bin the BED file into bin size 1Mb
binned <- binReads(bedfile, assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'))
print(binned)

blacklist Make a blacklist for genomic regions

Description

Produce a blacklist of genomic regions with a high ratio of duplicate to unique reads. This blacklist
can be used to exclude reads for analysis in Aneufinder, bam2GRanges and bed2GRanges. This
function produces a pre-blacklist which has to manually be filtered with a sensible cutoff. See the
examples section for details.

clusterByQuality 17

Usage

blacklist(files, assembly, bins, min.mapq = 10, pairedEndReads = FALSE)

Arguments

files A character vector of either BAM or BED files.

assembly Please see getChromInfoFromUCSC for available assemblies. Only necessary
when importing BED files. BAM files are handled automatically. Alternatively
a data.frame with columns ’chromosome’ and ’length’.

bins A list with one GRanges-class with binned read counts generated by fixedWidthBins.

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=NA
to keep all reads.

pairedEndReads Set to TRUE if you have paired-end reads in your BAM files (not implemented
for BED files).

Value

A GRanges-class with the same coordinates as bins with metadata columns ratio, duplicated
counts and deduplicated counts.

Examples

Get an example BAM file with single-cell-sequencing reads
bamfile <- system.file("extdata", "BB150803_IV_074.bam", package="AneuFinderData")
Prepare the blacklist
bins <- fixedWidthBins(assembly='mm10', binsizes=1e6, chromosome.format='NCBI')
pre.blacklist <- blacklist(bamfile, bins=bins)
Plot a histogram to decide on a sensible cutoff
qplot(pre.blacklist$ratio, binwidth=0.1)
Make the blacklist with cutoff = 1.9
blacklist <- pre.blacklist[pre.blacklist$ratio > 1.9]

clusterByQuality Cluster based on quality variables

Description

This function uses the mclust package to cluster the input samples based on various quality mea-
sures.

Usage

clusterByQuality(hmms, G = 1:9, itmax = c(100, 100),
measures = c("spikiness", "entropy", "num.segments", "bhattacharyya",
"complexity", "sos"), orderBy = "spikiness", reverseOrder = FALSE)

18 clusterByQuality

Arguments

hmms A list of aneuHMM objects or a character vector with files that contain such ob-
jects.

G An integer vector specifying the number of clusters that are compared. See
Mclust for details.

itmax The maximum number of outer and inner iterations for the Mclust function. See
emControl for details.

measures The quality measures that are used for the clustering. Supported is any combina-
tion of c('spikiness','entropy','num.segments','bhattacharyya','loglik','complexity','sos','avg.read.count','total.read.count','avg.binsize').

orderBy The quality measure to order the clusters by. Default is 'spikiness'.

reverseOrder Logical indicating whether the ordering by orderBy is reversed.

Details

Please see getQC for a brief description of the quality measures.

Value

A list with the classification, parameters and the Mclust fit.

Author(s)

Aaron Taudt

See Also

getQC

Examples

Get a list of HMMs
folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
files <- list.files(folder, full.names=TRUE)
cl <- clusterByQuality(files)
Plot the clustering and print the parameters
plot(cl$Mclust, what='classification')
print(cl$parameters)
Select files from the best 2 clusters for further processing
best.files <- unlist(cl$classification[1:2])

clusterHMMs 19

clusterHMMs Cluster objects

Description

Cluster a list of aneuHMM or aneuBiHMM objects by similarity in their CNV-state.

Usage

clusterHMMs(hmms, cluster = TRUE, exclude.regions = NULL)

Arguments

hmms A list of aneuHMM or aneuBiHMM objects or a character vector of files that con-
tains such objects.

cluster Either TRUE or FALSE, indicating whether the samples should be clustered by
similarity in their CNV-state.

exclude.regions

A GRanges-class with regions that will be excluded from the computation of
the clustering. This can be useful to exclude regions with artifacts.

Value

An list() with ordered ID indices and the hierarchical clustering.

Examples

Get results from a small-cell-lung-cancer
lung.folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
lung.files <- list.files(lung.folder, full.names=TRUE)
models <- loadFromFiles(lung.files)
Not run:
Plot unclustered heatmap
heatmapGenomewide(models, cluster=FALSE)
End(Not run)
Cluster and reorder the models
clust <- clusterHMMs(models)
models <- models[clust$IDorder]
Not run:
Plot re-ordered heatmap
heatmapGenomewide(models, cluster=FALSE)
End(Not run)

20 collapseBins

collapseBins Collapse consecutive bins

Description

The function will collapse consecutive bins which have, for example, the same combinatorial state.

Usage

collapseBins(data, column2collapseBy = NULL, columns2sumUp = NULL,
columns2average = NULL, columns2getMax = NULL, columns2drop = NULL)

Arguments

data A data.frame containing the genomic coordinates in the first three columns.
column2collapseBy

The number of the column which will be used to collapse all other inputs. If a set
of consecutive bins has the same value in this column, they will be aggregated
into one bin with adjusted genomic coordinates. If NULL directly adjacent bins
will be collapsed.

columns2sumUp Column numbers that will be summed during the aggregation process.
columns2average

Column numbers that will be averaged during the aggregation process.

columns2getMax Column numbers where the maximum will be chosen during the aggregation
process.

columns2drop Column numbers that will be dropped after the aggregation process.

Details

The following tables illustrate the principle of the collapsing:

Input data:

seqnames start end column2collapseBy moreColumns columns2sumUp
chr1 0 199 2 1 10 1 3
chr1 200 399 2 2 11 0 3
chr1 400 599 2 3 12 1 3
chr1 600 799 1 4 13 0 3
chr1 800 999 1 5 14 1 3

Output data:

seqnames start end column2collapseBy moreColumns columns2sumUp
chr1 0 599 2 1 10 2 9
chr1 600 999 1 4 13 1 6

colors 21

Value

A data.frame.

Author(s)

Aaron Taudt

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Bin the BAM file into bin size 1Mp
binned <- binReads(bedfile, assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'))
Collapse the bins by chromosome and get average, summed and maximum read count
df <- as.data.frame(binned[[1]])
Remove one bin for illustration purposes
df <- df[-3,]
head(df)
collapseBins(df, column2collapseBy='seqnames', columns2sumUp=c('width','counts'),

columns2average='counts', columns2getMax='counts',
columns2drop=c('mcounts','pcounts'))

collapseBins(df, column2collapseBy=NULL, columns2sumUp=c('width','counts'),
columns2average='counts', columns2getMax='counts',
columns2drop=c('mcounts','pcounts'))

colors AneuFinder color scheme

Description

Get the color schemes that are used in the AneuFinder plots.

Usage

stateColors(states = c("zero-inflation", paste0(0:10, "-somy"), "total"))

strandColors(strands = c("+", "-"))

breakpointColors(breaktypes = c("CNB", "SCE", "CNB+SCE", "other"))

22 compareMethods

Arguments

states A character vector with states whose color should be returned.
strands A character vector with strands whose color should be returned. Any combina-

tion of c('+','-','*').
breaktypes A character vector with breakpoint types whose color should be returned. Any

combination of c('CNB','SCE','CNB+SCE','other').

Value

A character vector with colors.

Functions

• stateColors: Colors that are used for the states.
• strandColors: Colors that are used to distinguish strands.
• breakpointColors: Colors that are used for breakpoint types.

Examples

Make a nice pie chart with the AneuFinder state color scheme
statecolors <- stateColors()
pie(rep(1,length(statecolors)), labels=names(statecolors), col=statecolors)

Make a nice pie chart with the AneuFinder strand color scheme
strandcolors <- strandColors()
pie(rep(1,length(strandcolors)), labels=names(strandcolors), col=strandcolors)

Make a nice pie chart with the AneuFinder breakpoint-type color scheme
breakpointcolors <- breakpointColors()
pie(rep(1,length(breakpointcolors)), labels=names(breakpointcolors), col=breakpointcolors)

compareMethods Compare copy number calling methods

Description

Compare two sets of aneuHMM objects generated by different methods (see option method of findCNVs).

Usage

compareMethods(models1, models2)

Arguments

models1 A list of aneuHMM objects or a character vector with files that contain such ob-
jects.

models2 A list of aneuHMM objects or a character vector with files that contain such ob-
jects. IDs of the models must match the ones in models1.

compareModels 23

Value

A data.frame with one column ’concordance’ which gives the fraction of the genome that is called
concordantly between both models.

Author(s)

Aaron Taudt

Examples

Get a list of HMMs
folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
files <- list.files(folder, full.names=TRUE)
Compare the models with themselves (non-sensical)
df <- compareMethods(files, files)
head(df)

compareModels Compare copy number models

Description

Compare two aneuHMM objects. The function computes the fraction of copy number calls that is
concordant between both models.

Usage

compareModels(model1, model2)

Arguments

model1 An aneuHMM object or file that contains such an object.

model2 An aneuHMM object or file that contains such an object.

Value

A numeric.

Author(s)

Aaron Taudt

24 correctGC

consensusSegments Make consensus segments

Description

Make consensus segments from a list of aneuHMM or aneuBiHMM objects.

