Package ‘tidytof”

April 1, 2025
Type Package

Title Analyze High-dimensional Cytometry Data Using Tidy Data
Principles

Version 1.0.0

Description This package implements an interactive, scientific analysis
pipeline for high-dimensional cytometry data built using tidy data principles.
It is specifically designed to play well with both the tidyverse and
Bioconductor software ecosystems, with functionality for reading/writing
data files, data cleaning, preprocessing, clustering,
visualization, modeling, and other quality-of-life functions. tidytof
implements a * ~ grammar” of high-dimensional cytometry data analysis.

License MIT + file LICENSE
Depends R (>=4.3)

Imports doParallel, dplyr, flowCore, foreach, ggplot2, ggraph, glmnet,
methods, parallel, purrr, readr, recipes, rlang, stringr,
survival, tidygraph, tidyr, tidyselect, yardstick, Rcpp,
tibble, stats, utils, RecppHNSW

Suggests ConsensusClusterPlus, Biobase, broom, covr, diffcyt, emdist,
FlowSOM, forcats, ggrepel, HDCytoData, knitr, markdown,
philentropy, rmarkdown, Rtsne, statmod, SummarizedExperiment,
testthat (>= 3.0.0), ImerTest, Ime4, ggridges, spelling,
scattermore, preprocessCore, SingleCellExperiment, Seurat,
SeuratObject, embed, rsample, BiocGenerics

Config/testthat/edition 3
Encoding UTF-8
LazyData false
RoxygenNote 7.3.1
LinkingTo Rcpp

URL https://keyes-timothy.github.io/tidytof,
https://keyes-timothy.github.io/tidytof/

BugReports https://github.com/keyes-timothy/tidytof/issues
VignetteBuilder knitr

Language en-US

biocViews SingleCell, FlowCytometry

https://keyes-timothy.github.io/tidytof
https://keyes-timothy.github.io/tidytof/
https://github.com/keyes-timothy/tidytof/issues

2 Contents

git_url https://git.bioconductor.org/packages/tidytof
git branch RELEASE_3_20

git_last commit 953e93b

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2025-03-31

Author Timothy Keyes [cre] (<https://orcid.org/0000-0003-0423-9679>),
Kara Davis [rth, own],
Garry Nolan [rth, own]

Maintainer Timothy Keyes <tkeyes@stanford.edu>

Contents
as_flowFrame 5
as_flowSet 5
AS_SEUTAL . . . v v e e e e e e e e e e 6
as_SingleCellExperiment L 7
as_tof tbl e 8
as_tof tbl.flowSet e 9
cosine_similarity L. 10
ddpr_data e e e 10
ddpr_metadata 11
dot . . . L e e e 12
GEL_EXIENSIONt . v v it e e e e e e e e e e e e e e e 13
12_normalize e 13
magnitude e e e e e e e 14
make_flowcore_annotated_data_frame 14
metal_masterliSt e e e 15
new_tof_model e e 15
new_tof tibble e 16
phenograph_data e e e 17
TEEXPOTLS . v v v v e i e e e e e e e e e e e e e e e e e e e 18
rev_asinh L L e 18
tidytof_ example_data 19
tof_analyze_abundance L 20
tof_analyze_abundance_diffcyt Lo 20
tof_analyze_abundance_glmm 23
tof_analyze_abundance_ttest 25
tof_analyze_expressiono e e e 26
tof_analyze_expression_diffcyt oL oo 27
tof_analyze_expression_lmm Lo 30
tof_analyze_expression_ttest 32
tof_annotate_Clusters e e e e e 34
tof_apply_classifier 35
tof_assess_channels 36
tof_assess_clusters_distance 37
tof_assess_clusters_entropy 39
tof_assess_clusters_knn e 41

tof assess_flow_rate 43

https://orcid.org/0000-0003-0423-9679

Contents

3
tof_assess_flow_rate_tibble e 44
tof_assess_model e e e 46
tof _assess_model_ new_data 48
tof_assess_model_tuning L 48
tof_batch_correct e e 49
tof_batch_correct_quantile oL 50
tof_batch_correct_quantile_tibble 51
tof_batch_correct_rescale 51
tof_build_classifier e 52
tof_calculate_flow_rate e 53
tof_check_model_args 54
tof_classify_cells 55
tof_clean_metric_names e e e e e e e e e e 56
tof _cluster s 56
tof_cluster_ddpr 57
tof_cluster_flowsom 59
tof_cluster_grouped 61
tof_cluster_ kmeans e 61
tof_cluster_phenograph L oL 62
tof_cluster_tibble e 64
tof_compute_km_curve L. e 64
tof_cosine_diSt e e e 65
tof_create_grid 65
tof_create_recipe e e e e e 66
tof_downsample 67
tof_downsample_constant L 68
tof_downsample_density 70
tof_downsample_prop 72
tof_estimate_density e e 73
tof_extract_central_tendencyo 74
tof_extract_emd e 76
tof_extract_features e e 78
tof_extract_jsd e 81
tof_extract_proportion e e 83
tof_extract_threshold 85
tof_find_best s 86
tof_find_cv_predictions 87
tof_find_emd e e 88
tof_find_jsd 88
tof_find_knn. e 89
tof_find_log_rank_threshold 90
tof_find_panel_info 91
tof _fit_split e e 91
tof_generate_palette L. 92
tof_get_model_mixture 93
tof_get_model_outcomes e e 94
tof_get_model_penalty 95
tof_get_model_training_data oL 96
tof_get_model_type 97
tof_get_ model_X 98
tof_get model_y 99

tof_get_panel L. 100

Contents

tOf_IS_NUMETIC o e e e e e 101
tof_knn_density L e e 101
tof_log_rank_test 102
tof_make_knn_graph 103
tof_make_roc_curve e e e e e e e 104
tof_metacluster e 105
tof_metacluster_ConSensus o e e e e e e e e e 107
tof_metacluster_flowsom 109
tof_metacluster_hierarchical 110
tof_metacluster_kmeans e 112
tof_metacluster_phenograph 113
tof_plot_cells_density L 115
tof_plot_cells_embedding 116
tof_plot_cells_layout 118
tof_plot_cells_scatter L 119
tof_plot_clusters_heatmap 121
tof_plot_clusters_mst 122
tof_plot_clusters_volcano e 124
tof_plot_heatmap 126
tof_plot_model 127
tof_plot_model_linear. 128
tof_plot_model_logistic 129
tof_plot_model_multinomial 130
tof_plot_model_survival 130
tof_plot_sample_features 131
tof_plot_sample_heatmap 132
tOf_POSIPIOCESS . . . o v v e i e e e e e e 134
tof_predict 135
tOf_PIePIOCESS . . . v v v vt i e e e e e e e e e e e e e e e 136
tof_prep_recipe 137
tof_read_CSV e 138
tof_read_data 139
tof_read_fcs e 139
tof read_file L e 140
tof_reduce_dimensions e e e e e 141
tof_reduce_pca L 142
tof_reduce _tSne e e 143
tof_reduce_umap e 145
tof_set_panel 146
tof_spade_density e e 147
tof_split_data e 149
tof_split_tidytof_reduced_dimensions L. 151
tof_train_model e e 151
tof_transform e 154
tof_tune_glmnet 155
tof_upsample e e 157
tof_upsample_distance oL 158
tof_upsample_neighbor L oo 160
tOf_WIILE_CSV o o e e e e e e e e e e e e e e e e e 162
tof write_data e 163
tof_write_fCS e e 164

where e e e 165

as_flowFrame 5

Index 166

as_flowFrame Coerce an object into a flowFrame

Description

Coerce an object into a flowFrame

Coerce a tof_tbl into a flowFrame

Usage

as_flowFrame(x, ...)

S3 method for class 'tof_tbl'

as_flowFrame(x, ...)
Arguments
X A tof tbl.
Unused.
Value

A flowFrame

A flowFrame. Note that all non-numeric columns in ‘x‘ will be removed.

Examples

NULL

NULL

as_flowSet Coerce an object into a flowSet

Description

Coerce an object into a flowSet

Coerce a tof_tbl into a flowSet
Usage
as_flowSet(x, ...)

S3 method for class 'tof_tbl'
as_flowSet(x, group_cols, ...)

6 as_seurat

Arguments
X A tof_tbl.
Unused.
group_cols Unquoted names of the columns in ‘x‘ that should be used to group cells into
separate flowFrames. Supports tidyselect helpers. Defaults to NULL (all cells
are written into a single flowFrame).
Value
A flowSet

A flowSet. Note that all non-numeric columns in ‘x‘ will be removed.

Examples

NULL

NULL

as_seurat Coerce an object into a SeuratObject

Description

Coerce an object into a SeuratObject

Coerce a tof_tbl into a SeuratObject

Usage

as_seurat(x, ...)

S3 method for class 'tof_tbl'

as_seurat(
X,
channel_cols = where(tof_is_numeric),
reduced_dimensions_cols,
metadata_cols = where(function(.x) !tof_is_numeric(.x)),
split_reduced_dimensions = FALSE,

Arguments

X A tof _tbl
Unused.

channel_cols Unquoted column names representing columns that contain single-cell protein
measurements. Supports tidyselect helpers. If nothing is specified, the default is
all numeric columns.

as_SingleCellExperiment 7

reduced_dimensions_cols
Unquoted column names representing columns that contain dimensionality re-
duction embeddings, such as tSNE or UMAP embeddings. Supports tidyselect
helpers.

metadata_cols Unquoted column names representing columns that contain metadata about the
samples from which each cell was collected. If nothing is specified, the default
is all non-numeric columns.

split_reduced_dimensions
A boolean value indicating whether the dimensionality results in x should be
split into separate slots in the resulting SingleCellExperiment. If FALSE
(the default), the split will not be performed and the reducedDims slot in the
result will have a single entry ("tidytof_reduced_dimensions"). If TRUE, the
split will be performed and the reducedDims slot in the result will have 1-4
entries depending on which dimensionality reduction results are present in x
("tidytof_pca", "tidytof_tsne", "tidytof_umap", and "tidytof_reduced_dimensions").
Note that "tidytof_reduced_dimensions" will include all dimensionality reduc-
tion results that are not named according to tidytof’s pca, umap, and tsne con-
ventions.

Value

A SeuratObject
A SeuratObject.

Examples

NULL

NULL

as_SingleCellExperiment
Coerce an object into a SingleCellExperiment

Description

Coerce an object into a SingleCellExperiment

Coerce a tof_tbl into a SingleCellExperiment

Usage

as_SingleCellExperiment(x, ...)

S3 method for class 'tof_tbl'

as_SingleCellExperiment(
X,
channel_cols = where(tof_is_numeric),
reduced_dimensions_cols,
metadata_cols = where(function(.x) !tof_is_numeric(.x)),
split_reduced_dimensions = FALSE,

8 as_tof_tbl

Arguments

X A tof_tbl
Unused.

channel_cols Unquoted column names representing columns that contain single-cell protein
measurements. Supports tidyselect helpers. If nothing is specified, the default is
all numeric columns.

reduced_dimensions_cols
Unquoted column names representing columns that contain dimensionality re-
duction embeddings, such as tSNE or UMAP embeddings. Supports tidyselect
helpers.

metadata_cols Unquoted column names representing columns that contain metadata about the
samples from which each cell was collected. If nothing is specified, the default
is all non-numeric columns.

split_reduced_dimensions
A boolean value indicating whether the dimensionality results in x should be
split into separate slots in the resulting SingleCellExperiment. If FALSE
(the default), the split will not be performed and the reducedDims slot in the
result will have a single entry ("tidytof_reduced_dimensions"). If TRUE, the
split will be performed and the reducedDims slot in the result will have 1-4
entries depending on which dimensionality reduction results are present in X
("tidytof_pca", "tidytof_tsne", "tidytof_umap", and "tidytof_reduced_dimensions").
Note that "tidytof_reduced_dimensions" will include all dimensionality reduc-
tion results that are not named according to tidytof’s pca, umap, and tsne con-
ventions.

Value

A SingleCellExperiment
A SingleCellExperiment.

Examples

NULL

NULL

as_tof_tbl Coerce flowFrames or flowSets into tof _tbl’s.

Description

Coerce flowFrames or flowSets into tof_tbl’s.

Usage

as_tof_tbl(flow_data, sep = "|")

as_tof _tbl.flowSet 9

Arguments
flow_data A flowFrame or flowSet
sep A string indicating which symbol should be used to separate antigen names and
metal names in the columns of the output tof_tbl.
Value
A tof_tbl.
Examples

input_file <- dir(tidytof_example_data(”aml”), full.names = TRUE)[[1]]
input_flowframe <- flowCore::read.FCS(input_file)

tof_tibble <- as_tof_tbl(input_flowframe)

as_tof_tbl.flowSet Convert an object into a tof _tbl

Description

Convert an object into a tof_tbl

Usage
S3 method for class 'flowSet'
as_tof_tbl(flow_data, sep = "|")
Arguments
flow_data A FlowSet
sep A string to use to separate the antigen name and its associated metal in the

nln

column names of the output tibble. Defaults to

Value

a ‘tof_tbl*

10 ddpr_data

cosine_similarity Find the cosine similarity between two vectors

Description

Find the cosine similarity between two vectors

Usage

cosine_similarity(x, y)

Arguments
X a numeric vector
y a numeric vector
Value

a scalar value representing the cosine similarity between x and y

ddpr_data CyTOF data from two samples: 5,000 B-cell lineage cells from a
healthy patient and 5,000 B-cell lineage cells from a B-cell precur-
sor Acute Lymphoblastic Leukemia (BCP-ALL) patient.

Description
A dataset containing CyTOF measurements from immune cells originally studied in the following

paper:

Good Z, Sarno J, et al. Single-cell developmental classification of B cell precursor acute lym-
phoblastic leukemia at diagnosis reveals predictors of relapse. Nat Med. 2018 May;24(4):474-483.
doi: 10.1038/nm.4505. Epub 2018 Mar 5. PMID: 29505032; PMCID: PMC5953207.

Usage
data(ddpr_data)

Format

A data frame with 10000 rows and 24 variables:

sample_name name of the sample from which the data was read
cd45 A CyTOF measurement in raw ion counts

c¢d19 A CyTOF measurement in raw ion counts

c¢d22 A CyTOF measurement in raw ion counts

cd79b A CyTOF measurement in raw ion counts

c¢d20 A CyTOF measurement in raw ion counts

ddpr_metadata 11

cd34 A CyTOF measurement in raw ion counts
cd123 A CyTOF measurement in raw ion counts
c¢d10 A CyTOF measurement in raw ion counts
cd24 A CyTOF measurement in raw ion counts
c¢d127 A CyTOF measurement in raw ion counts
cd43 A CyTOF measurement in raw ion counts
c¢d38 A CyTOF measurement in raw ion counts
cd58 A CyTOF measurement in raw ion counts
psyk A CyTOF measurement in raw ion counts
pdebpl A CyTOF measurement in raw ion counts
pstatS A CyTOF measurement in raw ion counts
pakt A CyTOF measurement in raw ion counts
ps6 A CyTOF measurement in raw ion counts
perk A CyTOF measurement in raw ion counts

pcreb A CyTOF measurement in raw ion counts

Value

A data.frame

Source

https://github.com/kara-davis-1ab/DDPR

ddpr_metadata Clinical metadata for each patient sample in Good & Sarno et al.
(2018).

Description

A dataset containing patient-level clinical metadata for samples originally studied in the following
paper:

Good Z, Sarno J, et al. Single-cell developmental classification of B cell precursor acute lym-
phoblastic leukemia at diagnosis reveals predictors of relapse. Nat Med. 2018 May;24(4):474-483.
doi: 10.1038/nm.4505. Epub 2018 Mar 5. PMID: 29505032; PMCID: PMC5953207.

Usage

data(ddpr_metadata)

https://github.com/kara-davis-lab/DDPR

12 dot

Format

A data frame with 10000 rows and 12 variables:

patient_id Name of the sample from which the data was read
gender Gender of the patient from which each sample was collected
age_at_diagnosis Age (in years) of the patient from which each sample was collected

wbc_count The diagnostic White Blood Cell (WBC) count of the patient from which each sample
was collected

mrd_risk Risk stratification category for each patient using minimal residual disease (MRD) cri-
teria

nci_rome_risk Risk stratification category for each patient using National Cancer Institute (NCI)
criteria

relapse_status A string representing whether or not a patient relapsed

time_to_relapse The time (in days) it took each patient to relapse. Patients who did not relapse
will have the value of NA

type_of_relapse A string representing the timing of relapse for each patient. "Very early" relapses
occurred less than 18 months after diagnosis; "Early" relapses occurred between 18 months
and 32 months after diagnosis; "Late" relapses occurred later than 32 months after diagnosis.

cer The number of documented days of continuous complete remission (CCR) for patients who did
not relapse. All patients who relapsed will have a value of NA.

cohort A string representing if each sample was used in the "Training" or "Validation" cohort in
the original study

ddpr_risk The risk category ("Low" or "High") assigned to each sample using the original paper’s
risk-stratification algorithm

Value

A data.frame

Source

Good Z, Sarno J, et al. Single-cell developmental classification of B cell precursor acute lym-
phoblastic leukemia at diagnosis reveals predictors of relapse. Nat Med. 2018 May;24(4):474-483.
doi: 10.1038/nm.4505. Epub 2018 Mar 5. PMID: 29505032; PMCID: PMC5953207. Supplemen-
tary Table 1.

dot Find the dot product between two vectors.

Description

Find the dot product between two vectors.

Usage
dot(x, y)

get_extension

Arguments
X A numeric vector.
y A numeric vector.
Value

The dot product between x and y.

13

get_extension Find the extension for a file

Description

Find the extension for a file

Usage

get_extension(filename)

Arguments

filename A string representing the name of a file in its local directory

Value

The the file extension of ‘filename*

12_normalize L2 normalize an input vector x to a length of 1

Description

L2 normalize an input vector x to a length of 1

Usage

12_normalize(x)

Arguments

X a numeric vector

Value

a vector of length length(x) with a magnitude of 1

14

make_flowcore_annotated_data_frame

magnitude Find the magnitude of a vector.

Description

Find the magnitude of a vector.

Usage

magnitude(x)

Arguments

X A numeric vector.

Value

A scalar value (the magnitude of x).

make_flowcore_annotated_data_frame

Make the AnnotatedDataFrame needed for the flowFrame class

Description

Make the AnnotatedDataFrame needed for the flowFrame class

Usage

make_flowcore_annotated_data_frame(maxes_and_mins)

Arguments

maxes_and_mins a data.frame containing information about the max and min values of each chan-

nel to be saved in the flowFrame.

Value

An AnnotatedDataFrame.

Examples

NULL

metal _masterlist 15

metal_masterlist A character vector of metal name patterns supported by tidytof.

Description

A character vector used by ‘tof_read_fcs® and ‘tof_read_data‘ to detect and parse which CyTOF
metals correspond to each channel in an input .fcs file.

Usage

data(metal_masterlist)

Format

A character vector in which each entry is a pattern that tidytof searches for in every CyTOF channel
in input .fcs files. These patterns are an amalgamate of example .fcs files sampled from the studies
linked below.

Value

A named character vector.

Source

https://github.com/kara-davis-1ab/DDPR https://cytobank.org/nolanlab/reports/Levine2015.
html https://cytobank.org/nolanlab/reports/Spitzer2015.html https://cytobank.org/
nolanlab/reports/Spitzer2017.html https://community.cytobank.org/cytobank/projects/

609

new_tof_model Constructor for a tof_model.

Description

Constructor for a tof_model.

Usage

new_tof_model (
model,
recipe,
penalty,
mixture,
model_type = c("linear”, "two-class”, "multiclass"”, "survival”),
outcome_colnames,
training_data

https://github.com/kara-davis-lab/DDPR
https://cytobank.org/nolanlab/reports/Levine2015.html
https://cytobank.org/nolanlab/reports/Levine2015.html
https://cytobank.org/nolanlab/reports/Spitzer2015.html
https://cytobank.org/nolanlab/reports/Spitzer2017.html
https://cytobank.org/nolanlab/reports/Spitzer2017.html
https://community.cytobank.org/cytobank/projects/609
https://community.cytobank.org/cytobank/projects/609

16 new_tof_tibble

Arguments
model A glmnet model.
recipe A prepped recipe object.
penalty A double indicating which lambda value should be used within the glmnet path.
mixture A double indicating which alpha value was used to fit the glmnet model.
model_type A string indicating which type of glmnet model is being fit.

outcome_colnames
TO DO

training_data TO DO

Value

A ‘tof_model‘, an S3 class that includes a trained glmnet model and the recipe used to perform its
associated preprocessing.

new_tof_tibble Constructor for a tof _tibble.

Description

Constructor for a tof_tibble.

Usage

new_tof_tibble(x = dplyr::tibble(), panel = dplyr::tibble())

Arguments
X A data.frame or tibble containing single-cell mass cytometry data such that rows
are cells and columns are CyTOF measurements.
panel A data.frame or tibble containing information about the panel for the mass cy-
tometry data in x.
Value

A ‘tof_tbl‘, an tibble extension that tracks a few other attributes that are useful for CyTOF data
analysis.

See Also

Other tof_tbl utilities: tof_get_panel (), tof_set_panel()

phenograph_data 17

phenograph_data CyTOF data from 6,000 healthy immune cells from a single patient.

Description

A dataset containing CyTOF measurements from healthy control cells originally studied in the fol-
lowing paper:

Levine JH, Simonds EF, et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like
Cells that Correlate with Prognosis. Cell. 2015 Jul 2;162(1):184-97. doi: 10.1016/j.cell.2015.05.047.
Epub 2015 Jun 18. PMID: 26095251; PMCID: PMC4508757.

Usage

data(phenograph_data)

Format
A data frame with 6000 rows and 26 variables:

sample_name Name of the sample from which the data was read
phenograph_cluster Numeric ID of the cluster assignment of each row
cd19 A CyTOF measurement in raw ion counts

cd11b A CyTOF measurement in raw ion counts

cd34 A CyTOF measurement in raw ion counts

cd45 A CyTOF measurement in raw ion counts

cd123 A CyTOF measurement in raw ion counts

c¢d33 A CyTOF measurement in raw ion counts

cd47 A CyTOF measurement in raw ion counts

cd7 A CyTOF measurement in raw ion counts

cd44 A CyTOF measurement in raw ion counts

cd38 A CyTOF measurement in raw ion counts

cd3 A CyTOF measurement in raw ion counts

cd117 A CyTOF measurement in raw ion counts

cd64 A CyTOF measurement in raw ion counts

cd41 A CyTOF measurement in raw ion counts
pstat3 A CyTOF measurement in raw ion counts
pstatS A CyTOF measurement in raw ion counts
pampk A CyTOF measurement in raw ion counts
pdebpl A CyTOF measurement in raw ion counts

ps6 A CyTOF measurement in raw ion counts

pcreb A CyTOF measurement in raw ion counts
pzap70-syk A CyTOF measurement in raw ion counts
prb A CyTOF measurement in raw ion counts

perkl-2 A CyTOF measurement in raw ion counts

18 rev_asinh

Details

2000 cells from 3 clusters identified in the original paper have been sampled.

Value

A data.frame

Source

https://cytobank.org/nolanlab/reports/Levine2015.html

reexports Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

dplyr %>%
rlang :=, .data

tidyselect all_of, any_of, contains, ends_with, everything, last_col, matches, num_range,
starts_with

Value

See documentation in each object’s original package.

Examples

See examples in each object's original package

NULL
rev_asinh Reverses arcsinh transformation with cofactor ‘scale_factor‘ and a
shift of ‘shift_factor".
Description

Reverses arcsinh transformation with cofactor ‘scale factor® and a shift of ‘shift factor®.

Usage

rev_asinh(x, shift_factor, scale_factor)

https://cytobank.org/nolanlab/reports/Levine2015.html

tidytof_example_data 19

Arguments

X A numeric vector.

shift_factor The scalar value ‘a‘in the following equation used to transform high-dimensional
cytometry raw data ion counts using the hyperbolic arcsinh function: ‘new_x <-
asinh(a + b * x)°.

scale_factor The scalar value ‘b in the following equation used to transform high-dimensional
cytometry raw data ion counts using the hyperbolic arcsinh function: ‘new_x <-
asinh(a + b * x)°.
Value

A numeric vector after undergoing reverse arcsinh transformation

Examples

shift_factor <- @
scale_factor <- 1/ 5

input_value <- 20
asinh_value <- asinh(shift_factor + input_value * scale_factor)

restored_value <- rev_asinh(asinh_value, shift_factor, scale_factor)

tidytof_example_data Get paths to tidytof example data

Description

tidytof comes bundled with a number of sample .fcs files in its inst/extdata directory. This function
makes them easy to access.

Usage

tidytof_example_data(dataset_name = NULL)

Arguments

dataset_name Name of the dataset you want to access. If NULL, the names of the datasets
(each of which is from a different study) will be listed.

Value

A character vector of file paths where the requested .fcs files are located. If ‘dataset_name‘ is
NULL, a character vector of dataset names (that can be used as values for ‘dataset_name*) is re-
turned instead.

Examples

tidytof_example_data()
tidytof_example_data(dataset_name = "phenograph”)

20 tof_analyze_abundance_diffcyt

tof_analyze_abundance Perform Differential Abundance Analysis (DAA) on high-dimensional
cytometry data

Description

This function performs differential abundance analysis on the cell clusters contained within a ‘tof_tbl*

using one of three methods ("diffcyt", "glmm", and "ttest"). It wraps the members of the ‘tof_analyze_abundance_**
function family: tof_analyze_abundance_diffcyt, tof_analyze_abundance_glmm, and tof_analyze_abundance_

Usage
tof_analyze_abundance(tof_tibble, method = c("diffcyt”, "glmm", "ttest"), ...)
Arguments
tof_tibble A ‘tof_tbl‘ or a ‘tibble‘.
method A string indicating which statistical method should be used. Valid values include
"diffcyt"”, "glmm", and "ttest".
Additional arguments to pass onto the ‘tof_analyze_abundance_*‘ function fam-
ily member corresponding to the chosen method.
Value

A tibble or nested tibble containing the differential abundance results from the chosen method. See
tof_analyze_abundance_diffcyt, tof_analyze_abundance_glmm, and tof_analyze_abundance_ttest
for details.

See Also

Other differential abundance analysis functions: tof_analyze_abundance_diffcyt(), tof_analyze_abundance_glm
tof_analyze_abundance_ttest()

Examples

For differential discovery examples, please see the package vignettes
NULL

tof_analyze_abundance_diffcyt
Differential Abundance Analysis (DAA) with diffcyt

Description

This function performs differential abundance analysis on the cell clusters contained within a ‘tof_tbl*
using one of three methods implemented in the diffcyt package for differential discovery analysis
in high-dimensional cytometry data.

https://www.bioconductor.org/packages/release/bioc/html/diffcyt.html

tof_analyze_abundance_diffcyt 21

Usage

tof_analyze_abundance_diffcyt(

tof_tibble,
sample_col,
cluster_col,

fixed_effect_cols,

random_effect_cols,

diffcyt_method = c("glmm”, "edgeR"”, "voom"),
include_observation_level_random_effects = FALSE,
min_cells = 3,

min_samples = 5,

alpha = 0.05,

Arguments

tof_tibble

sample_col

cluster_col

A ‘tof_tbl‘ or a ‘tibble‘.

An unquoted column name indicating which column in ‘tof_tibble* represents
the id of the sample from which each cell was collected. ‘sample_col‘ should
serve as a unique identifier for each sample collected during data acquisition -
all cells with the same value for ‘sample_col* will be treated as a part of the
same observational unit.

An unquoted column name indicating which column in ‘tof_tibble‘ stores the
cluster ids of the cluster to which each cell belongs. Cluster labels can be pro-
duced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

fixed_effect_cols

Unquoted column names representing which columns in ‘tof_tibble‘ should be
used to model fixed effects during the differential abundance analysis. Generally
speaking, fixed effects represent the comparisons of biological interest (often
the variables manipulated during experiments), such as treated vs. non-treated,
before-treatment vs. after-treatment, or healthy vs. non-healthy.

random_effect_cols

diffcyt_method

Optional. Unquoted column names representing which columns in ‘tof_tibble*
should be used to model random effects during the differential abundance anal-
ysis. Generally speaking, random effects should represent variables that a re-
searcher wants to control/account for, but that are not necessarily of biological
interest. Example random effect variables might include batch id, patient id (in
a paired design), or patient age.

Note that without multiple samples at each level of each of the random effect
variables, it can be easy to overfit mixed models. For most high-dimensional
cytometry experiments, 2 or fewer (and often 0) random effect variables are
appropriate.

A string indicating which diffcyt method should be used for the differential
abundance analysis. Valid methods include "glmm" (the default), "edgeR", and
"voom".

include_observation_level_random_effects

A boolean value indicating if "observation-level random effects" (OLREs) should
be included as random effect terms in a "glmm" differential abundance model.
For details about what OLREs are, see the diffcyt paper. Only the "glmm"

https://www.nature.com/articles/s42003-019-0415-5

22 tof_analyze_abundance_diffcyt

method can model observation-level random effects, and all other values will
ignore this argument (and throw a warning if it is set to TRUE). Defaults to
FALSE.

min_cells An integer value used to filter clusters out of the differential abundance analysis.
Clusters are not included in the differential abundance testing if they do not have
at least ‘min_cells in at least ‘min_samples‘ samples. Defaults to 3.

min_samples An integer value used to filter clusters out of the differential abundance analysis.
Clusters are not included in the differential abundance testing if they do not have
at least ‘min_cells® in at least ‘min_samples* samples. Defaults to 5.

alpha A numeric value between 0 and 1 indicating which significance level should be
applied to multiple-comparison adjusted p-values during the differential abun-
dance analysis. Defaults to 0.05.

Optional additional arguments to pass to the under-the-hood diffcyt function
being used to perform the differential abundance analysis. See testDA_GLMM,
testDA_edgeR, and testDA_voom for details.

Details

The three methods are based on generalized linear mixed models ("glmm"), edgeR ("edgeR"), and
voom ("voom"). While both the "glmm" and "voom" methods can model both fixed effects and
random effects, the "edgeR" method can only model fixed effects.

Value

A nested tibble with two columns: ‘tested_effect® and ‘daa_results‘.

The first column, ‘tested_effect® is a character vector indicating which term in the differential abun-
dance model was used for significance testing. The values in this row are obtained by pasting to-
gether the column names for each fixed effect variable and each of its values. For example, a fixed
effect column named ‘fixed_effect® with levels "a", "b", and "c" have two terms in ‘tested_effect":
"fixed_effectb" and "fixed_effectc" (note that level "a" of fixed_effect is set as the reference level
during dummy coding). These values correspond to the terms in the differential abundance model
that represent the difference in cluster abundances between samples with fixed_effect = "b" and
fixed_effect = "a" and between samples with fixed_effect = "c" and fixed_effect = "a", respectively.
In addition, the first row in ‘tested_effect® will always represent the "omnibus" test, or the test that
there were significant differences between any levels of any fixed effect variable in the model.

The second column, ‘daa_results‘ is a list of tibbles in which each entry gives the differential
abundance results for each tested_effect. Within each entry of ‘daa_results‘, you will find several
columns including the following: * ‘p_val, the p-value associated with each tested effect in each
input cluster * ‘p_adj‘, the multiple-comparison adjusted p-value (using the p.adjust function)
* Other values associated with the underlying method used to perform the differential abundance
analysis (such as the log-fold change of cluster abundance between the levels being compared). For
details, see glmFit, voom, topTable, and testDA_GLMM.

See Also
Other differential abundance analysis functions: tof_analyze_abundance(), tof_analyze_abundance_glmm(),

tof_analyze_abundance_ttest()

Examples

For differential discovery examples, please see the package vignettes
NULL

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796818/
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r29

tof_analyze_abundance_glmm 23

tof_analyze_abundance_glmm

Differential Abundance Analysis (DAA) with generalized linear mixed-
models (GLMM:s)

Description

This function performs differential abundance analysis on the cell clusters contained within a ‘tof_tbl*
using generalized linear mixed-models. Users specify which columns represent sample, cluster,
fixed effect, and random effect information, and a (mixed) binomial regression model is fit using
either glmer or glm.

Usage

tof_analyze_abundance_glmm(
tof_tibble,
sample_col,
cluster_col,
fixed_effect_cols,
random_effect_cols,
min_cells = 3,
min_samples = 5,

alpha = 0.05
)
Arguments

tof_tibble A ‘tof_tbl‘ or a ‘tibble°.

sample_col An unquoted column name indicating which column in ‘tof_tibble* represents
the id of the sample from which each cell was collected. ‘sample_col‘ should
serve as a unique identifier for each sample collected during data acquisition -
all cells with the same value for ‘sample_col* will be treated as a part of the
same observational unit.

cluster_col An unquoted column name indicating which column in ‘tof_tibble* stores the

cluster ids of the cluster to which each cell belongs. Cluster labels can be pro-

duced via any method the user chooses - including manual gating, any of the

functions in the ‘tof_cluster_*‘ function family, or any other method.
fixed_effect_cols

Unquoted column names representing which columns in ‘tof_tibble‘ should be

used to model fixed effects during the differential abundance analysis. Supports

tidyselect helpers.

Generally speaking, fixed effects should represent the comparisons of biological

interest (often the the variables manipulated during experiments), such as treated

vs. non-treated, before-treatment vs. after-treatment, or healthy vs. non-healthy.
random_effect_cols

Unquoted column names representing which columns in ‘tof_tibble‘ should be

used to model random effects during the differential abundance analysis. Sup-

ports tidyselection.

24 tof_analyze_abundance_glmm

Generally speaking, random effects should represent variables that a researcher
wants to control/account for, but that are not necessarily of biological interest.
Example random effect variables might include batch id, patient id (in a paired
design), or patient age.

Note that without many samples at each level of each of the random effect vari-
ables, it can be easy to overfit mixed models. For most high-dimensional cytom-
etry experiments, 2 or fewer (and often 0) random effect variables are appropri-
ate.

min_cells An integer value used to filter clusters out of the differential abundance analysis.
Clusters are not included in the differential abundance testing if they do not have
at least ‘min_cells‘ in at least ‘min_samples‘ samples. Defaults to 3.

min_samples An integer value used to filter clusters out of the differential abundance analysis.
Clusters are not included in the differential abundance testing if they do not have
at least ‘min_cells‘ in at least ‘min_samples* samples. Defaults to 5.

alpha A numeric value between 0 and 1 indicating which significance level should be
applied to multiple-comparison adjusted p-values during the differential abun-
dance analysis. Defaults to 0.05.

Value

A nested tibble with two columns: ‘tested_effect® and ‘daa_results‘.

The first column, ‘tested_effect®, is a character vector indicating which term in the differential
abundance model was used for significance testing. The values in this row are obtained by pasting
together the column names for each fixed effect variable and each of its values. For example, a fixed
effect column named fixed_effect with levels "a", "b", and "c" have two terms in ‘tested_effect":
"fixed_effectb" and "fixed_effectc" (note that level "a" of fixed_effect is set as the reference level
during dummy coding). These values correspond to the terms in the differential abundance model
that represent the difference in cluster abundances between samples with fixed_effect = "b" and
fixed_effect = "a" and between samples with fixed_effect = "c" and fixed_effect = "a", respectively.
In addition, note that the first row in ‘tested_effect* will always represent the "omnibus" test, or
the test that there were significant differences between any levels of any fixed effect variable in the
model.

