
Package ‘scran’
April 1, 2025

Version 1.34.0

Date 2024-09-05

Title Methods for Single-Cell RNA-Seq Data Analysis

Description Implements miscellaneous functions for interpretation of single-cell RNA-seq data.
Methods are provided for assignment of cell cycle phase, detection of highly
variable and significantly correlated genes, identification of marker genes,
and other common tasks in routine single-cell analysis workflows.

Depends SingleCellExperiment, scuttle

Imports SummarizedExperiment, S4Vectors, BiocGenerics, BiocParallel,
Rcpp, stats, methods, utils, Matrix, edgeR, limma, igraph,
statmod, MatrixGenerics, S4Arrays, DelayedArray, BiocSingular,
bluster, metapod, dqrng, beachmat

Suggests testthat, BiocStyle, knitr, rmarkdown, DelayedMatrixStats,
HDF5Array, scRNAseq, dynamicTreeCut, ResidualMatrix,
ScaledMatrix, DESeq2, pheatmap, scater

biocViews ImmunoOncology, Normalization, Sequencing, RNASeq, Software,
GeneExpression, Transcriptomics, SingleCell, Clustering

LinkingTo Rcpp, beachmat, BH, dqrng, scuttle

License GPL-3

NeedsCompilation yes

VignetteBuilder knitr

SystemRequirements C++11

RoxygenNote 7.3.2

URL https://github.com/MarioniLab/scran/

BugReports https://github.com/MarioniLab/scran/issues

git_url https://git.bioconductor.org/packages/scran

git_branch RELEASE_3_20

git_last_commit a517459

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2025-03-31

1

https://github.com/MarioniLab/scran/
https://github.com/MarioniLab/scran/issues

2 Contents

Author Aaron Lun [aut, cre],
Karsten Bach [aut],
Jong Kyoung Kim [ctb],
Antonio Scialdone [ctb]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

Contents
.logBH . 3
buildSNNGraph . 4
clusterCells . 6
combineBlocks . 7
combineMarkers . 9
combinePValues . 13
combineVar . 15
computeMinRank . 17
computeSumFactors . 18
convertTo . 19
correlateGenes . 20
correlateNull . 21
correlatePairs . 23
cyclone . 26
decideTestsPerLabel . 29
defunct . 30
denoisePCA . 32
Distance-to-median . 36
findMarkers . 37
fitTrendCV2 . 40
fitTrendPoisson . 42
fitTrendVar . 44
fixedPCA . 46
Gene selection . 48
getClusteredPCs . 49
getMarkerEffects . 50
getTopHVGs . 51
getTopMarkers . 53
modelGeneCV2 . 55
modelGeneCV2WithSpikes . 58
modelGeneVar . 62
modelGeneVarByPoisson . 65
modelGeneVarWithSpikes . 69
multiMarkerStats . 73
pairwiseBinom . 75
pairwiseTTests . 78
pairwiseWilcox . 82
pseudoBulkDGE . 86
pseudoBulkSpecific . 90
quickCluster . 92
quickSubCluster . 96
rhoToPValue . 98
sandbag . 99

.logBH 3

scaledColRanks . 101
scoreMarkers . 102
summaryMarkerStats . 107
testLinearModel . 108

Index 111

.logBH BH correction on log-p-values

Description

Perform a Benjamini-Hochberg correction on log-transformed p-values to get log-adjusted p-values,
without the loss of precision from undoing and redoing the log-transformations.

Usage

.logBH(log.p.val)

Arguments

log.p.val Numeric vector of log-transformed p-values.

Value

A numeric vector of the same length as log.p.val containing log-transformed BH-corrected p-
values.

Author(s)

Aaron Lun

Examples

log.p.values <- log(runif(1000))
obs <- .logBH(log.p.values)
head(obs)

ref <- log(p.adjust(exp(log.p.values), method="BH"))
head(ref)

4 buildSNNGraph

buildSNNGraph Build a nearest-neighbor graph

Description

SingleCellExperiment-friendly wrapper around the makeSNNGraph and makeKNNGraph functions
for creating nearest-neighbor graphs.

Usage

buildSNNGraph(x, ...)

S4 method for signature 'ANY'
buildSNNGraph(
x,
...,
d = 50,
transposed = FALSE,
subset.row = NULL,
BSPARAM = bsparam(),
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
buildSNNGraph(x, ..., assay.type = "logcounts")

S4 method for signature 'SingleCellExperiment'
buildSNNGraph(x, ..., use.dimred = NULL)

buildKNNGraph(x, ...)

S4 method for signature 'ANY'
buildKNNGraph(
x,
...,
d = 50,
transposed = FALSE,
subset.row = NULL,
BSPARAM = bsparam(),
BPPARAM = SerialParam()

)

S4 method for signature 'SingleCellExperiment'
buildKNNGraph(x, ..., use.dimred = NULL)

S4 method for signature 'SingleCellExperiment'
buildKNNGraph(x, ..., use.dimred = NULL)

Arguments

x A matrix-like object containing expression values for each gene (row) in each
cell (column). These dimensions can be transposed if transposed=TRUE.

buildSNNGraph 5

Alternatively, a SummarizedExperiment or SingleCellExperiment containing such
an expression matrix. If x is a SingleCellExperiment and use.dimred is set, its
reducedDims will be used instead.

