
The ChIPanalyser User’s Guide

Patrick Martin

Introduction - What is this package?
ChIPanalyser provides a quick an easy method to predict and explain TF binding. The package uses a
statistical thermodynamic framework to model the binding of proteins to DNA.

The model assumes that there are four main driver to TF binding:

• Chromatin State affinity
• Binding Energy
• Number of bound Molecules
• Scaling Factor modulating binding affinity

While binding energy is given by PWM matrices, the other parameters will be inferred by maximizing or
minimizing a goodness of fit score between ChIP data and ChIPanalyser predictions. To do so, ChIPanalyser
provides a genetic algorithm to infer optimal values for each parameter.

Methods - The Chromatin State Model
The chromatin state model is described by the following equation derived from statistical thermodynamics:

P (N, a, λ, ω)j = N · aj · e(1
λ ·ωj)

N · aj · e(1
λ ·ωj) + L · n · [ai · e(1

λ ·ωj)]i
• N , the average number of bound molecules
• aj , chromatin state affinity at site j
• ω , the binding energy required for a TF to bind to site j - in the form of a Position Weight Matrix

Score
• λ , a scaling factor for the Position Weight Matrix score
• L , the length of the genome of interest
• n , the ploidy level of the organism

Chromatin state affinity is defined as the following:

aj =
∑

k

αk · ck
j

with α the chromatin state affinity scores for a given TF and c the chromatin state at site j.

Shortly, the model above generates ChIP like profiles and describes the affinity of a TF to chromatin states.
The affinity scores a, the number of bound molecules N , and lambda λ are inferred by optimising the fit
between predicted profiles and ChIP data using a genetic algortihm.

1

Using ChIPanalyser
Loading data
To demonstrate the use of ChIPanalyser and the genetic algorithm, we provide some internal data sets. We
complement this data with external data source such a DNA sequence sets taken from the BSgenomepackage
suit.

ChIPanalyser

First, we load ChIPanlyser and the internal data
library(ChIPanalyser)
Input data
data(ChIPanalyserData)
PFM Matrix
PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BEAF-32.pfm")

External Data

To reduce the size of the internal data size, we complement our data with the Drosophila DNA sequence
taken from the BSgenome package suit.
library(BSgenome.Dmelanogaster.UCSC.dm6)

DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)

Input data : What is it?

Now we that have loaded some data, what exactly are we looking at? The environment should contain the
following new objects:

• chip - GRanges object containing ChIP scores. Essentially, ChIP data that will be used to train our
model.

• cs - GRanges object containing Chromatin State (CS) information. Essentially, where each CS can be
found in the genome.

• top - GRanges object containing regions of interest. Esssentially, the genomic regions we will use for
training and testing.

• PFM - Path to file containing the Position Frequency Matrix. Essentially, this represents the binding
affinity of our TF (here we are using BEAF-32)

• DNASequenceSet - DNAStringSet containing the DNASequenceSet of the organism we are looking at.

• geneRef - GRanges object containing gene reference taken from the (Genome UCSC website)[https:
//genome.ucsc.edu/]

Setting Parameters
The next step consitst in setting initial parameters to run the genetic algorithm.
Number of individuals per generation
pop <- 10

Number of generations
gen <- 2

2

https://genome.ucsc.edu/
https://genome.ucsc.edu/

Mutation Probability
mut <- 0.3

Children - Number of ofspring passed to the next generation
child <- 2

Method - Goodness of fit metric used to optimise the Genetic algorithm
method <- "MSE"

Please note that the parameters presented here are for the sake of the vignette. We recommend using the
following parameters for a first trial with your own data. Please be advised that these parameters will depend
on the nature of the data you are using.
Number of individuals per generation
pop <- 100

Number of generations
gen <- 50

Mutation Probability
mut <- 0.3

Children - Number of ofspring passed to the next generation
child <- 10

Method - Goodness of fit metric used to optimise the Genetic algorithm
method <- "MSE"

We can also define which parameters we wish to optimise. In this example, we will optimise the number of
bound molecules (N), lambda (λ), the PWM Threshold and 11 different chromatin states.
Parameters to optimised
params <- c("N","lambda","PWMThreshold", paste0("CS",seq(1:11)))

Alternatively, we can also set custom ranges for the parameters. We will use custom ranges here to reduce
computational time.
params_custom <- vector("list", 14)
names(params_custom) <- c("N","lambda","PWMThreshold", paste0("CS",seq(1:11)))

vector in the format of min value, max value and number of values
params_custom$N <- c(1,1000000,5)

params_custom$lambda <- c(1,5,5)

Bound between 0 and 1
params_custom$PWMThreshold <- c(0.1,0.9,5)

Bound between 0 and 1
CS <- c(0,1,5)
CS_loc <- grep("CS",names(params_custom))
for(i in CS_loc){

params_custom[[i]] <- CS
}

3

Initializing ChIPanalyser
Building Initial objects

The first step of any ChIPanalyser anaylsis is to create parameter object. These object contain input paramters
and hold basic data. Here, we will load the PFM as PWM and compute the Base Pair Frequency from the
DNASequenceSet.
GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR", BPFrequency=DNASequenceSet)