Usage

consensusSegments(hmms)

Arguments

hmms A list of aneuHMM or aneuBiHMM objects or a character vector of files that con-
tains such objects.

Details

The function will produce a GRanges-class object using the GenomicRanges::disjoin function
on all extracted $segment entries.

Value

A GRanges-class.

Examples

Get results from a small-cell-lung-cancer
lung.folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
lung.files <- list.files(lung.folder, full.names=TRUE)
Get consensus segments and states
consensusSegments(lung.files)

correctGC GC correction

Description

Correct a list of binned.data by GC content.

Usage

correctGC(binned.data.list, GC.BSgenome, same.binsize = FALSE,
method = "loess", return.plot = FALSE, bins = NULL)

correctGC 25

Arguments

binned.data.list

A list with binned.data objects or a list of filenames containing such objects.

GC.BSgenome A BSgenome object which contains the DNA sequence that is used for the GC
correction.

same.binsize If TRUE the GC content will only be calculated once. Set this to TRUE if all
binned.data objects describe the same genome at the same binsize and step-
size.

method One of c('quadratic', 'loess'). Option method='quadratic' uses the
method described in the Supplementary of citation("AneuFinder"). Option
method='loess' uses a loess fit to adjust the read count.

return.plot Set to TRUE if plots should be returned for visual assessment of the GC correc-
tion.

bins A binned.data object with meta-data column ’GC’. If this is specified, GC.BSgenome
is ignored. Beware, no format checking is done.

Details

Two methods are available for GC correction: Option method='quadratic' uses the method de-
scribed in the Supplementary of citation("AneuFinder"). Option method='loess' uses a loess
fit to adjust the read count.

Value

A list() with binned.data objects with adjusted read counts. Alternatively a list() with
ggplot objects if return.plot=TRUE.

Author(s)

Aaron Taudt

Examples

Get a BED file, bin it and run GC correction
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
binned <- binReads(bedfile, assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'))
plot(binned[[1]], type=1)
if (require(BSgenome.Mmusculus.UCSC.mm10)) {
binned.GC <- correctGC(list(binned[[1]]), GC.BSgenome=BSgenome.Mmusculus.UCSC.mm10)
plot(binned.GC[[1]], type=1)
}

26 edivisive.findCNVs

DNAcopy.findCNVs Find copy number variations (DNAcopy, univariate)

Description

DNAcopy.findCNVs classifies the binned read counts into several states which represent copy-
number-variation.

Usage

DNAcopy.findCNVs(binned.data, ID = NULL, CNgrid.start = 1.5, strand = "*")

Arguments

binned.data A GRanges-class object with binned read counts.

ID An identifier that will be used to identify this sample in various downstream
functions. Could be the file name of the binned.data for example.

CNgrid.start Start parameter for the CNgrid variable. Very empiric. Set to 1.5 for normal
data and 0.5 for Strand-seq data.

strand Find copy-numbers only for the specified strand. One of c('+', '-', '*').

Value

An aneuHMM object.

edivisive.findCNVs Find copy number variations (edivisive, univariate)

Description

Classify the binned read counts into several states which represent copy-number-variation. The
function uses the e.divisive function to segment the genome.

Usage

edivisive.findCNVs(binned.data, ID = NULL, CNgrid.start = 1.5,
strand = "*", R = 10, sig.lvl = 0.1)

estimateComplexity 27

Arguments

binned.data A GRanges-class object with binned read counts.

ID An identifier that will be used to identify this sample in various downstream
functions. Could be the file name of the binned.data for example.

CNgrid.start Start parameter for the CNgrid variable. Very empiric. Set to 1.5 for normal
data and 0.5 for Strand-seq data.

strand Find copy-numbers only for the specified strand. One of c('+', '-', '*').

R method-edivisive: The maximum number of random permutations to use in each
iteration of the permutation test (see e.divisive). Increase this value to in-
crease accuracy on the cost of speed.

sig.lvl method-edivisive: The level at which to sequentially test if a proposed change
point is statistically significant (see e.divisive). Increase this value to find
more breakpoints.

Value

An aneuHMM object.

estimateComplexity Estimate library complexity

Description

Estimate library complexity using a very simple "Michaelis-Menten" approach.

Usage

estimateComplexity(reads)

Arguments

reads A GRanges-class object with read fragments. NOTE: Complexity estimation
relies on duplicate reads and therefore the duplicates have to be present in the
input.

Value

A list with estimated complexity values and plots.

28 export

export Export genome browser viewable files

Description

Export copy-number-variation state or read counts as genome browser viewable file

Usage

exportCNVs(hmms, filename, trackname = NULL, cluster = TRUE,
export.CNV = TRUE, export.breakpoints = TRUE)

exportReadCounts(hmms, filename)

exportGRanges(gr, filename, header = TRUE, trackname = NULL, score = NULL,
priority = NULL, append = FALSE, chromosome.format = "UCSC",
thickStart = NULL, thickEnd = NULL, as.wiggle = FALSE, wiggle.val)

Arguments

hmms A list of aneuHMM objects or a character vector with files that contain such ob-
jects.

filename The name of the file that will be written. The appropriate ending will be ap-
pended, either ".bed.gz" for CNV-state or ".wig.gz" for read counts. Any exist-
ing file will be overwritten.

trackname The name that will be used as track name and description in the header.

cluster If TRUE, the samples will be clustered by similarity in their CNV-state.

export.CNV A logical, indicating whether the CNV-state shall be exported.
export.breakpoints

A logical, indicating whether breakpoints shall be exported.

gr A GRanges-class object.

header A logical indicating whether the output file will have a heading track line (TRUE)
or not (FALSE).

score A vector of the same length as gr, which will be used for the ’score’ column in
the BED file.

priority Priority of the track for display in the genome browser.

append Append to filename.
chromosome.format

A character specifying the format of the chromosomes if assembly is specified.
Either ’NCBI’ for (1,2,3 ...) or ’UCSC’ for (chr1,chr2,chr3 ...).#’ @importFrom
utils write.table

thickStart, thickEnd
A vector of the same length as gr, which will be used for the ’thickStart’ and
’thickEnd’ columns in the BED file.

filterSegments 29

as.wiggle A logical indicating whether a variableStep-wiggle file will be exported instead
of a BED file. If TRUE, wiggle.value must be specified.

wiggle.val A vector of the same length as gr, which will be used for the values in the wiggle
file.

Details

Use exportCNVs to export the copy-number-variation state from an aneuHMM object in BED format.
Use exportReadCounts to export the binned read counts from an aneuHMM object in WIGGLE
format. Use exportGRanges to export a GRanges-class object in BED format.

Value

NULL

Functions

• exportCNVs: Export CNV-state as .bed.gz file

• exportReadCounts: Export binned read counts as .wig.gz file

• exportGRanges: Export GRanges-class object as BED file.

Author(s)

Aaron Taudt

Examples

Not run:
Get results from a small-cell-lung-cancer
folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
files <- list.files(folder, full.names=TRUE)
Export the CNV states for upload to the UCSC genome browser
exportCNVs(files, filename='upload-me-to-a-genome-browser', cluster=TRUE)
End(Not run)

filterSegments Filter segments by minimal size

Description

filterSegments filters out segments below a specified minimal segment size. This can be useful
to get rid of boundary effects from the Hidden Markov approach.

Usage

filterSegments(segments, min.seg.width)

30 findCNVs

Arguments

segments A GRanges-class object.

min.seg.width The minimum segment width in base-pairs.

Value

The input model with adjusted segments.

Author(s)

Aaron Taudt

Examples

Load an HMM
file <- list.files(system.file("extdata", "primary-lung", "hmms",

package="AneuFinderData"), full.names=TRUE)
hmm <- loadFromFiles(file)[[1]]
Check number of segments before and after filtering
length(hmm$segments)
hmm$segments <- filterSegments(hmm$segments, min.seg.width=2*width(hmm$bins)[1])
length(hmm$segments)

findCNVs Find copy number variations

Description

findCNVs classifies the binned read counts into several states which represent copy-numbers.

Usage

findCNVs(binned.data, ID = NULL, method = "edivisive", strand = "*",
R = 10, sig.lvl = 0.1, eps = 0.01, init = "standard", max.time = -1,
max.iter = 1000, num.trials = 15, eps.try = max(10 * eps, 1),
num.threads = 1, count.cutoff.quantile = 0.999,
states = c("zero-inflation", paste0(0:10, "-somy")),
most.frequent.state = "2-somy", algorithm = "EM", initial.params = NULL,
verbosity = 1)

Arguments

binned.data A GRanges-class object with binned read counts.