The second column, ‘daa_results‘, is a list of tibbles in which each entry gives the differential
abundance results for each tested_effect. Within each entry of ‘daa_results‘, you will find ‘p_value®,
the p-value associated with each tested effect in each input cluster; ‘p_adj*, the multiple-comparison
adjusted p-value (using the p.adjust function), and other values associated with the underlying
method used to perform the differential abundance analysis (such as the log-fold change of cluster
abundance between the levels being compared).

See Also
Other differential abundance analysis functions: tof_analyze_abundance(), tof_analyze_abundance_diffcyt(),
tof_analyze_abundance_ttest()

Examples

For differential discovery examples, please see the package vignettes
NULL

tof_analyze_abundance_ttest

25

tof_analyze_abundance_ttest
Differential Abundance Analysis (DAA) with t-tests

Description

This function performs differential abundance analysis on the cell clusters contained within a ‘tof_tbl*
using simple t-tests. Users specify which columns represent sample, cluster, and effect information,
and either a paired or unpaired t-test (one per cluster) is used to detect significant differences be-

tween sample types.

Usage

tof_analyze_abundance_ttest(

tof_tibble,

cluster_col,

effect_col,

group_cols,

test_type = c("unpaired”, "paired"),
min_cells =
min_samples = 5,
alpha = 0.05,
quiet = FALSE

|
w

Arguments

tof_tibble

cluster_col

effect_col

group_cols

test_type

min_cells

min_samples

A ‘tof_tbl‘ or a ‘tibble‘.

An unquoted column name indicating which column in ‘tof_tibble* stores the
cluster ids of the cluster to which each cell belongs. Cluster labels can be pro-
duced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

Unquoted column name representing which column in ‘tof_tibble‘ should be
used to break samples into groups for the t-test. Should only have 2 unique
values.

Unquoted names of the columns other than ‘effect_col* that should be used to
group cells into independent observations. Fills a similar role to ‘sample_col*
in other ‘tof_analyze_abundance_*‘ functions. For example, if an experiment
involves analyzing samples taken from multiple patients at two timepoints (with
‘effect_col = timepoint), then group_cols should be the name of the column
representing patient IDs.

A string indicating whether the t-test should be "unpaired"” (the default) or "paired".

An integer value used to filter clusters out of the differential abundance analysis.
Clusters are not included in the differential abundance testing if they do not have
at least ‘min_cells® in at least ‘min_samples* samples. Defaults to 3.

An integer value used to filter clusters out of the differential abundance analysis.
Clusters are not included in the differential abundance testing if they do not have
at least ‘min_cells‘ in at least ‘min_samples‘ samples. Defaults to 5.

26 tof_analyze_expression

alpha A numeric value between 0 and 1 indicating which significance level should be
applied to multiple-comparison adjusted p-values during the differential abun-
dance analysis. Defaults to 0.05.

quiet A boolean value indicating whether warnings should be printed. Defaults to
‘TRUE".

Value

A tibble with 7 columns:

{cluster_col} The name/ID of the cluster being tested. Each entry in this column will match a
unique value in the input {cluster_col}.

t The t-statistic computed for each cluster.

df The degrees of freedom used for the t-test for each cluster.

p_val The (unadjusted) p-value for the t-test for each cluster.

p_adj The p.adjust-adjusted p-value for the t-test for each cluster.

significant A character vector that will be "*" for clusters for which p_adj < alpha and "" otherwise.

mean_diff For an unpaired t-test, the difference between the average proportions of each cluster in
the two levels of ‘effect_col‘. For a paired t-test, the average difference between the propor-
tions of each cluster in the two levels of ‘effect_col‘ within a given patient.

mean_fc For an unpaired t-test, the ratio between the average proportions of each cluster in the
two levels of ‘effect_col‘. For a paired t-test, the average ratio between the proportions of
each cluster in the two levels of ‘effect_col® within a given patient. 0.001 is added to the
denominator of the ratio to avoid divide-by-zero errors.

The "levels" attribute of the result indicates the order in which the different levels of the ‘effect_col
were considered. The ‘mean_diff* value for each row of the output is computed by subtracting the
second level from the first level, and the ‘mean_fc* value for each row is computed by dividing the
first level by the second level.

See Also
Other differential abundance analysis functions: tof_analyze_abundance(), tof_analyze_abundance_diffcyt(),
tof_analyze_abundance_glmm()

Examples

For differential discovery examples, please see the package vignettes
NULL

tof_analyze_expression
Perform Differential Expression Analysis (DEA) on high-dimensional
cytometry data

Description

This function performs differential expression analysis on the cell clusters contained within a ‘tof_tbl*

using one of three methods ("diffcyt", "glmm", and "ttest"). It wraps the members of the ‘tof_analyze_expression_**
function family: tof_analyze_expression_diffcyt, tof_analyze_expression_lmm, and tof_analyze_expressio

tof_analyze_expression_diffcyt 27

Usage
tof_analyze_expression(tof_tibble, method = c("diffcyt”, "glmm”, "ttest"”), ...)
Arguments
tof_tibble A ‘tof _tbl‘ or a ‘tibble‘.
method A string indicating which statistical method should be used. Valid values include
"diffcyt", "lmm", and "ttest".
Additional arguments to pass onto the ‘tof_analyze_expression_*‘ function fam-
ily member corresponding to the chosen method.
Value

A tibble or nested tibble containing the differential abundance results from the chosen method. See
tof_analyze_expression_diffcyt, tof_analyze_expression_lmm, and tof_analyze_expression_ttest
for details.

See Also
Other differential expression analysis functions: tof_analyze_expression_diffcyt(), tof_analyze_expression_1i

tof_analyze_expression_ttest()

Examples

For differential discovery examples, please see the package vignettes
NULL

tof_analyze_expression_diffcyt
Differential Expression Analysis (DEA) with diffcyt

Description

This function performs differential expression analysis on the cell clusters contained within a ‘tof_tbl*
using one of two methods implemented in the diffcyt package for differential discovery analysis in
high-dimensional cytometry data.

Usage

tof_analyze_expression_diffcyt(
tof_tibble,
sample_col,
cluster_col,
marker_cols = where(tof_is_numeric),
fixed_effect_cols,
random_effect_cols,
diffcyt_method = c("Imm", "limma”),
include_observation_level_random_effects = FALSE,
min_cells = 3,
min_samples = 5,

https://www.bioconductor.org/packages/release/bioc/html/diffcyt.html

28

alpha = 0.05,

Arguments

tof_tibble

sample_col

cluster_col

marker_cols

tof_analyze_expression_diffcyt

A ‘tof_tbl‘ or a ‘tibble‘.

An unquoted column name indicating which column in ‘tof_tibble* represents
the id of the sample from which each cell was collected. ‘sample_col‘ should
serve as a unique identifier for each sample collected during data acquisition -
all cells with the same value for ‘sample_col* will be treated as a part of the
same observational unit.

An unquoted column name indicating which column in ‘tof_tibble‘ stores the
cluster ids of the cluster to which each cell belongs. Cluster labels can be pro-
duced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

Unquoted column names representing which columns in ‘tof_tibble* (i.e. which
high-dimensional cytometry protein measurements) should be tested for differ-
ential expression between levels of the ‘fixed_effect_cols‘. Defaults to all nu-
meric (integer or double) columns. Supports tidyselect helpers.

fixed_effect_cols

Unquoted column names representing which columns in ‘tof_tibble‘ should be
used to model fixed effects during the differential expression analysis. Generally
speaking, fixed effects represent the comparisons of biological interest (often the
the variables manipulated during experiments), such as treated vs. non-treated,
before-treatment vs. after-treatment, or healthy vs. non-healthy.

random_effect_cols

diffcyt_method

Unquoted column names representing which columns in ‘tof_tibble‘ should be
used to model random effects during the differential expression analysis. Gen-
erally speaking, random effects represent variables that a researcher wants to
control/account for, but that are not necessarily of biological interest. Example
random effect variables might include batch id, patient id (in a paired design),
or patient age.

Note that without many samples at each level of each of the random effect vari-
ables, it can be easy to overfit mixed models. For most high-dimensional cytom-
etry experiments, 2 or fewer (and often 0) random effect variables are appropri-
ate.

A string indicating which diffcyt method should be used for the differential ex-
pression analysis. Valid methods include "Imm" (the default) and "limma".

include_observation_level_random_effects

min_cells

min_samples

A boolean value indicating if "observation-level random effects" (OLREs) should
be included as random effect terms in a "lmm" differential expression model.
For details about what OLRE:s are, see the diffcyt paper. Defaults to FALSE.

An integer value used to filter clusters out of the differential expression analysis.
Clusters are not included in the differential expression testing if they do not have
at least ‘min_cells‘ in at least ‘min_samples* samples. Defaults to 3.

An integer value used to filter clusters out of the differential expression analysis.
Clusters are not included in the differential expression testing if they do not have
at least ‘min_cells‘ in at least ‘min_samples‘ samples. Defaults to 5.

https://www.nature.com/articles/s42003-019-0415-5

tof_analyze_expression_diffcyt 29

alpha A numeric value between 0 and 1 indicating which significance level should be
applied to multiple-comparison adjusted p-values during the differential abun-
dance analysis. Defaults to 0.05.

Optional additional arguments to pass to the under-the-hood diffcyt function
being used to perform the differential expression analysis. See testDS_LMM and
testDS_limma for details.

Details

The two methods are based on linear mixed models ("Imm") and limma ("limma"). Both the "Imm"
and "limma" methods can model both fixed effects and random effects.

Value

A nested tibble with two columns: ‘tested_effect® and ‘dea_results‘.

The first column, ‘tested_effect is a character vector indicating which term in the differential ex-
pression model was used for significance testing. The values in this row are obtained by pasting
together the column names for each fixed effect variable and each of its values. For example, a fixed
effect column named fixed_effect with levels "a", "b", and "c" have two terms in ‘tested_effect’:
"fixed_effectb" and "fixed_effectc" (note that level "a" of fixed_effect is set as the reference level
during dummy coding). These values correspond to the terms in the differential expression model
that represent the difference in cluster median expression values of each marker between samples
with fixed_effect = "b" and fixed_effect = "a" and between samples with fixed_effect = "c¢" and
fixed_effect = "a", respectively. In addition, note that the first row in ‘tested_effect® will always
represent the "omnibus" test, or the test that there are significant differences between any levels of
any fixed effect variable in the model.

The second column, ‘dea_results® is a list of tibbles in which each entry gives the differential ex-
pression results for each tested_effect. Within each entry of ‘dea_results‘, you will find ‘p_val‘, the
p-value associated with each tested effect in each input cluster/marker pair; ‘p_adj‘, the multiple-
comparison adjusted p-value (using the p.adjust function), and other values associated with the
underlying method used to perform the differential expression analysis (such as the log-fold change
of clusters’ median marker expression values between the conditions being compared). Each tibble
in ‘dea_results® will also have two columns representing the cluster and marker corresponding to
the p-value in each row.

See Also
Other differential expression analysis functions: tof_analyze_expression(), tof_analyze_expression_lmm(),

tof_analyze_expression_ttest()

Examples

For differential discovery examples, please see the package vignettes
NULL

https://academic.oup.com/nar/article/43/7/e47/2414268

30 tof_analyze_ expression_Imm

tof_analyze_expression_1lmm

Differential Expression Analysis (DEA) with linear mixed-models
(LMMs)

Description

This function performs differential expression analysis on the cell clusters contained within a ‘tof_tbl*
using linear mixed-models. Users specify which columns represent sample, cluster, marker, fixed
effect, and random effect information, and a (mixed) linear regression model is fit using either 1mer
or glm.

Usage

tof_analyze_expression_1lmm(
tof_tibble,
sample_col,
cluster_col,
marker_cols = where(tof_is_numeric),
fixed_effect_cols,
random_effect_cols,
central_tendency_function = median,
min_cells = 3,
min_samples = 5,

alpha = 0.05
)
Arguments

tof_tibble A ‘tof_tbl‘ or a ‘tibble‘.

sample_col An unquoted column name indicating which column in ‘tof_tibble* represents
the id of the sample from which each cell was collected. ‘sample_col‘ should
serve as a unique identifier for each sample collected during data acquisition -
all cells with the same value for ‘sample_col‘ will be treated as a part of the
same observational unit.

cluster_col An unquoted column name indicating which column in ‘tof_tibble* stores the
cluster ids of the cluster to which each cell belongs. Cluster labels can be pro-
duced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

marker_cols Unquoted column names representing which columns in ‘tof_tibble‘ (i.e. which

high-dimensional cytometry protein measurements) should be included in the
differential discovery analysis. Defaults to all numeric (integer or double) columns.
Supports tidyselection.

fixed_effect_cols
Unquoted column names representing which columns in ‘tof_tibble‘ should be
used to model fixed effects during the differential expression analysis. Supports
tidyselection.
Generally speaking, fixed effects should represent the comparisons of biological
interest (often the the variables manipulated during experiments), such as treated
vs. non-treated, before-treatment vs. after-treatment, or healthy vs. non-healthy.

tof_analyze_expression_Imm 31

random_effect_cols
Optional. Unquoted column names representing which columns in ‘tof_tibble*
should be used to model random effects during the differential expression anal-
ysis. Supports tidyselection.
Generally speaking, random effects should represent variables that a researcher
wants to control/account for, but that are not necessarily of biological interest.
Example random effect variables might include batch id, patient id (in a paired
design), or patient age. Most analyses will not include random effects.
central_tendency_function
The function that will be used to calculate the measurement of central tendency
for each cluster/marker pair (to be used as the dependent variable in the linear
model). Defaults to median.

min_cells An integer value used to filter clusters out of the differential expression analysis.
Clusters are not included in the differential expression testing if they do not have
at least ‘min_cells in at least ‘min_samples‘ samples. Defaults to 3.

min_samples An integer value used to filter clusters out of the differential expression analysis.
Clusters are not included in the differential expression testing if they do not have
at least ‘min_cells in at least ‘min_samples‘ samples. Defaults to 5.

alpha A numeric value between 0 and 1 indicating which significance level should be
applied to multiple-comparison adjusted p-values during the differential abun-
dance analysis. Defaults to 0.05.

Details

Specifically, one linear model is fit for each cluster/marker pair. For each cluster/marker pair, a user-
supplied measurement of central tendency (‘central_tendency_function®), such as mean or median,
is calculated across all cells in the cluster on a sample-by-sample basis. Then, this central tendency
value is used as the dependent variable in a linear model with ‘fixed_effect_cols® as fixed effects
predictors and ‘random_effect_cols‘ as random effects predictors. Once all models (one per each
cluster/marker pair) are fit, p-values for each coefficient in each model are multiple-comparisons
adjusted using the p.adjust function.

Value

A nested tibble with two columns: ‘tested_effect® and ‘dea_results‘.

The first column, ‘tested_effect is a character vector indicating which term in the differential ex-
pression model was used for significance testing. The values in this row are obtained by pasting
together the column names for each fixed effect variable and each of its values. For example, a fixed
effect column named fixed_effect with levels "a", "b", and "c" have two terms in ‘tested_effect:
"fixed_effectb" and "fixed_effectc" (note that level "a" of fixed_effect is set as the reference level
during dummy coding). These values correspond to the terms in the differential expression model
that represent the difference in cluster median expression values of each marker between samples
with fixed_effect = "b" and fixed_effect = "a" and between samples with fixed_effect = "c¢" and
fixed_effect = "a", respectively. In addition, note that the first row in ‘tested_effect® will always
represent the "omnibus" test, or the test that there were significant differences between any levels
of any fixed effect variable in the model.

The second column, ‘dea_results‘ is a list of tibbles in which each entry gives the differential ex-
pression results for each tested_effect. Within each entry of ‘daa_results‘, you will find ‘p_val‘, the
p-value associated with each tested effect in each input cluster/marker pair; ‘p_adj‘, the multiple-
comparison adjusted p-value (using the p.adjust function), and other values associated with the
underlying method used to perform the differential expression analysis (such as the log-fold change
of clusters’ median marker expression values between the levels being compared).

32 tof_analyze_expression_ttest

See Also

Other differential expression analysis functions: tof_analyze_expression(), tof_analyze_expression_diffcyt().,
tof_analyze_expression_ttest()

Examples

For differential discovery examples, please see the package vignettes
NULL

tof_analyze_expression_ttest
Differential Expression Analysis (DEA) with t-tests

Description

This function performs differential expression analysis on the cell clusters contained within a ‘tof_tbl*
using simple t-tests. Specifically, either an unpaired or paired t-test will compare samples’ marker
expression distributions (between two conditions) within each cluster using a user-specified sum-
mary function (i.e. mean or median). One t-test is conducted per cluster/marker pair and significant
differences between sample types are detected after multiple-hypothesis correction.

Usage

tof_analyze_expression_ttest(
tof_tibble,
cluster_col,
marker_cols = where(tof_is_numeric),
effect_col,
group_cols,
test_type = c("unpaired”, "paired"),
summary_function = mean,
min_cells = 3,
min_samples = 5,

alpha = 0.05,
quiet = FALSE
)
Arguments
tof_tibble A ‘tof_tbl* or a ‘tibble*.
cluster_col An unquoted column name indicating which column in ‘tof_tibble* stores the
cluster ids of the cluster to which each cell belongs. Cluster labels can be pro-
duced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.
marker_cols Unquoted column names representing which columns in ‘tof_tibble* (i.e. which

high-dimensional cytometry protein measurements) should be tested for differ-
ential expression between levels of the ‘effect_col‘. Defaults to all numeric
(integer or double) columns. Supports tidyselect helpers.

tof_analyze_expression_ttest 33

effect_col Unquoted column name representing which column in ‘tof_tibble* should be
used to break samples into groups for the t-test. Should only have 2 unique
values.

group_cols Unquoted names of the columns other than ‘effect_col* that should be used to

group cells into independent observations. Fills a similar role to ‘sample_col*
in other ‘tof _analyze_abundance_*‘ functions. For example, if an experiment
involves analyzing samples taken from multiple patients at two timepoints (with
‘effect_col = timepoint®), then group_cols should be the name of the column
representing patient IDs.

test_type A string indicating whether the t-test should be "unpaired"” (the default) or "paired".

summary_function
The vector-valued function that should be used to summarize the distribution of
each marker in each cluster (within each sample, as grouped by ‘group_cols®).
Defaults to ‘mean‘.

min_cells An integer value used to filter clusters out of the differential abundance analysis.
Clusters are not included in the differential abundance testing if they do not have
at least ‘min_cells in at least ‘min_samples‘ samples. Defaults to 3.

min_samples An integer value used to filter clusters out of the differential abundance analysis.
Clusters are not included in the differential abundance testing if they do not have
at least ‘min_cells in at least ‘min_samples‘ samples. Defaults to 5.

alpha A numeric value between 0 and 1 indicating which significance level should be
applied to multiple-comparison adjusted p-values during the differential abun-
dance analysis. Defaults to 0.05.

quiet A boolean value indicating whether warnings should be printed. Defaults to
‘TRUE".

Value

A tibble with 7 columns:

{cluster_col} The name/ID of the cluster in the cluster/marker pair being tested. Each entry in this
column will match a unique value in the input {cluster_col}.

marker The name of the marker in the cluster/marker pair being tested.

t The t-statistic computed for each cluster.

df The degrees of freedom used for the t-test for each cluster.

p_val The (unadjusted) p-value for the t-test for each cluster.

p_adj The p.adjust-adjusted p-value for the t-test for each cluster.

significant A character vector that will be "*" for clusters for which p_adj < alpha and "" otherwise.

mean_diff For an unpaired t-test, the difference between the average proportions of each cluster in
the two levels of ‘effect_col‘. For a paired t-test, the average difference between the propor-
tions of each cluster in the two levels of ‘effect_col‘ within a given patient.

mean_fc For an unpaired t-test, the ratio between the average proportions of each cluster in the
two levels of ‘effect_col®. For a paired t-test, the average ratio between the proportions of
each cluster in the two levels of ‘effect_col within a given patient. 0.001 is added to the
denominator of the ratio to avoid divide-by-zero errors.

The "levels" attribute of the result indicates the order in which the different levels of the ‘effect_col*
were considered. The ‘mean_diff* value for each row of the output is computed subtracting the
second level from the first level, and the ‘mean_fc* value for each row is computed by dividing the
first level by the second level.

34 tof_annotate_clusters

See Also

Other differential expression analysis functions: tof_analyze_expression(), tof_analyze_expression_diffcyt(),
tof_analyze_expression_lmm()

Examples

For differential discovery examples, please see the package vignettes
NULL

tof_annotate_clusters Manually annotate tidytof-computed clusters using user-specified la-
bels

Description

This function adds an additional column to a ‘tibble‘ or ‘tof_tbl‘ to allow users to incorporate
manual cell type labels for clusters identified using unsupervised algorithms.

Usage

tof_annotate_clusters(tof_tibble, cluster_col, annotations)

Arguments

tof_tibble ‘tof _tbl‘ or ‘tibble‘.

cluster_col An unquoted column name indicating which column in ‘tof_tibble‘ contains the
ids of the unsupervised cluster to which each cell belongs. Cluster labels can be
produced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

annotations A data structure indicating how to annotate each cluster id in ‘cluster_col‘. ‘an-
notations‘ can be provided as a data.frame with two columns (the first should
have the same name as ‘cluster_col‘ and contain each unique cluster id; the sec-
ond can have any name and should contain a character vector indicating which
manual annotation should be matched with each cluster id in the first column).
‘annotations‘ can also be provided as a named character vector; in this case,
each entry in ‘annotations‘ should be a unique cluster id, and the names for each
entry should be the corresponding manual cluster annotation. See below for
examples.

Value

A ‘tof_tbl‘ with the same number of rows as ‘tof_tibble* and one additional column containing
the manual cluster annotations for each cell (as a character vector). If ‘annotations was provided
as a data.frame, the new column will have the same name as the column containing the cluster
annotations in ‘annotations‘. If ‘annotations‘ was provided as a named character vector, the new
column will be named ‘{cluster_col}_annotation®.

tof_apply_classifier 35

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = c(rnorm(n = 500), rnorm(n = 500, mean = 2)),
cd34 = c(rnorm(n = 500), rnorm(n = 500, mean = 4)),
cd19 = rnorm(n = 1000),
cluster_id = c(rep(”a", 500), rep("b"”, 500))

)

using named character vector
sim_data |>
tof_annotate_clusters(
cluster_col = cluster_id,
annotations = c("macrophage” = "a", "dendritic cell” = "b")

)

using two-column data.frame
annotation_data_frame <-
data.frame(
cluster_id = c("a", "b"),
cluster_annotation = c("macrophage”, "dendritic cell”)

)

sim_data |>
tof_annotate_clusters(
cluster_col = cluster_id,
annotations = annotation_data_frame

tof_apply_classifier Perform developmental clustering on CyTOF data using a pre-fit clas-
sifier

Description

Perform developmental clustering on CyTOF data using a pre-fit classifier

Usage

tof_apply_classifier(
cancer_tibble = NULL,
classifier_fit = NULL,
distance_function = c("mahalanobis”, "cosine"”, "pearson"),
num_cores = 1,
parallel_vars

Arguments

cancer_tibble A ‘tibble‘ or ‘tof_tibble‘ containing cells to be classified into their nearest healthy
subpopulation (generally cancer cells).

36

tof assess_channels

classifier_fit A nested ‘tibble‘ produced by ‘tof_build_classifier* in which each row repre-
sents a healthy cell subpopulation into which the cells in ‘cancer_tibble‘ should
be classified using minimum distance.

distance_function
A string indicating which distance function should be used to perform the clas-
sification. Options are "mahalanobis" (the default), "cosine", and "pearson".

num_cores An integer indicating the number of CPU cores used to parallelize the classifi-
cation. Defaults to 1 (a single core).

parallel_vars Unquoted column names indicating which columns in ‘cancer_tibble‘ to use for
breaking up the data in order to parallelize the classification. Defaults to NULL.
Supports tidyselect helpers.

Value

A tibble with ‘nrow(cancer_tibble)‘ rows and ‘nrow(classifier_fit) + 1° columns. Each row repre-
sents a cell from ‘cancer_tibble‘, and ‘nrow(classifier_fit)* of the columns represent the distance
between the cell and each of the healthy subpopulations’ cluster centroids. The final column repre-
sents the cluster id of the healthy subpopulation with the minimum distance to the cell represented
by that row.

Examples

NULL

tof_assess_channels Detect low-expression (i.e. potentially failed) channels in high-
dimensional cytometry data

Description

Detect low-expression (i.e. potentially failed) channels in high-dimensional cytometry data

Usage

tof_assess_channels(
tof_tibble,
channel_cols = where(tof_is_numeric),
negative_threshold = asinh(10/5),
negative_proportion_flag = 0.95

Arguments

tof_tibble A ‘tof_tbl* or ‘tibble‘.

channel_cols A vector of unquoted column names representing columns that contain single-
cell protein measurements. Supports tidyselect helpers. If nothing is specified,
the default is to analyze all numeric columns.

negative_threshold
A scalar indicating the threshold below which a measurement should be consid-
ered negative. Defaults to the hyperbolic arcsine transformation of 10 counts.

tof_assess_clusters_distance 37

negative_proportion_flag
A scalar between 0 and 1 indicating the proportion of cells in tof_tibble that need
to be below ‘negative_threshold for a given marker in order for that marker to
be flagged. Defaults to 0.95.

Value

A tibble 3 columns and a number of rows equal to the number of columns in ‘tof_tibble* chosen
by ‘channel_cols‘. The three columns are "channel", a character vector of channel names, "neg-
ative_proportion", a numeric vector with values between 0 and 1 indicating how many cells in
‘tof _tibble‘ below ‘negative_threshold* for each channel, and ‘flagged_channel‘, a boolean vector
indicating whether or not a channel has been flagged as potentially failed (TRUE means that the
channel had a large number of cells below ‘negative_threshold*).

Examples

simulate some data
sim_data <-
data.frame(

cd4 = rnorm(n = 100, mean = 5, sd = 0.5),
cd8 = rnorm(n = 100, mean = @, sd = 0.1),
cd33 = rnorm(n = 100, mean = 10, sd = 0.1)

)

tof_assess_channels(tof_tibble = sim_data)

tof_assess_channels(tof_tibble = sim_data, channel_cols = c(cd4, cd8))

tof_assess_channels(tof_tibble = sim_data, negative_threshold = 2)

tof_assess_clusters_distance
Assess a clustering result by calculating the z-score of each cell’s ma-
halanobis distance to its cluster centroid and flagging outliers.

Description

This function evaluates the result of a clustering procedure by comparing the mahalanobis distance
between each cell and the centroid of the cluster to which it was assigned among all cells in a given
cluster. All cells with a mahalanobis-distance z-score above a user-specified threshold are flagged
as potentially anomalous. Note that the z-score is calculated using a modified formula to minimize
the effect of outliers (Z = x - median(x) / mad(x)).

Usage

tof_assess_clusters_distance(
tof_tibble,
cluster_col,
marker_cols = where(tof_is_numeric),
z_threshold = 3,
augment = FALSE

38

Arguments

tof_tibble

cluster_col

marker_cols

z_threshold

augment

Value

tof _assess_clusters_distance

A ‘tof _tbl° or ‘tibble°.

An unquoted column name indicating which column in ‘tof_tibble* stores the
cluster ids for the cluster to which each cell belongs. Cluster labels can be
produced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

Unquoted column names indicating which column in ‘tof_tibble‘ should be in-
terpreted as markers to be used in the mahalanobis distance calculation. Defaults
to all numeric columns. Supports tidyselection.

A scalar indicating the distance z-score threshold above which a cell should be
considered anomalous. Defaults to 3.

A boolean value indicating if the output should column-bind the computed flags
for each cell (see below) as new columns in ‘tof_tibble* (TRUE) or if a tibble
including only the computed flags should be returned (FALSE, the default).

If augment = FALSE (the default), a tibble with 3 columns: ".mahalanobis_distance" (the maha-
lanobis distance from each cell to the centroid of tits assigned cluster), "z_score" (the modified z-
score of each cell’s mahalanobis distance relative to all other cells in the dataset), and "flagged_cell"
(a boolean indicating whether or not each cell was flagged as having a z-score above z_threshold).
If augment = TRUE, the same 3 columns will be column-bound to tof_tibble, and the resulting
tibble will be returned.

Examples

simulate data

sim_data_inner <-
dplyr::tibble(

cd45 =
cd38 =
c(

cd34 =
c(

)’

c(rnorm(n = 600), rnorm(n = 500, mean = -4)),

rnorm(n = 100, sd = 0.5),
rnorm(n = 500, mean = -3),
rnorm(n = 500, mean = 8)

rnorm(n = 100, sd = 0.2, mean = -10),
rnorm(n = 500, mean = 4),
rnorm(n = 500, mean = 60)

cd19 = c(rnorm(n = 100, sd = 0.3, mean = 10), rnorm(n = 1000)),
cluster_id = c(rep(”a”, 100), rep("b", 500), rep("c", 500)),
dataset = "inner”

)

sim_data_outer <-
dplyr::tibble(
cd45 = c(rnorm(n = 1@), rnorm(50, mean = 3), rnorm(n = 50, mean = -12)),

cd38 =
c(

rnorm(n = 10, sd = 0.5),

tof_assess_clusters_entropy

rnorm(n = 50, mean = -10),
rnorm(n = 50, mean = 10)

),

cd34 =

c(
rnorm(n = 10, sd = 0.2, mean = -15),
rnorm(n = 50, mean = 15),
rnorm(n = 50, mean = 70)

),

cd19 = c(rnorm(n = 10, sd = 0.3, mean = 19), rnorm(n = 100)),
cluster_id = c(rep("a”, 10), rep("b", 50), rep("c", 50)),
dataset = "outer”

)
sim_data <- rbind(sim_data_inner, sim_data_outer)

detect anomalous cells (in this case, the "outer” dataset contains small
clusters that get lumped into the larger clusters in the "inner"” dataset)
z_result <-

sim_data |>

tof_assess_clusters_distance(cluster_col = cluster_id, z_threshold = 2.5)

39

tof_assess_clusters_entropy

Assess a clustering result by calculating the shannon entropy of each
cell’s mahalanobis distance to all cluster centroids and flagging out-

liers.

Description

This function evaluates the result of a clustering procedure by calculating the mahalanobis distance
between each cell and the centroids of all clusters in the dataset and finding the shannon entropy of
the resulting vector of distances. All cells with an entropy threshold above a user-specified threshold
are flagged as potentially anomalous. Entropy is minimized (to 0) when a cell is close to one (or a
small number) of clusters, but far from the rest of them. If a cell is close to multiple cluster centroids

(i.e. has an ambiguous phenotype), its entropy will be large.

Usage

tof_assess_clusters_entropy(
tof_tibble,
cluster_col,
marker_cols = where(tof_is_numeric),
entropy_threshold,
entropy_quantile = 0.9,
num_closest_clusters,
augment = FALSE

40 tof_assess_clusters_entropy

Arguments
tof_tibble A ‘tof _tbl‘ or ‘tibble°.
cluster_col An unquoted column name indicating which column in ‘tof_tibble® stores the
cluster ids for the cluster to which each cell belongs. Cluster labels can be
produced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.
marker_cols Unquoted column names indicating which column in ‘tof_tibble‘ should be in-

terpreted as markers to be used in the mahalanobis distance calculation. Defaults
to all numeric columns. Supports tidyselection.

entropy_threshold
A scalar indicating the entropy threshold above which a cell should be con-
sidered anomalous. If unspecified, a threshold will be computed using ‘en-
tropy_quantile® (see below). (Note: Entropy is often between 0 and 1, but can
be larger with many classes/clusters).

entropy_quantile
A scalar between 0 and 1 indicating the entropy quantile above which a cell
should be considered anomalous. Defaults to 0.9, which means that cells with an
entropy above the 90th percentile will be flagged. Ignored if entropy_threshold
is specified directly.

num_closest_clusters
An integer indicating how many of a cell’s closest cluster centroids should have
their mahalanobis distance included in the entropy calculation. Playing with this
argument will allow you to ignore distances to clusters that are far away from
each cell (and thus may distort the result, as many distant centroids with large
distances can artificially inflate a cells’ entropy value; that being said, this is
rarely an issue empirically). Defaults to all clusters in tof_tibble.

augment A boolean value indicating if the output should column-bind the computed flags
for each cell (see below) as new columns in ‘tof_tibble‘ (TRUE) or if a tibble
including only the computed flags should be returned (FALSE, the default).

Value

If augment = FALSE (the default), a tibble with 2 + NUM_CLUSTERS columns. where NUM_CLUSTERS
is the number of unique clusters in cluster_col. Two of the columns will be "entropy" (the entropy

value for each cell) and "flagged_cell" (a boolean value indicating if each cell had an entropy value

above entropy_threshold). The other NUM_CLUSTERS columns will contain the mahalanobis dis-

tances from each cell to each of the clusters in cluster_col (named ".mahalanobis_{cluster_name}").

If augment = TRUE, the same 2 + NUM_CLUSTERS columns will be column-bound to tof_tibble,

and the resulting tibble will be returned.

Examples

simulate data
sim_data <-
dplyr::tibble(
cd45 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)),
cd38 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)),
cd34 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)),
cd19 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)),
cluster_id = c(rep(”a"”, 1000), rep("b", 1000), rep("c", 1000))

tof _assess_clusters_knn 41

imagine a "reference” dataset in which "cluster a" isn't present
sim_data_reference <-

sim_data |>

dplyr::filter(cluster_id %in% c("b", "c"))

if we cluster into the reference dataset, we will force all cells in
cluster a into a population where they don't fit very well
sim_data <-
sim_data |>
tof_cluster(
healthy_tibble = sim_data_reference,
healthy_label_col = cluster_id,
method = "ddpr”
)

we can evaluate the clustering quality by calculating by the entropy of the
mahalanobis distance vector for each cell to all cluster centroids
entropy_result <-
sim_data |>
tof_assess_clusters_entropy(
cluster_col = .mahalanobis_cluster,
marker_cols = starts_with("cd"),
entropy_quantile = 0.8,
augment = TRUE
)

most cells in "cluster a" are flagged, and few cells in the other clusters are
flagged_cluster_proportions <-
entropy_result |>
dplyr::group_by(cluster_id) |>
dplyr: :summarize(
prop_flagged = mean(flagged_cell)
)

tof_assess_clusters_knn

Assess a clustering result by calculating a cell’s cluster assignment to
that of its K nearest neighbors.

Description

This function evaluates the result of a clustering procedure by finding the cell’s K nearest neighbors,
determining which cluster the majority of them are assigned to, and checking if this matches the
cell’s own cluster assignment. If the cluster assignment of the majority of a cell’s nearest neighbors
does not match with the cell’s own cluster assignment, the cell is flagged as potentially anomalous.

Usage

tof_assess_clusters_knn(
tof_tibble,
cluster_col,
marker_cols = where(tof_is_numeric),
num_neighbors = min(10, nrow(tof_tibble)),

42 tof _assess_clusters_knn

distance_function = c("euclidean”, "cosine”, "12", "ip"),
augment = FALSE
)
Arguments
tof_tibble A ‘tof_tbl‘ or ‘tibble°.
cluster_col An unquoted column name indicating which column in ‘tof_tibble* stores the
cluster ids for the cluster to which each cell belongs. Cluster labels can be
produced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.
marker_cols Unquoted column names indicating which column in ‘tof_tibble‘ should be in-

terpreted as markers to be used in the mahalanobis distance calculation. Defaults
to all numeric columns. Supports tidyselection.

num_neighbors An integer indicating how many neighbors should be found during the nearest
neighbor calculation.

distance_function
A string indicating which distance function should be used to perform the k
nearest neighbor calculation. Options are "euclidean" (the default) and "cosine".

augment A boolean value indicating if the output should column-bind the computed flags
for each cell (see below) as new columns in ‘tof_tibble‘ (TRUE) or if a tibble
including only the computed flags should be returned (FALSE, the default).