... For the generics, additional arguments to pass to the specific methods.
For the ANY methods, additional arguments to pass to makeSNNGraph or makeKNNGraph.
For the SummarizedExperiment methods, additional arguments to pass to the
corresponding ANY method.
For the SingleCellExperiment methods, additional arguments to pass to the cor-
responding SummarizedExperiment method.

d An integer scalar specifying the number of dimensions to use for a PCA on
the expression matrix prior to the nearest neighbor search. Ignored for the
ANY method if transposed=TRUE and for the SingleCellExperiment methods
if use.dimred is set.

transposed A logical scalar indicating whether x is transposed (i.e., rows are cells).

subset.row See ?"scran-gene-selection". Only used when transposed=FALSE.

BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA, if d is not
NA.

BPPARAM A BiocParallelParam object to use for parallel processing.

assay.type A string specifying which assay values to use.

use.dimred A string specifying whether existing values in reducedDims(x) should be used.

Value

A graph where nodes are cells and edges represent connections between nearest neighbors, see
?makeSNNGraph for more details.

Author(s)

Aaron Lun

See Also

makeSNNGraph and makeKNNGraph, for the underlying functions that do the work.

See cluster_walktrap and related functions in igraph for clustering based on the produced graph.

clusterCells, for a more succinct way of performing graph-based clustering.

Examples

library(scuttle)
sce <- mockSCE(ncells=500)
sce <- logNormCounts(sce)

g <- buildSNNGraph(sce)
clusters <- igraph::cluster_fast_greedy(g)$membership
table(clusters)

Any clustering method from igraph can be used:
clusters <- igraph::cluster_walktrap(g)$membership
table(clusters)

Smaller 'k' usually yields finer clusters:

6 clusterCells

g <- buildSNNGraph(sce, k=5)
clusters <- igraph::cluster_walktrap(g)$membership
table(clusters)

Graph can be built off existing reducedDims results:
sce <- scater::runPCA(sce)
g <- buildSNNGraph(sce, use.dimred="PCA")
clusters <- igraph::cluster_fast_greedy(g)$membership
table(clusters)

clusterCells Cluster cells in a SingleCellExperiment

Description

A SingleCellExperiment-compatible wrapper around clusterRows from the bluster package.

Usage

clusterCells(
x,
assay.type = NULL,
use.dimred = NULL,
BLUSPARAM = NNGraphParam(),
...

)

Arguments

x A SummarizedExperiment or SingleCellExperiment object containing cells in
the columns.

assay.type Integer or string specifying the assay values to use for clustering, typically log-
normalized expression.

use.dimred Integer or string specifying the reduced dimensions to use for clustering, typi-
cally PC scores. Only used when assay.type=NULL, and only applicable if x is
a SingleCellExperiment.

BLUSPARAM A BlusterParam object specifying the clustering algorithm to use, defaults to a
graph-based method.

... Further arguments to pass to clusterRows.

Details

This is largely a convenience wrapper to avoid the need to manually extract the relevant assays or
reduced dimensions from x. Altering BLUSPARAM can easily change the parameters or algorithm
used for clustering - see ?"BlusterParam-class" for more details.

Value

A factor of cluster identities for each cell in x, or a list containing such a factor - see the return value
of ?clusterRows.

combineBlocks 7

Author(s)

Aaron Lun

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

From log-expression values:
clusters <- clusterCells(sce, assay.type="logcounts")

From PCs:
sce <- scater::runPCA(sce)
clusters2 <- clusterCells(sce, use.dimred="PCA")

With different parameters:
library(bluster)
clusters3 <- clusterCells(sce, use.dimred="PCA", BLUSPARAM=NNGraphParam(k=5))

With different algorithms:
clusters4 <- clusterCells(sce, use.dimred="PCA", BLUSPARAM=KmeansParam(centers=10))

combineBlocks Combine blockwise statistics

Description

Combine DataFrames of statistics computed separately for each block. This usually refers to
feature-level statistics and sample-level blocks.

Usage

combineBlocks(
blocks,
ave.fields,
pval.field,
method,
geometric,
equiweight,
weights,
valid

)

Arguments

blocks A list of DataFrames containing blockwise statistics. These should have the
same number of rows and the same set of columns.

ave.fields Character vector specifying the columns of blocks to be averaged. The value
of each column is averaged across blocks, potentially in a weighted manner.

8 combineBlocks

pval.field String specifying the column of blocks containing the p-value. This is com-
bined using combineParallelPValues.

method String specifying how p-values should be combined, see ?combineParallelPValues.

geometric Logical scalar indicating whether the geometric mean should be computed when
averaging ave.fields.

equiweight Logical scalar indicating whether each block should be given equal weight.

weights Numeric vector of length equal to blocks, containing the weight for each block.
Only used if equiweight=TRUE.

valid Logical vector indicating whether each block is valid. Invalid blocks are still
stored in the per.block output but are not used to compute the combined statis-
tics.