ID An identifier that will be used to identify this sample in various downstream
functions. Could be the file name of the binned.data for example.

findCNVs 31

method Any combination of c('HMM','dnacopy','edivisive'). Option method='HMM'
uses a Hidden Markov Model as described in doi:10.1186/s13059-016-0971-7 to
call copy numbers. Option 'dnacopy' uses segment from the DNAcopy pack-
age to call copy numbers similarly to the method proposed in doi:10.1038/nmeth.3578,
which gives more robust but less sensitive results compared to the HMM. Option
'edivisive' (DEFAULT) works like option 'dnacopy' but uses the e.divisive
function from the ecp package for segmentation.

strand Find copy-numbers only for the specified strand. One of c('+', '-', '*').
R method-edivisive: The maximum number of random permutations to use in each

iteration of the permutation test (see e.divisive). Increase this value to in-
crease accuracy on the cost of speed.

sig.lvl method-edivisive: The level at which to sequentially test if a proposed change
point is statistically significant (see e.divisive). Increase this value to find
more breakpoints.

eps method-HMM: Convergence threshold for the Baum-Welch algorithm.
init method-HMM: One of the following initialization procedures:

standard The negative binomial of state ’2-somy’ will be initialized with mean=mean(counts),
var=var(counts). This procedure usually gives good convergence.

random Mean and variance of the negative binomial of state ’2-somy’ will be
initialized with random values (in certain boundaries, see source code). Try
this if the standard procedure fails to produce a good fit.

max.time method-HMM: The maximum running time in seconds for the Baum-Welch al-
gorithm. If this time is reached, the Baum-Welch will terminate after the current
iteration finishes. Set max.time = -1 for no limit.

max.iter method-HMM: The maximum number of iterations for the Baum-Welch algo-
rithm. Set max.iter = -1 for no limit.

num.trials method-HMM: The number of trials to find a fit where state most.frequent.state
is most frequent. Each time, the HMM is seeded with different random initial
values.

eps.try method-HMM: If code num.trials is set to greater than 1, eps.try is used for
the trial runs. If unset, eps is used.

num.threads method-HMM: Number of threads to use. Setting this to >1 may give increased
performance.

count.cutoff.quantile

method-HMM: A quantile between 0 and 1. Should be near 1. Read counts
above this quantile will be set to the read count specified by this quantile. Filter-
ing very high read counts increases the performance of the Baum-Welch fitting
procedure. However, if your data contains very few peaks they might be filtered
out. Set count.cutoff.quantile=1 in this case.

states method-HMM: A subset or all of c("zero-inflation","0-somy","1-somy","2-somy","3-somy","4-somy",...).
This vector defines the states that are used in the Hidden Markov Model. The
order of the entries must not be changed.

most.frequent.state

method-HMM: One of the states that were given in states. The specified state
is assumed to be the most frequent one. This can help the fitting procedure to
converge into the correct fit.

32 findCNVs.strandseq

algorithm method-HMM: One of c('baumWelch','EM'). The expectation maximization
('EM') will find the most likely states and fit the best parameters to the data, the
'baumWelch' will find the most likely states using the initial parameters.

initial.params method-HMM: A aneuHMM object or file containing such an object from which
initial starting parameters will be extracted.

verbosity method-HMM: Integer specifying the verbosity of printed messages.

Value

An aneuHMM object.

Author(s)

Aaron Taudt

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Bin the data into bin size 1Mp
binned <- binReads(bedfile, assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'))
Find copy-numbers
model <- findCNVs(binned[[1]])
Check the fit
plot(model, type='histogram')

findCNVs.strandseq Find copy number variations (strandseq)

Description

findCNVs.strandseq classifies the binned read counts into several states which represent copy-
numbers on each strand.

Usage

findCNVs.strandseq(binned.data, ID = NULL, R = 10, sig.lvl = 0.1,
eps = 0.01, init = "standard", max.time = -1, max.iter = 1000,
num.trials = 5, eps.try = max(10 * eps, 1), num.threads = 1,
count.cutoff.quantile = 0.999, strand = "*",
states = c("zero-inflation", paste0(0:10, "-somy")),
most.frequent.state = "1-somy", method = "edivisive", algorithm = "EM",
initial.params = NULL)

findCNVs.strandseq 33

Arguments

binned.data A GRanges-class object with binned read counts.

ID An identifier that will be used to identify this sample in various downstream
functions. Could be the file name of the binned.data for example.

R method-edivisive: The maximum number of random permutations to use in each
iteration of the permutation test (see e.divisive). Increase this value to in-
crease accuracy on the cost of speed.

sig.lvl method-edivisive: The level at which to sequentially test if a proposed change
point is statistically significant (see e.divisive). Increase this value to find
more breakpoints.

eps method-HMM: Convergence threshold for the Baum-Welch algorithm.

init method-HMM: One of the following initialization procedures:

standard The negative binomial of state ’2-somy’ will be initialized with mean=mean(counts),
var=var(counts). This procedure usually gives good convergence.

random Mean and variance of the negative binomial of state ’2-somy’ will be
initialized with random values (in certain boundaries, see source code). Try
this if the standard procedure fails to produce a good fit.

max.time method-HMM: The maximum running time in seconds for the Baum-Welch al-
gorithm. If this time is reached, the Baum-Welch will terminate after the current
iteration finishes. Set max.time = -1 for no limit.

max.iter method-HMM: The maximum number of iterations for the Baum-Welch algo-
rithm. Set max.iter = -1 for no limit.

num.trials method-HMM: The number of trials to find a fit where state most.frequent.state
is most frequent. Each time, the HMM is seeded with different random initial
values.

eps.try method-HMM: If code num.trials is set to greater than 1, eps.try is used for
the trial runs. If unset, eps is used.

num.threads method-HMM: Number of threads to use. Setting this to >1 may give increased
performance.

count.cutoff.quantile

method-HMM: A quantile between 0 and 1. Should be near 1. Read counts
above this quantile will be set to the read count specified by this quantile. Filter-
ing very high read counts increases the performance of the Baum-Welch fitting
procedure. However, if your data contains very few peaks they might be filtered
out. Set count.cutoff.quantile=1 in this case.

strand Find copy-numbers only for the specified strand. One of c('+', '-', '*').

states method-HMM: A subset or all of c("zero-inflation","0-somy","1-somy","2-somy","3-somy","4-somy",...).
This vector defines the states that are used in the Hidden Markov Model. The
order of the entries must not be changed.

most.frequent.state

method-HMM: One of the states that were given in states. The specified state
is assumed to be the most frequent one. This can help the fitting procedure to
converge into the correct fit.

34 findHotspots

method Any combination of c('HMM','dnacopy','edivisive'). Option method='HMM'
uses a Hidden Markov Model as described in doi:10.1186/s13059-016-0971-7 to
call copy numbers. Option 'dnacopy' uses segment from the DNAcopy pack-
age to call copy numbers similarly to the method proposed in doi:10.1038/nmeth.3578,
which gives more robust but less sensitive results compared to the HMM. Option
'edivisive' (DEFAULT) works like option 'dnacopy' but uses the e.divisive
function from the ecp package for segmentation.

algorithm method-HMM: One of c('baumWelch','EM'). The expectation maximization
('EM') will find the most likely states and fit the best parameters to the data, the
'baumWelch' will find the most likely states using the initial parameters.

initial.params method-HMM: A aneuHMM object or file containing such an object from which
initial starting parameters will be extracted.

Value

An aneuBiHMM object.

Author(s)

Aaron Taudt

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Bin the file into bin size 1Mp
binned <- binReads(bedfile, assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'), pairedEndReads=TRUE)
Find copy-numbers
model <- findCNVs.strandseq(binned[[1]])
Check the fit
plot(model, type='histogram')
plot(model, type='profile')

findHotspots Find breakpoint hotspots

Description

Find breakpoint hotspots with kernel density estimation (KDE).

Usage

findHotspots(models, bw, pval = 0.05, spacing.bp = 5000, filename = NULL)

fixedWidthBins 35

Arguments

models A list of GRanges-class or aneuHMM objects or a character vector with files that
contain such objects.

bw Bandwidth used for kernel density estimation (see density).

pval P-value cutoff for hotspots.

spacing.bp Spacing of datapoints for KDE in basepairs.

filename Will write hotspot coordinates and densities to the specified file. Endings "_breakpoint-
hotspots.bed.gz" and "_breakpoint-densities.wig.gz" will be appended to filename.

Details

findHotspots uses density to perform a KDE. A p-value is calculated by comparing the density
profile of the genomic events with the density profile of a randomly subsampled set of genomic
events. Due to this random sampling, the result can vary for each function call, most likely for
hotspots whose p-value is close to the specified pval.

Value

A list of GRanges-class objects containing 1) coordinates of hotspots and 2) p-values within the
hotspot.

fixedWidthBins Make fixed-width bins

Description

Make fixed-width bins based on given bin size.

Usage

fixedWidthBins(bamfile = NULL, assembly = NULL, chrom.lengths = NULL,
chromosome.format, binsizes = 1e+06, stepsizes = NULL,
chromosomes = NULL)

Arguments

bamfile A BAM file from which the header is read to determine the chromosome lengths.
If a bamfile is specified, option assembly is ignored.

assembly An assembly from which the chromosome lengths are determined. Please see
getChromInfoFromUCSC for available assemblies. This option is ignored if
bamfile is specified. Alternatively a data.frame generated by getChromInfoFromUCSC.

chrom.lengths A named character vector with chromosome lengths. Names correspond to chro-
mosomes.