Value

If augment = FALSE (the default), a tibble with 2 columns: ".knn_cluster" (a character vector indi-
cating which cluster received the majority vote of each cell’s k nearest neighbors) and "flagged_cell"
(aboolean value indicating if the cell’s cluster assignment matched the majority vote (TRUE) or not
(FALSE)). If augment = TRUE, the same 2 columns will be column-bound to tof_tibble, and the
resulting tibble will be returned.

Examples

sim_data <-
dplyr::tibble(
cd45 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)),
cd38 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)),
cd34 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)),
cd19 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)),
cluster_id = c(rep("a”", 1000), rep("b", 1000), rep("c"”, 1000))

)

knn_result <-
sim_data |>
tof_assess_clusters_knn(
cluster_col = cluster_id,
num_neighbors = 10

tof_assess_flow_rate 43

tof_assess_flow_rate Detect flow rate abnormalities in high-dimensional cytometry data

Description

This function performs a simplified version of flowAlI’s statistical test to detect time periods with
abnormal flow rates over the course of a flow cytometry experiment. Briefly, the relative flow
rates for each timestep throughout data acquisition are calculated (see tof_calculate_flow_rate), and
outlier timepoints with particularly high or low flow rates (i.e. those beyond extreme values of the
t-distribution across timesteps) are flagged.

Usage

tof_assess_flow_rate(
tof_tibble,
time_col,
group_cols,
num_timesteps = nrow(tof_tibble)/1000,
alpha_threshold = 0.01,
visualize = FALSE,

L

augment = FALSE

)
Arguments
tof_tibble A ‘tof_tbl® or ‘tibble.
time_col An unquoted column name indicating which column in ‘tof_tibble* contains the
time at which each cell was collected.
group_cols Optional. Unquoted column names indicating which columns should be used

to group cells before analysis. Flow rate calculation is then performed indepen-
dently within each group. Supports tidyselect helpers.

num_timesteps The number of bins into which ‘time_col* should be split. to define "timesteps"
of the data collection process. The number of cells analyzed by the cytometer
will be counted in each bin separately and will represent the relative average
flow rate for that timestep in data collection.

alpha_threshold
A scalar between 0 and 1 indicating the two-tailed significance level at which to
draw outlier thresholds in the t-distribution with ‘num_timesteps‘ - 1 degrees of
freedom. Defaults to 0.01.

visualize A boolean value indicating if a plot should be generated to visualize each timestep’s
relative flow rate (by group) instead of returning the tibble directly. Defaults to
FALSE.

Optional additional arguments to pass to facet_wrap. Ignored if visualize =
FALSE.

augment A boolean value indicating if the output should column-bind the computed flags
for each cell (see below) as new columns in ‘tof_tibble‘ (TRUE) or if a tibble
including only the computed flags should be returned (FALSE, the default).

https://academic.oup.com/bioinformatics/article/32/16/2473/2240408

44 tof assess_flow_rate_tibble

Value

A tibble with the same number of rows as ‘tof_tibble‘. If augment = FALSE (the default), it will
have 3 columns: "{time_col}" (the same column as ‘time_col*), "timestep" (the numeric timestep to
which each cell was assigned based on its value for ‘time_col‘), and "flagged_window" (a boolean
vector indicating if each cell was collecting during a timestep flagged for having a high or low
flow rate). If augment = TRUE, these 3 columns will be column-bound to ‘tof_tibble* to return an
augmented version of the input dataset. (Note that in this case, time_col will not be duplicated). If
visualize = TRUE, then a ggplot object is returned instead of a tibble.

Examples

set.seed(1000L)
sim_data <-
data.frame(

cd4 = rnorm(n = 1000, mean = 5, sd = 0.5),
cd8 = rnorm(n = 1000, mean = @, sd = 0.1),
cd33 = rnorm(n = 1000, mean = 10, sd = 0.1),

file_name = c(rep(”"a"”, times = 500), rep("b"”, times = 500)),

time =
c(
sample(1:100, size = 200, replace = TRUE),
sample(100:400, size = 300, replace = TRUE),
sample(1:150, size = 400, replace = TRUE),
sample(1:500, size = 100, replace = TRUE)
)

)

sim_data |>
tof_assess_flow_rate(
time_col = time,
num_timesteps = 20,
visualize = TRUE

)

sim_data |>
tof_assess_flow_rate(
time_col = time,
group_cols = file_name,
num_timesteps = 20,
visualize = TRUE

tof_assess_flow_rate_tibble
Detect flow rate abnormalities in high-dimensional cytometry data
(stored in a single data.frame)

Description

This function performs a simplified version of flowAI’s statistical test to detect time periods with
abnormal flow rates over the course of a flow cytometry experiment. Briefly, the relative flow
rates for each timestep throughout data acquisition are calculated (see tof_calculate_flow_rate), and

https://academic.oup.com/bioinformatics/article/32/16/2473/2240408

tof_assess_flow_rate_tibble 45

outlier timepoints with particularly high or low flow rates (i.e. those beyond extreme values of the
t-distribution across timesteps) are flagged.

Usage

tof_assess_flow_rate_tibble(

tof_tibble,
time_col,

num_timesteps = nrow(tof_tibble)/1000,
alpha_threshold = 0.01,
augment = FALSE

Arguments

tof_tibble

time_col

num_timesteps

A ‘tof_tbl° or ‘tibble°.

An unquoted column name indicating which column in ‘tof_tibble‘ contains the
time at which each cell was collected.

The number of bins into which ‘time_col* should be split. to define "timesteps”
of the data collection process. The number of cells analyzed by the cytometer
will be counted in each bin separately and will represent the relative average
flow rate for that timestep in data collection.

alpha_threshold

augment

Value

A scalar between 0 and 1 indicating the two-tailed significance level at which to
draw outlier thresholds in the t-distribution with ‘num_timesteps‘ - 1 degrees of
freedom. Defaults to 0.01.

A boolean value indicating if the output should column-bind the computed flags
for each cell (see below) as new columns in ‘tof_tibble‘ (TRUE) or if a tibble
including only the computed flags should be returned (FALSE, the default).

A tibble with the same number of rows as ‘tof_tibble‘. If augment = FALSE (the default), it will

have 3 columns:

"{time_col}" (the same column as ‘time_col®), "timestep" (the numeric timestep to

which each cell was assigned based on its value for ‘time_col‘), and "flagged_window" (a boolean
vector indicating if each cell was collecting during a timestep flagged for having a high or low
flow rate). If augment = TRUE, these 3 columns will be column-bound to ‘tof_tibble* to return an
augmented version of the input dataset. (Note that in this case, time_col will not be duplicated).

Examples

set.seed(1000L)
sim_data <-
data.frame(

cd4 = rnorm(n = 1000, mean = 5, sd = 0.5),
cd8 = rnorm(n = 1000, mean = @, sd = 0.1),
cd33 = rnorm(n = 1000, mean = 10, sd = 0.1),
time =

c(

sample(1:100, size = 200, replace = TRUE),
sample(100:400, size = 300, replace = TRUE),
sample(1:150, size = 400, replace = TRUE),
sample(1:500, size = 100, replace = TRUE)

46 tof_assess_model

)

sim_data [>
tof_assess_flow_rate(
time_col = time,
num_timesteps = 20,
visualize = TRUE

tof_assess_model Assess a trained elastic net model

Description

This function assesses a trained ‘tof_model‘’s performance on new data by computing model type-
specific performance measurements. If new data isn’t provided, performance metrics for the training
data will be provided.

Usage

tof_assess_model (tof_model, new_data)

Arguments
tof_model A ‘tof_model° trained using tof_train_model
new_data A tibble of new observations that should be used to evaluate the ‘tof_model‘’s
performance. If new_data isn’t provided, model evaluation will will be per-
formed using the training data used to fit the model. Alternatively, the string
"tuning" can be provided to access the model’s performance metrics during the
(resampled) model tuning process.
Value

A list of performance metrics whose components depend on the model type:

""model_metrics' A tibble with two columns ("metric" and "value") containing standard perfor-
mance metrics for each model type. For linear models, the "mse" (the mean squared error
of the predictions) and "mae" (the mean absolute error of the predictions). For two-class
models, "roc_auc" (the area under the Receiver-Operating Curve for the classification), "mis-
classification error” (the proportion of misclassified observations), "binomial_deviance" (see
deviance.glmnet), "mse" (the mean squared error of the logit function), and "mae" (the mean
absolute error of the logit function). For multiclass models, "roc_auc" (the area under the
Receiver-Operating Curve for the classification using the Hand-Till generalization of the ROC
AUC for multiclass models in roc_auc), "misclassification error" (the proportion of misclassi-
fied observations), "multinomial_deviance" (see deviance.glmnet), and "mse" and "mae" as
above. For survival models, "concordance_index" (Harrel’s C index; see deviance.glmnet)
and "partial_likelihood_deviance" (see deviance.glmnet).

tof _assess_model 47

""roc_curve'' Reported only for "two-class" and "multiclass" models. For both, a tibble is provided
reporting the true-positive rate (tpr) and false-positive rate (fpr) at each threshold for classi-
fication for use in plotting a receiver-operating curve. For "multiclass" models, the ".level"
column allows for separating the values in roc_curve such that one ROC can be plotted for
each class.

"confusion_matrix" Reported only for "two-class" and "multiclass" models. For both, a tibble is
provided reporting the "confusion matrix" of the classification in long-format.

"survival_curves' Reported only for "survival" models. A tibble indicating each patient’s prob-
ability of survival (1 - probability(event)) at each timepoint in the dataset and whether each
sample was placed in the "high" or "low" risk group according to its predicted relative risk
(and the tof_model’s optimal relative_risk cutoff in the training dataset).

See Also

Other modeling functions: tof_create_grid(), tof_predict(), tof_split_data(), tof_train_model()

Examples

feature_tibble <-
dplyr::tibble(
sample = as.character(1:100),
cd45 = runif(n = 100),
pstat5 = runif(n = 100),
cd34 = runif(n = 100),
outcome = (3 * cd45) + (4 x pstat5) + rnorm(100)
)

new_tibble <-
dplyr::tibble(
sample = as.character(1:20),
cd45 = runif(n = 20),
pstat5 = runif(n = 20),
cd34 = runif(n = 20),
outcome = (3 * cd45) + (4 * pstat5) + rnorm(20)
)

split_data <- tof_split_data(feature_tibble, split_method = "simple")

train a regression model
regression_model <-
tof_train_model(
split_data = split_data,
predictor_cols = c(cd45, pstat5, cd34),
response_col = outcome,
model_type = "linear”

)

assess the model on new data
tof_assess_model (tof_model = regression_model, new_data = new_tibble)

48 tof_assess_model_tuning

tof_assess_model_new_data
Compute a trained elastic net model’s performance metrics using
new_data.

Description

Compute a trained elastic net model’s performance metrics using new_data.

Usage

tof_assess_model_new_data(tof_model, new_data)

Arguments
tof_model A ‘tof_model° trained using tof_train_model
new_data A tibble of new observations that should be used to evaluate the ‘tof model‘’s
performance.
Value

A list of performance metrics whose components depend on the model type.

tof_assess_model_tuning
Access a trained elastic net model’s performance metrics using its tun-
ing data.

Description

Access a trained elastic net model’s performance metrics using its tuning data.

Usage

tof_assess_model_tuning(tof_model)

Arguments

tof_model A ‘tof_model‘ trained using tof_train_model

Value

A list of performance metrics whose components depend on the model type.

tof batch_correct

49

tof_batch_correct

Perform groupwise linear rescaling of high-dimensional cytometry
measurements

Description

This function performs quantile normalization on high-dimensional cytometry data in tidy format
using either linear rescaling or quantile normalization. Each channel specified by ‘channel_cols*

is batch corrected,
correction should b

and ‘group_cols‘ can be used to break cells into groups for which the batch
e performed separately.

Usage
tof_batch_correct(
tof_tibble,
channel_cols,
group_cols,
augment = TRUE,
method = c("rescale”, "quantile")
)
Arguments
tof_tibble A ‘tof_tbl‘ or a ‘tibble‘.

channel_cols

group_cols

augment

method

Value

Unquoted column names representing columns that contain single-cell protein
measurements. Supports tidyselect helpers.

Optional. Unquoted column names indicating which columns should be used
to group cells before batch correction. Batch correction is then performed inde-
pendently within each group. Supports tidyselect helpers.

A boolean value indicating if the output should replace the ‘channel_cols‘ in
‘tof_tibble* with the new, batch corrected columns (TRUE, the default) or if it
should only return the batch-corrected columns (FALSE) with all other columns
omitted.

A string indicating which batch correction method should be used. Valid options
are "rescale” for linear scaling (the default) and "quantile" for quantile normal-
ization using normalize.quantiles.

If augment = TRUE, a tibble with the same number of rows and columns as tof_tibble, with the

columns specified

by ‘channel_cols batch-corrected. If augment = FALSE, a tibble containing

only the batch-corrected ‘channel_cols®.

Examples

NULL

50 tof_batch_correct_quantile

tof_batch_correct_quantile
Batch-correct a tibble of high-dimensional cytometry data using quan-
tile normalization.

Description

This function performs quantile normalization on high-dimensional cytometry data in tidy format
using normalize.quantiles. Optionally, groups can be specified and normalized separately.

Usage

tof_batch_correct_quantile(
tof_tibble,
channel_cols,
group_cols,
augment = TRUE

)

Arguments

tof_tibble A ‘tof_tbl‘ or a ‘tibble‘.

channel_cols Unquoted column names representing columns that contain single-cell protein
measurements. Supports tidyselect helpers.

group_cols Optional. Unquoted column names indicating which columns should be used
to group cells before batch correction. Batch correction is then performed inde-
pendently within each group. Supports tidyselect helpers.

augment A boolean value indicating if the output should replace the ‘channel_cols‘ in
‘tof_tibble® with the new, batch corrected columns (TRUE, the default) or if it
should only return the batch-corrected columns (FALSE) with all other columns
omitted.

Value

If augment = TRUE, a tibble with the same number of rows and columns as tof_tibble, with the
columns specified by ‘channel_cols® batch-corrected. If augment = FALSE, a tibble containing
only the batch-corrected ‘channel_cols*.

Examples

NULL

tof_batch_correct_quantile_tibble 51

tof_batch_correct_quantile_tibble
Batch-correct a tibble of high-dimensional cytometry data using quan-
tile normalization.

Description

This function performs quantile normalization on high-dimensional cytometry data in tidy format
using normalize.quantiles.

Usage

tof_batch_correct_quantile_tibble(tof_tibble, channel_cols, augment = TRUE)

Arguments

tof_tibble A ‘tof_tbl* or a ‘tibble‘.

channel_cols Unquoted column names representing columns that contain single-cell protein
measurements. Supports tidyselect helpers.

augment A boolean value indicating if the output should replace the ‘channel_cols® in
‘tof_tibble with the new, batch corrected columns (TRUE, the default) or if it
should only return the batch-corrected columns (FALSE) with all other columns
omitted.

Value

If augment = TRUE, a tibble with the same number of rows and columns as tof_tibble, with the
columns specified by ‘channel_cols‘ batch-corrected. If augment = FALSE, a tibble containing
only the batch-corrected ‘channel_cols*.

Examples

NULL

tof_batch_correct_rescale
Perform groupwise linear rescaling of high-dimensional cytometry
measurements

Description

This function performs quantile normalization on high-dimensional cytometry data in tidy format
using linear rescaling. Each channel specified by ‘channel_cols‘ is rescaled such that the maximum
value is 1 and the minimum value is 0. ‘group_cols‘ specifies the columns that should be used to
break cells into groups in which the rescaling should be performed separately.

Usage

tof_batch_correct_rescale(tof_tibble, channel_cols, group_cols, augment = TRUE)

52 tof_build_classifier

Arguments

tof_tibble A ‘tof_tbl‘ or a ‘tibble‘.
channel_cols Unquoted column names representing columns that contain single-cell protein

measurements. Supports tidyselect helpers.

group_cols Optional. Unquoted column names indicating which columns should be used
to group cells before batch correction. Batch correction is then performed inde-
pendently within each group. Supports tidyselect helpers.

augment A boolean value indicating if the output should replace the ‘channel cols‘ in
‘tof_tibble* with the new, batch corrected columns (TRUE, the default) or if it
should only return the batch-corrected columns (FALSE) with all other columns
omitted.

Value

If augment = TRUE, a tibble with the same number of rows and columns as tof_tibble, with the
columns specified by ‘channel_cols* batch-corrected. If augment = FALSE, a tibble containing
only the batch-corrected ‘channel_cols*.

Examples

NULL

tof_build_classifier Calculate centroids and covariance matrices for each cell subpopula-
tion in healthy CyTOF data.

Description

This function takes a ‘tibble‘ or ‘tof_tibble* storing healthy cell measurements in each of its rows
and a vector (‘healthy_cell_labels‘) representing the cell subpopulation to which each cell belongs.
It uses these values to calculate several values required to perform "developmental classification”
as described in this paper.

Usage

tof_build_classifier(
healthy_tibble = NULL,
healthy_cell_labels = NULL,
classifier_markers = where(tof_is_numeric),
verbose = FALSE

Arguments

healthy_tibble A ‘tibble‘ or ‘tof_tibble‘ containing cells from only healthy control samples (i.e.
not disease samples).

healthy_cell_labels
A character or integer vector of length ‘nrow(healthy_tibble)‘. Each entry in
this vector should represent the cell subpopulation label (or cluster id) for the
corresponding row in ‘healthy_tibble*.

https://pubmed.ncbi.nlm.nih.gov/29505032/

tof_calculate_flow_rate 53

classifier_markers
Unquoted column names indicating which columns in ‘healthy_tibble‘ to use in
the developmental classification. Defaults to all numeric columns in ‘healthy_tibble‘.
Supports tidyselect helpers.

verbose A boolean value indicating if updates should be printed to the console during
classification. Defaults to FALSE.

Value

A tibble with three columns: population (id of the healthy cell population), centroid (the cen-
troid vector for that cell population), and covariance_matrix (the covariance matrix for that cell
population)

tof_calculate_flow_rate
Calculate the relative flow rates of different timepoints throughout a
flow or mass cytometry run.

Description

Calculate the relative flow rates of different timepoints throughout a flow or mass cytometry run.

Usage
tof_calculate_flow_rate(
tof_tibble,
time_col,
num_timesteps = nrow(tof_tibble)/1000
)
Arguments
tof_tibble A ‘tof_tbl‘ or ‘tibble°.
time_col An unquoted column name indicating which column in ‘tof_tibble‘ contains the

time at which each cell was collected.

num_timesteps The number of bins into which ‘time_col‘ should be split. to define "timesteps"
of the data collection process. The number of cells analyzed by the cytometer
will be counted in each bin separately and will represent the relative average
flow rate for that timestep in data collection.

Value

A tibble with 3 columns and num_timesteps rows. Each row will represent a single timestep (and
an error will be thrown if ‘num_timesteps® is larger than the number of rows in ‘tof_tibble‘). The
three columns are as follows: "timestep", a numeric vector indicating which timestep is represented
by a given row; "time_window", a factor showing the interval in ‘time_col* over which "timestep"
is defined; and "num_cells", the number of cells that were collected during each timestep.

54 tof_check_model_args

Examples

simulate some data
sim_data <-
data.frame(

cd4 = rnorm(n = 100, mean = 5, sd = 0.5),
cd8 = rnorm(n = 100, mean = @, sd = 0.1),
cd33 = rnorm(n = 100, mean = 10, sd = 0.1),

time = sample(1:300, size = 100)
)

tof_calculate_flow_rate(tof_tibble = sim_data, time_col = time, num_timesteps = 20L)

tof_check_model_args Check argument specifications for a glmnet model.

Description

Check argument specifications for a glmnet model.

Usage
tof_check_model_args(
split_data,
model_type = c("linear”, "two-class”, "multiclass”, "survival”),

best_model_type = c("best”, "best with sparsity"),
response_col,

time_col,
event_col
)
Arguments
split_data An ‘rsplit® or ‘rset‘ object from the rsample package containing the sample-
level data to use for modeling. Alternatively, an unsplit tbl_df can be provided,
though this is not recommended.
model_type A string indicating which kind of elastic net model to build. If a continuous

response is being predicted, use "linear" for linear regression; if a categorical
response with only 2 classes is being predicted, use "two-class" for logistic re-
gression; if a categorical response with more than 2 levels is being predicted,
use "multiclass” for multinomial regression; and if a time-to-event outcome is
being predicted, use "survival" for Cox regression.

best_model_type
Currently unused.

response_col Unquoted column name indicating which column in the data contained in ‘split_data‘
should be used as the outcome in a "two-class", "multiclass", or "linear" elastic
net model. Must be a factor for "two-class" and "multiclass" models and must
be a numeric for "linear" models. Ignored if ‘model_type* is "survival".

time_col Unquoted column name indicating which column in the data contained in ‘split_data‘
represents the time-to-event outcome in a "survival" elastic net model. Must be

"non

numeric. Ignored if ‘model_type‘ is "two-class", "multiclass", or "linear".

tof_classity_cells 55

event_col Unquoted column name indicating which column in the data contained in ‘split_data“
represents the time-to-event outcome in a "survival" elastic net model. Must be
a binary column - all values should be either 0 or 1 (with 1 indicating the adverse
event) or FALSE and TRUE (with TRUE indicating the adverse event). Ignored

non

if ‘model_type* is "two-class", "multiclass", or "linear".

Value

A tibble. If arguments are specified correctly, this tibble can be used to create a recipe for prepro-

cessing.
tof_classify_cells Classify each cell (i.e. each row) in a matrix of cancer cells into its
most similar healthy developmental subpopulation.
Description

This function uses a specified distance metric to classify each cell in a data.frame or matrix (‘can-
cer_data‘) into one of ‘nrow(classifier_fit)* subpopulations based on minimum distance, as de-
scribed in this paper.

Usage

tof_classify_cells(
classifier_fit,
cancer_data,
distance_function = c("mahalanobis”, "cosine"”, "pearson")

Arguments

classifier_fit A tibble produced by tof_build_classifier.
cancer_data A matrix in which each row corresponds to a cell and each column corresponds
to a measured CyTOF antigen.

distance_function
A string indicating which of three distance functions should be used to calculate
the distances between each row of ‘cancer_data‘ and the healthy developmental
subpopulations corresponding to each row of ‘classifier_fit.

Value

A data.frame in which each column represents the distance between a cell in the input data and each
healthy subpopulation cells are being classified into.

https://pubmed.ncbi.nlm.nih.gov/29505032/

56 tof_cluster

tof_clean_metric_names
Rename glmnet’s default model evaluation metrics to make them more
interpretable

Description

Rename glmnet’s default model evaluation metrics to make them more interpretable

Usage

tof_clean_metric_names(metric_tibble, model_type)

Arguments

metric_tibble A tibble in which each column represents a glmnet model evaluation metric with
its default name.

model_type A string indicating which type of glmnet model was trained.

Value

A tibble in which each column represents a glmnet model evaluation metric with its "cleaned" name.

tof_cluster Cluster high-dimensional cytometry data.

Description

This function is a wrapper around tidytof’s tof_cluster_* function family. It performs clustering on
high-dimensional cytometry data using a user-specified method (of 5 choices) and each method’s
corresponding input parameters.

Usage

tof_cluster(
tof_tibble,
cluster_cols = where(tof_is_numeric),
group_cols = NULL,
augment = TRUE,
method

tof_cluster_ddpr 57

Arguments

tof_tibble A ‘tof _tbl‘ or ‘tibble°.

cluster_cols Unquoted column names indicating which columns in ‘tof_tibble* to use in com-
puting the clusters. Defaults to all numeric columns in ‘tof_tibble‘. Supports
tidyselect helpers.

group_cols Optional. Unquoted column names indicating which columns should be used
to group cells before clustering. Clustering is then performed on each group
independently. Supports tidyselect helpers.

Additional arguments to pass to the ‘tof_cluster_** function family member cor-
responding to the chosen method.

augment A boolean value indicating if the output should column-bind the cluster ids of
each cell as a new column in ‘tof_tibble* (TRUE, the default) or if a single-
column tibble including only the cluster ids should be returned (FALSE).

method A string indicating which clustering methods should be used. Valid values in-

non

clude "flowsom", "phenograph”, "kmeans", "ddpr", and "xshift".

Value

A ‘tof_tbl‘ or ‘tibble‘ If augment = FALSE, it will have a single column encoding the cluster ids for
each cell in ‘tof_tibble‘. If augment = TRUE, it will have ncol(tof_tibble) + 1 columns: each of the
(unaltered) columns in ‘tof_tibble* plus an additional column encoding the cluster ids.

See Also
Other clustering functions: tof_cluster_ddpr(), tof_cluster_flowsom(), tof_cluster_kmeans(),
tof_cluster_phenograph()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 500),

cd38 = rnorm(n = 500),
cd34 = rnorm(n = 500),
cd19 = rnorm(n = 500)

)

tof_cluster(tof_tibble = sim_data, method = "kmeans")
tof_cluster(tof_tibble = sim_data, method "phenograph")

tof_cluster_ddpr Perform developmental clustering on high-dimensional cytometry
data.

Description

This function performs distance-based clustering on high-dimensional cytometry data by sorting
cancer cells (passed into the function as ‘tof_tibble‘) into their most phenotypically similar healthy
cell subpopulation (passed into the function using ‘healthy_tibble‘). For details about the algorithm
used to perform the clustering, see this paper.

https://pubmed.ncbi.nlm.nih.gov/29505032/

58 tof_cluster_ddpr

Usage

tof_cluster_ddpr(
tof_tibble,
healthy_tibble,
healthy_label_col,
cluster_cols = where(tof_is_numeric),
distance_function = c("mahalanobis”, "cosine"”, "pearson"),
num_cores = 1L,
parallel_cols,
return_distances = FALSE,
verbose = FALSE

Arguments

tof_tibble A ‘tibble‘ or ‘tof_tbl* containing cells to be classified into their nearest healthy
subpopulation (generally cancer cells).

healthy_tibble A ‘tibble‘ or ‘tof_tibble‘ containing cells from only healthy control samples (i.e.
not disease samples).

healthy_label_col
An unquoted column name indicating which column in ‘healthy_tibble‘ contains
the subpopulation label (or cluster id) for each cell in ‘healthy_tibble*.

cluster_cols Unquoted column names indicating which columns in ‘tof_tibble‘ to use in com-
puting the DDPR clusters. Defaults to all numeric columns in ‘tof_tibble‘. Sup-
ports tidyselect helpers.

distance_function
A string indicating which distance function should be used to perform the clas-
sification. Options are "mahalanobis" (the default), "cosine", and "pearson".

num_cores An integer indicating the number of CPU cores used to parallelize the classifi-
cation. Defaults to 1 (a single core).

parallel_cols Optional. Unquoted column names indicating which columns in ‘tof_tibble*
to use for breaking up the data in order to parallelize the classification using
‘foreach® on a ‘doParallel‘ backend. Supports tidyselect helpers.

return_distances
A boolean value indicating whether or not the returned result should include
only one column, the cluster ids corresponding to each row of ‘tof_tibble* (re-
turn_distances = FALSE, the default), or if the returned result should include
additional columns representing the distance between each row of ‘tof_tibble*
and each of the healthy subpopulation centroids (return_distances = TRUE).

verbose A boolean value indicating whether progress updates should be printed during
developmental classification. Default is FALSE.

Value

If ‘return_distances = FALSE®, a tibble with one column named °.{distance_function}_cluster‘, a
character vector of length ‘nrow(tof_tibble)‘ indicating the id of the developmental cluster to which
each cell (i.e. each row) in ‘tof_tibble* was assigned.

If ‘return_distances = TRUE®, a tibble with ‘nrow(tof_tibble)‘ rows and ‘nrow(classifier_fit) + 1°
columns. Each row represents a cell from ‘tof_tibble‘, and ‘nrow(classifier_fit)‘ of the columns
represent the distance between the cell and each of the healthy subpopulations’ cluster centroids.

tof cluster_flowsom

59

The final column represents the cluster id of the healthy subpopulation with the minimum distance
to the cell represented by that row.

If ‘return_distances = FALSE®, a tibble with one column named °.{distance_function}_cluster‘.
This column will contain an integer vector of length ‘nrow(tof_tibble)‘ indicating the id of the
developmental cluster to which each cell (i.e. each row) in ‘tof_tibble‘ was assigned.

See Also

Other clustering functions: tof_cluster(), tof_cluster_flowsom(), tof_cluster_kmeans(),
tof_cluster_phenograph()

Examples

sim_data <-

dplyr::tibble(

cd45 =

cd38 =

cd34 =

cd19 =
)

healthy_data <-

rnorm(n
rnorm(n
rnorm(n
rnorm(n

dplyr::tibble(

cd45 =
cd38 =
cd34
cd19 =

rnorm(n
rnorm(n
rnorm(n
rnorm(n

= 1000),
= 1000),
= 1000),
= 1000)

= 200),
= 200),
= 200),
= 200),

cluster_id = c(rep(”a"”, times = 100), rep("b"”, times = 100))

)

tof_cluster_ddpr(
= sim_data,

healthy_tibble = healthy_data,
healthy_label_col = cluster_id

tof_tibble

tof_cluster_flowsom

Perform FlowSOM clustering on high-dimensional cytometry data

Description

This function performs FlowSOM clustering on high-dimensional cytometry data using a user-
specified selection of input variables/high-dimensional cytometry measurements. It is mostly a
convenient wrapper around SOM and MetaClustering.

Usage

tof_cluster_flowsom(
= NULL,

tof_tibble

cluster_cols = where(tof_is_numeric),
som_xdim = 10,
som_ydim = 10,

60 tof _cluster_flowsom

som_distance_function = c("euclidean”, "manhattan"”, "chebyshev"”, "cosine"),
perform_metaclustering = TRUE,
num_metaclusters = 20,

Arguments

tof_tibble A ‘tof_tbl* or ‘tibble‘.

cluster_cols Unquoted column names indicating which columns in ‘tof_tibble‘ to use in com-
puting the flowSOM clusters. Defaults to all numeric columns in ‘tof_tibble*.
Supports tidyselect helpers.

som_xdim The width of the grid used by the self-organizing map. The total number of
clusters returned by FlowSOM will be som_xdim * som_ydim, so adjust this
value to affect the final number of clusters. Defaults to 10.

som_ydim The height of the grid used by the self-organizing map. The total number of
clusters returned by FlowSOM will be som_xdim * som_ydim, so adjust this
value to affect the final number of clusters. Defaults to 10.
som_distance_function
The distance function used during self-organizing map calculations. Options are
"euclidean" (the default), "manhattan”, "chebyshev", and "cosine".
perform_metaclustering
A boolean value indicating if metaclustering should be performed on the initial
clustering result returned by FlowSOM. Defaults to TRUE.
num_metaclusters
An integer indicating the maximum number of metaclusters that should be re-
turned after metaclustering. Defaults to 20.

Optional additional parameters that can be passed to the Bui1ldSOM function.

Details

For additional details about the FlowSOM algorithm, see this paper.

Value

A tibble with one column named ‘.flowsom_cluster* or ‘.flowsom_metacluster® depending on the
value of ‘perform_metaclustering*. The column will contain an integer vector of length ‘nrow(tof_tibble)
indicating the id of the flowSOM cluster to which each cell (i.e. each row) in ‘tof_tibble‘ was as-
signed.

See Also

Other clustering functions: tof_cluster(), tof_cluster_ddpr(), tof_cluster_kmeans(), tof_cluster_phenogra

Examples

sim_data <-
dplyr::tibble(

cd45 = rnorm(n = 200),
cd38 = rnorm(n = 200),
cd34 = rnorm(n = 200),
cd19 = rnorm(n = 200)

https://pubmed.ncbi.nlm.nih.gov/25573116/

tof_cluster_grouped 61

)

tof_cluster_flowsom(tof_tibble = sim_data, cluster_cols = c(cd45, cd19))

tof_cluster_grouped Cluster (grouped) high-dimensional cytometry data.

Description

This function is a wrapper around tidytof’s tof_cluster_* function family and provides a low-level
API for clustering grouped data frames. It is a subroutine of tof_cluster and shouldn’t be called
directly by users.

Usage
tof_cluster_grouped(tof_tibble, group_cols, ..., augment = TRUE, method)
Arguments
tof_tibble A ‘tof_tbl‘ or ‘tibble°.
group_cols An unquoted column name indicating which columns should be used to group
cells before clustering. Clustering is then performed on each group indepen-
dently.
Additional arguments to pass to the ‘tof_cluster_*‘ function family member cor-
responding to the chosen method.
augment A boolean value indicating if the output should column-bind the cluster ids of
each cell as a new column in ‘tof_tibble‘ (TRUE, the default) or if a single-
column tibble including only the cluster ids should be returned (FALSE).
method A string indicating which clustering methods should be used. Valid values in-
clude "flowsom", "phenograph”, "kmeans", "ddpr", and "xshift".
Value

A ‘tof_tbl° or ‘tibble‘ If augment = FALSE, it will have a single column encoding the cluster ids for
each cell in ‘tof_tibble‘. If augment = TRUE, it will have ncol(tof_tibble) + 1 columns: each of the
(unaltered) columns in ‘tof_tibble‘ plus an additional column encoding the cluster ids.

tof_cluster_kmeans Perform k-means clustering on high-dimensional cytometry data.

Description

This function performs k-means clustering on high-dimensional cytometry data using a user-specified
selection of input variables/high-dimensional cytometry measurements. It is mostly a convenient
wrapper around kmeans.

62 tof_cluster_phenograph

Usage

tof_cluster_kmeans(
tof_tibble,
cluster_cols = where(tof_is_numeric),
num_clusters = 20,

Arguments

tof_tibble A ‘tof _tibble“.

cluster_cols Unquoted column names indicating which columns in ‘tof_tibble* to use in com-
puting the k-means clusters. Defaults to all numeric columns in ‘tof_tibble‘.
Supports tidyselect helpers.

num_clusters An integer indicating the maximum number of clusters that should be returned.
Defaults to 20.

Optional additional arguments that can be passed to kmeans.

Value

A tibble with one column named ‘.kmeans_cluster‘. This column will contain an integer vector of
length ‘nrow(tof_tibble)* indicating the id of the k-means cluster to which each cell (i.e. each row)
in ‘tof_tibble* was assigned.

See Also

Other clustering functions: tof_cluster(), tof_cluster_ddpr(), tof_cluster_flowsom(), tof_cluster_phenogr

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000)

)
tof_cluster_kmeans(tof_tibble = sim_data)
tof_cluster_kmeans(tof_tibble = sim_data, cluster_cols = c(cd45, cd19))

tof_cluster_phenograph
Perform PhenoGraph clustering on high-dimensional cytometry data.