Value

A DataFrame containing all fields in ave.fields and the p-values, where each column is created
by combining the corresponding block-specific columns. A per.block column is also reported,
containing a DataFrame of the DataFrames of blockwise statistics.

Author(s)

Aaron Lun

See Also

This function is used in modelGeneVar and friends, combineVar and testLinearModel.

Examples

library(scuttle)
sce <- mockSCE()

y1 <- sce[,1:100]
y1 <- logNormCounts(y1) # normalize separately after subsetting.
results1 <- modelGeneVar(y1)

y2 <- sce[,1:100 + 100]
y2 <- logNormCounts(y2) # normalize separately after subsetting.
results2 <- modelGeneVar(y2)

A manual implementation of combineVar:
combineBlocks(list(results1, results2),

ave.fields=c("mean", "total", "bio", "tech"),
pval.field='p.value',
method='fisher',
geometric=FALSE,
equiweight=TRUE,
weights=NULL,
valid=c(TRUE, TRUE))

combineMarkers 9

combineMarkers Combine pairwise DE results into a marker list

Description

Combine multiple pairwise differential expression comparisons between groups or clusters into a
single ranked list of markers for each cluster.

Usage

combineMarkers(
de.lists,
pairs,
pval.field = "p.value",
effect.field = "logFC",
pval.type = c("any", "some", "all"),
min.prop = NULL,
log.p.in = FALSE,
log.p.out = log.p.in,
output.field = NULL,
full.stats = FALSE,
sorted = TRUE,
flatten = TRUE,
BPPARAM = SerialParam()

)

Arguments

de.lists A list-like object where each element is a data.frame or DataFrame. Each
element should represent the results of a pairwise comparison between two
groups/clusters, in which each row should contain the statistics for a single
gene/feature. Rows should be named by the feature name in the same order
for all elements.

pairs A matrix, data.frame or DataFrame with two columns and number of rows equal
to the length of de.lists. Each row should specify the pair of clusters being
compared for the corresponding element of de.lists.

pval.field A string specifying the column name of each element of de.lists that contains
the p-value.

effect.field A string specifying the column name of each element of de.lists that contains
the effect size. If NULL, effect sizes are not reported in the output.

pval.type A string specifying how p-values are to be combined across pairwise compar-
isons for a given group/cluster.

min.prop Numeric scalar specifying the minimum proportion of significant comparisons
per gene, Defaults to 0.5 when pval.type="some", otherwise defaults to zero.

log.p.in A logical scalar indicating if the p-values in de.lists were log-transformed.

log.p.out A logical scalar indicating if log-transformed p-values/FDRs should be returned.

output.field A string specifying the prefix of the field names containing the effect sizes.
Defaults to "stats" if full.stats=TRUE, otherwise it is set to effect.field.

10 combineMarkers

full.stats A logical scalar indicating whether all statistics in de.lists should be stored in
the output for each pairwise comparison.

sorted Logical scalar indicating whether each output DataFrame should be sorted by a
statistic relevant to pval.type.

flatten Logical scalar indicating whether the individual effect sizes should be flattened
in the output DataFrame. If FALSE, effect sizes are reported as a nested matrix
for easier programmatic use.

BPPARAM A BiocParallelParam object indicating whether and how parallelization should
be performed across genes.

Details

An obvious strategy to characterizing differences between clusters is to look for genes that are dif-
ferentially expressed (DE) between them. However, this entails a number of comparisons between
all pairs of clusters to comprehensively identify genes that define each cluster. For all pairwise
comparisons involving a single cluster, we would like to consolidate the DE results into a single list
of candidate marker genes. Doing so is the purpose of the combineMarkers function.

DE statistics from any testing regime can be supplied to this function - see the Examples for how this
is done with t-tests from pairwiseTTests. The effect size field in the output will vary according to
the type of input statistics, for example:

• logFC.Y from pairwiseTTests, containing log-fold changes in mean expression (usually in
base 2).

• AUC.Y from pairwiseWilcox, containing the area under the curve, i.e., the concordance prob-
ability.

• logFC.Y from pairwiseBinom, containing log2-fold changes in the expressing proportion.

Value

A named List of DataFrames where each DataFrame contains the consolidated marker statistics for
each gene (row) for the cluster of the same name. The DataFrame for cluster X contains the fields:

Top: Integer, the minimum rank across all pairwise comparisons - see ?computeMinRank for de-
tails. This is only reported if pval.type="any".

p.value: Numeric, the combined p-value across all comparisons if log.p.out=FALSE.

FDR: Numeric, the BH-adjusted p-value for each gene if log.p.out=FALSE.

log.p.value: Numeric, the (natural) log-transformed version p-value. Replaces the p.value field
if log.p.out=TRUE.

log.FDR: Numeric, the (natural) log-transformed adjusted p-value. Replaces the FDR field if log.p.out=TRUE.

summary.<OUTPUT>: Numeric, named by replacing <OUTPUT> with output.field. This contains
the summary effect size, obtained by combining effect sizes from all pairwise comparison into
a single value. Only reported when effect.field is not NULL.