36 getBreakpoints

chromosome.format

A character specifying the format of the chromosomes if assembly is specified.
Either ’NCBI’ for (1,2,3 ...) or ’UCSC’ for (chr1,chr2,chr3 ...). If a bamfile or
chrom.lengths is supplied, the format will be chosen automatically.

binsizes A vector of bin sizes in base pairs.

stepsizes A vector of step sizes in base pairs, the same length as binsizes.

chromosomes A subset of chromosomes for which the bins are generated.

Value

A list() of GRanges-class objects with fixed-width bins. If stepsizes is specified, a list() of
GRangesList objects with one entry per step.

Author(s)

Aaron Taudt

Examples

Make fixed-width bins of size 500kb and 1Mb
bins <- fixedWidthBins(assembly='mm10', chromosome.format='NCBI', binsizes=c(5e5,1e6))
bins

getBreakpoints Extract breakpoints

Description

Extract breakpoints with confidence intervals from an aneuHMM or aneuBiHMM object.

Usage

getBreakpoints(model, fragments = NULL, confint = 0.99)

Arguments

model An aneuHMM or aneuBiHMM object or a file that contains such an object.

fragments A GRanges-class object with read fragments or a file that contains such an
object.

confint Desired confidence interval for breakpoints. Set confint=NULL to disable con-
fidence interval estimation.

Details

Confidence intervals for breakpoints are estimated by going outwards from the breakpoint read by
read, and performing a test of getting the observed or a more extreme outcome, given that the reads
within the confidence interval belong to the other side of the breakpoint.

getDistinctColors 37

Value

A GRanges-class with breakpoint coordinates and confidence interals if fragments was specified.

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Bin the data into bin size 1Mp
readfragments <- binReads(bedfile, assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'), reads.return=TRUE)
binned <- binReads(bedfile, assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'))
Fit the Hidden Markov Model
model <- findCNVs.strandseq(binned[[1]])
Add confidence intervals
breakpoints <- getBreakpoints(model, readfragments)

getDistinctColors Get distinct colors

Description

Get a set of distinct colors selected from colors.

Usage

getDistinctColors(n, start.color = "blue4", exclude.colors = c("white",
"black", "gray", "grey", "\\<yellow\\>", "yellow1", "lemonchiffon"),
exclude.brightness.above = 1, exclude.rgb.above = 210)

Arguments

n Number of colors to select. If n is a character vector, length(n) will be taken
as the number of colors and the colors will be named by n.

start.color Color to start the selection process from.

exclude.colors Character vector with colors that should not be used.
exclude.brightness.above

Exclude colors where the ’brightness’ value in HSV space is above. This is
useful to obtain a matt palette.

exclude.rgb.above

Exclude colors where all RGB values are above. This is useful to exclude
whitish colors.

Details

The function computes the euclidian distance between all colors and iteratively selects those that
have the furthest closes distance to the set of already selected colors.

38 getQC

Value

A character vector with colors.

Author(s)

Aaron Taudt

Examples

cols <- AneuFinder:::getDistinctColors(5)
pie(rep(1,5), labels=cols, col=cols)

getQC Obtain a data.frame with quality metrics

Description

Obtain a data.frame with quality metrics from a list of aneuHMM objects or a list of files that contain
such objects.

Usage

getQC(models)

Arguments

models A list of GRanges-class or aneuHMM objects or a character vector with files that
contain such objects.

Details

The employed quality measures are:

• total.read.count: Total read count.

• avg.binsize: Average binsize.

• avg.read.count: Average read count.

• spikiness: Bin-to-bin variability of read count.

• entropy: Shannon entropy of read counts.

• complexity: Library complexity approximated with a Michaelis-Menten curve.

• loglik: Loglikelihood of the Hidden Markov Model.

• num.segments: Number of copy number segments that have been found.

• bhattacharrya distance: Bhattacharyya distance between 1-somy and 2-somy distributions.

• sos: Sum-of-squares distance of read counts to the fitted distributions in their respective seg-
ments.

getSCEcoordinates 39

Value

A data.frame with columns

Author(s)

Aaron Taudt

Examples

Get a list of HMMs
folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
files <- list.files(folder, full.names=TRUE)
df <- getQC(files)

getSCEcoordinates Get SCE coordinates

Description

Extracts the coordinates of a sister chromatid exchanges (SCE) from an aneuBiHMM object.

Usage

getSCEcoordinates(model, resolution = c(3, 6), min.segwidth = 2,
fragments = NULL)

Arguments

model An aneuBiHMM object.

resolution An integer vector specifying the resolution at bin level at which to scan for SCE
events.

min.segwidth Segments below this width will be removed before scanning for SCE events.

fragments A GRanges-class object with read fragments or a file that contains such an
object. These reads will be used for fine mapping of the SCE events.

Value

A GRanges-class object containing the SCE coordinates.

Author(s)

Aaron Taudt

40 heatmapAneuploidies

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Bin the BAM file into bin size 1Mp
binned <- binReads(bedfile, assembly='hg19', binsize=1e6,

chromosomes=c(1:22,'X','Y'), pairedEndReads=TRUE)
Fit the Hidden Markov Model
Find copy-numbers
model <- findCNVs.strandseq(binned[[1]])
Find sister chromatid exchanges
model$sce <- getSCEcoordinates(model)
print(model$sce)
plot(model)

heatmapAneuploidies Plot aneuploidy state

Description

Plot a heatmap of aneuploidy state for multiple samples. Samples can be clustered and the output
can be returned as data.frame.

Usage

heatmapAneuploidies(hmms, ylabels = NULL, cluster = TRUE,
as.data.frame = FALSE)

Arguments

hmms A list of aneuHMM objects or a character vector with files that contain such ob-
jects.

ylabels A vector with labels for the y-axis. The vector must have the same length as
hmms. If NULL the IDs from the aneuHMM objects will be used.

cluster If TRUE, the samples will be clustered by similarity in their CNV-state.

as.data.frame If TRUE, instead of a plot, a data.frame with the aneuploidy state for each sample
will be returned.

Value

A ggplot object or a data.frame, depending on option as.data.frame.

Author(s)

Aaron Taudt

heatmapGenomewide 41

Examples

Get results from a small-cell-lung-cancer
folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
files <- list.files(folder, full.names=TRUE)
Plot the ploidy state per chromosome
heatmapAneuploidies(files, cluster=FALSE)
Return the ploidy state as data.frame
df <- heatmapAneuploidies(files, cluster=FALSE, as.data.frame=TRUE)
head(df)

heatmapGenomewide Genome wide heatmap of CNV-state

Description

Plot a genome wide heatmap of copy number variation state. This heatmap is best plotted to file,
because in most cases it will be too big for cleanly plotting it to screen.

Usage

heatmapGenomewide(hmms, ylabels = NULL, classes = NULL,
classes.color = NULL, file = NULL,
cluster = TRUE, plot.breakpoints = FALSE, hotspots = NULL,
exclude.regions = NULL)

Arguments

hmms A list of aneuHMM objects or a character vector with files that contain such ob-
jects.

ylabels A vector with labels for the y-axis. The vector must have the same length as
hmms. If NULL the IDs from the aneuHMM objects will be used.

classes A character vector with the classification of the elements on the y-axis. The
vector must have the same length as hmms.

classes.color A (named) vector with colors that are used to distinguish classes. Names must
correspond to the unique elements in classes.

file A PDF file to which the heatmap will be plotted.

cluster Either TRUE or FALSE, indicating whether the samples should be clustered by
similarity in their CNV-state.

plot.breakpoints

Logical indicating whether breakpoints should be plotted.

hotspots A GRanges-class object with coordinates of genomic hotspots (see hotspotter).
exclude.regions

A GRanges-class with regions that will be excluded from the computation of
the clustering. This can be useful to exclude regions with artifacts.

42 heatmapGenomewideClusters

Value

A ggplot object or NULL if a file was specified.

Examples

Get results from a small-cell-lung-cancer
lung.folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
lung.files <- list.files(lung.folder, full.names=TRUE)
Get results from the liver metastasis of the same patient
liver.folder <- system.file("extdata", "metastasis-liver", "hmms", package="AneuFinderData")
liver.files <- list.files(liver.folder, full.names=TRUE)
Plot a clustered heatmap
classes <- c(rep('lung', length(lung.files)), rep('liver', length(liver.files)))
labels <- c(paste('lung',1:length(lung.files)), paste('liver',1:length(liver.files)))
heatmapGenomewide(c(lung.files, liver.files), ylabels=labels, classes=classes,

classes.color=c('blue','red'))

heatmapGenomewideClusters

Plot heatmaps for quality control

Description

This function is a convenient wrapper to call heatmapGenomewide for all clusters after calling
clusterByQuality and plot the heatmaps into one pdf for efficient comparison.

Usage

heatmapGenomewideClusters(cl = NULL, cutree = NULL, file = NULL, ...)

Arguments

cl The return value of clusterByQuality.

cutree The return value of cutree, where the names correspond to the filenames to be
loaded.

file A character specifying the output file.

... Further parameters passed on to heatmapGenomewide.

Value

A cowplot object or NULL if a file was specified.