Description

This function performs PhenoGraph clustering on high-dimensional cytometry data using a user-
specified selection of input variables/high-dimensional cytometry measurements.

tof_cluster_phenograph 63

Usage

tof_cluster_phenograph(
tof_tibble,
cluster_cols = where(tof_is_numeric),
num_neighbors = 30,

distance_function = c("euclidean”, "cosine"),
)
Arguments
tof_tibble A ‘tof_tbl* or ‘tibble‘.

cluster_cols Unquoted column names indicating which columns in ‘tof_tibble‘ to use in com-
puting the PhenoGraph clusters. Defaults to all numeric columns in ‘tof_tibble*.
Supports tidyselect helpers.

num_neighbors An integer indicating the number of neighbors to use when constructing Pheno-
Graph’s k-nearest-neighbor graph. Smaller values emphasize local graph struc-
ture; larger values emphasize global graph structure (and will add time to the
computation). Defaults to 30.

distance_function

A string indicating which distance function to use for the nearest-neighbor cal-
culation. Options include "euclidean" (the default) and "cosine" distances.

Optional additional parameters that can be passed to tof_find_knn.

Details

For additional details about the Phenograph algorithm, see this paper.

Value

A tibble with one column named ‘.phenograph_cluster‘. This column will contain an integer vector
of length ‘nrow(tof_tibble)‘ indicating the id of the PhenoGraph cluster to which each cell (i.e. each
row) in ‘tof_tibble® was assigned.

See Also

Other clustering functions: tof_cluster(), tof_cluster_ddpr(), tof_cluster_flowsom(), tof_cluster_kmeans(

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000)
)
tof_cluster_phenograph(tof_tibble = sim_data)
tof_cluster_phenograph(tof_tibble = sim_data, cluster_cols = c(cd45, cd19))

https://pubmed.ncbi.nlm.nih.gov/26095251/

64 tof_compute_km_curve

tof_cluster_tibble Cluster (ungrouped) high-dimensional cytometry data.

Description

This function is a wrapper around tidytof’s tof_cluster_* function family and provides a low-level
API for clustering ungrouped data frames. It is a subroutine of tof_cluster and shouldn’t be called
directly by users.

Usage
tof_cluster_tibble(tof_tibble, ..., augment = TRUE, method)
Arguments
tof_tibble A ‘tof_tbl* or ‘tibble°‘.
Additional arguments to pass to the ‘tof_cluster_** function family member cor-
responding to the chosen method.
augment A boolean value indicating if the output should column-bind the cluster ids of
each cell as a new column in ‘tof_tibble* (TRUE, the default) or if a single-
column tibble including only the cluster ids should be returned (FALSE).
method A string indicating which clustering methods should be used. Valid values in-
clude "flowsom", "phenograph”, "kmeans", "ddpr", and "xshift".
Value

A ‘tof_tbl‘ or ‘tibble‘ If augment = FALSE, it will have a single column encoding the cluster ids for
each cell in ‘tof_tibble‘. If augment = TRUE, it will have ncol(tof_tibble) + 1 columns: each of the
(unaltered) columns in ‘tof_tibble‘ plus an additional column encoding the cluster ids.

tof_compute_km_curve Compute a Kaplan-Meier curve from sample-level survival data

Description

Compute a Kaplan-Meier curve from sample-level survival data

Usage

tof_compute_km_curve(survival_curves)

Arguments

survival_curves
A tibble from which the Kaplan-Meier curve will be computed. Each row must
represent an observation and must have two columns named "time_to_event"
and "event".

tof_cosine_dist 65

Value

A tibble with 3 columns: time_to_event, survival_probability, and is_censored (whether or not an
event was censored at that timepoint).

tof_cosine_dist A function for finding the cosine distance between each of the rows of
a numeric matrix and a numeric vector.

Description
A function for finding the cosine distance between each of the rows of a numeric matrix and a
numeric vector.

Usage

tof_cosine_dist(matrix, vector)

Arguments
matrix A numeric matrix.
vector A numeric vector.
Value

A numeric vector of distances of length ‘nrow(matrix)‘ in which the ith entry represents the cosine
distance between the ith row of ‘matrix‘ and ‘vector*.

Examples

NULL

tof_create_grid Create an elastic net hyperparameter search grid of a specified size

Description

This function creates a regular hyperparameter search grid (in the form of a tibble) specifying the
search space for the two hyperparameters of a generalized linear model using the glmnet package:
the regularization penalty term and the lasso/ridge regression mixture term.

Usage

tof_create_grid(
penalty_values,
mixture_values,
num_penalty_values
num_mixture_values

I u
[, B8,

66 tof_create_recipe

Arguments

penalty_values A numeric vector of the unique elastic net penalty values ("lambda") to include
in the hyperparameter grid. If unspecified, a regular grid with ‘num_penalty_values*
between 10°(-10) and 10~(0) will be used.

mixture_values A numeric vector of all elastic net mixture values ("alpha") to include in the
hyperparameter grid. If unspecified, a regular grid with ‘num_mixture_values*

between 0 and 1 will be used.
num_penalty_values

Optional. If ‘penalty_values® is not supplied, ‘num_penalty_values* (an integer)
can be given to specify how many equally-spaced penalty values between 10(-
10) and 1 should be included in the hyperparameter grid. If this method is used,
the regular grid will always be returned. Defaults to 5.

num_mixture_values

Optional. If ‘mixture_values® is not supplied, ‘num_mixture_values® (an inte-
ger) can be given to specify how many equally-spaced penalty values between 0
(ridge regression) and 1 (lasso) should be included in the hyperparameter grid.
If this method is used, the regular grid will always be returned. Defaults to 5.

Value

A tibble with two numeric columns: ‘penalty‘ and ‘mixture’.

See Also

Other modeling functions: tof_assess_model (), tof_predict(), tof_split_data(), tof_train_model()
Examples

tof_create_grid()

tof_create_grid(num_penalty_values = 10, num_mixture_values = 5)

tof_create_grid(penalty_values = c(@.01, 0.1, 0.5))

tof_create_recipe Create a recipe for preprocessing sample-level cytometry data for an
elastic net model

Description

Create a recipe for preprocessing sample-level cytometry data for an elastic net model

Usage

tof_create_recipe(
feature_tibble,
predictor_cols,
outcome_cols,
standardize_predictors = TRUE,
remove_zv_predictors = FALSE,
impute_missing_predictors = FALSE

tof_downsample 67

Arguments

feature_tibble A tibble in which each row represents a sample- or patient- level observation,
such as those produced by tof_extract_features.
predictor_cols Unquoted column names indicating which columns in the data contained in ‘fea-
ture_tibble* should be used as predictors in the elastic net model. Supports tidys-
elect helpers.
outcome_cols Unquoted column names indicating which columns in ‘feature_tibble‘ should be
used as outcome variables in the elastic net model. Supports tidyselect helpers.
standardize_predictors
A logical value indicating if numeric predictor columns should be standardized
(centered and scaled) before model fitting. Defaults to TRUE.
remove_zv_predictors
A logical value indicating if predictor columns with near-zero variance should
be removed before model fitting using step_nzv. Defaults to FALSE.
impute_missing_predictors
A logical value indicating if predictor columns should have missing values im-
puted using k-nearest neighbors before model fitting (see step_impute_knn).
Imputation is performed using an observation’s 5 nearest-neighbors. Defaults to

FALSE.
Value
A recipe object.
tof_downsample Downsample high-dimensional cytometry data.

Description

This function downsamples the number of cells in a ‘tof_tbl‘ using the one of three methods (ran-
domly sampling a constant number of cells, randomly sampling a proportion of cells, or performing
density-dependent downsampling per the algorithm in Qiu et al., (2011)).

Usage

tof_downsample(
tof_tibble,
group_cols = NULL,

L

method = c("constant”, "prop”, "density")

)
Arguments
tof_tibble A ‘tof_tbl* or a ‘tibble°.
group_cols Unquoted names of the columns in ‘tof_tibble* that should be used to define

groups within which the downsampling will be performed. Supports tidyselect
helpers. Defaults to ‘NULL* (no grouping).

https://pubmed.ncbi.nlm.nih.gov/21964415/

68 tof_downsample_constant

Additional arguments to pass to the ‘tof_downsample_** function family mem-
ber corresponding to the chosen method.

method A string indicating which downsampling method to use: "constant" (the default),
"prop", or "density".

Value

A downsampled ‘tof_tbl* with the same number of columns as the input ‘tof_tibble, but fewer
rows. The number of rows in the result will depend on the chosen downsampling method.

See Also

Other downsampling functions: tof_downsample_constant(), tof _downsample_density(), tof_downsample_prop

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE)

)

sample 200 cells from the input data
tof_downsample(

tof_tibble = sim_data,

num_cells = 200L,

method = "constant”

)

sample 10% of all cells from the input data
tof_downsample(

tof_tibble = sim_data,

prop_cells = 0.1,

method = "prop”
)

sample ~10% of cells from the input data using density dependence
tof_downsample(

tof_tibble = sim_data,

target_prop_cells = 0.1,

method = "density”

tof_downsample_constant

Downsample high-dimensional cytometry data by randomly selecting
a constant number of cells per group.

tof_downsample_constant 69

Description
This function downsamples the number of cells in a ‘tof_tbl* by randomly selecting ‘num_cells*
cells from each unique combination of values in ‘group_cols®.

Usage

tof_downsample_constant(tof_tibble, group_cols = NULL, num_cells)

Arguments
tof_tibble A ‘tof_tbl‘ or a ‘tibble".
group_cols Unquoted names of the columns in ‘tof_tibble‘ that should be used to define
groups from which ‘num_cells* will be downsampled. Supports tidyselect helpers.
Defaults to ‘NULL* (no grouping).
num_cells An integer number of cells that should be sampled from each group defined by
‘group_cols®.
Value

A ‘tof_tbl* with the same number of columns as the input ‘tof_tibble*, but fewer rows. Specifically,
the number of rows will be ‘num_cells‘ multiplied by the number of unique combinations of the
values in ‘group_cols‘. If any group has fewer than ‘num_cells‘ number of cells, all cells from that
group will be kept.

See Also

Other downsampling functions: tof_downsample(), tof_downsample_density(), tof_downsample_prop()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE)

)

sample 500 cells from the input data
tof_downsample_constant(

tof_tibble = sim_data,

num_cells = 500L
)

sample 20 cells per cluster from the input data
tof_downsample_constant(

tof_tibble = sim_data,

group_cols = cluster_id,

num_cells = 20L

70 tof_downsample_density

tof_downsample_density
Downsample high-dimensional cytometry data by randomly selecting
a proportion of the cells in each group.

Description

This function downsamples the number of cells in a ‘tof_tbl* using the density-dependent down-
sampling algorithm described in Qiu et al., (2011).

Usage

tof_downsample_density(
tof_tibble,
group_cols = NULL,
density_cols = where(tof_is_numeric),
target_num_cells,
target_prop_cells,
target_percentile = 0.03,
outlier_percentile = 0.01,

distance_function = c("euclidean”, "cosine", "12", "ip"),
density_estimation_method = c("mean_distance”, "sum_distance”, "spade"),
)
Arguments
tof_tibble A ‘tof _tbl‘ or a ‘tibble‘.
group_cols Unquoted names of the columns in ‘tof_tibble* that should be used to define

groups within which the downsampling will be performed. Supports tidyselect
helpers. Defaults to ‘NULL* (no grouping).

density_cols Unquoted names of the columns in ‘tof_tibble‘ to use in the density estimation
for each cell. Defaults to all numeric columns in ‘tof _tibble°.
target_num_cells
An approximate constant number of cells (between 0 and 1) that should be sam-
pled from each group defined by ‘group_cols*. Slightly more or fewer cells may
be returned due to how the density calculation is performed.
target_prop_cells
An approximate proportion of cells (between 0 and 1) that should be sampled
from each group defined by ‘group_cols‘. Slightly more or fewer cells may
be returned due to how the density calculation is performed. Ignored if ‘tar-
get_num_cells* is specified.
target_percentile
The local density percentile (i.e. a value between 0 and 1) to which the down-
sampling procedure should adjust all cells. In short, the algorithm will continue
to remove cells from the input ‘tof_tibble‘ until the local densities of all re-
maining cells is equal to ‘target_percentile‘. Lower values will result in more
cells being removed. See Qiu et al., (2011) for details. Defaults to 0.1 (the
10th percentile of local densities). Ignored if either ‘target_num_cells‘ or ‘tar-
get_prop_cells* are specified.

https://pubmed.ncbi.nlm.nih.gov/21964415/
https://pubmed.ncbi.nlm.nih.gov/21964415/

tof_downsample_density 71

outlier_percentile
The local density percentile (i.e. a value between 0 and 1) below which cells
should be considered outliers (and discarded). Cells with a local density below
‘outlier_percentile will never be selected during the downsampling procedure.
Defaults to 0.01 (cells below the 1st local density percentile will be removed).
distance_function
A string indicating which distance function to use for the cell-to-cell distance
calculations. Options include "euclidean" (the default) and "cosine" distances.
density_estimation_method
A string indicating which algorithm should be used to calculate the local density
estimate for each cell. Options include k-nearest neighbor density estimation
using the mean distance to a cell’s k-nearest neighbors ("mean_distance"; the
default), k-nearest neighbor density estimation using the summed distance to a
cell’s k nearest neighbors ("sum_distance") and counting the number of neigh-
boring cells within a spherical radius around each cell as described in Qiu et al.,
2011 ("spade"). While "spade" often produces the best results, it is slower than
knn-density estimation methods.

Optional additional arguments to pass to tof_knn_density or tof_spade_density.

Value

A ‘tof_tbl* with the same number of columns as the input ‘tof_tibble*, but fewer rows. The number
of rows will depend on the chosen value of ‘target_percentile®, with fewer cells selected with lower
values of ‘target_percentile*.

See Also

Other downsampling functions: tof_downsample (), tof_downsample_constant(), tof_downsample_prop()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000)
)

tof_downsample_density(
tof_tibble = sim_data,
density_cols = c(cd45, cd34, cd38),
target_prop_cells = 0.5,
density_estimation_method = "spade”

)

tof_downsample_density(
tof_tibble = sim_data,
density_cols = c(cd45, cd34, cd38),
target_num_cells = 200L,
density_estimation_method = "spade”

)

tof_downsample_density(
tof_tibble = sim_data,

72 tof_downsample_prop

density_cols = c(cd45, cd34, cd38),
target_num_cells = 200L,
density_estimation_method = "mean_distance”

tof_downsample_prop Downsample high-dimensional cytometry data by randomly selecting
a proportion of the cells in each group.

Description
This function downsamples the number of cells in a ‘tof_tbl* by randomly selecting a ‘prop_cells*
proportion of the total number of cells with each unique combination of values in ‘group_cols‘.
Usage

tof_downsample_prop(tof_tibble, group_cols = NULL, prop_cells)

Arguments
tof_tibble A ‘tof_tbl* or a ‘tibble*.
group_cols Unquoted names of the columns in ‘tof_tibble* that should be used to define
groups from which ‘prop_cells‘ will be downsampled. Supports tidyselect helpers.
Defaults to ‘NULL (no grouping).
prop_cells A proportion of cells (between 0 and 1) that should be sampled from each group
defined by ‘group_cols®.
Value

A ‘tof_tbl* with the same number of columns as the input ‘tof_tibble‘, but fewer rows. Specifically,
the number of rows should be ‘prop_cells* times the number of rows in the input ‘tof_tibble*.

See Also

Other downsampling functions: tof_downsample(), tof_downsample_constant(), tof_downsample_density()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE)

)

sample 10% of all cells from the input data
tof_downsample_prop(

tof_tibble = sim_data,

prop_cells = 0.1

tof_estimate_density 73

sample 10% of all cells from each cluster in the input data
tof_downsample_prop(

tof_tibble = sim_data,

group_cols = cluster_id,

prop_cells = 0.1

tof_estimate_density Estimate the local densities for all cells in a high-dimensional cytom-
etry dataset.

Description

This function is a wrapper around tidytof’s tof_*_density() function family. It performs local den-
sity estimation on high-dimensional cytometry data using a user-specified method (of 3 choices)
and each method’s corresponding input parameters.

Usage

tof_estimate_density(
tof_tibble,
distance_cols = where(tof_is_numeric),
distance_function = c("euclidean”, "cosine”, "12", "ip"),

normalize = TRUE,

L

augment = TRUE,

method = c("mean_distance”, "sum_distance”, "spade")
)
Arguments
tof_tibble A ‘tof_tbl‘ or a ‘tibble°.

distance_cols Unquoted names of the columns in ‘tof_tibble‘ to use in calculating cell-to-
cell distances during the local density estimation for each cell. Defaults to all
numeric columns in ‘tof _tibble‘.

distance_function
A string indicating which distance function to use for calculating cell-to-cell dis-
tances during local density estimation. Options include "euclidean” (the default)
and "cosine".

normalize A boolean value indicating if the vector of local density estimates should be
normalized to values between 0 and 1. Defaults to TRUE.

Additional arguments to pass to the ‘tof_*_density()‘ function family member
corresponding to the chosen ‘method*.

augment A boolean value indicating if the output should column-bind the local density
estimates of each cell as a new column in ‘tof_tibble‘ (TRUE; the default) or
if a single-column tibble including only the local density estimates should be
returned (FALSE).

method A string indicating which local density estimation method should be used. Valid

non

values include "mean_distance", "sum_distance", and "spade".

74 tof_extract_central_tendency

Value

A ‘tof_tbl° or ‘tibble‘ If augment = FALSE, it will have a single column encoding the local density
estimates for each cell in ‘tof_tibble‘. If augment = TRUE, it will have ncol(tof_tibble) + 1 columns:
each of the (unaltered) columns in ‘tof_tibble* plus an additional column encoding the local density
estimates.

See Also

Other local density estimation functions: tof_knn_density(), tof_spade_density()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000)

)

perform the density estimation
tof_estimate_density(tof_tibble = sim_data, method = "spade")

perform the density estimation with a smaller search radius around
each cell
tof_estimate_density(

tof_tibble = sim_data,

alpha_multiplier = 2,

method = "spade”

tof_extract_central_tendency

Extract the central tendencies of CyTOF markers in each cluster in a
‘tof _tibble".

Description

This feature extraction function calculates a user-specified measurement of central tendency (i.e.
median or mode) of the cells in each cluster in a ‘tof_tibble* across a user-specified selection of
CyTOF markers. These calculations can be done either overall (across all cells in the dataset) or
after breaking down the cells into subgroups using ‘group_cols®.

Usage

tof_extract_central_tendency(
tof_tibble,
cluster_col,
group_cols = NULL,
marker_cols = where(tof_is_numeric),
stimulation_col = NULL,

tof_extract_central_tendency 75

central_tendency_function = stats::median,

format = c("wide”, "long")
)
Arguments

tof_tibble A ‘tof_tibble‘ or a ‘tibble* in which each row represents a single cell and each
column represents a CyTOF measurement or a piece of metadata (i.e. cluster id,
patient id, etc.) about each cell.

cluster_col An unquoted column name indicating which column in ‘tof_tibble‘ stores the
cluster ids of the cluster to which each cell belongs. Cluster labels can be pro-
duced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

group_cols Unquoted column names representing which columns in ‘tof_tibble‘ should be
used to break the rows of ‘tof_tibble‘ into subgroups for the feature extraction
calculation. Defaults to NULL (i.e. performing the extraction without sub-
groups).

marker_cols Unquoted column names representing which columns in ‘tof_tibble* (i.e. which

CyTOF protein measurements) should be included in the feature extraction cal-
culation. Defaults to all numeric (integer or double) columns. Supports tidyse-
lection.
stimulation_col
Optional. An unquoted column name that indicates which column in ‘tof_tibble*
contains information about which stimulation condition each cell was exposed
to during data acquisition. If provided, the feature extraction will be further
broken down into subgroups by stimulation condition (and features from each
stimulation condition will be included as their own features in wide format).
central_tendency_function
The function that will be used to calculate the measurement of central tendency
for each cluster (to be used as the dependent variable in the linear model). De-
faults to median.

format A string indicating if the data should be returned in "wide" format (the default;
each cluster feature is given its own column) or in "long" format (each cluster
feature is provided as its own row).

Value

A tibble.

If format == "wide", the tibble will have 1 row for each combination of the grouping variables
provided in ‘group_cols‘ and one column for each grouping variable, one column for each extracted
feature (the central tendency of a given marker in a given cluster). The names of each column
containing cluster features is obtained using the following pattern: "{marker_id} @ {cluster_id}_ct".

If format == "long", the tibble will have 1 row for each combination of the grouping variables in
‘group_cols®, each cluster id (i.e. level) in ‘cluster_col‘, and each marker in ‘marker_cols‘. It will
have one column for each grouping variable, one column for the cluster ids, one column for the
CyTOF channel names, and one column (‘value‘) containing the features.

See Also

Other feature extraction functions: tof_extract_emd(), tof_extract_features(), tof_extract_jsd(),
tof_extract_proportion(), tof_extract_threshold()

76

Examples

sim_data <-

dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),

cluster_id = sample(letters, size = 1000, replace
patient = sample(c("kirby”, "mario"), size
stim = sample(c(”basal”, "stim"), size = 1000, replace = TRUE)

)

extract proportion of each cluster in each patient in wide format
tof_extract_central_tendency(

tof_tibble = sim_data,
cluster_col = cluster_id,
group_cols = patient

extract proportion of each cluster in each patient in long format
tof_extract_central_tendency(

tof_tibble = sim_data,
cluster_col = cluster_id,
group_cols = patient,
format = "long”

1000, replace

tof _extract_emd

TRUE),

tof_extract_emd

distance (EMD)

Extract aggregated features from CyTOF data using earth-mover’s

Description

Usage

tof_extract_emd(

tof_tibble,

cluster_col,

group_cols = NULL,

marker_cols = where(tof_is_numeric),
emd_col,

reference_level,

format = c("wide”, "long"),

num_bins = 100

This feature extraction function calculates the earth-mover’s distance (EMD) between the stimu-
lated and unstimulated ("basal") experimental conditions of samples in a CyTOF experiment. This
calculation is performed across a user-specified selection of CyTOF antigens and can be performed
either overall (across all cells in the dataset) or after breaking down the cells into subgroups using
‘group_cols®.

tof extract_emd 77

Arguments

tof_tibble A ‘tof_tbl* or a ‘tibble‘.

cluster_col An unquoted column name indicating which column in ‘tof_tibble* stores the
cluster ids of the cluster to which each cell belongs. Cluster labels can be pro-
duced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

group_cols Unquoted column names representing which columns in ‘tof_tibble‘ should be
used to break the rows of ‘tof_tibble‘ into subgroups for the feature extraction
calculation. Defaults to NULL (i.e. performing the extraction without sub-
groups).

marker_cols Unquoted column names representing which columns in ‘tof_tibble* (i.e. which
CyTOF protein measurements) should be included in the earth-mover’s distance
calculation. Defaults to all numeric (integer or double) columns. Supports tidys-
elect helpers.

emd_col An unquoted column name that indicates which column in ‘tof_tibble‘ should
be used to group cells into different distributions to be compared with one an-
other during the EMD calculation. For example, if you want to compare marker
expression distributions across stimulation conditions, ‘emd_col‘ should be the
column in ‘tof_tibble* containing information about which stimulation condition
each cell was exposed to during data acquisition.

If provided, the feature extraction will be further broken down into subgroups
by stimulation condition (and features from each stimulation condition will be
included as their own features in wide format).

reference_level
A string indicating what the value in ‘emd_col‘ corresponds to the "reference"
value to which all other values in ‘emd_col‘ should be compared. For exam-
ple, if ‘emd_col‘ represents the stimulation condition for a cell, reference_level
might take the value of "basal" or "unstimulated" if you want to compare each
stimulation to the basal state.

format A string indicating if the data should be returned in "wide" format (the default;
each cluster feature is given its own column) or in "long" format (each cluster
feature is provided as its own row).

num_bins Optional. The number of bins to use in dividing one-dimensional marker distri-
butions into discrete segments for the EMD calculation. Defaults to 100.

Value

A tibble.

If format == "wide", the tibble will have 1 row for each combination of the grouping variables
provided in ‘group_cols‘ and one column for each grouping variable, one column for each ex-
tracted feature (the EMD between the distribution of a given marker in a given cluster in the basal
condition and the distribution of that marker in a given cluster in a stimulated condition). The
names of each column containing cluster features is obtained using the following pattern: " {stimu-
lation_id}_{marker_id} @ {cluster_id}_emd".

If format == "long", the tibble will have 1 row for each combination of the grouping variables in
‘group_cols®, each cluster id (i.e. level) in ‘cluster_col‘, and each marker in ‘marker_cols®. It will
have one column for each grouping variable, one column for the cluster ids, one column for the
CyTOF channel names, and one column (‘value®) containing the features.

78 tof_extract_features

See Also

Other feature extraction functions: tof_extract_central_tendency(), tof_extract_features(),
tof_extract_jsd(), tof_extract_proportion(), tof_extract_threshold()

Examples

sim_data <-
dplyr::tibble(

cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE),
patient = sample(c("kirby"”, "mario"), size = 1000, replace = TRUE),
stim = sample(c(”"basal”, "stim"), size = 1000, replace = TRUE)

)

extract emd of each cluster in each patient (using the "basal” stim
condition as a reference) in wide format
tof_extract_emd(

tof_tibble = sim_data,

cluster_col = cluster_id,

group_cols = patient,

emd_col = stim,

reference_level = "basal”

)

extract emd of each cluster (using the "basal” stim
condition as a reference) in long format
tof_extract_emd(

tof_tibble = sim_data,

cluster_col = cluster_id,

emd_col = stim,

reference_level = "basal”,

format = "long"

tof_extract_features Extract aggregated, sample-level features from CyTOF data.

Description

This function wraps other members of the ‘tof_extract_** function family to extract sample-level
features from both lineage (i.e. cell surface antigen) CyTOF channels assumed to be stable across
stimulation conditions and signaling CyTOF channels assumed to change across stimulation condi-
tions. Features are extracted for each cluster within each independent sample (as defined with the
‘group_cols‘ argument).

Usage

tof_extract_features(
tof_tibble,

tof extract_features 79

cluster_col,

group_cols = NULL,

stimulation_col = NULL,

lineage_cols,

signaling_cols,

central_tendency_function = stats::median,

signaling_method = c("threshold”, "emd”, "jsd", "central tendency”),
basal_level = NULL,

)
Arguments

tof_tibble A ‘tof _tbl‘ or a ‘tibble‘.

cluster_col An unquoted column name indicating which column in ‘tof_tibble* stores the
cluster ids of the cluster to which each cell belongs. Cluster labels can be pro-
duced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

group_cols Unquoted column names representing which columns in ‘tof_tibble* should be

used to break the rows of ‘tof_tibble* into subgroups for the feature extraction
calculation. Defaults to NULL (i.e. performing the extraction without sub-
groups).
stimulation_col

Optional. An unquoted column name that indicates which column in ‘tof_tibble*
contains information about which stimulation condition each cell was exposed
to during data acquisition. If provided, the feature extraction will be further
broken down into subgroups by stimulation condition (and features from each
stimulation condition will be included as their own features in wide format).

lineage_cols Unquoted column names representing which columns in ‘tof_tibble‘ (i.e. which
CyTOF protein measurements) should be considered lineage markers in the fea-
ture extraction calculation. Supports tidyselect helpers.

signaling_cols Unquoted column names representing which columns in ‘tof_tibble‘ (i.e. which
CyTOF protein measurements) should be considered signaling markers in the
feature extraction calculation. Supports tidyselect helpers.

central_tendency_function
The function that will be used to calculate the measurement of central tendency
for each cluster (to be used as the dependent variable in the linear model). De-
faults to median.

signaling_method
A string indicating which feature extraction method to use for signaling markers
(as identified by the ‘signaling_cols‘ argument). Options are "threshold" (the
default), "emd", "jsd", and "central tendency".

basal_level A string indicating what the value in ‘stimulation_col‘ corresponds to the basal
stimulation condition (i.e. "basal" or "unstimulated").

Optional additional arguments to be passed to tof_extract_threshold, tof_extract_emd,
or tof_extract_jsd.
Details

Lineage channels are specified using the ‘lineage_cols‘ argument, and their extracted features will
be measurements of central tendency (as computed by the user-supplied ‘central_tendency_function®).

80

tof extract_features

Signaling channels are specified using the ‘signaling_cols® argument, and their extracted features
will depend on the user’s chosen ‘signaling_method°. If ‘signaling method‘ == "threshold" (the de-
fault), tof _extract_threshold will be used to calculate the proportion of cells in each cluster with
signaling marker expression over ‘threshold‘ in each stimulation condition. If ‘signaling_method*
== "emd" or ‘signaling_method‘ == "jsd", tof_extract_emd or tof_extract_jsd will be used
to calculate the earth-mover’s distance (EMD) or Jensen-Shannon Distance (JSD), respectively, be-
tween the basal condition and each of the stimulated conditions in each cluster for each sample.
Finally, if none of these options are chosen, tof_extract_central_tendency will be used to cal-
culate measurements of central tendency.

In addition, tof_extract_proportion will be used to extract the proportion of cells in each cluster
will be computed for each sample.

These calculations can be performed either overall (across all cells in the dataset) or after breaking
down the cells into subgroups using ‘group_cols®.

Value

A tibble.

The output tibble will have 1 row for each combination of the grouping variables provided in
‘group_cols® (thus, each row will represent what is considered a single "sample" based on the group-
ing provided). It will have one column for each grouping variable and one column for each extracted
feature ("wide" format).

See Also

Other feature extraction functions: tof_extract_central_tendency(), tof_extract_emd(),
tof_extract_jsd(), tof_extract_proportion(), tof_extract_threshold()

Examples

sim_data <-
dplyr::tibble(

cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE),
patient = sample(c("kirby”, "mario"), size = 1000, replace = TRUE),
stim = sample(c(”"basal”, "stim"), size = 1000, replace = TRUE)

)

extract the following features from each cluster in each
patient/stimulation:

- proportion of each cluster

- central tendency (median) of cd45 and cd38 in each cluster

- the proportion of cells in each cluster with cd34 expression over
the default threshold (asinh(1@ / 5))

tof_extract_features(
tof_tibble = sim_data,
cluster_col = cluster_id,
group_cols = patient,
lineage_cols = c(cd45, cd38),
signaling_cols = cd34,
stimulation_col = stim

tof_extract_jsd 81

extract the following features from each cluster in each
patient/stimulation:

- proportion of each cluster

- central tendency (mean) of cd45 and cd38 in each cluster

- the earth mover's distance between each cluster's cd34 histogram in
the "basal” and "stim"” conditions

tof_extract_features(
tof_tibble = sim_data,
cluster_col = cluster_id,
group_cols = patient,
lineage_cols = c(cd45, cd38),
signaling_cols = cd34,
central_tendency_function = mean,
stimulation_col = stim,

signaling_method = "emd",
basal_level = "basal”
)
tof_extract_jsd Extract aggregated features from CyTOF data using the Jensen-
Shannon Distance (JSD)
Description

This feature extraction function calculates the Jensen-Shannon Distance (JSD) between the stimu-
lated and unstimulated ("basal") experimental conditions of samples in a CyTOF experiment. This
calculation is performed across a user-specified selection of CyTOF antigens and can be performed
either overall (across all cells in the dataset) or after breaking down the cells into subgroups using
‘group_cols®.

Usage

tof_extract_jsd(
tof_tibble,
cluster_col,
group_cols = NULL,
marker_cols = where(tof_is_numeric),

jsd_col,
reference_level,
format = c("wide”, "long"),
num_bins = 100

)

Arguments
tof_tibble A ‘tof_tbl‘ or a ‘tibble‘.
cluster_col An unquoted column name indicating which column in ‘tof_tibble* stores the

cluster ids of the cluster to which each cell belongs. Cluster labels can be pro-
duced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

82 tof_extract_jsd

group_cols Unquoted column names representing which columns in ‘tof_tibble‘ should be
used to break the rows of ‘tof_tibble* into subgroups for the feature extraction
calculation. Defaults to NULL (i.e. performing the extraction without sub-
groups).

marker_cols Unquoted column names representing which columns in ‘tof_tibble‘ (i.e. which
CyTOF protein measurements) should be included in the feature extraction cal-
culation. Defaults to all numeric (integer or double) columns. Supports tidyse-
lect helpers.

jsd_col An unquoted column name that indicates which column in ‘tof_tibble* contains
information about which stimulation condition each cell was exposed to during
data acquisition.
If provided, the feature extraction will be further broken down into subgroups
by stimulation condition (and features from each stimulation condition will be
included as their own features in wide format).

reference_level
A string indicating what the value in ‘jsd_col‘ corresponds to the basal stimula-
tion condition (i.e. "basal”" or "unstimulated").

format A string indicating if the data should be returned in "wide" format (the default;
each cluster feature is given its own column) or in "long" format (each cluster
feature is provided as its own row).

num_bins Optional. The number of bins to use in dividing one-dimensional marker distri-
butions into discrete segments for the JSD calculation. Defaults to 100.

Value

A tibble.

If format == "wide", the tibble will have 1 row for each combination of the grouping variables
provided in ‘group_cols‘ and one column for each grouping variable, one column for each ex-
tracted feature (the JSD between the distribution of a given marker in a given cluster in the basal
condition and the distribution of that marker in the same cluster in a stimulated condition). The
names of each column containing cluster features is obtained using the following pattern: " {stimu-
lation_id}_{marker_id} @ {cluster_id}_jsd".

If format == "long", the tibble will have 1 row for each combination of the grouping variables in
‘group_cols®, each cluster id (i.e. level) in ‘cluster_col‘, and each marker in ‘marker_cols®. It will
have one column for each grouping variable, one column for the cluster ids, one column for the
CyTOF channel names, and one column (‘value®) containing the features.

See Also

Other feature extraction functions: tof_extract_central_tendency(), tof_extract_emd(),
tof_extract_features(), tof_extract_proportion(), tof_extract_threshold()

Examples

sim_data <-
dplyr::tibble(

cd45 = rnorm(n = 1000),

cd38 = rnorm(n = 1000),

cd34 = rnorm(n = 1000),

cd19 = rnorm(n = 1000),

cluster_id = sample(letters, size = 1000, replace = TRUE),

patient = sample(c("kirby”, "mario"), size = 1000, replace = TRUE),

tof_extract_proportion 83

stim = sample(c(”"basal”, "stim"), size = 1000, replace = TRUE)
)

extract jsd of each cluster in each patient (using the "basal” stim
condition as a reference) in wide format
tof_extract_jsd(

tof_tibble = sim_data,

cluster_col = cluster_id,

group_cols = patient,

jsd_col = stim,

reference_level = "basal”

)

extract jsd of each cluster (using the "basal” stim
condition as a reference) in long format
tof_extract_jsd(

tof_tibble = sim_data,

cluster_col = cluster_id,

jsd_col = stim,

reference_level = "basal”,

format = "long"

tof_extract_proportion
Extract the proportion of cells in each cluster in a ‘tof _tibble".

Description

This feature extraction function allows you to calculate the proportion of cells in each cluster in a
‘tof_tibble* - either overall or when broken down into subgroups using ‘group_cols®.

Usage

tof_extract_proportion(
tof_tibble,
cluster_col,
group_cols = NULL,

format = c("wide”, "long")
)
Arguments

tof_tibble A ‘tof_tbl‘ or a ‘tibble‘.

cluster_col An unquoted column name indicating which column in ‘tof_tibble‘ stores the
cluster ids of the cluster to which each cell belongs. Cluster labels can be pro-
duced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

group_cols Unquoted column names representing which columns in ‘tof_tibble‘ should be

used to break the rows of ‘tof_tibble‘ into subgroups for the feature extraction
calculation. Defaults to NULL (i.e. performing the extraction without sub-
groups).

84 tof_extract_proportion

format A string indicating if the data should be returned in "wide" format (the default;
each cluster proportion is given its own column) or in "long" format (each cluster
proportion is provided as its own row).