<OUTPUT>.Y: Comparison-specific statistics, named by replacing <OUTPUT> with output.field.
One of these fields is present for every other cluster Y in clusters and contains statistics for
the comparison of X to Y . If full.stats=FALSE, each field is numeric and contains the effect
size of the comparison of X over Y . Otherwise, each field is a nested DataFrame containing
the full statistics for that comparison (i.e., the same asthe corresponding entry of de.lists).
Only reported if flatten=FALSE and (for full.stats=FALSE) if effect.field is not NULL.

combineMarkers 11

each.<OUTPUT>: A nested DataFrame of comparison-specific statistics, named by replacing <OUTPUT>
with output.field. If full.stats=FALSE, one column is present for every other cluster Y in
clusters and contains the effect size of the comparison of X to Y . Otherwise, each column
contains another nested DataFrame containing the full set of statistics for that comparison.
Only reported if flatten=FALSE and (for full.stats=FALSE) if effect.field is not NULL.

Consolidating with DE against any other cluster

When pval.type="any", each DataFrame is sorted by the min-rank in the Top column. Taking all
rows with Top values less than or equal to T yields a marker set containing the top T genes (ranked
by significance) from each pairwise comparison. This guarantees the inclusion of genes that can
distinguish between any two clusters. Also see ?computeMinRank for more details on the rationale
behind this metric.

For each gene and cluster, the summary effect size is defined as the effect size from the pairwise
comparison with the lowest p-value. The combined p-value is computed by applying Simes’ method
to all p-values. Neither of these values are directly used for ranking and are only reported for the
sake of the user.

Consolidating with DE against all other clusters

If pval.type="all", the null hypothesis is that the gene is not DE in all contrasts. A combined
p-value for each gene is computed using Berger’s intersection union test (IUT). Ranking based on
the IUT p-value will focus on genes that are DE in that cluster compared to all other clusters. This
strategy is particularly effective when dealing with distinct clusters that have a unique expression
profile. In such cases, it yields a highly focused marker set that concisely captures the differences
between clusters.

However, it can be too stringent if the cluster’s separation is driven by combinations of gene expres-
sion. For example, consider a situation involving four clusters expressing each combination of two
marker genes A and B. With pval.type="all", neither A nor B would be detected as markers as it
is not uniquely defined in any one cluster. This is especially detrimental with overclustering where
an otherwise acceptable marker is discarded if it is not DE between two adjacent clusters.

For each gene and cluster, the summary effect size is defined as the effect size from the pairwise
comparison with the largest p-value. This reflects the fact that, with this approach, a gene is only as
significant as its weakest DE. Again, this value is not directly used for ranking and are only reported
for the sake of the user.

Consolidating with DE against some other clusters

The pval.type="some" setting serves as a compromise between "all" and "any". A combined
p-value is calculated by taking the middlemost value of the Holm-corrected p-values for each gene.
(By default, this the median for odd numbers of contrasts and one-after-the-median for even num-
bers, but the exact proportion can be changed by setting min.prop - see ?combineParallelPValues.)
Here, the null hypothesis is that the gene is not DE in at least half of the contrasts.

Genes are then ranked by the combined p-value. The aim is to provide a more focused marker set
without being overly stringent, though obviously it loses the theoretical guarantees of the more ex-
treme settings. For example, there is no guarantee that the top set contains genes that can distinguish
a cluster from any other cluster, which would have been possible with pval.type="any".

For each gene and cluster, the summary effect size is defined as the effect size from the pairwise
comparison with the min.prop-smallest p-value. This mirrors the p-value calculation but, again, is
reported only for the benefit of the user.

12 combineMarkers

Consolidating against some other clusters, rank-style

A slightly different flavor of the “some cluster” approach is achieved by setting method="any" with
min.prop set to some positive value in (0, 1). A gene will only be high-ranked if it is among the
top-ranked genes in at least min.prop of the pairwise comparisons. For example, if min.prop=0.3,
any gene with a value of Top less than or equal to 5 will be in the top 5 DEGs of at least 30% of the
comparisons.

This method increases the stringency of the "any" setting in a safer manner than pval.type="some".
Specifically, we avoid comparing p-values across pairwise comparisons, which can be problematic
if there are power differences across comparisons, e.g., due to differences in the number of cells
across the other clusters.

Note that the value of min.prop does not affect the combined p-value and summary effect size
calculations for pval.type="any".

Correcting for multiple testing

The BH method is then applied on the consolidated p-values across all genes to obtain the FDR field.
The reported FDRs are intended only as a rough measure of significance. Properly correcting for
multiple testing is not generally possible when clusters is determined from the same x used for
DE testing.

If log.p=TRUE, log-transformed p-values and FDRs will be reported. This may be useful in over-
powered studies with many cells, where directly reporting the raw p-values would result in many
zeroes due to the limits of machine precision.

Ordering of the output

• Within each DataFrame, if sorted=TRUE, genes are ranked by the Top column if available and
the p.value (or log.p.value) if not. Otherwise, the input order of the genes is preserved.