HMM.findCNVs 43

Examples

Get a list of HMMs and cluster them
folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
files <- list.files(folder, full.names=TRUE)
cl <- clusterByQuality(files, G=5)
heatmapGenomewideClusters(cl=cl)

Plot sub-clones of the largest cluster
largest.cluster <- which.max(sapply(cl$classification, length))
files <- cl$classification[[largest.cluster]]
clust <- clusterHMMs(files)
groups <- cutree(tree = clust$hclust, k = 5)
heatmapGenomewideClusters(cutree = groups, cluster = FALSE)

HMM.findCNVs Find copy number variations (univariate)

Description

HMM.findCNVs classifies the binned read counts into several states which represent copy-number-
variation.

Usage

HMM.findCNVs(binned.data, ID = NULL, eps = 0.01, init = "standard",
max.time = -1, max.iter = -1, num.trials = 1, eps.try = NULL,
num.threads = 1, count.cutoff.quantile = 0.999, strand = "*",
states = c("zero-inflation", paste0(0:10, "-somy")),
most.frequent.state = "2-somy", algorithm = "EM", initial.params = NULL,
verbosity = 1)

Arguments

binned.data A GRanges-class object with binned read counts. Alternatively a GRangesList
object with offsetted read counts.

ID An identifier that will be used to identify this sample in various downstream
functions. Could be the file name of the binned.data for example.

eps method-HMM: Convergence threshold for the Baum-Welch algorithm.

init method-HMM: One of the following initialization procedures:

standard The negative binomial of state ’2-somy’ will be initialized with mean=mean(counts),
var=var(counts). This procedure usually gives good convergence.

random Mean and variance of the negative binomial of state ’2-somy’ will be
initialized with random values (in certain boundaries, see source code). Try
this if the standard procedure fails to produce a good fit.

44 hotspotter

max.time method-HMM: The maximum running time in seconds for the Baum-Welch al-
gorithm. If this time is reached, the Baum-Welch will terminate after the current
iteration finishes. Set max.time = -1 for no limit.

max.iter method-HMM: The maximum number of iterations for the Baum-Welch algo-
rithm. Set max.iter = -1 for no limit.

num.trials method-HMM: The number of trials to find a fit where state most.frequent.state
is most frequent. Each time, the HMM is seeded with different random initial
values.

eps.try method-HMM: If code num.trials is set to greater than 1, eps.try is used for
the trial runs. If unset, eps is used.

num.threads method-HMM: Number of threads to use. Setting this to >1 may give increased
performance.

count.cutoff.quantile

method-HMM: A quantile between 0 and 1. Should be near 1. Read counts
above this quantile will be set to the read count specified by this quantile. Filter-
ing very high read counts increases the performance of the Baum-Welch fitting
procedure. However, if your data contains very few peaks they might be filtered
out. Set count.cutoff.quantile=1 in this case.

strand Find copy-numbers only for the specified strand. One of c('+', '-', '*').

states method-HMM: A subset or all of c("zero-inflation","0-somy","1-somy","2-somy","3-somy","4-somy",...).
This vector defines the states that are used in the Hidden Markov Model. The
order of the entries must not be changed.

most.frequent.state

method-HMM: One of the states that were given in states. The specified state
is assumed to be the most frequent one. This can help the fitting procedure to
converge into the correct fit.

algorithm method-HMM: One of c('baumWelch','EM'). The expectation maximization
('EM') will find the most likely states and fit the best parameters to the data, the
'baumWelch' will find the most likely states using the initial parameters.

initial.params method-HMM: A aneuHMM object or file containing such an object from which
initial starting parameters will be extracted.

verbosity method-HMM: Integer specifying the verbosity of printed messages.

Value

An aneuHMM object.

hotspotter Find hotspots of genomic events

Description

Find hotspots of genomic events by using kernel density estimation.

hotspotter.variable 45

Usage

hotspotter(breakpoints, bw, pval = 0.05, spacing.bp = 5000)

Arguments

breakpoints A list with GRanges-class object containing the coordinates of the genomic
events.

bw Bandwidth used for kernel density estimation (see density).

pval P-value cutoff for hotspots.

spacing.bp Spacing of datapoints for KDE in basepairs.

Details

The hotspotter uses density to perform a KDE. A p-value is calculated by comparing the density
profile of the genomic events with the density profile of a randomly subsampled set of genomic
events (bootstrapping).

Value

A list of GRanges-class objects containing 1) coordinates of hotspots and 2) p-values within the
hotspot.

Author(s)

Aaron Taudt

hotspotter.variable Find hotspots of genomic events

Description

Find hotspots of genomic events by using kernel density estimation.

Usage

hotspotter.variable(breakpoints, confint, pval = 0.05, spacing.bp = 5000)

Arguments

breakpoints A list with GRanges-class object containing the coordinates of the genomic
events and their confidence intervals.

confint Confidence interval that was used for breakpoint estimation.

pval P-value cutoff for hotspots.

spacing.bp Spacing of datapoints for KDE in basepairs.

46 importBed

Details

The hotspotter uses a gaussian kernel with variable bandwidth to perform a KDE. The bandwidth
depends on the confidence intervals of the breakpoints. A p-value is calculated by comparing the
density profile of the genomic events with the density profile of a randomly subsampled set of
genomic events (bootstrapping).

Value

A list of GRanges-class objects containing 1) coordinates of hotspots and 2) p-values within the
hotspot.

Author(s)

Aaron Taudt

importBed Read bed-file into GRanges

Description

This is a simple convenience function to read a bed(.gz)-file into a GRanges-class object. The bed-
file is expected to have the following fields: chromosome, start, end, name, score, strand.

Usage

importBed(bedfile, skip = 0, chromosome.format = "NCBI")

Arguments

bedfile Filename of the bed or bed.gz file.

skip Number of lines to skip at the beginning.

chromosome.format

Desired format of the chromosomes. Either ’NCBI’ for (1,2,3 ...) or ’UCSC’
for (chr1,chr2,chr3 ...).

Value

A GRanges-class object with the contents of the bed-file.

Author(s)

Aaron Taudt

initializeStates 47

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Import the file and skip the first 10 lines
data <- importBed(bedfile, skip=10)

initializeStates Initialize state factor levels and distributions

Description

Initialize the state factor levels and distributions for the specified states.

Usage

initializeStates(states)

Arguments

states A subset of c("zero-inflation","0-somy","1-somy","2-somy","3-somy","4-somy",...).

Value

A list with $labels, $distributions and $multiplicity values for the given states.

karyotypeMeasures Measures for Karyotype Heterogeneity

Description

Computes measures for karyotype heterogeneity. See the Details section for how these measures
are defined.

Usage

karyotypeMeasures(hmms, normalChromosomeNumbers = NULL, regions = NULL,
exclude.regions = NULL)

48 karyotypeMeasures

Arguments

hmms A list with aneuHMM objects or a list of files that contain such objects.
normalChromosomeNumbers

A named integer vector or matrix with physiological copy numbers, where each
element (vector) or column (matrix) corresponds to a chromosome. This is use-
ful to specify male or female samples, e.g. c('X'=2) for female samples or
c('X'=1,'Y'=1) for male samples. Specify a vector if all your hmms have the
same physiological copy numbers. Specify a matrix if your hmms have different
physiological copy numbers (e.g. a mix of male and female samples). If not
specified otherwise, ’2’ will be assumed for all chromosomes.

regions A GRanges-class object containing ranges for which the karyotype measures
will be computed.

exclude.regions

A GRanges-class with regions that will be excluded from the computation of
the karyotype measures. This can be useful to exclude regions with artifacts.

Details

We define x as the vector of copy number states for each position. The number of HMMs is S. The
measures are computed for each bin as follows:

Aneuploidy: D = mean(abs(x − P)), where P is the physiological number of chromosomes at
that position.

Heterogeneity: H = sum(table(x) ∗ 0 : (length(table(x))− 1))/S

Value

A list with two data.frames, containing the karyotype measures $genomewide and $per.chromosome.
If region was specified, a third list entry $regions will contain the regions with karyotype measures.

Author(s)

Aaron Taudt

Examples

Example 1
Get results from a small-cell-lung-cancer
lung.folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
lung.files <- list.files(lung.folder, full.names=TRUE)
Get results from the liver metastasis of the same patient
liver.folder <- system.file("extdata", "metastasis-liver", "hmms", package="AneuFinderData")
liver.files <- list.files(liver.folder, full.names=TRUE)
Compare karyotype measures between the two cancers
normal.chrom.numbers <- rep(2, 23)
names(normal.chrom.numbers) <- c(1:22,'X')
lung <- karyotypeMeasures(lung.files, normalChromosomeNumbers=normal.chrom.numbers)
liver <- karyotypeMeasures(liver.files, normalChromosomeNumbers=normal.chrom.numbers)
print(lung$genomewide)

loadFromFiles 49

print(liver$genomewide)

Example 2
Construct a matrix with physiological copy numbers for a mix of 5 male and 5 female samples
normal.chrom.numbers <- matrix(2, nrow=10, ncol=24,

dimnames=list(sample=c(paste('male', 1:5), paste('female', 6:10)),
chromosome=c(1:22,'X','Y')))

normal.chrom.numbers[1:5,c('X','Y')] <- 1
normal.chrom.numbers[6:10,c('Y')] <- 0
print(normal.chrom.numbers)

Example 3
Exclude artifact regions with high variance
consensus <- consensusSegments(c(lung.files, liver.files))
variance <- apply(consensus$copy.number, 1, var)
exclude.regions <- consensus[variance > quantile(variance, 0.999)]
Compare karyotype measures between the two cancers
normal.chrom.numbers <- rep(2, 23)
names(normal.chrom.numbers) <- c(1:22,'X')
lung <- karyotypeMeasures(lung.files, normalChromosomeNumbers=normal.chrom.numbers,

exclude.regions = exclude.regions)
liver <- karyotypeMeasures(liver.files, normalChromosomeNumbers=normal.chrom.numbers,

exclude.regions = exclude.regions)
print(lung$genomewide)
print(liver$genomewide)

loadFromFiles Load AneuFinder objects from file

Description

Wrapper to load AneuFinder objects from file and check the class of the loaded objects.