Value

A tibble.

If format == "wide", the tibble will have 1 row for each combination of the grouping variables
provided in ‘group_cols‘ and one column for each grouping variable as well as one column for the
proportion of cells in each cluster. The names of each column containing cluster proportions is
obtained using the following pattern: "prop @ {cluster_id}".

If format == "long", the tibble will have 1 row for each combination of the grouping variables
in ‘group_cols‘ and each cluster id (i.e. level) in ‘cluster_col‘. It will have one column for each
grouping variable, one column for the cluster ids, and one column (‘prop‘) containing the cluster
proportions.

See Also

Other feature extraction functions: tof_extract_central_tendency(), tof_extract_emd(),
tof_extract_features(), tof_extract_jsd(), tof_extract_threshold()

Examples

sim_data <-

dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE),
patient = sample(c("kirby"”, "mario"), size = 1000, replace = TRUE),
stim = sample(c(”"basal”, "stim"), size = 1000, replace = TRUE)

)

extract proportion of each cluster in each patient in wide format
tof_extract_proportion(

tof_tibble = sim_data,

cluster_col = cluster_id,

group_cols = patient

)

extract proportion of each cluster in each patient in long format
tof_extract_proportion(

tof_tibble = sim_data,

cluster_col = cluster_id,

group_cols = patient,

format = "long”

tof_extract_threshold 85

tof_extract_threshold Extract aggregated features from CyTOF data using a binary thresh-
old

Description

This feature extraction function calculates the proportion of cells in a given cluster that have a
CyTOF antigen expression over a user-specified threshold across a user-specified selection of CyTOF
markers. These calculations can be done either overall (across all cells in the dataset) or after break-
ing down the cells into subgroups using ‘group_cols".

Usage

tof_extract_threshold(
tof_tibble,
cluster_col,
group_cols = NULL,
marker_cols = where(tof_is_numeric),
stimulation_col = NULL,
threshold = asinh(10/5),

format = c("wide”, "long")
)
Arguments

tof_tibble A ‘tof_tbl‘ or a ‘tibble‘.

cluster_col An unquoted column name indicating which column in ‘tof_tibble* stores the
cluster ids of the cluster to which each cell belongs. Cluster labels can be pro-
duced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

group_cols Unquoted column names representing which columns in ‘tof_tibble* should be
used to break the rows of ‘tof_tibble‘ into subgroups for the feature extraction
calculation. Defaults to NULL (i.e. performing the extraction without sub-
groups).

marker_cols Unquoted column names representing which columns in ‘tof_tibble‘ (i.e. which

CyTOF protein measurements) should be included in the feature extraction cal-
culation. Defaults to all numeric (integer or double) columns. Supports tidyse-
lect helpers.

stimulation_col
Optional. An unquoted column name that indicates which column in ‘tof_tibble*
contains information about which stimulation condition each cell was exposed
to during data acquisition. If provided, the feature extraction will be further
broken down into subgroups by stimulation condition (and features from each
stimulation condition will be included as their own features in wide format).

threshold A double or integer of length 1 indicating what threshold should be used.

format A string indicating if the data should be returned in "wide" format (the default;
each cluster feature is given its own column) or in "long" format (each cluster
feature is provided as its own row).

86 tof_find_best
Value

A tibble.

If format == "wide", the tibble will have 1 row for each combination of the grouping variables pro-

vided in ‘group_cols‘ and one column for each grouping variable, one column for each extracted
feature (the proportion of cells in a given cluster over with marker expression values over ‘thresh-
old®). The names of each column containing cluster features is obtained using the following pattern:
"{marker_id} @{cluster_id}_threshold".

If format == "long", the tibble will have 1 row for each combination of the grouping variables in
‘group_cols®, each cluster id (i.e. level) in ‘cluster_col‘, and each marker in ‘marker_cols‘. It will
have one column for each grouping variable, one column for the cluster ids, one column for the
CyTOF channel names, and one column (‘value®) containing the features.

See Also

Other feature extraction functions: tof_extract_central_tendency(), tof_extract_emd(),
tof_extract_features(), tof_extract_jsd(), tof_extract_proportion()

Examples

sim_data <-
dplyr::tibble(

)

cd45 = rnorm(n = 1000),

cd38 = rnorm(n = 1000),

cd34 = rnorm(n = 1000),

cd19 = rnorm(n = 1000),

cluster_id = sample(letters, size = 1000, replace = TRUE),

patient = sample(c("kirby"”, "mario"), size = 1000, replace = TRUE),
stim = sample(c(”"basal”, "stim"), size = 1000, replace = TRUE)

extract proportion of each cluster in each patient in wide format
tof_extract_threshold(

tof_

tibble = sim_data,

cluster_col = cluster_id,
group_cols = patient

)

extract proportion of each cluster in each patient in long format
tof_extract_threshold(

tof_

tibble = sim_data,

cluster_col = cluster_id,
group_cols = patient,

format = "long"
)
tof_find_best Find the optimal hyperparameters for an elastic net model from can-
didate performance metrics
Description

Find the optimal hyperparameters for an elastic net model from candidate performance metrics

tof_find_cv_predictions 87

Usage

tof_find_best(performance_metrics, model_type, optimization_metric)

Arguments

performance_metrics
A tibble of performance metrics for an elastic net model (in wide format)

model_type A string indicating which type of glmnet model was trained.

optimization_metric
A string indicating which performance metric should be used to select the opti-
mal model.

Value

A tibble with 3 columns: "mixture", "penalty"”, and a column containing the chosen optimization
metric. If the returned tibble has more than 1 column, it means that more than 1 mixture/penalty
combination yielded the optimal result (i.e. the tuning procedure resulted in a tie).

tof_find_cv_predictions
Calculate and store the predicted outcomes for each validation set ob-
servation during model tuning

Description

Calculate and store the predicted outcomes for each validation set observation during model tuning

Usage

tof_find_cv_predictions(
split_data,
prepped_recipe,
lambda,
alpha,
model_type,
outcome_colnames

Arguments

split_data An ‘rsplit* object from the rsample package. Alternatively, an unsplit tbl_df
can be provided, though this is not recommended.

prepped_recipe A trained recipe

lambda A single numeric value indicating which penalty (lambda) value should be used
to make the predictions

alpha A single numeric value indicating which mixture (alpha) value should be used
to make the predictions

88 tof_find_jsd

model_type A string indicating which kind of elastic net model to build. If a continuous
response is being predicted, use "linear" for linear regression; if a categorical
response with only 2 classes is being predicted, use "two-class" for logistic re-
gression; if a categorical response with more than 2 levels is being predicted,
use "multiclass” for multinomial regression; and if a time-to-event outcome is
being predicted, use "survival" for Cox regression.

outcome_colnames
Quoted column names indicating which columns in the data being fit represent
the outcome variables (with all others assumed to be predictors).

Value

A tibble containing the predicted and true values for the outcome for each of the validation obser-
vations in ‘split_data“.

tof_find_emd Find the earth-mover’s distance between two numeric vectors

Description

Find the earth-mover’s distance between two numeric vectors

Usage

tof_find_emd(vec_1, vec_2, num_bins = 100)

Arguments
vec_1 A numeric vector.
vec_2 A numeric vector.
num_bins An integer number of bins to use when performing kernel density estimation on
the two vectors. Defaults to 100.
Value

A double (of length 1) representing the EMD between the two vectors.

tof_find_jsd Find the Jensen-Shannon Divergence (JSD) between two numeric vec-
tors

Description

Find the Jensen-Shannon Divergence (JSD) between two numeric vectors

Usage

tof_find_jsd(vec_1, vec_2, num_bins = 100)

tof_find_knn 89

Arguments
vec_1 A numeric vector.
vec_2 A numeric vector.
num_bins An integer number of bins to use when binning across the two vectors’ combined
range. Defaults to 100.
Value

A double (of length 1) representing the JSD between the two vectors.

tof_find_knn Find the k-nearest neighbors of each cell in a high-dimensional cytom-
etry dataset.

Description

Find the k-nearest neighbors of each cell in a high-dimensional cytometry dataset.

Usage
tof_find_knn(
.data,
k = min(10, nrow(.data)),
distance_function = c("euclidean”, "cosine"”, "12", "ip"),
.query,
)
Arguments
.data A ‘tof_tibble‘ or ‘tibble‘ in which each row represents a cell and each column
represents a high-dimensional cytometry measurement.
k An integer indicating the number of nearest neighbors to return for each cell.

distance_function
A string indicating which distance function to use for the nearest-neighbor cal-
culation. Options include "euclidean" (the default) and "cosine" distances.

.query A set of cells to be queried against .data (i.e. a set of cells for which to find
nearest neighbors within .data). Defaults to .data itself, i.e. finding nearest
neighbors for all cells in .data.

Optional additional arguments to pass to hnsw_knn

Value

A list with two elements: "neighbor_ids" and "neighbor_distances," both of which are n by k ma-
trices (in which n is the number of cells in the input ‘.data‘. The [i,j]-th entry of "neighbor_ids"
represents the row index for the j-th nearest neighbor of the cell in the i-th row of ‘.data‘. The
[i,j]-th entry of "neighbor_distances" represents the distance between those two cells according to
‘distance_function®.

90 tof_find_log rank_threshold

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000)
)

Find the 10 nearest neighbors of each cell in the dataset
tof_find_knn(

.data = sim_data,

k =10,

distance_function = "euclidean”

)

Find the 10 approximate nearest neighbors
tof_find_knn(

.data = sim_data,

k =10,

distance_function = "euclidean”,

tof_find_log_rank_threshold
Compute the log-rank test p-value for the difference between the two
survival curves obtained by splitting a dataset into a "low" and "high"
risk group using all possible relative-risk thresholds.

Description

Compute the log-rank test p-value for the difference between the two survival curves obtained by
splitting a dataset into a "low" and "high" risk group using all possible relative-risk thresholds.

Usage

tof_find_log_rank_threshold(input_data, relative_risk_col, time_col, event_col)

Arguments

input_data A tbl_df or data.frame in which each observation is a row.
relative_risk_col

An unquote column name indicating which column contains the relative-risk
estimates for each observation.

time_col An unquoted column name indicating which column contains the true time-to-
event information for each observation.

event_col An unquoted column name indicating which column contains the outcome (event
or censorship). Must be a binary column - all values should be either 0 or 1 (with
1 indicating the adverse event and 0 indicating censorship) or FALSE and TRUE
(with TRUE indicating the adverse event and FALSE indicating censorship).

tof_find_panel_info 91

Value

A tibble with 3 columns: "candidate_thresholds" (the relative-risk threshold used for the log-rank
test), "log_rank_p_val" (the p-values of the log-rank tests) and "is_best" (a logical value indicating
which candidate threshold gave the optimal, i.e. smallest, p-value).

tof_find_panel_info Use tidytof’s opinionated heuristic for extracted a high-dimensional
cytometry panel’s metal-antigen pairs from a flowFrame (read from a

Jes file.)

Description

Using the character vectors obtained from the ‘name‘ and ‘desc‘ columns of the parameters of the
data of a flowFrame, figure out the high-dimensional cytometry panel used to collect the data and
return it as a tidy tibble.

Usage

tof_find_panel_info(input_flowFrame)

Arguments

input_flowFrame
a raw flowFrame (just read from an .fcs file) from which a high-dimensional
cytometry panel should be extracted

Value

A tibble with 2 columns (‘metals and ‘antigens) that correspond to the metals and antigens of the
high-dimensional cytometry panel used during data acquisition.

tof_fit_split Fit a glmnet model and calculate performance metrics using a single
rsplit object

Description

This function trains a glmnet model on the training set of an rsplit object, then calculates perfor-
mance metrics of that model on the validation/holdout set at all combinations of the mixture and
penalty hyperparameters provided in a hyperparameter grid.

Usage

tof_fit_split(
split_data,
prepped_recipe,
hyperparameter_grid,
model_type,
outcome_colnames

92 tof_generate_palette

Arguments

split_data An ‘rsplit® object from the rsample package. Alternatively, an unsplit tbl_df
can be provided, though this is not recommended.

prepped_recipe A trained recipe

hyperparameter_grid
A tibble containing the hyperparameter values to tune. Can be created using
tof_create_grid

model_type A string representing the type of glmnet model being fit.

outcome_colnames

Quoted column names indicating which columns in the data being fit represent
the outcome variables (with all others assumed to be predictors).

Value

A tibble with the same number of rows as the input hyperparameter grid. Each row represents a
combination of mixture and penalty, and each column contains a performance metric for the fitted
glmnet model on ‘split_data‘“’s holdout set. The specific performance metrics depend on the type of
model being fit:

"linear' mean-squared error (‘mse‘) and mean absolute error (‘mae‘)

"two-class'' binomial deviance (‘binomial_deviance‘); misclassification error rate ‘misclassifica-
tion_error‘; the area under the receiver-operating curve (‘roc_auc‘); and ‘mse‘ and ‘mse‘ as
above

"multiclass' multinomial deviance (‘multinomial_deviance‘); misclassification error rate ‘mis-
classification_error‘; the area under the receiver-operating curve (‘roc_auc‘) computed using
the Hand-Till method in roc_auc; and ‘mse‘ and ‘mse‘ as above

"survival'' the negative log2-transformed partial likelihood (‘neg_log_partial_likelihood‘) and Har-
rel’s concordance index (often simply called "C"; ‘concordance_index ‘)

References

Harrel Jr, F. E. and Lee, K. L. and Mark, D. B. (1996) Tutorial in biostatistics: multivariable prog-
nostic models: issues in developing models, evaluating assumptions and adequacy, and measuring
and reducing error, Statistics in Medicine, 15, pages 361-387.

tof_generate_palette Generate a color palette using tidytof.

Description

This function generates a color palette based on the color palette of the author’s favorite pokemon.

Usage

tof_generate_palette(num_colors)

Arguments

num_colors An integer specifying the number of colors you’d like to generate.

tof_get_model_mixture

Value

A character vector of hex codes specifying the colors in the palette.

Examples

tof_generate_palette(num_colors = 5L)

tof_get_model_mixture Get a ‘tof_model‘’s optimal mixture (alpha) value

Description

Get a ‘tof_model‘’s optimal mixture (alpha) value

Usage

tof_get_model_mixture(tof_model)

Arguments

tof_model A tof _model

Value

A numeric value

Examples

feature_tibble <-
dplyr::tibble(
sample = as.character(1:100),
cd45 = runif(n = 100),
pstat5 = runif(n = 100),
cd34 = runif(n = 100),
outcome = (3 * cd45) + (4 x pstat5) + rnorm(100),
class =
as.factor(
dplyr::if_else(outcome > median(outcome), "class1”
),
multiclass =
as.factor(

, "class2")

c(rep(”class1”, 30), rep(”"class2", 30), rep(”"class3”, 40))

)!
event = c(rep(@, times = 30), rep(1, times = 70)),
time_to_event = rnorm(n = 100, mean = 10, sd = 2)

)

split_data <- tof_split_data(feature_tibble, split_method = "simple")

train a regression model
regression_model <-
tof_train_model(

94 tof_get_model_outcomes

split_data = split_data,

predictor_cols = c(cd45, pstat5, cd34),
response_col = outcome,

model_type = "linear”

)

tof_get_model_mixture(regression_model)

tof_get_model_outcomes
Get a ‘tof_model‘’s outcome variable name(s)

Description

Get a ‘tof_model‘’s outcome variable name(s)

Usage

tof_get_model_outcomes(tof_model)

Arguments

tof_model A tof _model

Value

A character vector

Examples

feature_tibble <-
dplyr::tibble(
sample = as.character(1:100),
cd45 = runif(n = 100),
pstat5 = runif(n = 100),
cd34 = runif(n = 100),
outcome = (3 * cd45) + (4 * pstat5) + rnorm(100),
class =
as.factor(
dplyr::if_else(outcome > median(outcome), "classl1”, "class2")
),
multiclass =
as.factor(
c(rep(”"class1”, 30), rep("class2", 30), rep("class3”, 40))
),
event = c(rep(@, times = 30), rep(1, times = 70)),
time_to_event = rnorm(n = 100, mean = 10, sd = 2)

)
split_data <- tof_split_data(feature_tibble, split_method = "simple")

train a regression model
regression_model <-

tof_get_model_penalty

tof_train_model(
split_data = split_data,
predictor_cols = c(cd45, pstat5, cd34),
response_col = outcome,
model_type = "linear"

)

tof_get_model_outcomes(regression_model)

tof_get_model_penalty Geta ‘tof_model‘’s optimal penalty (lambda) value

Description

Get a ‘tof_model‘’s optimal penalty (lambda) value

Usage
tof_get_model_penalty(tof_model)

Arguments

tof_model A tof _model

Value

A numeric value

Examples

feature_tibble <-
dplyr::tibble(
sample = as.character(1:100),
cd45 = runif(n = 100),
pstat5 = runif(n = 100),
cd34 = runif(n = 100),
outcome = (3 * cd45) + (4 * pstat5) + rnorm(100),
class =
as.factor(

dplyr::if_else(outcome > median(outcome), "classl1”, "class2")

)!

multiclass =
as.factor(

c(rep(”"class1”, 30), rep("class2", 30), rep("class3”, 40))

)’
event = c(rep(@, times = 30), rep(1, times = 70)),
time_to_event = rnorm(n = 100, mean = 10, sd = 2)

)

split_data <- tof_split_data(feature_tibble, split_method = "simple")

train a regression model
regression_model <-

96 tof_get_model_training data

tof_train_model(
split_data = split_data,
predictor_cols = c(cd45, pstat5, cd34),
response_col = outcome,
model_type = "linear"

)

tof_get_model_penalty(regression_model)

tof_get_model_training_data
Get a ‘tof_model‘’s training data

Description

Get a ‘tof_model‘’s training data

Usage

tof_get_model_training_data(tof_model)

Arguments

tof_model A tof _model

Value

A tibble of (non-preprocessed) training data used to fit the model

Examples

feature_tibble <-
dplyr::tibble(
sample = as.character(1:100),
cd45 = runif(n = 100),
pstat5 = runif(n = 100),
cd34 = runif(n = 100),
outcome = (3 * cd45) + (4 x pstat5) + rnorm(100),
class =
as.factor(
dplyr::if_else(outcome > median(outcome), "classl1”, "class2")
),
multiclass =
as.factor(
c(rep(”class1”, 30), rep(”"class2", 30), rep(”"class3”, 40))
),
event = c(rep(@, times = 30), rep(l, times = 70)),
time_to_event = rnorm(n = 100, mean = 10, sd = 2)

)
split_data <- tof_split_data(feature_tibble, split_method = "simple"”)

train a regression model

tof_get_model_type

regression_model <-
tof_train_model (
split_data = split_data,
predictor_cols = c(cd45, pstath, cd34),
response_col = outcome,
model_type = "linear”

)

tof_get_model_training_data(regression_model)

97

tof_get_model_type Get a ‘tof_model“’s model type

Description

Get a ‘tof_model*’s model type

Usage
tof_get_model_type(tof_model)

Arguments

tof_model A tof _model

Value

A string

Examples

feature_tibble <-
dplyr::tibble(
sample = as.character(1:100),
cd45 = runif(n = 100),
pstat5 = runif(n = 100),
cd34 = runif(n = 100),
outcome = (3 * cd45) + (4 x pstat5) + rnorm(100),
class =
as.factor(
dplyr::if_else(outcome > median(outcome), "class1”, "class2")
),
multiclass =
as.factor(
c(rep(”class1”, 30), rep(”"class2", 30), rep(”"class3”, 40))
),
event = c(rep(@, times = 30), rep(l, times = 70)),
time_to_event = rnorm(n = 100, mean = 10, sd = 2)

)

split_data <- tof_split_data(feature_tibble, split_method = "simple"”)

train a regression model

98 tof_get_model_x

regression_model <-
tof_train_model (
split_data = split_data,
predictor_cols = c(cd45, pstath, cd34),
response_col = outcome,
model_type = "linear”

)

tof_get_model_type(regression_model)

tof_get_model_x Get a ‘tof_model‘’s processed predictor matrix (for glmnet)

Description

Get a ‘tof_model*’s processed predictor matrix (for glmnet)

Usage
tof_get_model_x(tof_model)

Arguments

tof_model A tof _model

Value

An x value formatted for glmnet

Examples

feature_tibble <-
dplyr::tibble(
sample = as.character(1:100),
cd45 = runif(n = 100),
pstat5 = runif(n = 100),
cd34 = runif(n = 100),
outcome = (3 * cd45) + (4 x pstat5) + rnorm(100),
class =
as.factor(
dplyr::if_else(outcome > median(outcome), "class1”, "class2")
),
multiclass =
as.factor(
c(rep(”class1”, 30), rep(”"class2", 30), rep(”"class3”, 40))
),
event = c(rep(@, times = 30), rep(l, times = 70)),
time_to_event = rnorm(n = 100, mean = 10, sd = 2)

)

split_data <- tof_split_data(feature_tibble, split_method = "simple"”)

train a regression model

tof_get_model_y

regression_model <-
tof_train_model (
split_data = split_data,
predictor_cols = c(cd45, pstath, cd34),
response_col = outcome,
model_type = "linear”

)

tof_get_model_x(regression_model)

99

tof_get_model_y Get a ‘tof_model‘’s processed outcome variable matrix (for glmnet)

Description

Get a ‘tof_model*’s processed outcome variable matrix (for glmnet)

Usage
tof_get_model_y(tof_model)

Arguments

tof_model A tof _model

Value

Ay value formatted for glmnet

Examples

feature_tibble <-
dplyr::tibble(
sample = as.character(1:100),
cd45 = runif(n = 100),
pstat5 = runif(n = 100),
cd34 = runif(n = 100),
outcome = (3 * cd45) + (4 x pstat5) + rnorm(100),
class =
as.factor(
dplyr::if_else(outcome > median(outcome), "class1”, "class2")
),
multiclass =
as.factor(
c(rep(”class1”, 30), rep(”"class2", 30), rep(”"class3”, 40))
),
event = c(rep(@, times = 30), rep(l, times = 70)),
time_to_event = rnorm(n = 100, mean = 10, sd = 2)

)

split_data <- tof_split_data(feature_tibble, split_method = "simple"”)

train a regression model

100 tof_get_panel

regression_model <-
tof_train_model (
split_data = split_data,
predictor_cols = c(cd45, pstath, cd34),
response_col = outcome,
model_type = "linear”

)

tof_get_model_y(regression_model)

tof_get_panel Get panel information from a tof _tibble

Description

Get panel information from a tof_tibble

Usage

tof_get_panel (tof_tibble)

Arguments

tof_tibble A ‘tof_tbl“.

Value

A tibble containing information about the CyTOF panel that was used during data acquisition for
the data contained in ‘tof tibble°.

See Also

Other tof_tbl utilities: new_tof_tibble(), tof_set_panel()

Examples

input_file <- dir(tidytof_example_data(”aml”), full.names = TRUE)[[1]]
tof_tibble <- tof_read_data(input_file)
tof_get_panel(tof_tibble)

tof_is_numeric 101

tof_is_numeric Find if a vector is numeric

Description
This function takes an input vector ‘.vec‘ and checks if it is either an integer or a double (i.e. is the
type of vector that might encode high-dimensional cytometry measurements).

Usage

tof_is_numeric(.vec)

Arguments

.vec A vector.

Value

A boolean value indicating if .vec is of type integer or double.

tof_knn_density Estimate cells’ local densities using K-nearest-neighbor density esti-
mation

Description

This function uses the distances between a cell and each of its K nearest neighbors to estimate local
density of each cell in a ‘tof_tbl‘ or ‘tibble* containing high-dimensional cytometry data.

Usage

tof_knn_density(
tof_tibble,
distance_cols = where(tof_is_numeric),
num_neighbors = min(15L, nrow(tof_tibble)),
distance_function = c("euclidean”, "cosine", "12", "ip"),
estimation_method = c("mean_distance”, "sum_distance"”),
normalize = TRUE,

Arguments

tof_tibble A ‘tof_tbl‘ or a ‘tibble°.

distance_cols Unquoted names of the columns in ‘tof_tibble‘ to use in calculating cell-to-
cell distances during the local density estimation for each cell. Defaults to all
numeric columns in ‘tof_tibble‘.

num_neighbors An integer indicating the number of nearest neighbors to use in estimating the
local density of each cell. Defaults to the minimum of 15 and the number of
rows in ‘tof_tibble‘.

102 tof_log_rank_test

distance_function
A string indicating which distance function to use for calculating cell-to-cell dis-
tances during local density estimation. Options include "euclidean" (the default)
and "cosine".

estimation_method
A string indicating how the relative density for each cell should be calculated
from the distances between it and each of its k nearest neighbors. Options are
"mean_distance" (the default; estimates the relative density for a cell’s neigh-
borhood by taking the negative average of the distances to its nearest neighbors)
and "sum_distance" (estimates the relative density for a cell’s neighborhood by
taking the negative sum of the distances to its nearest neighbors).

normalize A boolean value indicating if the vector of local density estimates should be
normalized to values between 0 and 1. Defaults to TRUE.

Additional optional arguments to pass to tof_find_knn.

Value
A tibble with a single column named ".knn_density" containing the local density estimates for each
input cell in ‘tof_tibble*.

See Also

Other local density estimation functions: tof_estimate_density(), tof_spade_density()

tof_log_rank_test Compute the log-rank test p-value for the difference between the two
survival curves obtained by splitting a dataset into a "low" and "high"
risk group using a given relative-risk threshold.

Description

Compute the log-rank test p-value for the difference between the two survival curves obtained by
splitting a dataset into a "low" and "high" risk group using a given relative-risk threshold.

Usage

tof_log_rank_test(
input_data,
relative_risk_col,
time_col,
event_col,
threshold

Arguments

input_data A tbl_df or data.frame in which each observation is a row.
relative_risk_col
An unquote column name indicating which column contains the relative-risk
estimates for each observation.

tof_make_knn_graph 103

time_col An unquoted column name indicating which column contains the true time-to-
event information for each observation.

event_col An unquoted column name indicating which column contains the outcome (event
or censorship). Must be a binary column - all values should be either 0 or 1 (with
1 indicating the adverse event and 0 indicating censorship) or FALSE and TRUE
(with TRUE indicating the adverse event and FALSE indicating censorship).

threshold A numeric value indicating the relative-risk threshold that should be used to split
observations into low- and high-risk groups.

Value

A numeric value <1, the p-value of the log-rank test.

Examples

NULL

tof_make_knn_graph Title

Description

Title

Usage

tof_make_knn_graph(
tof_tibble,
knn_cols,
num_neighbors,
distance_function = c("euclidean”, "cosine"),
graph_type = c("weighted”, "unweighted"),

Arguments
tof_tibble A tibble or tof_tbl.
knn_cols Unquoted column names indicating which columns in tof_tibble should be used

for the KNN calculation.

num_neighbors An integer number of neighbors to find for each cell (not including itself).
distance_function
A string indicating which distance function to use for the nearest-neighbor cal-
culation. Options include "euclidean" (the default) and "cosine" distances.

graph_type A string indicating if the graph’s edges should have weights ("weighted"; the
default) or not ("unweighted").

Optional additional arguments to pass to tof_find_knn

104 tof_make_roc_curve

Value

A tbl_graph.

Examples

NULL

tof_make_roc_curve Compute a receiver-operating curve (ROC) for a two-class or multi-
class dataset

Description

Compute a receiver-operating curve (ROC) for a two-class or multiclass dataset

Usage

tof_make_roc_curve(input_data, truth_col, prob_cols)

Arguments
input_data A tof _tbl, tbl_df, or data.frame in which each row is an observation.
truth_col An unquoted column name indicating which column in ‘input_data‘ contains
the true class labels for each observation. Must be a factor.
prob_cols Unquoted column names indicating which columns in ‘input_data‘ contain the
probability estimates for each class in ‘truth_col‘. These columns must be spec-
ified in the same order as the factor levels in ‘truth_col°.
Value

A tibble that can be used to plot the ROC for a classification task. For each candidate probabil-
ity threshold, the following are reported: specificity, sensitivity, true-positive rate (tpr), and false-
positive rate (fpr).

Examples

feature_tibble <-
dplyr::tibble(
sample = as.character(1:100),
cd45 = runif(n = 100),
pstat5 = runif(n = 100),
cd34 = runif(n = 100),
outcome = (3 * cd45) + (4 x pstat5) + rnorm(100),

class =
as.factor(
dplyr::if_else(outcome > median(outcome), "classl1”, "class2")
)

)

split_data <- tof_split_data(feature_tibble, split_method = "simple")

tof _metacluster 105

train a logistic regression classifier
log_model <-
tof_train_model(
split_data = split_data,
predictor_cols = c(cd45, pstat5, cd34),
response_col = class,
model_type = "two-class”

)

make predictions
predictions <-
tof_predict(

log_model,
new_data = feature_tibble,
prediction_type = "response”

)
prediction_tibble <-
dplyr::tibble(
truth = feature_tibble$class,
prediction = predictions$.pred

)

make ROC curve
tof_make_roc_curve(
input_data = prediction_tibble,
truth_col = truth,
prob_cols = prediction

tof_metacluster Metacluster clustered CyTOF data.

Description

This function is a wrapper around tidytof’s tof_metacluster_* function family. It performs meta-
clustering on CyTOF data using a user-specified method (of 5 choices) and each method’s corre-
sponding input parameters.

Usage

tof_metacluster(
tof_tibble,
cluster_col,
metacluster_cols = where(tof_is_numeric),
central_tendency_function = stats::median,
augment = TRUE,
method = c("consensus”, "hierarchical”, "kmeans”, "phenograph”, "flowsom")

106 tof_metacluster

Arguments
tof_tibble A ‘tof _tbl‘ or ‘tibble°.
cluster_col An unquoted column name indicating which column in ‘tof_tibble* stores the

cluster ids for the cluster to which each cell belongs. Cluster labels can be

produced via any method the user chooses - including manual gating, any of the

functions in the ‘tof_cluster_*‘ function family, or any other method.
metacluster_cols

Unquoted column names indicating which columns in ‘tof_tibble‘ to use in com-

puting the metaclusters. Defaults to all numeric columns in ‘tof_tibble‘. Sup-

ports tidyselect helpers.

central_tendency_function
The function that should be used to calculate the measurement of central ten-
dency for each cluster before metaclustering. This function will be used to com-
pute a summary statistic for each input cluster in ‘cluster_col‘ across all columns
specified by ‘metacluster_cols‘, and the resulting vector (one for each cluster)
will be used as the input for metaclustering. Defaults to median.

Additional arguments to pass to the ‘tof_metacluster_** function family member
corresponding to the chosen ‘method*.

augment A boolean value indicating if the output should column-bind the metacluster ids
of each cell as a new column in ‘tof_tibble‘ (TRUE; the default) or if a single-
column tibble including only the metacluster ids should be returned (FALSE).

method A string indicating which clustering method should be used. Valid values in-

non

clude "consensus", "hierarchical”, "kmeans", "phenograph", and "flowsom".

Value

A ‘tof_tbl or ‘tibble‘ If augment = FALSE, it will have a single column encoding the metacluster
ids for each cell in ‘tof_tibble‘. If augment = TRUE, it will have ncol(tof_tibble) + 1 columns: each
of the (unaltered) columns in ‘tof_tibble* plus an additional column encoding the metacluster ids.

See Also

Other metaclustering functions: tof_metacluster_consensus(), tof_metacluster_flowsom(),
tof_metacluster_hierarchical(), tof_metacluster_kmeans(), tof_metacluster_phenograph()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE)

)

tof_metacluster(
tof_tibble = sim_data,
cluster_col = cluster_id,
clustering_algorithm = "consensus"”,
method = "flowsom”

tof_metacluster_consensus 107

tof_metacluster(
tof_tibble = sim_data,
cluster_col = cluster_id,
method = "phenograph”

tof_metacluster_consensus
Metacluster clustered CyTOF data using consensus clustering

Description

This function performs consensus metaclustering on a ‘tof_tbl* containing CyTOF data using a user-
specified selection of input variables/CyTOF measurements and the number of desired metaclusters.
See ConsensusClusterPlus for additional details.

Usage

tof_metacluster_consensus(
tof_tibble,
cluster_col,
metacluster_cols = where(tof_is_numeric),
central_tendency_function = stats::median,
num_metaclusters = 10L,
proportion_clusters = 0.9,
proportion_features = 1,
num_reps = 20L,

clustering_algorithm = c("hierarchical”, "pam"”, "kmeans"),
distance_function = c("euclidean”, "minkowski”, "pearson”, "spearman”, "maximum”,
"binary"”, "canberra"),
)
Arguments
tof_tibble A ‘tof_tbl° or ‘tibble‘.
cluster_col An unquoted column name indicating which column in ‘tof_tibble* stores the

cluster ids for the cluster to which each cell belongs. Cluster labels can be
produced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.
metacluster_cols
Unquoted column names indicating which columns in ‘tof_tibble* to use in com-
puting the metaclusters. Defaults to all numeric columns in ‘tof_tibble‘. Sup-
ports tidyselect helpers.
central_tendency_function
The function that should be used to calculate the measurement of central ten-
dency for each cluster before metaclustering. This function will be used to com-
pute a summary statistic for each input cluster in ‘cluster_col‘ across all columns
specified by ‘metacluster_cols‘, and the resulting vector (one for each cluster)
will be used as the input for metaclustering. Defaults to median.

108 tof_metacluster_consensus

num_metaclusters
An integer indicating the number of clusters that should be returned. Defaults to
10.

proportion_clusters
A numeric value between 0 and 1 indicating the proportion of clusters to sub-
sample (from the total number of clusters in ‘cluster_col‘) during each iteration
of the consensus clustering. Defaults to 0.9

proportion_features
A numeric value between 0 and 1 indicating the proportion of features (i.e.
the proportion of columns specified by ‘metacluster_cols‘) to subsample dur-
ing each iteration of the consensus clustering. Defaults to 1 (all features are
included).

num_reps An integer indicating how many subsampled replicates to run during consensus
clustering. Defaults to 20.

clustering_algorithm
A string indicating which clustering algorithm ConsensusClusterPlus should
use to metacluster the subsampled clusters during each resampling. Options are
"hierarchical” (the default), "pam" (partitioning around medoids), and "kmeans".

distance_function
A string indicating which distance function should be used to compute the dis-
tances between clusters during consensus clustering. Options are "euclidean”

(the default), "manhattan”, "minkowski", "pearson", "spearman", "maximum",
"binary", and "canberra". See ConsensusClusterPlus.

Optional additional arguments to pass to ConsensusClusterPlus.

Value

A tibble with a single column (‘.consensus_metacluster‘) and the same number of rows as the input
‘tof_tibble‘. Each entry in the column indicates the metacluster label assigned to the same row in
‘tof_tibble*.

See Also

Other metaclustering functions: tof_metacluster(), tof_metacluster_flowsom(), tof_metacluster_hierarchic.
tof_metacluster_kmeans(), tof_metacluster_phenograph()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE)

)

tof_metacluster_consensus(tof_tibble = sim_data, cluster_col = cluster_id)

tof_metacluster_flowsom 109

tof_metacluster_flowsom
Metacluster clustered CyTOF data using FlowSOM’s built-in meta-
clustering algorithm

Description

This function performs metaclustering on a ‘tof_tbl* containing CyTOF data using a user-specified
selection of input variables/CyTOF measurements and the number of desired metaclusters. It takes
advantage of the FlowSOM package’s built-in functionality for automatically detecting the num-
ber of metaclusters and can use several strategies as adapted by the FlowSOM team: consensus
metaclustering, hierarchical metaclustering, k-means metaclustering, or metaclustering using the
FlowSOM algorithm itself. See MetaClustering for additional details.