• For the DataFrame corresponding to cluster X , the <OUTPUT>.Y columns are sorted according
to the order of cluster IDs in pairs[,2] for all rows where pairs[,1] is X .

• In the output List, the DataFrames themselves are sorted according to the order of cluster
IDs in pairs[,1]. Note that DataFrames are only created for clusters present in pairs[,1].
Clusters unique to pairs[,2] will only be present within a DataFrame as Y .

Author(s)

Aaron Lun

References

Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika
73:751-754.

Berger RL and Hsu JC (1996). Bioequivalence trials, intersection-union tests and equivalence con-
fidence sets. Statist. Sci. 11, 283-319.

See Also

pairwiseTTests and pairwiseWilcox, for functions that can generate de.lists and pairs.

findMarkers, which automatically performs combineMarkers on the t-test or Wilcoxon test re-
sults.

combinePValues 13

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Any clustering method is okay.
kout <- kmeans(t(logcounts(sce)), centers=3)
clusters <- paste0("Cluster", kout$cluster)

out <- pairwiseTTests(logcounts(sce), groups=clusters)
comb <- combineMarkers(out$statistics, out$pairs)
comb[["Cluster1"]]

out <- pairwiseWilcox(logcounts(sce), groups=clusters)
comb <- combineMarkers(out$statistics, out$pairs, effect.field="AUC")
comb[["Cluster2"]]

out <- pairwiseBinom(logcounts(sce), groups=clusters)
comb <- combineMarkers(out$statistics, out$pairs)
comb[["Cluster3"]]

combinePValues Combine p-values

Description

Combine p-values from independent or dependent hypothesis tests using a variety of meta-analysis
methods. This is deprecated in favor of combineParallelPValues from the metapod package.

Usage

combinePValues(
...,
method = c("fisher", "z", "simes", "berger", "holm-middle"),
weights = NULL,
log.p = FALSE,
min.prop = 0.5

)

Arguments

... Two or more numeric vectors of p-values of the same length.

method A string specifying the combining strategy to use.

weights A numeric vector of positive weights, with one value per vector in Alterna-
tively, a list of numeric vectors of weights, with one vector per element in
This is only used when method="z".

log.p Logical scalar indicating whether the p-values in ... are log-transformed.

min.prop Numeric scalar in [0, 1] specifying the minimum proportion of tests to reject for
each set of p-values when method="holm-middle".

14 combinePValues

Details

This function will operate across elements on ... in parallel to combine p-values. That is, the set
of first p-values from all vectors will be combined, followed by the second p-values and so on. This
is useful for combining p-values for each gene across different hypothesis tests.

Fisher’s method, Stouffer’s Z method and Simes’ method test the global null hypothesis that all of
the individual null hypotheses in the set are true. The global null is rejected if any of the individual
nulls are rejected. However, each test has different characteristics:

• Fisher’s method requires independence of the test statistic. It is useful in asymmetric scenar-
ios, i.e., when the null is only rejected in one of the tests in the set. Thus, a low p-value in any
test is sufficient to obtain a low combined p-value.

• Stouffer’s Z method require independence of the test statistic. It favours symmetric rejection
and is less sensitive to a single low p-value, requiring more consistently low p-values to yield
a low combined p-value. It can also accommodate weighting of the different p-values.

• Simes’ method technically requires independence but tends to be quite robust to dependen-
cies between tests. See Sarkar and Chung (1997) for details, as well as work on the related
Benjamini-Hochberg method. It favours asymmetric rejection and is less powerful than the
other two methods under independence.

Berger’s intersection-union test examines a different global null hypothesis - that at least one of the
individual null hypotheses are true. Rejection in the IUT indicates that all of the individual nulls
have been rejected. This is the statistically rigorous equivalent of a naive intersection operation.

In the Holm-middle approach, the global null hypothesis is that more than 1 - min.prop proportion
of the individual nulls in the set are true. We apply the Holm-Bonferroni correction to all p-values
in the set and take the ceiling(min.prop * N)-th smallest value where N is the size of the set
(excluding NA values). This method works correctly in the presence of correlations between p-
values.

Value

A numeric vector containing the combined p-values.

Author(s)

Aaron Lun

References

Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver and Boyd (Edinburgh).

Whitlock MC (2005). Combining probability from independent tests: the weighted Z-method is
superior to Fisher’s approach. J. Evol. Biol. 18, 5:1368-73.

Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika
73:751-754.

Berger RL and Hsu JC (1996). Bioequivalence trials, intersection-union tests and equivalence con-
fidence sets. Statist. Sci. 11, 283-319.

Sarkar SK and Chung CK (1997). The Simes method for multiple hypothesis testing with positively
dependent test statistics. J. Am. Stat. Assoc. 92, 1601-1608.

combineVar 15

Examples

p1 <- runif(10000)
p2 <- runif(10000)
p3 <- runif(10000)

fish <- combinePValues(p1, p2, p3)
hist(fish)

z <- combinePValues(p1, p2, p3, method="z", weights=1:3)
hist(z)

simes <- combinePValues(p1, p2, p3, method="simes")
hist(simes)

berger <- combinePValues(p1, p2, p3, method="berger")
hist(berger)

combineVar Combine variance decompositions

Description

Combine the results of multiple variance decompositions, usually generated for the same genes
across separate batches of cells.