Usage

loadFromFiles(files, check.class = c("GRanges", "GRangesList", "aneuHMM",
"aneuBiHMM"))

Arguments

files A list of GRanges-class, GRangesList, aneuHMM or aneuBiHMM objects or a
character vector with files that contain such objects.

check.class Any combination of c('GRanges', 'GRangesList', 'aneuHMM', 'aneuBiHMM').
If any of the loaded objects does not belong to the specified class, an error is
thrown.

Value

A list of GRanges-class, GRangesList, aneuHMM or aneuBiHMM objects.

50 mergeStrandseqFiles

Examples

Get some files that you want to load
folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
files <- list.files(folder, full.names=TRUE)
Load and plot the first ten
hmms <- loadFromFiles(files[1:10])
lapply(hmms, plot, type='profile')

mergeStrandseqFiles Merge Strand-seq libraries

Description

Merge strand libraries to generate a high-coverage Strand-seq library.

Usage

mergeStrandseqFiles(files, assembly, chromosomes = NULL,
pairedEndReads = FALSE, min.mapq = 10, remove.duplicate.reads = TRUE,
max.fragment.width = 1000)

Arguments

files A character vector with files with aligned reads.

assembly Please see getChromInfoFromUCSC for available assemblies. Only necessary
when importing BED files. BAM files are handled automatically. Alternatively
a data.frame with columns ’chromosome’ and ’length’.

chromosomes If only a subset of the chromosomes should be imported, specify them here.

pairedEndReads Set to TRUE if you have paired-end reads in your BAM files (not implemented
for BED files).

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=NA
to keep all reads.

remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.
max.fragment.width

Maximum allowed fragment length. This is to filter out erroneously wrong frag-
ments due to mapping errors of paired end reads.

Value

A GRanges-class object with reads.

plot.aneuBiHMM 51

plot.aneuBiHMM Plotting function for aneuBiHMM objects

Description

Make different types of plots for aneuBiHMM objects.

Usage

S3 method for class 'aneuBiHMM'
plot(x, type = "profile", ...)

Arguments

x An aneuBiHMM object.
type Type of the plot, one of c('profile', 'histogram', 'karyogram'). You can

also specify the type with an integer number.
profile An profile with read counts and CNV-state.
histogram A histogram of binned read counts with fitted mixture distribution.
karyogram A karyogram-like chromosome overview with CNV-state.

... Additional arguments for the different plot types.

Value

A ggplot object.

plot.aneuHMM Plotting function for aneuHMM objects

Description

Make different types of plots for aneuHMM objects.

Usage

S3 method for class 'aneuHMM'
plot(x, type = "profile", ...)

Arguments

x An aneuHMM object.
type Type of the plot, one of c('profile', 'histogram', 'karyogram'). You can

also specify the type with an integer number.
karyogram A karyogram-like chromosome overview with CNV-state.
histogram A histogram of binned read counts with fitted mixture distribution.
karyogram An profile with read counts and CNV-state.

... Additional arguments for the different plot types.

52 plot.GRanges

Value

A ggplot object.

plot.character Plotting function for saved AneuFinder objects

Description

Convenience function that loads and plots a AneuFinder object in one step.

Usage

S3 method for class 'character'
plot(x, ...)

Arguments

x A filename that contains either binned.data or a aneuHMM.

... Additional arguments.

Value

A ggplot object.

plot.GRanges Plotting function for binned read counts

Description

Make plots for binned read counts from binned.data.

Usage

S3 method for class 'GRanges'
plot(x, type = "profile", ...)

Arguments

x A GRanges-class object with binned read counts.

type Type of the plot, one of c('profile', 'histogram', 'karyogram'). You can
also specify the type with an integer number.

karyogram A karyogram-like chromosome overview with read counts.
histogram A histogram of read counts.
profile An profile with read counts.

... Additional arguments for the different plot types.

plot.GRangesList 53

Value

A ggplot object.

plot.GRangesList Plotting function for binned read counts (list)

Description

Make plots for binned read counts (list) from binned.data.

Usage

S3 method for class 'GRangesList'
plot(x, type = "profile", ...)

Arguments

x A GRangesList object with binned read counts.

type Type of the plot, one of c('profile', 'histogram', 'karyogram'). You can
also specify the type with an integer number.

karyogram A karyogram-like chromosome overview with read counts.
histogram A histogram of read counts.
profile An profile with read counts.

... Additional arguments for the different plot types.

Value

A ggplot object.

plotHeterogeneity Heterogeneity vs. Aneuploidy

Description

Make heterogeneity vs. aneuploidy plots using individual chromosomes as datapoints.

Usage

plotHeterogeneity(hmms, hmms.list = NULL, normalChromosomeNumbers = NULL,
plot = TRUE, regions = NULL, exclude.regions = NULL)

54 plotHeterogeneity

Arguments

hmms A list of aneuHMM objects or a character vector with files that contain such ob-
jects.

hmms.list Alternative input for a faceted plot. A named list() of lists of aneuHMM objects.
Alternatively a named list() of character vectors with files that contain aneuHMM
objects. List names serve as facets for plotting. If specified, normalChromosomeNumbers
is assumed to be a list() of vectors (or matrices) instead of a vector (or matrix).

normalChromosomeNumbers

A named integer vector or matrix with physiological copy numbers, where each
element (vector) or column (matrix) corresponds to a chromosome. This is use-
ful to specify male or female samples, e.g. c('X'=2) for female samples or
c('X'=1,'Y'=1) for male samples. Specify a vector if all your hmms have the
same physiological copy numbers. Specify a matrix if your hmms have different
physiological copy numbers (e.g. a mix of male and female samples). If not
specified otherwise, ’2’ will be assumed for all chromosomes. If you have spec-
ified hmms.list instead of hmms, normalChromosomeNumbers is assumed to be
a list() of vectors (or matrices), with one vector (or matrix) for each element in
hmms.list.

plot A logical indicating whether to plot or to return the underlying data.frame.

regions A GRanges-class object containing ranges for which the karyotype measures
will be computed.

exclude.regions

A GRanges-class with regions that will be excluded from the computation of
the karyotype measures. This can be useful to exclude regions with artifacts.

Value

A ggplot object or a data.frame if plot=FALSE.

Examples

Example 1: A faceted plot of lung and liver cells
Get results from a small-cell-lung-cancer
lung.folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
lung.files <- list.files(lung.folder, full.names=TRUE)
Get results from the liver metastasis of the same patient
liver.folder <- system.file("extdata", "metastasis-liver", "hmms", package="AneuFinderData")
liver.files <- list.files(liver.folder, full.names=TRUE)
Make heterogeneity plots
plotHeterogeneity(hmms.list = list(lung=lung.files, liver=liver.files))

Example 2: Plot a mixture sample of male and female cells
Get results from a small-cell-lung-cancer
folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
files <- list.files(lung.folder, full.names=TRUE)
Construct a matrix with physiological copy numbers for a mix of 48 male and 48 female samples
normal.chrom.numbers <- matrix(2, nrow=96, ncol=24,

dimnames=list(sample=c(paste('male', 1:48), paste('female', 49:96)),
chromosome=c(1:22,'X','Y')))

plotHistogram 55

normal.chrom.numbers[1:48,c('X','Y')] <- 1
normal.chrom.numbers[49:96,c('Y')] <- 0
head(normal.chrom.numbers)
Make heterogeneity plots
plotHeterogeneity(hmms = files, normalChromosomeNumbers = normal.chrom.numbers)

Example 3: A faceted plot of male lung and female liver cells
Get results from a small-cell-lung-cancer
lung.folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
lung.files <- list.files(lung.folder, full.names=TRUE)
Specify the physiological copy numbers
chrom.numbers.lung <- c(rep(2, 22), 1, 1)
names(chrom.numbers.lung) <- c(1:22, 'X', 'Y')
print(chrom.numbers.lung)
Get results from the liver metastasis of the same patient
liver.folder <- system.file("extdata", "metastasis-liver", "hmms", package="AneuFinderData")
liver.files <- list.files(liver.folder, full.names=TRUE)
Specify the physiological copy numbers
chrom.numbers.liver <- c(rep(2, 22), 2, 0)
names(chrom.numbers.liver) <- c(1:22, 'X', 'Y')
print(chrom.numbers.liver)
Make heterogeneity plots
plotHeterogeneity(hmms.list = list(lung=lung.files, liver=liver.files),

normalChromosomeNumbers = list(chrom.numbers.lung, chrom.numbers.liver))

Example 4
Exclude artifact regions with high variance
consensus <- consensusSegments(c(lung.files, liver.files))
variance <- apply(consensus$copy.number, 1, var)
exclude.regions <- consensus[variance > quantile(variance, 0.999)]
Make heterogeneity plots
plotHeterogeneity(hmms.list = list(lung=lung.files, liver=liver.files),

exclude.regions=exclude.regions)

plotHistogram Plot a histogram of binned read counts with fitted mixture distribution

Description

Plot a histogram of binned read counts from with fitted mixture distributions from a aneuHMM object.