Usage

tof_metacluster_flowsom(
tof_tibble,
cluster_col,
metacluster_cols = where(tof_is_numeric),
central_tendency_function = stats::median,
num_metaclusters = 10L,

clustering_algorithm = c("consensus”, "hierarchical”, "kmeans", "som"),
)
Arguments
tof_tibble A ‘tof_tbl* or ‘tibble‘.
cluster_col An unquoted column name indicating which column in ‘tof_tibble* stores the

cluster ids for the cluster to which each cell belongs. Cluster labels can be
produced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

metacluster_cols
Unquoted column names indicating which columns in ‘tof_tibble* to use in com-
puting the metaclusters. Defaults to all numeric columns in ‘tof_tibble‘. Sup-
ports tidyselect helpers.

central_tendency_function
The function that should be used to calculate the measurement of central ten-
dency for each cluster before metaclustering. This function will be used to com-
pute a summary statistic for each input cluster in ‘cluster_col‘ across all columns
specified by ‘metacluster_cols‘, and the resulting vector (one for each cluster)
will be used as the input for metaclustering. Defaults to median.

num_metaclusters
An integer indicating the maximum number of clusters that should be returned.
Defaults to 10. Note that for this function, the output may provide a small
number of metaclusters than requested. This is because MetaClustering uses
the "Elbow method" to automatically detect the optimal number of metaclusters.

110 tof_metacluster_hierarchical

clustering_algorithm
A string indicating which clustering algorithm MetaClustering should use to
perform the metaclustering. Options are "consensus" (the default), "hierarchi-
cal", "kmeans", and "som" (i.e. self-organizing map; the FlowSOM algorithm
itself).

Optional additional arguments to pass to MetaClustering.

Value

A tibble with a single column (‘.flowsom_metacluster‘) and the same number of rows as the input
‘tof_tibble‘. Each entry in the column indicates the metacluster label assigned to the same row in
‘tof_tibble°.

See Also

Other metaclustering functions: tof_metacluster(), tof_metacluster_consensus(), tof_metacluster_hierarch
tof_metacluster_kmeans(), tof_metacluster_phenograph()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE)

)

tof_metacluster_flowsom(
tof_tibble = sim_data,
cluster_col = cluster_id,
clustering_algorithm = "consensus”

)

tof_metacluster_flowsom(
tof_tibble = sim_data,
cluster_col = cluster_id,
clustering_algorithm = "som"

tof_metacluster_hierarchical
Metacluster clustered CyTOF data using hierarchical agglomerative
clustering

Description

This function performs hierarchical metaclustering on a ‘tof_tbl* containing CyTOF data using a
user-specified selection of input variables/CyTOF measurements and the number of desired meta-
clusters. See hclust.

tof _metacluster hierarchical 111

Usage

tof_metacluster_hierarchical(

tof_tibble,

cluster_col,

metacluster_cols = where(tof_is_numeric),

central_tendency_function = stats::median,

num_metaclusters = 10L,

distance_function = c("euclidean”, "manhattan”, "minkowski”, "maximum”, "canberra”,
"binary"),

agglomeration_method = c("complete”, "single"”, "average"”, "median”, "centroid”,
"ward.D", "ward.D2", "mcquitty")

)
Arguments
tof_tibble A ‘tof_tbl* or ‘tibble‘.
cluster_col An unquoted column name indicating which column in ‘tof_tibble* stores the

cluster ids for the cluster to which each cell belongs. Cluster labels can be
produced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

metacluster_cols
Unquoted column names indicating which columns in ‘tof_tibble‘ to use in com-
puting the metaclusters. Defaults to all numeric columns in ‘tof_tibble‘. Sup-
ports tidyselect helpers.

central_tendency_function
The function that should be used to calculate the measurement of central ten-
dency for each cluster before metaclustering. This function will be used to com-
pute a summary statistic for each input cluster in ‘cluster_col‘ across all columns
specified by ‘metacluster_cols‘, and the resulting vector (one for each cluster)
will be used as the input for metaclustering. Defaults to median.

num_metaclusters

An integer indicating the number of clusters that should be returned. Defaults to
10.

distance_function
A string indicating which distance function should be used to compute the dis-
tances between clusters during the hierarchical metaclustering. Options are "eu-

clidean" (the default), "manhattan", "minkowski", "maximum", "canberra", and
"binary". See dist for additional details.

agglomeration_method
A string indicating which agglomeration algorithm should be used during hi-
erarchical cluster combination. Options are "complete” (the default), "single",
"average", "median", "centroid", "ward.D", "ward.D2", and "mcquitty". See
hclust for details.

Value

A tibble with a single column (‘. hierarchical_metacluster‘) and the same number of rows as the
input ‘tof_tibble‘. Each entry in the column indicates the metacluster label assigned to the same
row in ‘tof_tibble°.

112 tof _metacluster_kmeans

See Also

Other metaclustering functions: tof_metacluster(), tof_metacluster_consensus(), tof_metacluster_flowsom(,
tof_metacluster_kmeans(), tof_metacluster_phenograph()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE)

)

tof_metacluster_hierarchical(tof_tibble = sim_data, cluster_col = cluster_id)

tof_metacluster_kmeans
Metacluster clustered CyTOF data using k-means clustering

Description

This function performs k-means metaclustering on a ‘tof_tbl* containing CyTOF data using a user-
specified selection of input variables/CyTOF measurements and the number of desired metaclusters.
See hclust.

Usage

tof_metacluster_kmeans(
tof_tibble,
cluster_col,
metacluster_cols = where(tof_is_numeric),
central_tendency_function = stats::median,
num_metaclusters = 10L,

)
Arguments
tof_tibble A ‘tof_tbl* or ‘tibble‘.
cluster_col An unquoted column name indicating which column in ‘tof_tibble® stores the

cluster ids for the cluster to which each cell belongs. Cluster labels can be

produced via any method the user chooses - including manual gating, any of the

functions in the ‘tof_cluster_*‘ function family, or any other method.
metacluster_cols

Unquoted column names indicating which columns in ‘tof_tibble* to use in com-

puting the metaclusters. Defaults to all numeric columns in ‘tof_tibble‘. Sup-

ports tidyselect helpers.

tof_metacluster_phenograph 113

central_tendency_function
The function that should be used to calculate the measurement of central ten-
dency for each cluster before metaclustering. This function will be used to com-
pute a summary statistic for each input cluster in ‘cluster_col‘ across all columns
specified by ‘metacluster_cols‘, and the resulting vector (one for each cluster)
will be used as the input for metaclustering. Defaults to median.
num_metaclusters

An integer indicating the number of clusters that should be returned. Defaults to
10.

Optional additional method specifications to pass to tof_cluster_kmeans.

Value

A tibble with a single column (‘.kmeans_metacluster) and the same number of rows as the input
‘tof_tibble‘. Each entry in the column indicates the metacluster label assigned to the same row in
‘tof_tibble°.

See Also

Other metaclustering functions: tof_metacluster(), tof_metacluster_consensus(), tof_metacluster_flowsom(.
tof_metacluster_hierarchical(), tof_metacluster_phenograph()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE)

)

tof_metacluster_kmeans(tof_tibble = sim_data, cluster_col = cluster_id)

tof_metacluster_phenograph
Metacluster clustered CyTOF data using PhenoGraph clustering

Description

This function performs PhenoGraph metaclustering on a ‘tof_tbl‘ containing CyTOF data using a
user-specified selection of input variables/CyTOF measurements. The number of metaclusters is
automatically detected by the PhenoGraph algorithm. See tof_cluster_phenograph.

Usage

tof_metacluster_phenograph(
tof_tibble,
cluster_col,
metacluster_cols = where(tof_is_numeric),

114 tof_metacluster_phenograph

central_tendency_function = stats::median,
num_neighbors = 5L,

)
Arguments
tof_tibble A ‘tof_tbl* or ‘tibble°.
cluster_col An unquoted column name indicating which column in ‘tof_tibble‘ stores the

cluster ids for the cluster to which each cell belongs. Cluster labels can be
produced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.
metacluster_cols
Unquoted column names indicating which columns in ‘tof_tibble‘ to use in com-
puting the metaclusters. Defaults to all numeric columns in ‘tof_tibble‘. Sup-
ports tidyselect helpers.
central_tendency_function
The function that should be used to calculate the measurement of central ten-
dency for each cluster before metaclustering. This function will be used to com-
pute a summary statistic for each input cluster in ‘cluster_col‘ across all columns
specified by ‘metacluster_cols‘, and the resulting vector (one for each cluster)
will be used as the input for metaclustering. Defaults to median.

num_neighbors An integer indicating the number of neighbors to use when constructing Pheno-
Graph’s k-nearest-neighbor graph. Smaller values emphasize local graph struc-
ture; larger values emphasize global graph structure (and will add time to the
computation). Defaults to 5.

Optional additional method specifications to pass to tof _cluster_phenograph.

Value

A tibble with a single column (‘.phenograph_metacluster‘) and the same number of rows as the
input ‘tof_tibble‘. Each entry in the column indicates the metacluster label assigned to the same
row in ‘tof_tibble".

See Also

Other metaclustering functions: tof_metacluster(), tof_metacluster_consensus(), tof_metacluster_flowsom(
tof_metacluster_hierarchical(), tof_metacluster_kmeans()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE)

)

tof_metacluster_phenograph(tof_tibble = sim_data, cluster_col = cluster_id)

tof_plot_cells_density

115

tof_plot_cells_density

Plot marker expression density plots

Description

This function plots marker expression density plots for a user-specified column in a tof_tbl. Op-
tionally, cells can be grouped to plot multiple vertically-arranged density plots

Usage

tof_plot_cells_

tof_tibble,
marker_col,
group_col,
num_points =

density(

512,

theme = ggplot2::theme_bw(),

use_ggridges
scale = 1,

Arguments

tof_tibble

marker_col

group_col

num_points

theme

use_ggridges

scale

Value

A ggplot object

= FALSE,

A ‘tof_tbl‘ or a ‘tibble‘.

An unquoted column name representing which column in ‘tof_tibble* (i.e. which
CyTOF protein measurement) should be included in the feature extraction cal-
culation.

Unquoted column names representing which column in ‘tof_tibble‘ should be
used to break the rows of ‘tof_tibble* into subgroups to be plotted as separate
histograms. Defaults to plotting without subgroups.

The number of points along the full range of ‘marker_col* at which the density
should be calculated

The ggplot2 theme for the plot. Defaults to theme_bw

A boolean value indicting if geom_ridgeline should be used to plot overlain
histograms. Defaults to FALSE. If TRUE, the ggridges package must be in-
stalled.

Use to set the ‘scale‘ argument in geom_ridgeline, which controls how far
apart (vertically) density plots are arranged along the y-axis. Defaults to 1.

Additional optional arguments to send to geom_ridgeline.

116 tof_plot_cells_embedding

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(c("a", "b"), size = 1000, replace = TRUE)

)

density_plot <-
tof_plot_cells_density(
tof_tibble = sim_data,
marker_col = cd45,
group_col = cluster_id

tof_plot_cells_embedding

Plot scatterplots of single-cell data using low-dimensional feature em-
beddings

Description

This function makes scatterplots using single-cell data embedded in a low-dimensional space (such
as that generated by tof_reduce_dimensions, with each point colored using a user-specified vari-
able.

Usage

tof_plot_cells_embedding(
tof_tibble,
embedding_cols,
color_col,
facet_cols,
compute_embedding_cols = where(tof_is_numeric),
embedding_method = c("pca”, "tsne”, "umap"),
embedding_args = list(),
theme = ggplot2::theme_bw(),

method = c("ggplot2”, "scattermore")

Arguments

tof_tibble A ‘tof_tbl‘ or a ‘tibble".

embedding_cols Unquoted column names indicating which columns in ‘tof_tibble‘ should be
used as the x and y axes of the scatterplot. Supports tidyselect helpers. Must
select exactly 2 columns. If not provided, a feature embedding can be computed
from scratch using the method provided using the ‘embedding_method*® argu-
ment and the tof_reduce_dimensions arguments passed to ‘embedding_args‘.

tof_plot_cells_embedding 117

color_col An unquoted column name specifying which column in ‘tof_tibble* should be
used to color each point in the scatterplot.

facet_cols An unquoted column name specifying which column in ‘tof_tibble* should be
used to break the scatterplot into facets using facet_wrap.
compute_embedding_cols
Unquoted column names indicating which columns in ’tof_tibble’ to use for
computing the embeddings with the method specified by ‘embedding_method*.
Defaults to all numeric columns in ’tof_tibble’. Supports tidyselect helpers.
embedding_method
A string indicating which method should be used for the feature embedding (if
‘embedding_cols‘ are not provided). Options (which are passed to tof_reduce_dimensions)
are "pca" (the default), "tsne", and "umap".

embedding_args Optional additional arguments to pass to tof_reduce_dimensions. For exam-
ple, for ‘method = "tsne"*, these might include ‘num_comp°, ‘perplexity‘, and
‘theta‘.

theme A ggplot2 theme to apply to the scatterplot. Defaults to theme_bw.
Optional additional arguments to pass to tof_plot_cells_scatter.

method A string indicating which plotting engine should be used. Valid values include
"ggplot2" (the default) and "scattermore" (recommended if more than 100K cells
are being plotted). Note that method = "scattermore” requires the scattermore
package to be installed.

Value

A ggplot object.

See Also

Other visualization functions: tof_plot_cells_layout(), tof_plot_cells_scatter()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = c(rnorm(n = 500), rnorm(n = 500, mean
cd34 = c(rnorm(n = 500), rnorm(n = 500, mean
cd19 = rnorm(n = 1000),
cluster_id = c(rep(”a", 500), rep("b", 500))

2)),
),

)

embed with pca
pca_plot <-
tof_plot_cells_embedding(
tof_tibble = sim_data,
color_col = cd38,
embedding_method = "pca”,
compute_embedding_cols = starts_with("cd")

)

embed with tsne
tsne_plot <-
tof_plot_cells_embedding(

118

tof_plot_cells_layout

tof_tibble = sim_data,

color_col = cluster_id,

embedding_method = "tsne”,
compute_embedding_cols = starts_with("cd")

tof_plot_cells_layout Plot force-directed layouts of single-cell data

Description

This function makes force-directed layouts using single-cell data embedded in a 2-dimensional
space representing a k-nearest-neighbor graph constructed using cell-to-cell similarities. Each node
in the force-directed layout represents a single cell colored using a user-specified variable.

Usage

tof_plot_cells_layout(

tof_tibble,
knn_cols =
color_col,
facet_cols,

num_neighbors

where(tof_is_numeric),

:5,

graph_type = c("weighted”, "unweighted"),
graph_layout = "fr",

distance_function = c("euclidean”, "cosine"),
edge_alpha = 0.25,

node_size = 2,

theme = ggplot2::theme_void(),

Arguments

tof_tibble

knn_cols

color_col

facet_cols

num_neighbors

graph_type

graph_layout

A ‘tof_tbl* or a ‘tibble*.

Unquoted column names indicating which columns in ‘tof_tibble‘ should be
used to compute the cell-to-cell distances used to construct the k-nearest-neighbor
graph. Supports tidyselect helpers. Defaults to all numeric columns.

Unquoted column name indicating which column in ‘tof_tibble‘ should be used
to color the nodes in the force-directed layout.

Unquoted column names indicating which columns in ‘tof_tibble‘ should be
used to separate nodes into different force-directed layouts.

An integer specifying how many neighbors should be used to construct the k-
nearest neighbor graph.

A string specifying if the k-nearest neighbor graph should be "weighted" (the
default) or "unweighted".

A string specifying which algorithm should be used to compute the force-directed
layout. Passed to ggraph. Defaults to "fr", the Fruchterman-Reingold algo-

rithm. Other examples include "nicely”, "gem", "kk", and many others. See
layout_tbl_graph_igraph for other examples.

tof_plot_cells_scatter 119

distance_function
A string indicating which distance function to use in computing the cell-to-cell
distances. Valid options include "euclidean" (the default) and "cosine".

edge_alpha A numeric value between 0 and 1 specifying the transparency of the edges drawn
in the force-directed layout. Defaults to 0.25.
node_size A numeric value specifying the size of the nodes in the force-directed layout.
Defaults to 2.
theme A ggplot2 theme to apply to the force-directed layout. Defaults to theme_void
hnsw_knn
Value
A ggraph/ggplot object.
See Also

Other visualization functions: tof_plot_cells_embedding(), tof_plot_cells_scatter()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = c(rnorm(n = 500), rnorm(n = 500, mean = 2)),
cd34 = c(rnorm(n = 500), rnorm(n = 500, mean = 4)),
cd19 = rnorm(n = 1000),
cluster_id = c(rep("a”, 500), rep("b", 500))

)

make a layout colored by a marker
layout_cd38 <-
tof_plot_cells_layout(
tof_tibble = sim_data,
color_col = cd38

)

make a layout colored by cluster id
layout_cluster <-
tof_plot_cells_layout(
tof_tibble = sim_data,
color_col = cluster_id,

tof_plot_cells_scatter
Plot scatterplots of single-cell data.

Description

This function makes scatterplots of single-cell data using user-specified x- and y-axes. Additionally,
each point in the scatterplot can be colored using a user-specified variable.

120 tof_plot_cells_scatter

Usage

tof_plot_cells_scatter(
tof_tibble,
x_col,
y_col,
color_col,
facet_cols,
theme = ggplot2::theme_bw(),

method = c("ggplot2”, "scattermore")

)
Arguments
tof_tibble A ‘tof_tbl* or a ‘tibble".
x_col An unquoted column name specifying which column in ‘tof_tibble‘ should be
used as the x-axis.
y_col An unquoted column name specifying which column in ‘tof_tibble* should be
used as the y-axis.
color_col An unquoted column name specifying which column in ‘tof_tibble* should be
used to color each point in the scatterplot.
facet_cols An unquoted column name specifying which column in ‘tof_tibble* should be
used to break the scatterplot into facets using facet_wrap.
theme A ggplot2 theme to apply to the scatterplot. Defaults to theme_bw.
Optional additional arguments to pass to geom_point if method = "ggplot2” or
geom_scattermore if method = "scattermore”.
method A string indicating which plotting engine should be used. Valid values include
"ggplot2" (the default) and "scattermore" (recommended if more than 100K cells
are being plotted). Note that method = "scattermore” requires the scattermore
package to be installed.
Value
A ggplot object.
See Also

Other visualization functions: tof_plot_cells_embedding(), tof_plot_cells_layout()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = c(rnorm(n = 500), rnorm(n = 500, mean = 2)),
cd34 = c(rnorm(n = 500), rnorm(n = 500, mean = 4)),
cd19 = rnorm(n = 1000),
cluster_id = c(rep(”a", 500), rep("b"”, 500))

tof_plot_clusters_heatmap

tof_plot_clusters_heatmap

Make a heatmap summarizing cluster marker expression patterns in
CyTOF data

Description

This function makes a heatmap of cluster-to-cluster marker expression patterns in single-cell data.
Markers are plotted along the horizontal (x-) axis of the heatmap and cluster IDs are plotted along
the vertical (y-) axis of the heatmap.

Usage

tof_plot_clusters_heatmap(
tof_tibble,
cluster_col,
marker_cols = where(tof_is_numeric),
central_tendency_function = stats::median,
scale_markerwise = FALSE,
scale_clusterwise = FALSE,
cluster_markers = TRUE,
cluster_clusters = TRUE,
line_width = 0.25,
theme = ggplot2::theme_minimal()

)
Arguments

tof_tibble A ‘tof_tbl‘ or a ‘tibble‘.

cluster_col An unquoted column name indicating which column in ‘tof_tibble* stores the
cluster ids for the cluster to which each cell belongs. Cluster labels can be
produced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

marker_cols Unquoted column names indicating which column in ‘tof_tibble‘ should be in-
terpreted as markers to be plotted along the x-axis of the heatmap. Supports
tidyselect helpers.

central_tendency_function
A function to use for computing the measure of central tendency that will be
aggregated from each cluster in cluster_col. Defaults to the median.

scale_markerwise
A boolean value indicating if the heatmap should rescale the columns of the
heatmap such that the maximum value for each marker is 1 and the minimum
value is 0. Defaults to FALSE.

scale_clusterwise
A boolean value indicating if the heatmap should rescale the rows of the heatmap
such that the maximum value for each cluster is 1 and the minimum value is O.
Defaults to FALSE.

cluster_markers
A boolean value indicating if the heatmap should order its columns (i.e. mark-
ers) using hierarchical clustering. Defaults to TRUE.

122 tof_plot_clusters_mst

cluster_clusters
A boolean value indicating if the heatmap should order its rows (i.e. clusters)
using hierarchical clustering. Defaults to TRUE.

line_width A numeric value indicating how thick the lines separating the tiles of the heatmap
should be. Defaults to 0.25.
theme A ggplot2 theme to apply to the heatmap. Defaults to theme_minimal
Value
A ggplot object.
Examples
sim_data <-

dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),

cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE)
)
heatmap <-

tof_plot_clusters_heatmap(
tof_tibble = sim_data,
cluster_col = cluster_id

tof_plot_clusters_mst Visualize clusters in CyTOF data using a minimum spanning tree
(MST).

Description

This function plots a minimum-spanning tree using clustered single-cell data in order to summarize
cluster-level characteristics. Each node in the MST represents a single cluster colored using a user-
specified variable (either continuous or discrete).

Usage

tof_plot_clusters_mst(
tof_tibble,
cluster_col,
knn_cols = where(tof_is_numeric),
color_col,
num_neighbors = 5L,
graph_type = c("unweighted”, "weighted"),
graph_layout = "nicely”,
central_tendency_function = stats::median,
distance_function = c("euclidean”, "cosine"),
edge_alpha = 0.4,

tof_plot_clusters_mst

123

node_size = "cluster_size",
theme = ggplot2::theme_void(),

Arguments

tof_tibble

cluster_col

knn_cols

color_col

num_neighbors

graph_type

graph_layout

A ‘tof_tbl‘ or a ‘tibble‘.

An unquoted column name indicating which column in ‘tof_tibble* stores the
cluster ids for the cluster to which each cell belongs. Cluster labels can be
produced via any method the user chooses - including manual gating, any of the
functions in the ‘tof_cluster_*‘ function family, or any other method.

Unquoted column names indicating which columns in ‘tof_tibble‘ should be
used to compute the cluster-to-cluster distances used to construct the k-nearest-
neighbor graph. Supports tidyselect helpers. Defaults to all numeric columns.

Unquoted column name indicating which column in ‘tof_tibble* should be used
to color the nodes in the MST.

An integer specifying how many neighbors should be used to construct the k-
nearest neighbor graph.

A string specifying if the k-nearest neighbor graph should be "weighted" (the
default) or "unweighted".

This argument specifies a layout for the MST in one of two ways. Option 1: Pro-
vide a string specifying which algorithm should be used to compute the force-
directed layout. Passed to ggraph. Defaults to "nicely", which tries to automat-
ically select a visually-appealing layout. Other examples include "fr", "gem",
"kk", and many others. See layout_tbl_graph_igraph for other examples.
Option 2: Provide a ggraph object previously generated with this function. The
layout used to plot this ggraph object will then be used as a template for the new
plot. Using this option, number of clusters (and their labels) must be identical
to the template. This option is useful if you want to make multiple plots of the
same tof_tibble colored by different protein markers, for example.

central_tendency_function

A function to use for computing the measure of central tendency that will be
aggregated from each cluster in cluster_col. Defaults to the median.

distance_function

edge_alpha

node_size

theme

Value

A string indicating which distance function to use in computing the cluster-to-
clusters distances in constructing the MST. Valid options include "euclidean"
(the default) and "cosine".

A numeric value between 0 and 1 specifying the transparency of the edges drawn
in the force-directed layout. Defaults to 0.25.

Either a numeric value specifying the size of the nodes in the MST or the string
"cluster_size", in which case the size of the node representing each cluster will
be scaled according to the number of cells in that cluster (the default).

A ggplot2 theme to apply to the force-directed layout. Defaults to theme_void

Optional additional arguments to hnsw_knn

A ggraph/ggplot object.

124

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size =

)

make a layout colored by a marker
layout_cd38 <-
tof_plot_clusters_mst(
tof_tibble = sim_data,
cluster_col = cluster_id,
color_col = cd38

)

use the same layout as the plot above to color the same

tree using a different marker
layout_cd45 <-
tof_plot_clusters_mst(
tof_tibble = sim_data,
cluster_col = cluster_id,
color_col = cd45,
graph_layout = layout_cd38

1000, replace

tof_plot_clusters_volcano

tof_plot_clusters_volcano

Create a volcano plot from differential expression analysis results

Description

This function makes a volcano plot using the results of a differential expression analysis (DEA)
produced by one of the ‘tof_dea_** verbs. Each point in the volcano plot represents a single cluster-
marker pair, colored by significance level and the direction of the marker expression difference.

Usage
tof_plot_clusters_volcano(
dea_result,
num_top_pairs = 10L,
alpha = 0.05,

point_size = 2,
label_size = 3,

nudge_x = 0,

nudge_y = 0.25,

increase_color = "#207394",
decrease_color = "#cd5241",
insignificant_color = "#cdcdcd”,

use_ggrepel = FALSE,

tof_plot_clusters_volcano 125

theme = ggplot2::theme_bw()

Arguments

dea_result

num_top_pairs

alpha

point_size
label_size

nudge_x

nudge_y

increase_color

decrease_color

A tibble containing the differential expression analysis (DEA) results produced
by one of the members of the ‘tof_dea_*‘ function family.

An integer representing the number of most significant cluster-marker pairs that
should be labeled in the volcano plot.

A numeric value between 0 and 1 representing the significance level below
which a p-value should be considered statistically significant. Defaults to 0.05.

A numeric value specifying the size of the points in the volcano plot.
A numeric value specifying the size of the text labeling cluster-marker pairs.

A numeric value specifying how far cluster-marker pair labels should be ad-
justed to the left (if ‘nudge_x° is negative) or to the right (if ‘nudge_x° is posi-
tive) to avoid overlap with the plotted points. Passed to geom_text, and ignored
if ‘use_ggrepel‘ = TRUE. Defaults to 0.

A numeric value specifying how far cluster-marker pair labels should be ad-
justed downwards (if ‘nudge_y* is negative) or upwards (if ‘nudge_y* is posi-
tive) to avoid overlap with the plotted points. Passed to geom_text, and ignored
if ‘use_ggrepel® = TRUE. Defaults to 0.25.

A hex code specifying which fill color should be used for points corresponding
to cluster-marker pairs where significant increases were detected.

A hex code specifying which fill color should be used for points corresponding
to cluster-marker pairs where significant decreases were detected.

insignificant_color

use_ggrepel

theme

Value

A ggplot object.

Examples

A hex code specifying which fill color should be used for points corresponding
to cluster-marker pairs where no significant differences were detected.

A boolean value indicting if geom_text_repel should be used to plot labels for
cluster-marker pairs. Defaults to FALSE. If TRUE, the ggrepel package must be
installed.

A ggplot2 theme to apply to the volcano plot. Defaults to theme_bw

create a mock differential expression analysis result
sim_dea_result <-
dplyr::tibble(

cluster_

id = rep(letters, 2),

marker = rep(c("cd45", "cd34"), times = length(letters)),

p_adj =

runif(n = 2 x length(letters), min = @, max = 0.5),

mean_fc = runif(n = 2 x length(letters), min = 0.01, max = 10),
significant = dplyr::if_else(p_adj < .05, "x", "")

)

attr(sim_dea_result, which = "dea_method”) <- "t_unpaired”

126

tof_plot_heatmap

create the volcano plot
volcano <- tof_plot_clusters_volcano(dea_result = sim_dea_result)

tof_plot_heatmap

Make a heatmap summarizing group marker expression patterns in
high-dimensional cytometry data

Description

This function makes a heatmap of group-to-group marker expression patterns in single-cell data.
Markers are plotted along the horizontal (x-) axis of the heatmap and groups are plotted along the
vertical (y-) axis of the heatmap.

Usage

tof_plot_heatmap(

tof_tibble,

y_col,

marker_cols

where(tof_is_numeric),

central_tendency_function = stats::median,
scale_markerwise = FALSE,

scale_ywise = FALSE,

cluster_markers = TRUE,

cluster_groups = TRUE,

line_width = 0.25,

theme = ggplot2::theme_minimal()

Arguments

tof_tibble
y_col

marker_cols

A ‘tof_tbl‘ or a ‘tibble‘.
An unquoted column name indicating which column in ‘tof_tibble* stores the

ids for the group to which each cell belongs.

Unquoted column names indicating which column in ‘tof_tibble‘ should be in-
terpreted as markers to be plotted along the x-axis of the heatmap. Supports
tidyselect helpers.

central_tendency_function

A function to use for computing the measure of central tendency that will be
aggregated from each cluster in cluster_col. Defaults to the median.

scale_markerwise

scale_ywise

cluster_markers

A boolean value indicating if the heatmap should rescale the columns of the
heatmap such that the maximum value for each marker is 1 and the minimum
value is 0. Defaults to FALSE.

A boolean value indicating if the heatmap should rescale the rows of the heatmap
such that the maximum value for each group is 1 and the minimum value is O.
Defaults to FALSE.

A boolean value indicating if the heatmap should order its columns (i.e. mark-
ers) using hierarchical clustering. Defaults to TRUE.

tof_plot_model 127

cluster_groups A boolean value indicating if the heatmap should order its rows (i.e. groups)
using hierarchical clustering. Defaults to TRUE.

line_width A numeric value indicating how thick the lines separating the tiles of the heatmap
should be. Defaults to 0.25.
theme A ggplot2 theme to apply to the heatmap. Defaults to theme_minimal
Value
A ggplot object.
tof_plot_model Plot the results of a glmnet model fit on sample-level data.
Description

Plot the results of a glmnet model fit on sample-level data.

Usage
tof_plot_model(tof_model, new_data, theme = ggplot2::theme_bw())

Arguments
tof_model A ‘tof_model" trained using tof_train_model
new_data A tibble of new observations for which a plot should be made. If new_data isn’t
provided, the plot will be made using the training data used to fit the model.
Alternatively, the string "tuning_data" can be provided, and the plot will be gen-
erated using the predictions generated during model tuning.
theme A ggplot2 theme to apply to the plot Defaults to theme_bw
Value

A ggplot object. If the ‘tof_model® is a linear model, a scatterplot of the predicted outcome vs.
the true outcome will be returned. If the ‘tof model® is a two-class model, an ROC curve will be
returned. If the ‘tof _model‘ is a multiclass model, a one-versus-all ROC curve will be returned for
each class. If ‘tof_model‘ is a survival model, a Kaplan-Meier curve will be returned.

Examples

feature_tibble <-
dplyr::tibble(
sample = as.character(1:100),
cd45 = runif(n = 100),
pstat5 = runif(n = 100),
cd34 = runif(n = 100),
outcome = (3 * cd45) + (4 x pstat5) + rnorm(100),

class =
as.factor(
dplyr::if_else(outcome > median(outcome), "classl1”, "class2")
)

128

new_tibble <-
dplyr::tibble(

)

split_data <- tof_split_data(feature_tibble, split_method

sample = as.character(1:20),
cd45 = runif(n = 20),
pstat5 = runif(n = 20),
cd34 = runif(n = 20),
outcome = (3 * cd45) + (4 x pstat5) + rnorm(20),
class =
as.factor(
dplyr::if_else(outcome > median(outcome),

)

train a regression model
regression_model <-
tof_train_model(

)

split_data = split_data,

predictor_cols = c(cd45, pstat5, cd34),
response_col = outcome,

model_type = "linear”

make the plot
plot_1 <- tof_plot_model(tof_model = regression_model, new_data = new_tibble)

train a logistic regression classifier
logistic_model <-
tof_train_model(

)

split_data = split_data,

predictor_cols = c(cd45, pstat5, cd34),
response_col = class,

model_type = "two-class”

make the plot

tof_plot_model_linear

"class1”, "class2")

= "simple")

plot_2 <- tof_plot_model(tof_model = logistic_model, new_data = new_tibble)

tof_plot_model_linear Plot the results of a linear gilmnet model fit on sample-level data.

Description

Plot the results of a linear glmnet model fit on sample-level data.

Usage

tof_plot_model_linear(tof_model, new_data, theme =

ggplot2: :theme_bw())

tof_plot_model_logistic 129

Arguments
tof_model A ‘tof_model" trained using tof_train_model
new_data A tibble of new observations for which a plot should be made. If new_data isn’t
provided, the plot will be made using the training data used to fit the model.
Alternatively, the string "tuning_data" can be provided, and the plot will be gen-
erated using the predictions generated during model tuning.
theme A ggplot2 theme to apply to the plot Defaults to theme_bw
Value

A ggplot object. Specifically, a scatterplot of the predicted outcome vs. the true outcome will be
returned.

tof_plot_model_logistic
Plot the results of a two-class glmnet model fit on sample-level data.

Description

Plot the results of a two-class glmnet model fit on sample-level data.

Usage

tof_plot_model_logistic(tof_model, new_data, theme = ggplot2::theme_bw())

Arguments
tof_model A ‘tof_model" trained using tof_train_model
new_data A tibble of new observations for which a plot should be made. If new_data isn’t
provided, the plot will be made using the training data used to fit the model.
Alternatively, the string "tuning_data" can be provided, and the plot will be gen-
erated using the predictions generated during model tuning.
theme A ggplot2 theme to apply to the plot. Defaults to theme_bw
Value

A ggplot object. Specifically, an ROC curve..

130 tof_plot_model_survival

tof_plot_model_multinomial

Plot the results of a multiclass glmnet model fit on sample-level data.

Description

Plot the results of a multiclass glmnet model fit on sample-level data.

Usage

tof_plot_model_multinomial (tof_model, new_data, theme = ggplot2::theme_bw())

Arguments
tof_model A ‘tof_model trained using tof_train_model
new_data A tibble of new observations for which a plot should be made. If new_data isn’t
provided, the plot will be made using the training data used to fit the model.
Alternatively, the string "tuning_data" can be provided, and the plot will be gen-
erated using the predictions generated during model tuning.
theme A ggplot2 theme to apply to the plot. Defaults to theme_bw.
Value

A ggplot object. Specifically, a one-versus-all ROC curve (one for each class).

tof_plot_model_survival

Plot the results of a survival glmnet model fit on sample-level data.

Description

Plot the results of a survival glmnet model fit on sample-level data.

Usage

tof_plot_model_survival(
tof_model,
new_data,
censor_size = 2.5,
theme = ggplot2::theme_bw()

tof_plot_sample_features 131

Arguments

tof_model

new_data

censor_size

theme

Value

A ‘tof_model" trained using tof_train_model

A tibble of new observations for which a plot should be made. If new_data isn’t
provided, the plot will be made using the training data used to fit the model.
Alternatively, the string "tuning_data" can be provided, and the plot will be gen-
erated using the predictions generated during model tuning.

A numeric value indicating how large to plot the tick marks representing cen-
sored values in the Kaplan-Meier curve.

A ggplot2 theme to apply to the plot. Defaults to theme_bw

A ggplot object. Specifically, a Kaplan-Meier curve.

tof_plot_sample_features

Make a heatmap summarizing sample marker expression patterns in
CyTOF data

Description

This function makes a heatmap of sample-to-sample marker expression patterns in single-cell data.
Markers are plotted along the horizontal (x-) axis of the heatmap and sample IDs are plotted along
the vertical (y-) axis of the heatmap.