Generating a starting population

For clairty, we will show what a starting population looks like. This step is not stricly required as the evolve
function can take the number of individuals in the poppulation (defined above by pop) and the parameters to
be optimised (defined above by params or params_custom).
start_pop <- generateStartingPopulation(pop, params_custom)

Pre-processing ChIP data

We will pre-proccess the ChIP data by reducing noise and converting GRanges to a ChIPscore object. This
object contains normalised and smoothed ChIP scores that will be used to train and test the model.
chipProfile <- processingChIP(chip,loci = top)

Splitting data into training and testing
We recommend setting dist to 20/80. However, here we only have 4 loci.
splitdata <- splitData(chipProfile,dist = c(50,50),as.proportion = TRUE)

trainingSet <- splitdata$trainingSet
testingSet <- splitdata$testingSet

Evolution
We can run the Genetic algorithm provided by ChIPanalyser using a single function. The function will
generate intermediate files that allow you to check the status of the algorithm while it is running. It should
be noted that the intermediate files are updated at each generation. This method also provides a lambda
database. This allows for a faster run time on larger data sets as all values for lambda are pre-computed.

If you do not want intermediate files, set the checkpoint argument to FALSE.

If you do not want to pre-compute lambda values, set the lambda argument to FALSE.

For the purpose of this vignette, we will not save intermediate files.
evo <- evolve(population = pop,

DNASequenceSet = DNASequenceSet,
ChIPScore = trainingSet,
genomicProfiles = GPP,
parameters = params_custom,
mutationProbability = mut,
generations = gen,
offsprings = child,
chromatinState = cs,
method = method,
filename = "This_TF_is_Best_TF",
checkpoint = FALSE,
cores= 1)

4

Generating Lambda DataBase

Generation: 1

Generation Fitness: 0.0153120318624596

Generation: 2

Generation Fitness: 0.0153120176654879

The output of this function returns a list of 3 elements:

• database - a data frame with all parameters that have been computed through out each generation
• poppulation - list containing the last generated population
• fitest - list containing goodness of metric for best perfomring individuals

Fitest of them all
Once we have the best perfomring paramters, we can plug them into a single run of ChIPanalyser and use
these parameters on a tesing set.

Get fitest individual

The first step is to extract the best performing individual and its associated traits from the population.
SuperFit <- getHighestFitnessSolutions(evo$population,

child = 1,
method = method)

single<-evo[["population"]][SuperFit]

Running ChIPanalyser with fitest individual

We can use these parameters as input to the singleRun function to obtain the ChIP like profiles. This run
represents the predicted run and TF binding affinity of our TF of choice. We will set fitness to all. This
means that the function will return all goodness of fit metrics available.
Set chromatin states for single run - create CS Granges with affinity scores
cs_single <- setChromatinStates(single,cs)[[1]]

superFit <- singleRun(indiv = single,
DNAAffinity = cs_single,
genomicProfiles = GPP,
DNASequenceSet = DNASequenceSet,
ChIPScore = testingSet,
fitness = "all")

Warning in ks.test.default(predicted, locusProfile): p-value will be
approximate in the presence of ties
Warning in ks.test.default(predicted, locusProfile): p-value will be
approximate in the presence of ties

This final sections returns a list containing 3 elements:

• occupnacy - genomicProfiles object containing occupancy scores for each region
• ChIP - genomicProfiles object containing ChIP like scores for each region
• gof - goodness of fit scores for each regions and mean scores over all regions.

Plotting
Finally, we plot the resulting profiles.

5

par(mfrow = c(2,1))
plotOccupancyProfile(predictedProfile = superFit$ChIP,

ChIPScore = testingSet,
chromatinState = cs_single,
occupancy = superFit$occupancy,
goodnessOfFit = superFit$gof,
geneRef = geneRef,
addLegend = TRUE)

16140001 16142223 16144445 16146667 16148889 16151112 16153334 16155556 16157778 16160000

Occupancy at Position chr3R 16140001:16160000

+

−
CG5903

CG5916

Fer2

Sb

Fer2Fer2Fer2

CG5916Sb CG6006

Predicted Profile
ChIP Profile

Binding Site

pearson = −0.08414
AUC = 0.2703

MSE = 0.003987
CS6
CS5
CS7
CS2
CS1
CS4
CS11
CS10

transcript
exon
3UTR
CDS
5UTR
start_codon
stop_codon

19500001 19502223 19504445 19506667 19508889 19511112 19513334 19515556 19517778 19520000

Occupancy at Position chr2L 19500001:19520000

+

−
lncRNA:CR43363CG10188

CG10132

HaspCG10188

Top3alpha

CG10188 HaspHasp

Predicted Profile
ChIP Profile

Binding Site

pearson = 0.05981
AUC = 0.6208

MSE = 0.01563 CS2
CS1
CS4
CS11
CS7

transcript
exon
3UTR
CDS
5UTR
start_codon
stop_codon

6

	Introduction - What is this package?
	Methods - The Chromatin State Model
	Using ChIPanalyser
	Loading data
	ChIPanalyser
	External Data
	Input data : What is it?

	Setting Parameters
	Initializing ChIPanalyser
	Building Initial objects
	Generating a starting population
	Pre-processing ChIP data

	Evolution
	Fitest of them all
	Get fitest individual
	Running ChIPanalyser with fitest individual

	Plotting