Usage

plotHistogram(model)

Arguments

model A aneuHMM object.

56 plotProfile

Value

A ggplot object.

plotKaryogram Karyogram-like chromosome overview

Description

Plot a karyogram-like chromosome overview with read counts and CNV-state from a aneuHMM ob-
ject or binned.data.

Usage

plotKaryogram(model, both.strands = FALSE, plot.breakpoints = TRUE,
file = NULL)

Arguments

model A aneuHMM object or binned.data.

both.strands If TRUE, strands will be plotted separately.

plot.breakpoints

Logical indicating whether breakpoints should be plotted.

file A PDF file where the plot will be saved.

Value

A ggplot object or NULL if a file was specified.

plotProfile Read count and CNV profile

Description

Plot a profile with read counts and CNV-state from a aneuHMM object or binned.data.

Usage

plotProfile(model, both.strands = FALSE, plot.breakpoints = FALSE,
file = NULL, normalize.counts = NULL)

plot_pca 57

Arguments

model A aneuHMM object or binned.data.

both.strands If TRUE, strands will be plotted separately.
plot.breakpoints

Logical indicating whether breakpoints should be plotted.

file A PDF file where the plot will be saved.
normalize.counts

An character giving the copy number state to which to normalize the counts, e.g.
’1-somy’, ’2-somy’ etc.

Value

A ggplot object or NULL if a file was specified.

plot_pca Perform a PCA for copy number profiles

Description

Perform a PCA for copy number profiles in aneuHMM objects.

Usage

plot_pca(hmms, PC1 = 1, PC2 = 2, colorBy = NULL, plot = TRUE,
exclude.regions = NULL)

Arguments

hmms A list of aneuHMM objects or a character vector with files that contain such ob-
jects.

PC1 Integer specifying the first of the principal components to plot.

PC2 Integer specifying the second of the principal components to plot.

colorBy A character vector of the same length as hmms which is used to color the points
in the plot.

plot Set to FALSE if you want to return the data.frame that is used for plotting instead
of the plot.

exclude.regions

A GRanges-class with regions that will be excluded from the computation of
the PCA. This can be useful to exclude regions with artifacts.

Value

A ggplot object or a data.frame if plot=FALSE.

58 print.aneuHMM

Examples

Get results from a small-cell-lung-cancer
lung.folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
lung.files <- list.files(lung.folder, full.names=TRUE)
Get results from the liver metastasis of the same patient
liver.folder <- system.file("extdata", "metastasis-liver", "hmms", package="AneuFinderData")
liver.files <- list.files(liver.folder, full.names=TRUE)
Plot the PCA
classes <- c(rep('lung', length(lung.files)), rep('liver', length(liver.files)))
labels <- c(paste('lung',1:length(lung.files)), paste('liver',1:length(liver.files)))
plot_pca(c(lung.files, liver.files), colorBy=classes, PC1=2, PC2=4)

print.aneuBiHMM Print aneuBiHMM object

Description

Print aneuBiHMM object

Usage

S3 method for class 'aneuBiHMM'
print(x, ...)

Arguments

x An aneuBiHMM object.

... Ignored.

Value

An invisible NULL.

print.aneuHMM Print aneuHMM object

Description

Print aneuHMM object

Usage

S3 method for class 'aneuHMM'
print(x, ...)

qualityControl 59

Arguments

x An aneuHMM object.

... Ignored.

Value

An invisible NULL.

qualityControl Quality control measures for binned read counts

Description

Calculate various quality control measures on binned read counts.

Usage

qc.spikiness(counts)

qc.entropy(counts)

qc.bhattacharyya(hmm)

qc.sos(hmm)

Arguments

counts A vector of binned read counts.

hmm An aneuHMM object.

Details

The Shannon entropy is defined as S = −sum(n ∗ log(n)), where n = counts/sum(counts).

Spikyness is defined as K = sum(abs(diff(counts)))/sum(counts).

Value

A numeric.

Functions

• qc.spikiness: Calculate the spikiness of a library

• qc.entropy: Calculate the Shannon entropy of a library

• qc.bhattacharyya: Calculate the Bhattacharyya distance between the ’1-somy’ and ’2-
somy’ distribution

• qc.sos: Sum-of-squares distance from the read counts to the fitted distributions

60 refineBreakpoints

Author(s)

Aaron Taudt

readConfig Read AneuFinder configuration file

Description

Read an AneuFinder configuration file into a list structure. The configuration file has to be specified
in INI format. R expressions can be used and will be evaluated.

Usage

readConfig(configfile)

Arguments

configfile Path to the configuration file

Value

A list with one entry for each element in configfile.

Author(s)

Aaron Taudt

refineBreakpoints Refine breakpoints

Description

Refine breakpoints with confidence intervals from an initial estimate (from getBreakpoints).

Usage

refineBreakpoints(model, fragments, breakpoints = model$breakpoints,
confint = 0.99)

Arguments

model An aneuBiHMM object or a file that contains such an object.
fragments A GRanges-class object with read fragments or a file that contains such an

object.
breakpoints A GRanges-class object with breakpoints and confidence intervals, as returned

by function getBreakpoints.
confint Desired confidence interval for breakpoints.

simulateReads 61

Details

Breakpoints are refined by shifting the breakpoint within its initial confidence interval read by read
and maximizing the probability of observing the left-right read distribution.

Value

An aneuBiHMM with adjusted breakpoint coordinates and confidence interals, bins and segments.

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Bin the data into bin size 1Mp
readfragments <- binReads(bedfile, assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'), reads.return=TRUE)
binned <- binReads(bedfile, assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'))
Fit the Hidden Markov Model
model <- findCNVs.strandseq(binned[[1]])
Add confidence intervals
breakpoints <- getBreakpoints(model, readfragments)
Refine breakpoints
refined.model <- refineBreakpoints(model, readfragments, breakpoints)

simulateReads Simulate reads from genome

Description

Simulate single or paired end reads from any BSgenome-class object. These simulated reads can
be mapped to the reference genome using any aligner to produce BAM files that can be used for
mappability correction.

Usage

simulateReads(bsgenome, readLength, bamfile, file,
pairedEndFragmentLength = NULL, every.X.bp = 500)

Arguments

bsgenome A BSgenome-class object containing the sequence of the reference genome.

readLength The length in base pairs of the simulated reads that are written to file.

bamfile A BAM file. This file is used to estimate the distribution of Phred quality scores.

file The filename that is written to disk. The ending .fastq.gz will be appended.

62 subsetByCNVprofile

pairedEndFragmentLength

If this option is specified, paired end reads with length readLength will be sim-
ulated coming from both ends of fragments of this size. NOT IMPLEMENTED
YET.

every.X.bp Stepsize for simulating reads. A read fragment will be simulated every X bp.

Details

Reads are simulated by splitting the genome into reads with the specified readLength.

Value

A fastq.gz file is written to disk.

Author(s)

Aaron Taudt

Examples

Get an example BAM file with single-cell-sequencing reads
bamfile <- system.file("extdata", "BB150803_IV_074.bam", package="AneuFinderData")
Simulate 51bp reads for at a distance of every 5000bp
if (require(BSgenome.Mmusculus.UCSC.mm10)) {
simulateReads(BSgenome.Mmusculus.UCSC.mm10, bamfile=bamfile, readLength=51,

file=tempfile(), every.X.bp=5000)
}

subsetByCNVprofile Get IDs of a subset of models

Description

Get the IDs of models that have a certain CNV profile. The result will be TRUE for models that
overlap all specified ranges in profile by at least one base pair with the correct state.

Usage

subsetByCNVprofile(hmms, profile)

Arguments

hmms A list of aneuHMM objects or a character vector with files that contain such ob-
jects.

profile A GRanges-class object with metadata column ’expected.state’ and optionally
columns ’expected.mstate’ and ’expected.pstate’.

transCoord 63

Value

A named logical vector with TRUE for all models that are concordant with the given profile.

Examples

Get results from a small-cell-lung-cancer
lung.folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
lung.files <- list.files(lung.folder, full.names=TRUE)
Get all files that have a 3-somy on chromosome 1 and 4-somy on chromosome 2
profile <- GRanges(seqnames=c('1','2'), ranges=IRanges(start=c(1,1), end=c(195471971,182113224)),

expected.state=c('3-somy','4-somy'))
ids <- subsetByCNVprofile(lung.files, profile)
print(which(ids))

transCoord Transform genomic coordinates

Description

Add two columns with transformed genomic coordinates to the GRanges-class object. This is
useful for making genomewide plots.