Usage

tof_plot_sample_features(
feature_tibble,

sample_col,
feature_cols

= where(tof_is_numeric),

scale_featurewise = FALSE,
scale_samplewise = FALSE,
line_width = 0.25,

theme = ggplot2::theme_minimal()

Arguments

feature_tibble

sample_col

feature_cols

A tbl_df or data.frame of aggregated sample-level features, such as that gener-
ated by tof_extract_features.

An unquoted column name indicating which column in ‘tof_tibble® stores the
IDs for each sample. If no sample IDs are present, a numeric ID will be assigned
to each row of ‘feature_tibble‘ based on its row index.

Unquoted column names indicating which column in ‘feature_tibble* should be
interpreted as features to be plotted along the x-axis of the heatmap. Supports
tidyselect helpers.

132 tof_plot_sample_heatmap

scale_featurewise
A boolean value indicating if the heatmap should rescale the columns of the
heatmap such that the maximum value for each marker is 1 and the minimum
value is 0. Defaults to FALSE.

scale_samplewise
A boolean value indicating if the heatmap should rescale the rows of the heatmap
such that the maximum value for each sample is 1 and the minimum value is O.

Defaults to FALSE.
line_width A numeric value indicating how thick the lines separating the tiles of the heatmap
should be. Defaults to 0.25.
theme A ggplot2 theme to apply to the heatmap. Defaults to theme_minimal
Value
A ggplot object.
Examples

simulate single-cell data
sim_data <-
dplyr::tibble(

cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),
cluster_id = sample(letters, size = 1000, replace = TRUE),
sample_id = sample(paste@("”sample”, 1:5), size = 1000, replace = TRUE)

)

extract cluster proportions in each simulated patient
feature_data <-
tof_extract_proportion(
tof_tibble = sim_data,
cluster_col = cluster_id,
group_cols = sample_id

)

plot the heatmap
heatmap <- tof_plot_sample_features(feature_tibble = feature_data)

tof_plot_sample_heatmap

Make a heatmap summarizing sample marker expression patterns in
CyTOF data

Description

This function makes a heatmap of sample-to-sample marker expression patterns in single-cell data.
Markers are plotted along the horizontal (x-) axis of the heatmap and sample IDs are plotted along
the vertical (y-) axis of the heatmap.

tof_plot_sample_heatmap

Usage

tof_plot_sample_heatmap(

tof_tibble,

sample_col,

marker_cols = where(tof_is_numeric),
central_tendency_function = stats::median,
scale_markerwise = FALSE,

scale_samplewise = FALSE,

line_width = 0.25,

theme = ggplot2::theme_minimal()

Arguments

tof_tibble A ‘tof_tbl‘ or a ‘tibble‘.

sample_col

marker_cols

133

An unquoted column name indicating which column in ‘tof_tibble‘ stores the
ids for the sample to which each cell belongs.

Unquoted column names indicating which column in ‘tof_tibble‘ should be in-

terpreted as markers to be plotted along the x-axis of the heatmap. Supports

tidyselect helpers.

central_tendency_function
A function to use for computing the measure of central tendency that will be

aggregated from each sample in cluster_col. Defaults to the median.

scale_markerwise
A boolean value indicating if the heatmap should rescale the columns of the
heatmap such that the maximum value for each marker is 1 and the minimum

value is 0. Defaults to FALSE.

scale_samplewise
A boolean value indicating if the heatmap should rescale the rows of the heatmap
such that the maximum value for each sample is 1 and the minimum value is 0.

line_width

theme

Value

Defaults to FALSE.

should be. Defaults to 0.25.

A ggplot object.

Examples

sim_data <-

dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000),

sample_id = sample(paste@("”sample”, 1:5), size = 1000, replace = TRUE)

)

heatmap <-

tof_plot_sample_heatmap(

A ggplot2 theme to apply to the heatmap. Defaults to theme_minimal

A numeric value indicating how thick the lines separating the tiles of the heatmap

134 tof_postprocess

tof_tibble = sim_data,

sample_col = sample_id
)
tof_postprocess Post-process transformed CyTOF data.
Description

This function transforms a ‘tof_tibble® of transformed ion counts from a mass cytometer back into
something that looks more like an .fcs file that Fluidigm software generates.

Usage

tof_postprocess(
tof_tibble = NULL,
channel_cols = where(tof_is_numeric),
redo_noise = FALSE,
transform_fun = function(x) rev_asinh(x, shift_factor = @, scale_factor = 0.2)

Arguments

tof_tibble A ‘tof _tibble‘ or a ‘tibble°.

channel_cols A vector of non-quoted column names indicating which columns in ‘tof_tibble*
contain protein measurements. Supports tidyselect helpers. If nothing is speci-
fied, the default is to transform all numeric columns.

redo_noise A boolean value indicating whether to add uniform noise that to each CyTOF
measurement for aesthetic and visualization purposes. See this paper. Defaults
to FALSE

transform_fun A vectorized function to apply to each column specified by ‘channel_cols* for
post-processing. Defaults to rev_asinh transformation (with a cofactor of 5).
Value
A ‘tof_tbl‘ with identical dimensions to the input ‘tof_tibble‘, with all columns specified in chan-
nel_cols transformed using ‘transform_fun‘ (with noise added or not removed depending on ‘redo_noise).
See Also

[tof_preprocess()]

Examples

read in an example .fcs file from tidytof's internal datasets
input_file <- dir(tidytof_example_data(”aml"”), full.names = TRUE)[[1]]
tof_tibble <- tof_read_data(input_file)

preprocess all numeric columns with default behavior
arcsinh transformation with a cofactor of 5
preprocessed_tof_tibble <- tof_preprocess(tof_tibble)

https://pubmed.ncbi.nlm.nih.gov/30277658/

tof_predict 135

postprocess all numeric columns to reverse the preprocessing
tof_postprocess(tof_tibble)

tof_predict Use a trained elastic net model to predict fitted values from new data

Description

This function uses a trained ‘tof_model* to make predictions on new data.

Usage
tof_predict(
tof_model,
new_data,
prediction_type = c("response”, "class"”, "link", "survival curve")
)
Arguments
tof_model A ‘tof_model" trained using tof_train_model
new_data A tibble of new observations for which predictions should be made. If new_data
isn’t provided, predictions will be made for the training data used to fit the
model.

prediction_type
A string indicating which type of prediction should be provided by the model:

"response' (the default) For "linear" models, the predicted response for each
observation. For "two-class" and "multiclass" models, the fitted probabil-
ities of each class for each observation. For "survival" models, the fitted
relative-risk for each observation.

"class'" Only applies to "two-class" and "multiclass" models. For both, the
class label corresponding to the class with the maximum fitted probability.

"link" The linear predictions of the model (the output of the link function for
each model family.)

"survival curve' Only applies to "survival" models. Returns a tibble indicat-
ing each patient’s probability of survival (1 - probability(event)) at each
timepoint in the dataset. Obtained using the survfit function.

Value

A tibble with a single column (‘.pred) containing the predictions or, for multiclass models with
‘prediction_type‘ == "response", a tibble with one column for each class. Each row in the output
corresponds to a row in ‘new_data‘ (or, if ‘new_data‘ is not provided, to a row in the ‘tof_model‘’s
training data). In the latter case, be sure to check ‘tof_model$training_data‘ to confirm the order
of observations, as the resampling procedure can change their ordering relative to the original input
data.

See Also

Other modeling functions: tof_assess_model (), tof_create_grid(), tof_split_data(), tof_train_model()

136

Examples

feature_tibble <-
dplyr::tibble(

)

sample = as.character(1:100),

cd45 = runif(n = 100),

pstat5 = runif(n = 100),

cd34 = runif(n = 100),

outcome = (3 * cd45) + (4 x pstat5) + rnorm(100)

new_tibble <-
dplyr::tibble(

)

split_data <- tof_split_data(feature_tibble, split_method = "simple"”)

sample = as.character(1:20),

cd45 = runif(n = 20),

pstat5 = runif(n = 20),

cd34 = runif(n = 20),

outcome = (3 * cd45) + (4 * pstat5) + rnorm(20)

train a regression model
regression_model <-
tof_train_model(

)

split_data = split_data,

predictor_cols = c(cd45, pstat5, cd34),
response_col = outcome,

model_type = "linear”

apply the model to new data

tof_predict(tof_model = regression_model, new_data = new_tibble)

tof_preprocess

tof_preprocess

Preprocess raw high-dimensional cytometry data.

Description

This function transforms a ‘tof_tbl‘ of raw ion counts, reads, or fluorescence intensity units directly
measured on a cytometer using a user-provided function. It can be used to perform standard pre-

processing steps (i.e. arcsinh transformation) before cytometry data analysis.

Usage

tof_preprocess(
tof_tibble = NULL,
channel_cols = where(tof_is_numeric),
undo_noise = FALSE,
transform_fun = function(x) asinh(x/5)

tof_prep_recipe 137

Arguments

tof_tibble A ‘tof_tbl* or a ‘tibble*.

channel_cols Unquoted column names representing columns that contain single-cell protein
measurements. Supports tidyselect helpers. If nothing is specified, the default is
to transform all numeric columns.

undo_noise A boolean value indicating whether to remove the uniform noise that Fluidigm
software adds to CyTOF measurements for aesthetic and visualization purposes.
See this paper. Defaults to FALSE.

transform_fun A vectorized function to apply to each protein value for variance stabilization.
Defaults to asinh transformation (with a co-factor of 5).

Value

A ‘tof_tbl‘ with identical dimensions to the input ‘tof_tibble‘, with all columns specified in chan-
nel_cols transformed using ‘transform_fun‘ (with noise removed or not removed depending on
‘undo_noise®).

See Also

[tof_postprocess()]

Examples

read in an example .fcs file from tidytof's internal datasets
input_file <- dir(tidytof_example_data("”aml”), full.names = TRUE)[[1]]
tof_tibble <- tof_read_data(input_file)

preprocess all numeric columns with default behavior
arcsinh transformation with a cofactor of 5
tof_preprocess(tof_tibble)

preprocess all numeric columns using the log base 10 tranformation
tof_preprocess(tof_tibble, transform_fun = logl0)

tof_prep_recipe Train a recipe or list of recipes for preprocessing sample-level cytom-
etry data

Description

Train a recipe or list of recipes for preprocessing sample-level cytometry data

Usage

tof_prep_recipe(split_data, unprepped_recipe)

https://pubmed.ncbi.nlm.nih.gov/30277658/

138 tof_read_csv

Arguments

split_data An ‘rsplit® or ‘rset‘ object from the rsample package containing the sample-
level data to use for modeling. The easiest way to generate this is to use tof _split_data.
Alternatively, an unsplit tbl_df, though this is not recommended.

unprepped_recipe
A recipe object (if ‘split_data‘ is an ‘rsplit‘ object or a ‘tbl_df*) or list of recipes
(if ‘split_data“ is an ‘rset® object).

Value

If split_data is an "rsplit" or "tbl_df" object, will return a single prepped recipe. If split_data is an
"rset" object, will return a list of prepped recipes specific for each fold of the resampling procedure.

tof_read_csv Read high-dimensional cytometry data from a .csv file into a tidy tib-
ble.

Description

Read high-dimensional cytometry data from a .csv file into a tidy tibble.

Usage

tof_read_csv(file_path = NULL, panel_info = dplyr::tibble())

Arguments
file_path A file path to a single .csv file.
panel_info Optional. A tibble or data.frame containing information about the panel used
during high-dimensional cytometry data acquisition. Two columns are required:
"metals" and "antigens".
Value

A ‘tof_tbl* in which each row represents a single cell and each column represents a high-dimensional
cytometry antigen channel.

A ‘tof_tbl" is an S3 class that extends the "tibble" class by storing one additional attribute: "panel” (a
tibble storing information about the panel used during data acquisition). Because panel information
isn’t obvious from data read as a .csv file, this information must be provided manually from the user
(unlike in ‘tof_read_fcs*).

tof_read_data 139

tof_read_data Read data from an .fcs/.csv file or a directory of .fcs/.csv files.

Description

Read data from an .fcs/.csv file or a directory of .fcs/.csv files.

Usage
tof_read_data(path = NULL, sep = "|", panel_info = dplyr::tibble())
Arguments
path A file path to a single file or to a directory of files. The only valid file types are
fcs files or .csv files containing high-dimensional cytometry data.
sep Optional. A string to use to separate the antigen name and its associated metal
in the column names of the output tibble. Defaults to "I". Only used if the input
file is an .fcs file.
panel_info Optional. A tibble or data.frame containing information about the panel used
during high-dimensional cytometry data acquisition. Two columns are required:
"metals" and "antigens". Only used if the input file is a .csv file.
Value

An [c by m+1] tibble in which each row represents a single cell (of c total in the dataset) and each
column represents a high-dimensional cytometry measurement (of m total in the dataset). If more
than one .fcs is read at once, the last column of the tibble (‘file_name*) will represent the file name
of the .fcs file from which each cell was read.

See Also

Other input/output functions: tof_write_csv(), tof_write_data(), tof_write_fcs()

Examples

input_file <- dir(tidytof_example_data(”aml”), full.names = TRUE)[[1]]
tof_read_data(input_file)

tof_read_fcs Read high-dimensional cytometry data from an .fcs file into a tidy tib-
ble.

Description

This function reads high-dimensional cytometry data from a single .fcs file into a tidy data structure
called a ‘tof_tbl‘ ("tof_tibble"). tof_tibbles are identical to normal tibbles except for an additional
attribute ("panel") that stores information about the high-dimensional cytometry panel used during
data acquisition.

140 tof_read_file

Usage
tof_read_fcs(file_path = NULL, sep = "[|")
Arguments
file_path A file path to a single .fcs file.
sep A string to use to separate the antigen name and its associated metal in the
column names of the output tibble. Defaults to "|".
Value

a ‘tof_tbl* in which each row represents a single cell and each column represents a high-dimensional
cytometry antigen channel.

A ‘tof_tbl* is an S3 class that extends the "tibble" class by storing one additional attribute: "panel”
(a tibble storing information about the panel used during data acquisition).

tof_read_file Read high-dimensional cytometry data from a single .fcs or .csv file
into a tidy tibble.

Description

Read high-dimensional cytometry data from a single .fcs or .csv file into a tidy tibble.

Usage
tof_read_file(file_path = NULL, sep = "|", panel_info = dplyr::tibble())
Arguments
file_path A file path to a single .fcs or .csv file.
sep A string to use to separate the antigen name and its associated metal in the
column names of the output tibble. Defaults to "I". Only used if the input file is
an fcs file.
panel_info Optional. A tibble or data.frame containing information about the panel used
during high-dimensional cytometry data acquisition. Two columns are required:
"metals" and "antigens". Only used if the input file is a .csv file.
Value

A ‘tof_tbl‘ in which each row represents a single cell and each column represents a high-dimensional
cytometry antigen channel.

A ‘tof_tbl‘ is an S3 class that extends the "tibble" class by storing one additional attribute: "panel” (a
tibble storing information about the panel used during data acquisition). Because panel information
isn’t obvious from data read as a .csv file, this information must be provided manually by the user.

tof reduce_dimensions 141

tof_reduce_dimensions Apply dimensionality reduction to a single-cell dataset.

Description

This function is a wrapper around tidytof’s tof_reduce_* function family. It performs dimension-
ality reduction on single-cell data using a user-specified method (of 3 choices) and each method’s
corresponding input parameters

Usage

tof_reduce_dimensions(
tof_tibble,

augment = TRUE,

method = c("pca”, "tsne", "umap")
)
Arguments
tof_tibble A ‘tof_tbl* or ‘tibble‘.

Arguments to be passed to the tof_reduce_* function corresponding to the em-
bedding method. See tof_reduce_pca, tof_reduce_tsne, and tof_reduce_umap.

augment A boolean value indicating if the output should column-bind the dimensionality-
reduced embedding vectors of each cell as a new column in ‘tof_tibble‘ (TRUE,
the default) or if a tibble including only the low-dimensionality embeddings
should be returned (FALSE).

method A method of dimensionality reduction. Currently, PCA, tSNE, and UMAP em-
bedding are supported.

Value

A tibble with the same number of rows as ‘tof_tibble‘, each representing a single cell. Each of the
‘num_comp‘ columns represents each cell’s embedding in the calculated embedding space.

See Also

Other dimensionality reduction functions: tof_reduce_pca(), tof_reduce_tsne(), tof_reduce_umap()

Examples

simulate single-cell data
sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 100),
cd38 = rnorm(n = 100),
cd34 = rnorm(n = 100),
cd19 = rnorm(n = 100)

)

calculate pca

142

tof_reduce_pca

tof_reduce_dimensions(tof_tibble = sim_data, method = "pca")

calculate tsne

tof_reduce_dimensions(tof_tibble = sim_data, method = "tsne")

calculate umap

tof_reduce_dimensions(tof_tibble = sim_data, method = "umap")

tof_reduce_pca

Perform principal component analysis on single-cell data

Description

This function calculates principal components using single-cell data from a ‘tof_tibble‘.

Usage

tof_reduce_pca(
tof_tibble,

3

pca_cols = where(tof_is_numeric),

num_comp = 5,

threshold = NA,

center = TRUE
scale = TRUE,
return_recipe

Arguments

tof_tibble

pca_cols

num_comp
threshold
center

scale

return_recipe

Value

’

= FALSE

A ‘tof _tbl‘ or ‘tibble°.

Unquoted column names indicating which columns in ‘tof_tibble‘ to use for
computing the principal components. Defaults to all numeric columns. Supports
tidyselect helpers.

The number of PCA components to calculate. Defaults to 5. See step_pca.

A double between 0 and 1 representing the fraction of total variance that should
be covered by the components returned in the output. See step_pca.

A boolean value indicating if each column should be centered to mean O before
PCA analysis. Defaults to TRUE.

A boolean value indicating if each column should be scaled to standard deviation
= 1 before PCA analysis. Defaults to TRUE.

A boolean value indicating if instead of the UMAP result, a prepped recipe
object containing the PCA embedding should be returned. Set this option to
TRUE if you want to create the PCA embedding using one dataset but also want
to project new observations onto the same embedding space later.

A tibble with the same number of rows as ‘tof_tibble‘, each representing a single cell. Each of
the ‘num_comp‘ columns represents each cell’s embedding in the calculated principal component

space.

tof_reduce_tsne 143

See Also

Other dimensionality reduction functions: tof_reduce_dimensions(), tof_reduce_tsne(), tof_reduce_umap()

Examples

simulate single-cell data
sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 200),

cd38 = rnorm(n = 200),
cd34 = rnorm(n = 200),
cd19 = rnorm(n = 200)
)
new_data <-

dplyr::tibble(
cd45 = rnorm(n = 50),
cd38 = rnorm(n = 50),
cd34 = rnorm(n = 50),
cd19 = rnorm(n = 50)
)

calculate pca
tof_reduce_pca(tof_tibble = sim_data, num_comp = 2)

return recipe instead of embeddings
pca_recipe <- tof_reduce_pca(tof_tibble = sim_data, return_recipe = TRUE)

apply recipe to new data
recipes: :bake(pca_recipe, new_data = new_data)

tof_reduce_tsne Perform t-distributed stochastic neighborhood embedding on single-
cell data

Description

This function calculates a tSNE embedding using single-cell data from a ‘tof_tibble*.

Usage

tof_reduce_tsne(
tof_tibble,
tsne_cols = where(tof_is_numeric),
num_comp = 2,
perplexity = 30,
theta = 0.5,
max_iterations = 1000,
verbose = FALSE,

144 tof reduce_tsne

Arguments

tof_tibble A ‘tof _tbl° or ‘tibble°.

tsne_cols Unquoted column names indicating which columns in ‘tof_tibble‘ to use in com-
puting the tSNE embedding. Defaults to all numeric columns in ‘tof_tibble‘.
Supports tidyselect helpers.

num_comp The number of tSNE components to calculate for the embedding. Defaults to 2.

perplexity A positive numeric value that represents represents the rough balance between
the input data’s local and global structure emphasized in the embedding. Smaller
values emphasize local structure; larger values emphasize global structure. The
recommended range is generally 5-50. Defaults to 30.

theta A numeric value representing the speed/accuracy tradeoff for the embedding.

Set to O for the exact tSNE; increase for a faster approximation. Defaults to 0.5

max_iterations An integer number of iterations to use during embedding calculation. Defaults
to 1000.

verbose A boolean value indicating whether progress updates should be printed during
embedding calculation. Default is FALSE.

Additional arguments to pass to Rtsne.

Value

A tibble with the same number of rows as ‘tof_tibble‘, each representing a single cell. Each of the
‘num_comp‘ columns represents each cell’s embedding in the calculated tSNE space.

See Also

Other dimensionality reduction functions: tof_reduce_dimensions(), tof_reduce_pca(), tof_reduce_umap()

Examples

simulate single-cell data
sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 200),
cd38 = rnorm(n = 200),
cd34 = rnorm(n = 200),
cd19 = rnorm(n = 200)

)

calculate tsne
tof_reduce_tsne(tof_tibble

sim_data)

calculate tsne with only 2 columns
tof_reduce_tsne(tof_tibble = sim_data, tsne_cols = c(cd34, cd38))

tof_reduce_umap

145

tof_reduce_umap

Apply uniform manifold approximation and projection (UMAP) to
single-cell data

Description

This function calculates a UMAP embedding from single-cell data in a ‘tof_tibble*.

Usage

tof_reduce_umap(

tof_tibble,

umap_cols = where(tof_is_numeric),

num_comp = 2

neighbors =

5,

min_dist = 0.01,
learn_rate = 1,
epochs = NULL,

verbose = FALSE,

n_threads =

Arguments

tof_tibble

umap_cols

num_comp

neighbors

min_dist
learn_rate
epochs

verbose

n_threads

return_recipe

Value

1,
return_recipe

= FALSE,

A ‘tof _tbl‘ or ‘tibble°.

Unquoted column names indicating which columns in ‘tof_tibble‘ to use in com-
puting the UMAP embedding. Defaults to all numeric columns in ‘tof_tibble".
Supports tidyselect helpers.

An integer for the number of UMAP components.

An integer for the number of nearest neighbors used to construct the target sim-
plicial set.

The effective minimum distance between embedded points.
Positive number of the learning rate for the optimization process.
Number of iterations for the neighbor optimization. See umap for details.

A boolean indicating if run details should be logged to the console. Defaults to
FALSE.

Number of threads to use during UMAP calculation. Defaults to 1.

A boolean value indicating if instead of the UMAP result, a prepped recipe
object containing the UMAP embedding should be returned. Set this option to
TRUE if you want to create the UMAP embedding using one dataset but also
want to project new observations onto the same embedding space later.

Optional. Other options to be passed as arguments to umap.

A tibble with the same number of rows as ‘tof_tibble‘, each representing a single cell. Each of the
‘num_comp‘ columns represents each cell’s embedding in the calculated UMAP space.

146 tof_set_panel

See Also

Other dimensionality reduction functions: tof_reduce_dimensions(), tof_reduce_pca(), tof_reduce_tsne()

Examples

simulate single-cell data
sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 200),
cd38 = rnorm(n = 200),
cd34 = rnorm(n = 200),
cd19 = rnorm(n = 200)

)
new_data <-

dplyr::tibble(
cd45 = rnorm(n = 50),
cd38 = rnorm(n = 50),
cd34 = rnorm(n = 50),
cd19 = rnorm(n = 50)

)

calculate umap
tof_reduce_umap(tof_tibble = sim_data)

calculate umap with only 2 columns
tof_reduce_tsne(tof_tibble = sim_data, umap_cols = c(cd34, cd38))

return recipe
umap_recipe <- tof_reduce_umap(tof_tibble = sim_data, return_recipe = TRUE)

apply recipe to new data
recipes: :bake(umap_recipe, new_data = new_data)

tof_set_panel Set panel information from a tof _tibble

Description

Set panel information from a tof_tibble

Usage

tof_set_panel(tof_tibble, panel)

Arguments
tof_tibble A ‘tof_tbl‘.
panel A tibble containing two columns (‘metals® and ‘antigens‘) representing the in-

formation about a panel

tof_spade_density 147

Value

A ‘tof_tibble* containing information about the CyTOF panel that was used during data acquisition
for the data contained in the input ‘tof_tibble‘. Two columns are required: "metals" and "antigens".

See Also

Other tof_tbl utilities: new_tof_tibble(), tof_get_panel()

Examples

get current panel from an .fcs file

input_file <- dir(tidytof_example_data(”aml”), full.names = TRUE)[[1]]
tof_tibble <- tof_read_data(input_file)

current_panel <- tof_get_panel(tof_tibble)

create a new panel (remove empty channels)
new_panel <- dplyr::filter(current_panel, antigens != "empty")
tof_set_panel (tof_tibble = tof_tibble, panel = new_panel)

tof_spade_density Estimate cells’ local densities as done in Spanning-tree Progression
Analysis of Density-normalized Events (SPADE)

Description

This function uses the algorithm described in Qiu et al., (2011) to estimate the local density of each
cell in a ‘tof_tbl‘ or ‘tibble‘ containing high-dimensional cytometry data. Briefly, this algorithm
involves counting the number of neighboring cells within a sphere of radius alpha surrounding each
cell. Here, we do so using the nn2 function.

Usage
tof_spade_density(
tof_tibble,
distance_cols = where(tof_is_numeric),
distance_function = c("euclidean”, "cosine”, "12", "ip"),

num_alpha_cells = 2000L,

alpha_multiplier = 5,

max_neighbors = round(0.01 * nrow(tof_tibble)),
normalize = TRUE,

Arguments

tof_tibble A ‘tof_tbl‘ or a ‘tibble‘.

distance_cols Unquoted names of the columns in ‘tof_tibble‘ to use in calculating cell-to-
cell distances during the local density estimation for each cell. Defaults to all
numeric columns in ‘tof_tibble‘.

https://pubmed.ncbi.nlm.nih.gov/21964415/

148 tof_spade_density

distance_function
A string indicating which distance function to use for calculating cell-to-cell dis-
tances during local density estimation. Options include "euclidean" (the default)
and "cosine".

num_alpha_cells
An integer indicating how many cells from ‘tof_tibble‘ should be randomly sam-
pled from ‘tof_tibble‘ in order to estimate ‘alpha‘, the radius of the sphere con-
structed around each cell during local density estimation. Alpha is calculated by
taking the median nearest-neighbor distance from the ‘num_alpha_cells‘ randomly-
sampled cells and multiplying it by ‘alpha_multiplier*. Defaults to 2000.

alpha_multiplier
An numeric value indicating the multiplier that should be used when calculat-
ing ‘alpha‘, the radius of the sphere constructed around each cell during local
density estimation. Alpha is calculated by taking the median nearest-neighbor
distance from the ‘num_alpha_cells cells randomly-sampled from ‘tof_tibble*
and multiplying it by ‘alpha_multiplier*. Defaults to 5.

max_neighbors An integer indicating the maximum number of neighbors that can be counted
within the sphere surrounding any given cell. Implemented to reduce the density
estimation procedure’s speed and memory requirements. Defaults to 1% of the
number of rows in ‘tof_tibble‘.

normalize A boolean value indicating if the vector of local density estimates should be
normalized to values between 0 and 1. Defaults to TRUE.

Additional optional arguments to pass to tof_find_knn.

Value

A tibble with a single column named ".spade_density" containing the local density estimates for
each input cell in ‘tof_tibble°.

See Also

Other local density estimation functions: tof_estimate_density(), tof_knn_density()

Examples

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000)
)

perform the density estimation
tof_spade_density(tof_tibble = sim_data)

perform the density estimation using cosine distance
tof_spade_density(

tof_tibble = sim_data,

distance_function = "cosine”,

alpha_multiplier = 2
)

perform the density estimation with a smaller search radius around

tof_split_data

each cell

149

tof_spade_density(
tof_tibble = sim_data,
alpha_multiplier = 2

tof_split_data

Split high-dimensional cytometry data into a training and test set

Description

Split high-dimensional cytometry data into a training and test set

Usage

tof_split_data(

feature_tibble,
split_method = c("k-fold"”, "bootstrap”, "simple"),

split_col,

simple_prop =

num_cv_folds

3/4,

=10,

num_cv_repeats = 1L,
num_bootstraps = 10,
strata = NULL,

Arguments

feature_tibble

split_method

split_col

simple_prop

num_cv_folds

num_cv_repeats

num_bootstraps

A tibble in which each row represents a sample- or patient- level observation,
such as those produced by tof_extract_features.

Either a string or a logical vector specifying how to perform the split. If a string,
valid options include k-fold cross validation ("k-fold"; the default), bootstrap-
ping ("bootstrap"), or a single binary split ("simple"). If a logical vector, it
should contain one entry for each row in ‘feature_tibble* indicating if that row
should be included in the training set (TRUE) or excluded for the validation/test
set (FALSE). Ignored entirely if ‘split_col is specified.

The unquoted column name of the logical column in ‘feature_tibble* indicating
if each row should be included in the training set (TRUE) or excluded for the
validation/test set (FALSE).

A numeric value between 0 and 1 indicating what proportion of the data should
be used for training. Defaults to 3/4. Ignored if split_method is not "simple".

An integer indicating how many cross-validation folds should be used. Defaults
to 10. Ignored if split_method is not "k-fold".

An integer indicating how many independent cross-validation replicates should
be used (i.e. how many num_cv_fold splits should be performed). Defaults to
1. Ignored if split_method is not "k-fold".

An integer indicating how many independent bootstrap replicates should be
used. Defaults to 25. Ignored if split_method is not "bootstrap".

150 tof_split_data

strata An unquoted column name representing the column in feature_tibble that
should be used to stratify the data splitting. Defaults to NULL (no stratification).

Optional additional arguments to pass to vfold_cv for k-fold cross validation,
bootstraps for bootstrapping, or initial_split for simple splitting.

Value

If for k-fold cross validation and bootstrapping, an "rset" object; for simple splitting, an "rsplit"
object. For details, see rsample.

See Also

Other modeling functions: tof_assess_model(), tof_create_grid(), tof_predict(), tof_train_model()

Examples

feature_tibble <-
dplyr::tibble(
sample = as.character(1:100),
cd45 = runif(n = 100),
pstat5 = runif(n = 100),
cd34 = runif(n = 100),
outcome = (3 * cd45) + (4 * pstat5) + rnorm(100),
class =
as.factor(
dplyr::if_else(outcome > median(outcome), "classl1”, "class2")
),
multiclass =
as.factor(
c(rep(”class1”, 30), rep(”"class2", 30), rep(”"class3”, 40))
),
event = c(rep(@, times = 50), rep(1, times = 50)),
time_to_event = rnorm(n = 100, mean = 10, sd = 2)

)

split the dataset into 10 CV folds
tof_split_data(
feature_tibble = feature_tibble,
split_method = "k-fold”
)

split the dataset into 10 bootstrap resamplings
tof_split_data(

feature_tibble = feature_tibble,

split_method = "bootstrap”
)

split the dataset into a single training/test set
stratified by the "class” column
tof_split_data(

feature_tibble = feature_tibble,

split_method = "simple”,

strata = class

tof_split_tidytof_reduced_dimensions 151

tof_split_tidytof_reduced_dimensions
Split the dimensionality reduction data that tidytof combines during
SingleCellExperiment conversion

Description
Split the dimensionality reduction data that tidytof combines during SingleCellExperiment con-
version

Usage

tof_split_tidytof_reduced_dimensions(sce)

Arguments
sce A SingleCellExperiment with an entry named "tidytof_reduced_dimensions"
in its reducedDims slot.
Value

A SingleCellExperiment with separate entries named "tidytof_pca", "tidytof_umap", and "tidytof_tsne"
in its reducedDims slots (one for each of the dimensionality reduction methods for which tidytof
has native support).

Examples
NULL
tof_train_model Train an elastic net model to predict sample-level phenomena using
high-dimensional cytometry data.
Description

This function uses a training set/test set paradigm to tune and fit an elastic net model using a variety
of user-specified details. Tuning can be performed using either a simple training vs. test set split,
k-fold cross-validation, or bootstrapping, and multiple preprocessing options are available.

Usage

tof_train_model(
split_data,
unsplit_data,
predictor_cols,
response_col = NULL,
time_col = NULL,
event_col = NULL,
model_type = c("linear”, "two-class”, "multiclass"”, "survival”),
hyperparameter_grid = tof_create_grid(),

tof train_model

impute_missing_predictors = FALSE,
optimization_metric = "tidytof_default”,
best_model_type = c("best”, "best with sparsity"”),

152
standardize_predictors = TRUE,
remove_zv_predictors = FALSE,
num_cores = 1
)
Arguments
split_data

unsplit_data

predictor_cols

response_col

time_col

event_col

model_type

An ‘rsplit® or ‘rset‘ object from the rsample package containing the sample-
level data to use for modeling. The easiest way to generate this is to use tof_split_data.

A tibble containing sample-level data to use for modeling without resampling.
While using a resampling method is advised, this argument provides an interface
to fit a model without using cross-validation or bootstrap resampling. Ignored if
split_data is provided.

Unquoted column names indicating which columns in the data contained in
‘split_data‘ should be used as predictors in the elastic net model. Supports tidys-
elect helpers.

Unquoted column name indicating which column in the data contained in ‘split_data‘
should be used as the outcome in a "two-class", "multiclass", or "linear" elastic
net model. Must be a factor for "two-class" and "multiclass" models and must

be a numeric for "linear" models. Ignored if ‘model_type‘ is "survival".

Unquoted column name indicating which column in the data contained in ‘split_data‘
represents the time-to-event outcome in a "survival" elastic net model. Must be

"non

numeric. Ignored if ‘model_type‘ is "two-class", "multiclass", or "linear".

Unquoted column name indicating which column in the data contained in ‘split_data“
represents the time-to-event outcome in a "survival" elastic net model. Must be
a binary column - all values should be either 0 or 1 (with 1 indicating the adverse
event) or FALSE and TRUE (with TRUE indicating the adverse event). Ignored

"non

if ‘model_type‘ is "two-class", "multiclass"”, or "linear".

A string indicating which kind of elastic net model to build. If a continuous
response is being predicted, use "linear" for linear regression; if a categorical
response with only 2 classes is being predicted, use "two-class" for logistic re-
gression; if a categorical response with more than 2 levels is being predicted,
use "multiclass” for multinomial regression; and if a time-to-event outcome is
being predicted, use "survival" for Cox regression.

hyperparameter_grid

A hyperparameter grid indicating which values of the elastic net penalty (lambda)
and the elastic net mixture (alpha) hyperparamters should be used during model
tuning. Generate this grid using tof_create_grid.

standardize_predictors

A logical value indicating if numeric predictor columns should be standardized
(centered and scaled) before model fitting, as is standard practice during elastic
net regularization. Defaults to TRUE.

remove_zv_predictors

A logical value indicating if predictor columns with near-zero variance should
be removed before model fitting using step_nzv. Defaults to FALSE.

impute_missing_predictors

A logical value indicating if predictor columns should have missing values im-
puted using k-nearest neighbors before model fitting (see step_impute_knn).

tof_train_model 153

Imputation is performed using an observation’s 5 nearest-neighbors. Defaults to
FALSE.

optimization_metric
A string indicating which optimization metric should be used for hyperparame-
ter selection during model tuning. Valid values depend on the model_type.

* For "linear" models, choices are "mse" (the mean squared error of the pre-
dictions; the default) and "mae" (the mean absolute error of the predictions).