Usage

combineVar(
...,
method = "fisher",
pval.field = "p.value",
other.fields = NULL,
equiweight = TRUE,
ncells = NULL

)

combineCV2(
...,
method = "fisher",
pval.field = "p.value",
other.fields = NULL,
equiweight = TRUE,
ncells = NULL

)

Arguments

... Two or more DataFrames of variance modelling results. For combineVar, these
should be produced by modelGeneVar or modelGeneVarWithSpikes. For combineCV2,
these should be produced by modelGeneCV2 or modelGeneCV2WithSpikes.

16 combineVar

Alternatively, one or more lists of DataFrames containing variance modelling
results. Mixed inputs are also acceptable, e.g., lists of DataFrames alongside the
DataFrames themselves.

method String specifying how p-values are to be combined, see combineParallelPValues
for options.

pval.field A string specifying the column name of each element of ... that contains the
p-value.

other.fields A character vector specifying the fields containing other statistics to combine.

equiweight Logical scalar indicating whether each result is to be given equal weight in the
combined statistics.

ncells Numeric vector containing the number of cells used to generate each element of
.... Only used if equiweight=FALSE.

Details

These functions are designed to merge results from separate calls to modelGeneVar, modelGeneCV2
or related functions, where each result is usually computed for a different batch of cells. Separate
variance decompositions are necessary in cases where the mean-variance relationships vary across
batches (e.g., different concentrations of spike-in have been added to the cells in each batch), which
precludes the use of a common trend fit. By combining these results into a single set of statistics,
we can apply standard strategies for feature selection in multi-batch integrated analyses.

By default, statistics in other.fields contain all common non-numeric fields that are not pval.field
or "FDR". This usually includes "mean", "total", "bio" (for combineVar) or "ratio" (for
combineCV2).

• For combineVar, statistics are combined by averaging them across all input DataFrames.

• For combineCV2, statistics are combined by taking the geometric mean across all inputs.

This difference between functions reflects the method by which the relevant measure of overdis-
persion is computed. For example, "bio" is computed by subtraction, so taking the average bio
remains consistent with subtraction of the total and technical averages. Similarly, "ratio" is com-
puted by division, so the combined ratio is consistent with division of the geometric means of the
total and trend values.

If equiweight=FALSE, each per-batch statistic is weighted by the number of cells used to compute
it. The number of cells can be explicitly set using ncells, and is otherwise assumed to be equal for
all batches. No weighting is performed by default, which ensures that all batches contribute equally
to the combined statistics and avoids situations where batches with many cells dominate the output.

The combineParallelPValues function is used to combine p-values across batches. The default
is to use Fisher’s method, which will achieve a low p-value if a gene is highly variable in any batch.
Only method="stouffer" will perform any weighting of batches, and only if weights is set.

Value

A DataFrame with the same numeric fields as that produced by modelGeneVar or modelGeneCV2.
Each row corresponds to an input gene. Each field contains the (weighted) arithmetic/geometric
mean across all batches except for p.value, which contains the combined p-value based on method;
and FDR, which contains the adjusted p-value using the BH method.

Author(s)

Aaron Lun

computeMinRank 17

See Also

modelGeneVar and modelGeneCV2, for two possible inputs into this function.

combineParallelPValues, for details on how the p-values are combined.

Examples

library(scuttle)
sce <- mockSCE()

y1 <- sce[,1:100]
y1 <- logNormCounts(y1) # normalize separately after subsetting.
results1 <- modelGeneVar(y1)

y2 <- sce[,1:100 + 100]
y2 <- logNormCounts(y2) # normalize separately after subsetting.
results2 <- modelGeneVar(y2)

head(combineVar(results1, results2))
head(combineVar(results1, results2, method="simes"))
head(combineVar(results1, results2, method="berger"))

computeMinRank Compute the minimum rank

Description

Compute the minimum rank in a matrix of statistics, usually effect sizes from a set of differential
comparisons.

Usage

computeMinRank(x, ties.method = "min", decreasing = TRUE)

Arguments

x A matrix of statistics from multiple differential comparisons (columns) and
genes (rows).

ties.method String specifying how ties should be handled.

decreasing Logical scalar indicating whether to obtain ranks for decreasing magnitude of
values in x.

Details

For each gene, the minimum rank, a.k.a., “min-rank” is defined by ranking values within each col-
umn of x, and then taking the minimum rank value across columns. This is most useful when the
columns of x contain significance statistics or effect sizes from a single differential comparison,
where larger values represent stronger differences. In this setting, the min-rank represents the high-
est rank that each gene achieves in any comparison. Taking all genes with min-ranks less than or
equal to T yields the union of the top T DE genes from all comparisons.