Usage

transCoord(gr)

Arguments

gr A GRanges-class object.

Value

The input GRanges-class with two additional metadata columns ’start.genome’ and ’end.genome’.

variableWidthBins Make variable-width bins

Description

Make variable-width bins based on a reference BAM file. This can be a simulated file (produced by
simulateReads and aligned with your favourite aligner) or a real reference.

Usage

variableWidthBins(reads, binsizes, stepsizes = NULL, chromosomes = NULL)

64 writeConfig

Arguments

reads A GRanges-class with reads. See bam2GRanges and bed2GRanges.

binsizes A vector with binsizes. Resulting bins will be close to the specified binsizes.

stepsizes A vector of step sizes in base pairs, the same length as binsizes.

chromosomes A subset of chromosomes for which the bins are generated.

Details

Variable-width bins are produced by first binning the reference BAM file with fixed-width bins and
selecting the desired number of reads per bin as the (non-zero) maximum of the histogram. A new
set of bins is then generated such that every bin contains the desired number of reads.

Value

A list() of GRanges-class objects with variable-width bins. If stepsizes is specified, a list()
of GRangesList objects with one entry per step.

Author(s)

Aaron Taudt

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Read the file into a GRanges object
reads <- bed2GRanges(bedfile, assembly='mm10', chromosomes=c(1:19,'X','Y'),

min.mapq=10, remove.duplicate.reads=TRUE)
Make variable-width bins of size 500kb and 1Mb
bins <- variableWidthBins(reads, binsizes=c(5e5,1e6))
Plot the distribution of binsizes
hist(width(bins[['binsize_1e+06']]), breaks=50)

writeConfig Write AneuFinder configuration file

Description

Write an AneuFinder configuration file from a list structure.

Usage

writeConfig(conf, configfile)

zinbinom 65

Arguments

conf A list structure with parameter values. Each entry will be written in one line.

configfile Filename of the outputfile.

Value

NULL

Author(s)

Aaron Taudt

zinbinom The Zero-inflated Negative Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the zero-inflated nega-
tive binomial distribution with parameters w, size and prob.

Usage

dzinbinom(x, w, size, prob, mu)

pzinbinom(q, w, size, prob, mu, lower.tail = TRUE)

qzinbinom(p, w, size, prob, mu, lower.tail = TRUE)

rzinbinom(n, w, size, prob, mu)

Arguments

x Vector of (non-negative integer) quantiles.

w Weight of the zero-inflation. 0 <= w <= 1.

size Target for number of successful trials, or dispersion parameter (the shape pa-
rameter of the gamma mixing distribution). Must be strictly positive, need not
be integer.

prob Probability of success in each trial. 0 < prob <= 1.

mu Alternative parametrization via mean: see ‘Details’.

q Vector of quantiles.

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

p Vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

66 zinbinom

Details

The zero-inflated negative binomial distribution with size = n and prob = p has density

p(x) = w + (1− w)
Γ(x+ n)

Γ(n)x!
pn(1− p)x

for x = 0, n > 0, 0 < p ≤ 1 and 0 ≤ w ≤ 1.

p(x) = (1− w)
Γ(x+ n)

Γ(n)x!
pn(1− p)x

for x = 1, 2, . . ., n > 0, 0 < p ≤ 1 and 0 ≤ w ≤ 1.

Value

dzinbinom gives the density, pzinbinom gives the distribution function, qzinbinom gives the quantile
function, and rzinbinom generates random deviates.

Functions

• dzinbinom: gives the density

• pzinbinom: gives the cumulative distribution function

• qzinbinom: gives the quantile function

• rzinbinom: random number generation

Author(s)

Matthias Heinig, Aaron Taudt

See Also

Distributions for standard distributions, including dbinom for the binomial, dnbinom for the negative
binomial, dpois for the Poisson and dgeom for the geometric distribution, which is a special case
of the negative binomial.

Index

aneuBiHMM, 4, 14, 19, 24, 34, 36, 39, 49, 51,
58, 60, 61

AneuFinder, 4, 5, 7, 49, 52
AneuFinder (AneuFinder-package), 3
Aneufinder, 3, 5, 16
AneuFinder-package, 3
aneuHMM, 7, 11–13, 18, 19, 22–24, 26–29, 32,

34–36, 38, 40, 41, 44, 48, 49, 51, 52,
54–57, 59, 62

annotateBreakpoints, 8

bam2GRanges, 9, 16, 64
bamsignals, 6, 16
bed2GRanges, 10, 16, 64
bi.edivisive.findCNVs, 11
biDNAcopy.findCNVs, 12
biHMM.findCNVs, 12
bin the data, 5
binned.data, 14, 24, 25, 52, 53, 56, 57
binning, 14, 14
binReads, 14
blacklist, 16
breakpointColors (colors), 21
BSgenome-class, 61

clusterByQuality, 17, 42
clusterHMMs, 19
collapseBins, 20
colors, 21, 37
compareMethods, 22
compareModels, 23
consensusSegments, 24
correctGC, 24
cowplot, 42
cutree, 42

dbinom, 66
density, 35, 44, 45
dgeom, 66
Distributions, 66

distributions, profiles and
karyograms, 5

DNAcopy, 6, 31, 34
DNAcopy.findCNVs, 26
dnbinom, 66
dpois, 66
dzinbinom (zinbinom), 65

e.divisive, 6, 11, 26, 27, 31, 33, 34
edivisive.findCNVs, 26
emControl, 18
estimateComplexity, 27
export, 28
exportCNVs (export), 28
exportGRanges (export), 28
exportReadCounts (export), 28

filterSegments, 29
find copy-number-variations, 5
findCNVs, 7, 22, 30
findCNVs.strandseq, 4, 32
findHotspots, 34
fixedWidthBins, 14, 15, 17, 35

genomewide heatmaps, 5
GenomicRanges, 15
getBreakpoints, 8, 36, 60
getChromInfoFromUCSC, 6, 10, 15, 17, 35, 50
getDistinctColors, 37
getQC, 18, 38
getSCEcoordinates, 39
ggplot, 25, 40, 42, 51–54, 56, 57
GRanges-class, 4, 7, 8, 11, 12, 14, 26, 27, 30,

33
GRangesList, 13, 16, 36, 43, 49, 53, 64

heatmapAneuploidies, 40
heatmapGenomewide, 41, 42
heatmapGenomewideClusters, 42
HMM.findCNVs, 43

67

68 INDEX

hotspotter, 7, 41, 44
hotspotter.variable, 45

importBed, 46
initializeStates, 47

karyotypeMeasures, 47

loadFromFiles, 49
locate breakpoints, 5

Mclust, 18
mclust, 17
mergeStrandseqFiles, 50

plot.aneuBiHMM, 51
plot.aneuHMM, 51
plot.character, 52
plot.GRanges, 52
plot.GRangesList, 53
plot_pca, 57
plotHeterogeneity, 53
plotHistogram, 55
plotKaryogram, 56
plotProfile, 56
print.aneuBiHMM, 58
print.aneuHMM, 58
pzinbinom (zinbinom), 65

qc.bhattacharyya (qualityControl), 59
qc.entropy (qualityControl), 59
qc.sos (qualityControl), 59
qc.spikiness (qualityControl), 59
qualityControl, 59
qzinbinom (zinbinom), 65

readConfig, 60
refineBreakpoints, 60
rzinbinom (zinbinom), 65

segment, 6, 31, 34
simulateReads, 61, 63
stateColors (colors), 21
strandColors (colors), 21
subsetByCNVprofile, 62

transCoord, 63

variableWidthBins, 5, 14, 15, 63

writeConfig, 64

zinbinom, 65

	AneuFinder-package
	aneuBiHMM
	Aneufinder
	aneuHMM
	annotateBreakpoints
	bam2GRanges
	bed2GRanges
	bi.edivisive.findCNVs
	biDNAcopy.findCNVs
	biHMM.findCNVs
	binned.data
	binning
	binReads
	blacklist
	clusterByQuality
	clusterHMMs
	collapseBins
	colors
	compareMethods
	compareModels
	consensusSegments
	correctGC
	DNAcopy.findCNVs
	edivisive.findCNVs
	estimateComplexity
	export
	filterSegments
	findCNVs
	findCNVs.strandseq
	findHotspots
	fixedWidthBins
	getBreakpoints
	getDistinctColors
	getQC
	getSCEcoordinates
	heatmapAneuploidies
	heatmapGenomewide
	heatmapGenomewideClusters
	HMM.findCNVs
	hotspotter
	hotspotter.variable
	importBed
	initializeStates
	karyotypeMeasures
	loadFromFiles
	mergeStrandseqFiles
	plot.aneuBiHMM
	plot.aneuHMM
	plot.character
	plot.GRanges
	plot.GRangesList
	plotHeterogeneity
	plotHistogram
	plotKaryogram
	plotProfile
	plot_pca
	print.aneuBiHMM
	print.aneuHMM
	qualityControl
	readConfig
	refineBreakpoints
	simulateReads
	subsetByCNVprofile
	transCoord
	variableWidthBins
	writeConfig
	zinbinom
	Index