¢ For "two-class" models, choices are "roc_auc" (the area under the Receiver-
Operating Curve for the classification; the default), "misclassification error"
(the proportion of misclassified observations), "binomial_deviance" (see
deviance.glmnet), "mse" (the mean squared error of the logit function),
and "mae" (the mean absolute error of the logit function).

¢ For "multiclass" models, choices are "roc_auc" (the area under the Receiver-
Operating Curve for the classification using the Hand-Till generalization of
the ROC AUC for multiclass models in roc_auc; the default), "misclas-
sification error" (the proportion of misclassified observations), "multino-
mial_deviance" (see deviance.glmnet), and "mse" and "mae" as above.

¢ For "survival" models, choices are "concordance_index" (Harrel’s C index;
see deviance.glmnet) and "partial_likelihood_deviance" (see deviance.glmnet).

best_model_type
Currently unused.

num_cores Integer indicating how many cores should be used for parallel processing when
fitting multiple models. Defaults to 1. Overhead to separate models across
multiple cores can be high, so significant speedup is unlikely to be observed
unless many large models are being fit.

Value

A ‘tof_model‘, an S3 class that includes the elastic net model with the best performance (assessed
via cross-validation, bootstrapping, or simple splitting depending on ‘split_data‘) across all tested
hyperparameter value combinations. ‘tof_models* store the following information:

model The final elastic net ("glmnet") model, which is chosen by selecting the elastic net hyper-
parameters with the best ‘optimization_metric‘ performance on the validation sets of each
resample used to train the model (on average)

recipe The recipe used for data preprocessing

mixture The optimal mixture hyperparameter (alpha) for the glmnet model
penalty The optimal penalty hyperparameter (lambda) for the glmnet model
model_type A string indicating which type of glmnet model was fit

outcome_colnames A character vector representing the names of the columns in the training data
modeled as outcome variables

training_data A tibble containing the (not preprocessed) data used to train the model

tuning_metrics A tibble containing the validation set performance metrics (and model predictions)
during for each resample fold during model tuning.

log_rank_thresholds For survival models only, a tibble containing information about the relative-
risk thresholds that can be used to split the training data into 2 risk groups (low- and high-risk)
based on the final model’s predictions. For each relative-risk threshold, the log-rank test p-
value and an indicator of which threshold gives the most significant separation is provided.

best_log_rank_threshold For survival models only, a numeric value representing the relative-risk
threshold that yields the most significant log-rank test when separating the training data into
low- and high-risk groups.

154 tof transform

See Also

Other modeling functions: tof_assess_model (), tof_create_grid(), tof_predict(), tof_split_data()

Examples

feature_tibble <-
dplyr::tibble(
sample = as.character(1:100),
cd45 = runif(n = 100),
pstat5 = runif(n = 100),
cd34 = runif(n = 100),
outcome = (3 * cd45) + (4 x pstat5) + rnorm(100),
class =
as.factor(
dplyr::if_else(outcome > median(outcome), "classl1”, "class2")
),
multiclass =
as.factor(
c(rep("class1”, 30), rep("class2", 30), rep("class3”, 40))
),
event = c(rep(@, times = 30), rep(l1, times = 70)),
time_to_event = rnorm(n = 100, mean = 10, sd = 2)

)
split_data <- tof_split_data(feature_tibble, split_method = "simple")

train a regression model
tof_train_model(
split_data = split_data,
predictor_cols = c(cd45, pstat5, cd34),
response_col = outcome,
model_type = "linear”

)

train a logistic regression classifier
tof_train_model(
split_data = split_data,
predictor_cols = c(cd45, pstat5, cd34),
response_col = class,
model_type = "two-class”

)

train a cox regression survival model
tof_train_model(
split_data = split_data,
predictor_cols = c(cd45, pstat5, cd34),
time_col = time_to_event,
event_col = event,
model_type = "survival”

tof_transform Transform raw high-dimensional cytometry data.

tof_tune_glmnet 155

Description

This function transforms a ‘tof_tbl‘ of raw ion counts, reads, or fluorescence intensity units directly
measured on a cytometer using a user-provided function.

Usage

tof_transform(
tof_tibble = NULL,
channel_cols = where(tof_is_numeric),
transform_fun

Arguments

tof_tibble A ‘tof_tbl* or a ‘tibble°.

channel_cols Unquoted column names representing columns that contain single-cell protein
measurements. Supports tidyselect helpers. If nothing is specified, the default is
to transform all numeric columns.

transform_fun A vectorized function to apply to each protein value for variance stabilization.

Value

A ‘tof_tbl* with identical dimensions to the input ‘tof_tibble‘, with all columns specified in chan-
nel_cols transformed using ‘transform_fun®.

Examples

read in an example .fcs file from tidytof's internal datasets
input_file <- dir(tidytof_example_data("aml"”), full.names = TRUE)[[1]]
tof_tibble <- tof_read_data(input_file)

preprocess all numeric columns with default behavior
arcsinh transformation with a cofactor of 5
tof_preprocess(tof_tibble)

preprocess all numeric columns using the log base 10 tranformation
tof_preprocess(tof_tibble, transform_fun = logl0)

tof_tune_glmnet Tune an elastic net model’s hyperparameters over multiple resamples

Description

Tune an elastic net model’s hyperparameters over multiple resamples

156

Usage

tof_tune_glmnet
split_data,
prepped_recip
hyperparamete
model_type,
outcome_cols,
optimization_
num_cores = 1

Arguments

split_data

prepped_recipe

hyperparameter_

model_type

outcome_cols

optimization_me

num_cores

Value

A tibble containin

tof_tune_glmnet

(

e7
r_grid,

metric = "tidytof_default”,

An ‘rsplit® or ‘rset® object from the rsample package. The easiest way to gen-
erate this is to use tof_split_data. Alternatively, an unsplit tbl_df can be
provided, though this is not recommended.

Either a single recipe object (if ‘split_data“ is an ‘rsplit® object or a ‘tbl_df*) or
list of recipes (if ‘split_data‘ is an ‘rset‘ object) such that each entry in the list
corresponds to a resample in ‘split_data‘.

grid

A hyperparameter grid indicating which values of the elastic net penalty (lambda)
and the elastic net mixture (alpha) hyperparameters should be used during model
tuning. Generate this grid using tof_create_grid.

A string indicating which kind of elastic net model to build. If a continuous
response is being predicted, use "linear" for linear regression; if a categorical
response with only 2 classes is being predicted, use "two-class" for logistic re-
gression; if a categorical response with more than 2 levels is being predicted,
use "multiclass" for multinomial regression; and if a time-to-event outcome is
being predicted, use "survival" for Cox regression.

Unquoted column name(s) indicating which column(s) in the data contained in
‘split_data‘ should be used as the outcome in the elastic net model. For survival
models, two columns should be selected; for all others, only one column should
be selected.

tric

A string indicating which optimization metric should be used for hyperparame-
ter selection during model tuning. Valid values depend on the model_type.

Integer indicating how many cores should be used for parallel processing when
fitting multiple models. Defaults to 1. Overhead to separate models across
multiple cores can be high, so significant speedup is unlikely to be observed
unless many large models are being fit.

g a summary of the model’s performance in each resampling iteration across

all hyperparameter combinations. Will contain 3 columns: "splits" (a list-col containing each
resampling iteration’s ‘rsplit‘ object), "id" (the name of the resampling iteration), and "perfor-
mance_metrics" (a list-col containing the performance metrics for each resampling iteration. Each
row of "performance_metrics" is a tibble with the columns "mixture" and "penalty" and several
additional columns containing the performance metrics of the model for each mixture/penalty com-
bination). See tof_fit_split for additional details.

tof_upsample 157

tof_upsample Upsample cells into the closest cluster in a reference dataset

Description

This function performs distance-based upsampling on CyTOF data by sorting single cells (passed
into the function as ‘tof_tibble‘) into their most phenotypically similar cell subpopulation in a ref-
erence dataset (passed into the function as ‘reference_tibble®). It does so by calculating the distance
(either mahalanobis, cosine, or pearson) between each cell in ‘tof_tibble‘ and the centroid of each
cluster in ‘reference_tibble‘, then sorting cells into the cluster corresponding to their closest cen-
troid.

Usage

tof_upsample(
tof_tibble,
reference_tibble,
reference_cluster_col,
upsample_cols = where(tof_is_numeric),

augment = TRUE,

method = c("distance"”, "neighbor")
)
Arguments
tof_tibble A ‘tibble‘ or ‘tof_tbl‘ containing cells to be upsampled into their nearest refer-

ence subpopulation.

reference_tibble
A ‘tibble‘ or ‘tof_tibble* containing cells that have already been clustered or
manually gated into subpopulations.

reference_cluster_col
An unquoted column name indicating which column in ‘reference_tibble* con-
tains the subpopulation label (or cluster id) for each cell in ‘reference_tibble°.

upsample_cols Unquoted column names indicating which columns in ‘tof_tibble‘ to use in com-
puting the distances used for upsampling. Defaults to all numeric columns in
‘tof_tibble‘. Supports tidyselect helpers.

Additional arguments to pass to the ‘tof_upsample_** function family member
corresponding to the chosen method.

augment A boolean value indicating if the output should column-bind the cluster ids of
each cell as a new column in ‘tof_tibble* (TRUE, the default) or if a single-
column tibble including only the cluster ids should be returned (FALSE).

method A string indicating which clustering methods should be used. Valid values in-
clude "distance" (default) and "neighbor".

Value

A ‘tof_tbl‘ or ‘tibble‘ If augment = FALSE, it will have a single column encoding the upsam-
pled cluster ids for each cell in ‘tof_tibble‘. If augment = TRUE, it will have ncol(tof_tibble) + 1
columns: each of the (unaltered) columns in ‘tof_tibble* plus an additional column encoding the
cluster ids.

158 tof_upsample_distance

Examples

simulate single-cell data (and reference data with clusters to upsample
into
sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000)
)
reference_data <-
dplyr::tibble(
cd45 = rnorm(n = 200),
cd38 = rnorm(n = 200),
cd34 = rnorm(n = 200),
cd19 = rnorm(n = 200),
cluster_id = c(rep(”a”, times = 100), rep("b"”, times = 100))

)

upsample using distance to cluster centroids
tof_upsample(
tof_tibble = sim_data,
reference_tibble = reference_data,
reference_cluster_col = cluster_id,
method = "distance”

)

upsample using distance to nearest neighbor
tof_upsample(
tof_tibble = sim_data,
reference_tibble = reference_data,
reference_cluster_col = cluster_id,
method = "neighbor”

tof_upsample_distance Upsample cells into the closest cluster in a reference dataset

Description

This function performs distance-based upsampling on CyTOF data by sorting single cells (passed
into the function as ‘tof_tibble®) into their most phenotypically similar cell subpopulation in a ref-
erence dataset (passed into the function as ‘reference_tibble®). It does so by calculating the distance
(either mahalanobis, cosine, or pearson) between each cell in ‘tof_tibble‘ and the centroid of each
cluster in ‘reference_tibble‘, then sorting cells into the cluster corresponding to their closest cen-
troid.

Usage

tof_upsample_distance(
tof_tibble,
reference_tibble,

tof_upsample_distance 159

reference_cluster_col,

upsample_cols = where(tof_is_numeric),

parallel_cols,

distance_function = c("mahalanobis”, "cosine"”, "pearson"),
num_cores = 1L,

return_distances = FALSE

Arguments

tof_tibble A ‘tibble‘ or ‘tof_tbl‘ containing cells to be upsampled into their nearest refer-
ence subpopulation.

reference_tibble
A ‘tibble‘ or ‘tof_tibble‘ containing cells that have already been clustered or
manually gated into subpopulations.

reference_cluster_col

An unquoted column name indicating which column in ‘reference_tibble‘ con-
tains the subpopulation label (or cluster id) for each cell in ‘reference_tibble°.

upsample_cols Unquoted column names indicating which columns in ‘tof_tibble‘ to use in com-
puting the distances used for upsampling. Defaults to all numeric columns in
‘tof_tibble‘. Supports tidyselect helpers.

parallel_cols Optional. Unquoted column names indicating which columns in ‘tof_tibble‘ to
use for breaking up the data in order to parallelize the upsampling using ‘fore-
ach‘ on a ‘doParallel‘ backend. Supports tidyselect helpers.

distance_function
A string indicating which distance function should be used to perform the up-
sampling. Options are "mahalanobis" (the default), "cosine", and "pearson".

num_cores An integer indicating the number of CPU cores used to parallelize the classifi-
cation. Defaults to 1 (a single core).

return_distances
A boolean value indicating whether or not the returned result should include
only one column, the cluster ids corresponding to each row of ‘tof_tibble* (re-
turn_distances = FALSE, the default), or if the returned result should include
additional columns representing the distance between each row of ‘tof_tibble*
and each of the reference subpopulation centroids (return_distances = TRUE).

Value

If ‘return_distances = FALSE®, a tibble with one column named ‘.upsample_cluster‘, a character
vector of length ‘nrow(tof_tibble)‘ indicating the id of the reference cluster to which each cell (i.e.
each row) in ‘tof_tibble‘ was assigned.

If ‘return_distances = TRUE®, a tibble with ‘nrow(tof_tibble)‘ rows and num_clusters + 1 columns,
where num_clusters is the number of clusters in ‘reference_tibble‘. Each row represents a cell from
‘tof_tibble‘, and num_clusters of the columns represent the distance between the cell and each of
the reference subpopulations’ cluster centroids. The final column represents the cluster id of the
reference subpopulation with the minimum distance to the cell represented by that row.

Examples

simulate single-cell data (and reference data with clusters to upsample
into

160 tof_upsample_neighbor

sim_data <-
dplyr::tibble(
cd45 = rnorm(n = 1000),
cd38 = rnorm(n = 1000),
cd34 = rnorm(n = 1000),
cd19 = rnorm(n = 1000)
)

reference_data <-
dplyr::tibble(
cd45 = rnorm(n = 200),
cd38 = rnorm(n = 200),
cd34 = rnorm(n = 200),
cd19 = rnorm(n = 200),
cluster_id = c(rep(”a"”, times = 100), rep("b"”, times = 100))

)

upsample using mahalanobis distance
tof_upsample_distance(
tof_tibble = sim_data,
reference_tibble = reference_data,
reference_cluster_col = cluster_id

)

upsample using cosine distance
tof_upsample_distance(
tof_tibble = sim_data,
reference_tibble = reference_data,
reference_cluster_col = cluster_id,
distance_function = "cosine”

tof_upsample_neighbor Upsample cells into the cluster of their nearest neighbor a reference
dataset

Description

This function performs upsampling on CyTOF data by sorting single cells (passed into the func-
tion as ‘tof_tibble®) into their most phenotypically similar cell subpopulation in a reference dataset
(passed into the function as ‘reference_tibble). It does so by finding each cell in ‘tof_tibble‘’s
nearest neighbor in ‘reference_tibble‘ and assigning it to the cluster to which its nearest neigh-
bor belongs. The nearest neighbor calculation can be performed with either euclidean or cosine
distance.

Usage

tof_upsample_neighbor(
tof_tibble,
reference_tibble,
reference_cluster_col,
upsample_cols = where(tof_is_numeric),
num_neighbors = 1L,

tof_upsample_neighbor

161

distance_function = c("euclidean”, "cosine”, "12", "ip")
)
Arguments
tof_tibble A ‘tibble‘ or ‘tof_tbl‘ containing cells to be upsampled into their nearest refer-

ence subpopulation.

reference_tibble

A ‘tibble* or ‘tof_tibble‘ containing cells that have already been clustered or
manually gated into subpopulations.

reference_cluster_col
An unquoted column name indicating which column in ‘reference_tibble‘ con-
tains the subpopulation label (or cluster id) for each cell in ‘reference_tibble°.

upsample_cols Unquoted column names indicating which columns in ‘tof_tibble‘ to use in com-
puting the distances used for upsampling. Defaults to all numeric columns in
‘tof_tibble‘. Supports tidyselect helpers.

num_neighbors An integer indicating how many neighbors should be used in the nearest neigh-
bor calculation. Clusters are assigned based on majority vote.

distance_function

A string indicating which distance function should be used to perform the up-
sampling. Options are "euclidean" (the default) and "cosine".

Value

A tibble with one column named ‘.upsample_cluster‘, a character vector of length ‘nrow(tof_tibble)*
indicating the id of the reference cluster to which each cell (i.e. each row) in ‘tof_tibble‘ was

assigned.

Examples

simulate single-cell

into

sim_data <-

dplyr::tibble(

cd45 = rnorm(n
cd38 = rnorm(n
cd34 = rnorm(n
cd19 = rnorm(n

)

reference_data <-
dplyr::tibble(
cd45 = rnorm(n
cd38 = rnorm(n
cd34 = rnorm(n
cd19 = rnorm(n

cluster_id = c(

)

data (and reference data with clusters to upsample

re

1000),
1000)
1000)
1000)

200),
200),
200),
200),
p("a", times = 100), rep("b", times

upsample using euclidean distance

tof_upsample_neighbor(

tof_tibble = sim_data,
reference_tibble = reference_data,
reference_cluster_col = cluster_id

100))

162 tof_write_csv

)

upsample using cosine distance
tof_upsample_neighbor(
tof_tibble = sim_data,
reference_tibble = reference_data,
reference_cluster_col = cluster_id,

distance_function = "cosine”
)
tof_write_csv Write a series of .csv files from a tof _tbl
Description

This function takes a given ‘tof_tbl‘ and writes the single-cell data it contains into .csv files within
the directory located at ‘out_path‘. The ‘group_cols‘ argument specifies how the rows of the
‘tof_tbl‘ (each cell) should be broken into separate .csv files

Usage
tof_write_csv(tof_tibble, group_cols, out_path, sep = "_", file_name)
Arguments
tof_tibble A ‘tof_tbl* or a ‘tibble".
group_cols Optional. Unquoted names of the columns in ‘tof_tibble‘ that should be used to
group cells into separate files. Supports tidyselect helpers. Defaults to NULL
(all cells are written into a single file).
out_path A system path indicating the directory where the output .csv files should be
saved. If the directory doesn’t exist, it will be created.
sep Delimiter that should be used between each of the values of ‘group_cols* to
create the output .csv file names. Defaults to "_"
file_name If ‘group_cols‘ isn’t specified, the name (without an extension) that should be
used for the saved .csv file.
Value

This function does not return anything. Instead, it has the side-effect of saving .csv files to ‘out_path°.

See Also

Other input/output functions: tof_read_data(), tof_write_data(), tof_write_fcs()

tof write_data 163

tof_write_data Write high-dimensional cytometry data to a file or to a directory of

files

Description

Write data (in the form of a ‘tof_tbl‘) into either a .csv or an .fcs file for storage.

Usage

tof_write_data(
tof_tibble = NULL,

group_cols,
out_path = NULL,
format = c("fcs”, "csv"),
sep = II_” s
file_name
)
Arguments
tof_tibble A ‘tof_tbl‘ or a ‘tibble‘.
group_cols Optional. Unquoted names of the columns in ‘tof_tibble* that should be used
to group cells into separate files. Supports tidyselect helpers. Defaults to no
grouping (all cells are written into a single file).
out_path Path to the directory where output files should be saved.
format format for the files being written. Currently supports .csv and .fcs files
sep Delimiter that should be used between each of the values of ‘group_cols* to
create the output .csv/.fcs file names. Defaults to "_".
file_name If ‘group_cols‘ isn’t specified, the name (without an extension) that should be
used for the saved file.
Value

This function does not explicitly return any values. Instead, it writes .csv and/or .fcs files to the
specified ‘out_path‘.

See Also

Other input/output functions: tof_read_data(), tof_write_csv(), tof_write_fcs()

Examples

NULL

164 tof_write_fcs

tof_write_fcs Write a series of .fcs files from a tof_tbl

Description

This function takes a given ‘tof_tbl‘ and writes the single-cell data it contains into .fcs files within
the directory located at ‘out_path‘. The ‘group_cols‘ argument specifies how the rows of the
‘tof_tbl‘ (each cell) should be broken into separate .fcs files

Usage
tof_write_fcs(tof_tibble, group_cols, out_path, sep = "_", file_name)
Arguments
tof_tibble A ‘tof_tbl* or a ‘tibble".
group_cols Unquoted names of the columns in ‘tof_tibble* that should be used to group cells
into separate files. Supports tidyselect helpers. Defaults to NULL (all cells are
written into a single file).
out_path A system path indicating the directory where the output .csv files should be
saved. If the directory doesn’t exist, it will be created.
sep Delimiter that should be used between each of the values of ‘group_cols to
create the output .fcs file names. Defaults to "_".
file_name If ‘group_cols‘ isn’t specified, the name (without an extension) that should be
used for the saved .csv file.
Value

This function does not return anything. Instead, it has the side-effect of saving .fcs files to ‘out_path°.

See Also

Other input/output functions: tof_read_data(), tof_write_csv(), tof_write_data()

Examples

NULL

where 165

where Select variables with a function

Description

This is a copy of where, a selection helper that selects the variables for which a predicate function
returns TRUE. See language for more details about tidyselection.

Usage
where(fn)
Arguments
fn A function that returns TRUE or FALSE (technically, a predicate function). Can
also be a purrr-like formula.
Details

This help file was replicated verbatim from tidyselect-package.

Value

A predicate that can be used to select columns from a data.frame.

References
Lionel Henry and Hadley Wickham (2021). tidyselect: Select from a Set of Strings. R package
version 1.1.1. https://CRAN.R-project.org/package=tidyselect

Examples

NULL

Index

* clustering functions
tof_cluster, 56
tof_cluster_ddpr, 57
tof_cluster_flowsom, 59
tof_cluster_kmeans, 61
tof_cluster_phenograph, 62

x datasets
ddpr_data, 10
ddpr_metadata, 11
metal_masterlist, 15
phenograph_data, 17

x differential abundance analysis functions
tof_analyze_abundance, 20
tof_analyze_abundance_diffcyt, 20
tof_analyze_abundance_glmm, 23
tof_analyze_abundance_ttest, 25

* differential expression analysis functions
tof_analyze_expression, 26
tof_analyze_expression_diffcyt, 27
tof_analyze_expression_lmm, 30
tof_analyze_expression_ttest, 32

* dimensionality reduction functions
tof_reduce_dimensions, 141
tof_reduce_pca, 142
tof_reduce_tsne, 143
tof_reduce_umap, 145

* downsampling functions
tof_downsample, 67
tof_downsample_constant, 68
tof_downsample_density, 70
tof_downsample_prop, 72

« feature extraction functions
tof_extract_central_tendency, 74
tof_extract_emd, 76
tof_extract_features, 78
tof_extract_jsd, 81
tof_extract_proportion, 83
tof_extract_threshold, 85

* input/output functions
tof_read_data, 139
tof_write_csv, 162
tof_write_data, 163
tof_write_fcs, 164

166

* internal
reexports, 18

+ local density estimation functions
tof_estimate_density, 73
tof_knn_density, 101
tof_spade_density, 147

+ metaclustering functions
tof_metacluster, 105
tof_metacluster_consensus, 107
tof_metacluster_flowsom, 109
tof_metacluster_hierarchical, 110
tof_metacluster_kmeans, 112
tof_metacluster_phenograph, 113

+ modeling functions
tof_assess_model, 46
tof_create_grid, 65
tof_predict, 135
tof_split_data, 149
tof_train_model, 151

* tof_tbl utilities
new_tof_tibble, 16
tof_get_panel, 100
tof_set_panel, 146

+ visualization functions
tof_plot_cells_embedding, 116
tof_plot_cells_layout, 118
tof_plot_cells_scatter, 119

.data, /8

.data (reexports), 18

=, 18

:=(reexports), 18

%>% (reexports), 18

%>%, 18

all_of, I8

all_of (reexports), 18
any_of, 18

any_of (reexports), 18
as_flowFrame, 5
as_flowSet, 5

as_seurat, 6
as_SingleCellExperiment, 7
as_tof_tbl, 8
as_tof_tbl.flowSet, 9

INDEX

asinh, 137

bootstraps, 150
BuildSOM, 60

ConsensusClusterPlus, 107, 108
contains, I8

contains (reexports), 18
cosine_similarity, 10

ddpr_data, 10
ddpr_metadata, 11
deviance.glmnet, 46, 153
dist, 111

dot, 12

ends_with, /18
ends_with (reexports), 18
everything, I8
everything (reexports), 18

facet_wrap, 43, 117, 120
flowFrame, 5, 6
flowSet, 5, 6

geom_point, 120
geom_ridgeline, 115
geom_scattermore, 120
geom_text, 125
geom_text_repel, 125
get_extension, 13
ggraph, 118, 123

glm, 23, 30

glmer, 23

glmFit, 22

hclust, 110-112
hnsw_knn, 89, 119, 123

initial_split, 150
kmeans, 61, 62

12_normalize, 13

language, 165

last_col, /8

last_col (reexports), 18
layout_tbl_graph_igraph, 118, 123
lmer, 30

magnitude, 14
make_flowcore_annotated_data_frame, 14
matches, I8

matches (reexports), 18

167

median, 31, 75,79, 106, 107, 109, 111, 113,
114

MetaClustering, 59, 109, 110

metal_masterlist, 15

new_tof_model, 15
new_tof_tibble, 16, 100, 147
nn2, 147
normalize.quantiles, 49-51
num_range, 18

num_range (reexports), 18

p.adjust, 22, 24, 26, 29, 31, 33
phenograph_data, 17

recipe, 67, 87,92, 138, 142, 145, 153, 156
reducedDims, 7, 8, 151

reexports, 18

rev_asinh, 18, 134

roc_auc, 46, 92, 153

rsample, 54, 87, 92, 138, 150, 152, 156
Rtsne, 144

select_helpers (reexports), 18
SeuratObject, 6, 7
SingleCellExperiment, 7, 8, 151
SOM, 59

starts_with, /8

starts_with (reexports), 18
step_impute_knn, 67, 152
step_nzv, 67, 152

step_pca, 142

survfit, 135

tbl_graph, 104

testDA_edgeR, 22

testDA_GLMM, 22

testDA_voom, 22

testDS_limma, 29

testDS_LMM, 29

theme_bw, 115,117,120, 125, 127, 129131

theme_minimal, 122, 127, 132, 133

theme_void, 119, 123

tibble, 65, 135

tidytof_example_data, 19

tof_analyze_abundance, 20, 22, 24, 26

tof_analyze_abundance_diffcyt, 20, 20,
24,26

tof_analyze_abundance_glmm, 20, 22, 23,
26

tof_analyze_abundance_ttest, 20, 22, 24,
25

tof_analyze_expression, 26, 29, 32, 34

168

tof_analyze_expression_diffcyt, 26, 27
27,32, 34
tof_analyze_expression_1lmm, 26, 27, 29,
30, 34
tof_analyze_expression_ttest, 26, 27, 29,
32,32
tof_annotate_clusters, 34
tof_apply_classifier, 35
tof_assess_channels, 36
tof_assess_clusters_distance, 37
tof_assess_clusters_entropy, 39
tof_assess_clusters_knn, 41
tof_assess_flow_rate, 43
tof_assess_flow_rate_tibble, 44
tof_assess_model, 46, 66, 135, 150, 154
tof_assess_model_new_data, 48
tof_assess_model_tuning, 48
tof_batch_correct, 49
tof_batch_correct_quantile, 50
tof_batch_correct_quantile_tibble, 51
tof_batch_correct_rescale, 51
tof_build_classifier, 52, 55
tof_calculate_flow_rate, 43, 44, 53
tof_check_model_args, 54
tof_classify_cells, 55
tof_clean_metric_names, 56
tof_cluster, 56, 59, 60, 62, 63
tof_cluster_ddpr, 57, 57, 60, 62, 63
tof_cluster_flowsom, 57, 59, 59, 62, 63
tof_cluster_grouped, 61
tof_cluster_kmeans, 57, 59, 60, 61, 63, 113
tof_cluster_phenograph, 57, 59, 60, 62, 62,
113,114
tof_cluster_tibble, 64
tof_compute_km_curve, 64
tof_cosine_dist, 65
tof_create_grid, 47, 65, 92, 135, 150, 152,
154, 156
tof_create_recipe, 66
tof_downsample, 67, 69, 71, 72
tof_downsample_constant, 68, 68, 71, 72
tof_downsample_density, 68, 69, 70, 72
tof_downsample_prop, 68, 69, 71, 72
tof_estimate_density, 73, 102, 148
tof_extract_central_tendency, 74, 78, 80,
82,84, 86
tof_extract_emd, 75, 76, 79, 80, 82, 84, 86
tof_extract_features, 75,78, 78, 82, 84,
86, 131
tof_extract_jsd, 75, 78-80, 81, 84, 86
tof_extract_proportion, 75, 78, 80, 82, 83,
86

INDEX

tof_extract_threshold, 75, 78, 80, 82, 84,
85
tof_find_best, 86
tof_find_cv_predictions, 87
tof_find_emd, 88
tof_find_jsd, 88
tof_find_knn, 63, 89, 102, 103, 148
tof_find_log_rank_threshold, 90
tof_find_panel_info, 91
tof_fit_split, 91, 156
tof_generate_palette, 92
tof_get_model_mixture, 93
tof_get_model_outcomes, 94
tof_get_model_penalty, 95
tof_get_model_training_data, 96
tof_get_model_type, 97
tof_get_model_x, 98
tof_get_model_y, 99
tof_get_panel, 16, 100, 147
tof_is_numeric, 101
tof_knn_density, 71, 74, 101, 148
tof_log_rank_test, 102
tof_make_knn_graph, 103
tof_make_roc_curve, 104
tof_metacluster, 105, 108, 110, 112—-114
tof_metacluster_consensus, 106, 107, 110,
112-114
tof_metacluster_flowsom, 106, 108, 109,
112-114
tof_metacluster_hierarchical, 106, 108,
110,110, 113, 114
tof_metacluster_kmeans, 106, 108, 110,
112,112,114
tof_metacluster_phenograph, 106, 108,
110,112, 113,113
tof_plot_cells_density, 115
tof_plot_cells_embedding, 116, 119, 120
tof_plot_cells_layout, /17,118, 120
tof_plot_cells_scatter, 117,119, 119
tof_plot_clusters_heatmap, 121
tof_plot_clusters_mst, 122
tof_plot_clusters_volcano, 124
tof_plot_heatmap, 126
tof_plot_model, 127
tof_plot_model_linear, 128
tof_plot_model_logistic, 129
tof_plot_model_multinomial, 130
tof_plot_model_survival, 130
tof_plot_sample_features, 131
tof_plot_sample_heatmap, 132
tof_postprocess, 134
tof_predict, 47, 66, 135, 150, 154

INDEX 169

tof_prep_recipe, 137
tof_preprocess, 136
tof_read_csv, 138
tof_read_data, 139, 162-164
tof_read_fcs, 139
tof_read_file, 140
tof_reduce_dimensions, 116, 117, 141, 143,
144, 146
tof_reduce_pca, 141, 142, 144, 146
tof_reduce_tsne, 141, 143, 143, 146
tof_reduce_umap, 141, 143, 144, 145
tof_set_panel, 16, 100, 146
tof_spade_density, 71, 74, 102, 147
tof_split_data, 47, 66, 135, 138, 149, 152,
154, 156
tof_split_tidytof_reduced_dimensions
151
tof_train_model, 4648, 66, 127, 129131,
135, 150, 151
tof_transform, 154
tof_tune_glmnet, 155
tof_upsample, 157
tof_upsample_distance, 158
tof_upsample_neighbor, 160
tof_write_csv, 139,162, 163, 164
tof_write_data, 139, 162, 163, 164
tof_write_fcs, 139, 162, 163, 164
topTable, 22

umap, 145

vfold_cv, 150
voom, 22

where, 165, 165

	as_flowFrame
	as_flowSet
	as_seurat
	as_SingleCellExperiment
	as_tof_tbl
	as_tof_tbl.flowSet
	cosine_similarity
	ddpr_data
	ddpr_metadata
	dot
	get_extension
	l2_normalize
	magnitude
	make_flowcore_annotated_data_frame
	metal_masterlist
	new_tof_model
	new_tof_tibble
	phenograph_data
	reexports
	rev_asinh
	tidytof_example_data
	tof_analyze_abundance
	tof_analyze_abundance_diffcyt
	tof_analyze_abundance_glmm
	tof_analyze_abundance_ttest
	tof_analyze_expression
	tof_analyze_expression_diffcyt
	tof_analyze_expression_lmm
	tof_analyze_expression_ttest
	tof_annotate_clusters
	tof_apply_classifier
	tof_assess_channels
	tof_assess_clusters_distance
	tof_assess_clusters_entropy
	tof_assess_clusters_knn
	tof_assess_flow_rate
	tof_assess_flow_rate_tibble
	tof_assess_model
	tof_assess_model_new_data
	tof_assess_model_tuning
	tof_batch_correct
	tof_batch_correct_quantile
	tof_batch_correct_quantile_tibble
	tof_batch_correct_rescale
	tof_build_classifier
	tof_calculate_flow_rate
	tof_check_model_args
	tof_classify_cells
	tof_clean_metric_names
	tof_cluster
	tof_cluster_ddpr
	tof_cluster_flowsom
	tof_cluster_grouped
	tof_cluster_kmeans
	tof_cluster_phenograph
	tof_cluster_tibble
	tof_compute_km_curve
	tof_cosine_dist
	tof_create_grid
	tof_create_recipe
	tof_downsample
	tof_downsample_constant
	tof_downsample_density
	tof_downsample_prop
	tof_estimate_density
	tof_extract_central_tendency
	tof_extract_emd
	tof_extract_features
	tof_extract_jsd
	tof_extract_proportion
	tof_extract_threshold
	tof_find_best
	tof_find_cv_predictions
	tof_find_emd
	tof_find_jsd
	tof_find_knn
	tof_find_log_rank_threshold
	tof_find_panel_info
	tof_fit_split
	tof_generate_palette
	tof_get_model_mixture
	tof_get_model_outcomes
	tof_get_model_penalty
	tof_get_model_training_data
	tof_get_model_type
	tof_get_model_x
	tof_get_model_y
	tof_get_panel
	tof_is_numeric
	tof_knn_density
	tof_log_rank_test
	tof_make_knn_graph
	tof_make_roc_curve
	tof_metacluster
	tof_metacluster_consensus
	tof_metacluster_flowsom
	tof_metacluster_hierarchical
	tof_metacluster_kmeans
	tof_metacluster_phenograph
	tof_plot_cells_density
	tof_plot_cells_embedding
	tof_plot_cells_layout
	tof_plot_cells_scatter
	tof_plot_clusters_heatmap
	tof_plot_clusters_mst
	tof_plot_clusters_volcano
	tof_plot_heatmap
	tof_plot_model
	tof_plot_model_linear
	tof_plot_model_logistic
	tof_plot_model_multinomial
	tof_plot_model_survival
	tof_plot_sample_features
	tof_plot_sample_heatmap
	tof_postprocess
	tof_predict
	tof_preprocess
	tof_prep_recipe
	tof_read_csv
	tof_read_data
	tof_read_fcs
	tof_read_file
	tof_reduce_dimensions
	tof_reduce_pca
	tof_reduce_tsne
	tof_reduce_umap
	tof_set_panel
	tof_spade_density
	tof_split_data
	tof_split_tidytof_reduced_dimensions
	tof_train_model
	tof_transform
	tof_tune_glmnet
	tof_upsample
	tof_upsample_distance
	tof_upsample_neighbor
	tof_write_csv
	tof_write_data
	tof_write_fcs
	where
	Index