18 computeSumFactors

To illustrate, the set of genes with min-rank values of 1 will contain the top gene from each pairwise
comparison to every other cluster. If we instead take all genes with min-ranks less than or equal
to, say, T = 5, the set will consist of the union of the top 5 genes from each pairwise comparison.
Multiple genes can have the same min-rank as different genes may have the same rank across
different pairwise comparisons. Conversely, the marker set may be smaller than the product of T
and the number of other clusters, as the same gene may be shared across different comparisons.

In the context of marker detection with pairwise comparisons between groups of cells, sorting by
the min-rank guarantees the inclusion of genes that can distinguish between any two groups. More
specifically, this approach does not explicitly favour genes that are uniquely expressed in a cluster.
Rather, it focuses on combinations of genes that - together - drive separation of a cluster from the
others. This is more general and robust but tends to yield a less focused marker set compared to the
other methods of ranking potential markers.

Value

A numeric vector containing the minimum (i.e., top) rank for each gene across all comparisons.

See Also

scoreMarkers, where this function is used to compute one of the effect size summaries.

combineMarkers, where the same principle is used for the Top field.

Examples

Get min-rank by log-FC:
lfcs <- matrix(rnorm(100), ncol=5)
computeMinRank(lfcs)

Get min-rank by p-value:
pvals <- matrix(runif(100), ncol=5)
computeMinRank(pvals, decreasing=FALSE)

computeSumFactors Normalization by deconvolution

Description

Scaling normalization of single-cell RNA-seq data by deconvolving size factors from cell pools.
These functions have been moved to the scuttle package and are just retained here for compatibility.

Usage

computeSumFactors(...)

calculateSumFactors(...)

Arguments

... Further arguments to pass to pooledSizeFactors or computePooledFactors.

convertTo 19

Value

For calculateSumFactors, a numeric vector of size factors returned by pooledSizeFactors.

For computeSumFactors, a SingleCellExperiment containing the size factors in its sizeFactors,
as returned by computePooledFactors.

Author(s)

Aaron Lun

convertTo Convert to other classes

Description

Convert a SingleCellExperiment object into other classes for entry into other analysis pipelines.

Usage

convertTo(
x,
type = c("edgeR", "DESeq2", "monocle"),
...,
assay.type = 1,
subset.row = NULL

)

Arguments

x A SingleCellExperiment object.

type A string specifying the analysis for which the object should be prepared.

... Other arguments to be passed to pipeline-specific constructors.

assay.type A string specifying which assay of x should be put in the returned object.

subset.row See ?"scran-gene-selection".

Details

This function converts an SingleCellExperiment object into various other classes in preparation for
entry into other analysis pipelines, as specified by type.

Value

For type="edgeR", a DGEList object is returned containing the count matrix. Size factors are
converted to normalization factors. Gene-specific rowData is stored in the genes element, and
cell-specific colData is stored in the samples element.

For type="DESeq2", a DESeqDataSet object is returned containing the count matrix and size fac-
tors. Additional gene- and cell-specific data is stored in the mcols and colData respectively.

Author(s)

Aaron Lun

20 correlateGenes

See Also

DGEList, DESeqDataSetFromMatrix for specific class constructors.

Examples

library(scuttle)
sce <- mockSCE()

Adding some additional embellishments.
sizeFactors(sce) <- 2^rnorm(ncol(sce))
rowData(sce)$SYMBOL <- paste0("X", seq_len(nrow(sce)))
sce$other <- sample(LETTERS, ncol(sce), replace=TRUE)

Converting to various objects.
convertTo(sce, type="edgeR")
convertTo(sce, type="DESeq2")

correlateGenes Per-gene correlation statistics

Description

Compute per-gene correlation statistics by combining results from gene pair correlations.

Usage

correlateGenes(stats)

Arguments

stats A DataFrame of pairwise correlation statistics, returned by correlatePairs.

Details

For each gene, all of its pairs are identified and the corresponding p-values are combined using
Simes’ method. This tests whether the gene is involved in significant correlations to any other
gene. Per-gene statistics are useful for identifying correlated genes without regard to what they are
correlated with (e.g., during feature selection).

Value

A DataFrame with one row per unique gene in stats and containing the fields:

gene: A field of the same type as stats$gene1 specifying the gene identity.

rho: Numeric, the correlation with the largest magnitude across all gene pairs involving the corre-
sponding gene.

p.value: Numeric, the Simes p-value for this gene.

FDR: Numeric, the adjusted p.value across all rows.

Author(s)

Aaron Lun

correlateNull 21

References

Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika
73:751-754.

See Also

correlatePairs, to compute stats.

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)
pairs <- correlatePairs(sce, iters=1e5, subset.row=1:100)

g.out <- correlateGenes(pairs)
head(g.out)

correlateNull Build null correlations

Description

Build a distribution of correlations under the null hypothesis of independent expression between
pairs of genes. This is now deprecated as correlatePairs uses an approximation instead.

Usage

correlateNull(
ncells,
iters = 1e+06,
block = NULL,
design = NULL,
equiweight = TRUE,
BPPARAM = SerialParam()

)

Arguments

ncells An integer scalar indicating the number of cells in the data set.

iters An integer scalar specifying the number of values in the null distribution.

block A factor specifying the blocking level for each cell.

design A numeric design matrix containing uninteresting factors to be ignored.

equiweight A logical scalar indicating whether statistics from each block should be given
equal weight. Otherwise, each block is weighted according to its number of
cells. Only used if block is specified.

BPPARAM A BiocParallelParam object that specifies the manner of parallel processing to
use.

22 correlateNull

Details

The correlateNull function constructs an empirical null distribution for Spearman’s rank corre-
lation when it is computed with ncells cells. This is done by shuffling the ranks, calculating the
correlation and repeating until iters values are obtained. No consideration is given to tied ranks,
which has implications for the accuracy of p-values in correlatePairs.

If block is specified, a null correlation is created within each level of block using the shuffled
ranks. The final correlation is then defined as the average of the per-level correlations, weighted by
the number of cells in that level if equiweight=FALSE. Levels with fewer than 3 cells are ignored,
and if no level has 3 or more cells, all returned correlations will be NA.

If design is specified, the same process is performed on ranks derived from simulated residuals
computed by fitting the linear model to a vector of normally distributed values. If there are not at
least 3 residual d.f., all returned correlations will be NA. The design argument cannot be used at the
same time as block.

Value

A numeric vector of length iters is returned containing the sorted correlations under the null
hypothesis of no correlations.

Author(s)

Aaron Lun

See Also

correlatePairs, where the null distribution is used to compute p-values.

Examples

set.seed(0)
ncells <- 100

Simplest case:
null.dist <- correlateNull(ncells, iters=10000)
hist(null.dist)

With a blocking factor:
block <- sample(LETTERS[1:3], ncells, replace=TRUE)
null.dist <- correlateNull(block=block, iters=10000)
hist(null.dist)

With a design matrix.
cov <- runif(ncells)
X <- model.matrix(~cov)
null.dist <- correlateNull(design=X, iters=10000)
hist(null.dist)

correlatePairs 23

correlatePairs Test for significant correlations

Description

Identify pairs of genes that are significantly correlated in their expression profiles, based on Spear-
man’s rank correlation.

Usage

correlatePairs(x, ...)

S4 method for signature 'ANY'
correlatePairs(
x,
null.dist = NULL,
ties.method = NULL,
iters = NULL,
block = NULL,
design = NULL,
equiweight = TRUE,
use.names = TRUE,
subset.row = NULL,
pairings = NULL,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
correlatePairs(x, ..., assay.type = "logcounts")

Arguments

x A numeric matrix-like object of log-normalized expression values, where rows
are genes and columns are cells. Alternatively, a SummarizedExperiment object
containing such a matrix.

... For the generic, additional arguments to pass to specific methods.
For the SummarizedExperiment method, additional methods to pass to the ANY
method.

null.dist, ties.method, iters
Deprecated arguments, ignored.

block A factor specifying the blocking level for each cell in x. If specified, correlations
are computed separately within each block and statistics are combined across
blocks.

design A numeric design matrix containing uninteresting factors to be ignored.

equiweight A logical scalar indicating whether statistics from each block should be given
equal weight. Otherwise, each block is weighted according to its number of
cells. Only used if block is specified.

use.names A logical scalar specifying whether the row names of x should be used in the
output. Alternatively, a character vector containing the names to use.

24 correlatePairs

subset.row See ?"scran-gene-selection".

pairings A NULL value indicating that all pairwise correlations should be computed; or a
list of 2 vectors of genes between which correlations are to be computed; or a
integer/character matrix with 2 columns of specific gene pairs - see below for
details.

BPPARAM A BiocParallelParam object that specifies the manner of parallel processing to
use.

assay.type A string specifying which assay values to use.

Details

The correlatePairs function identifies significant correlations between all pairs of genes in x.
This allows prioritization of genes that are driving systematic substructure in the data set. By
definition, such genes should be correlated as they are behaving in the same manner across cells. In
contrast, genes driven by random noise should not exhibit any correlations with other genes.

We use Spearman’s rho to quantify correlations robustly based on ranked gene expression. To iden-
tify correlated gene pairs, the significance of non-zero correlations is assessed using rhoToPValue.
The null hypothesis is that the ranking of normalized expression across cells should be independent
between genes. Correction for multiple testing is done using the BH method.

For the SingleCellExperiment method, normalized expression values should be specified by assay.type.

Value

A DataFrame is returned with one row per gene pair and the following fields:

gene1, gene2: Character or integer fields specifying the genes in the pair. If use.names=FALSE,
integers are returned representing row indices of x, otherwise gene names are returned.

rho: A numeric field containing the approximate Spearman’s rho.

p.value, FDR: Numeric fields containing the approximate p-value and its BH-corrected equiva-
lent.

Rows are sorted by increasing p.value and, if tied, decreasing absolute size of rho. The exception
is if subset.row is a matrix, in which case each row in the dataframe correspond to a row of
subset.row.

Accounting for uninteresting variation

If the experiment has known (and uninteresting) factors of variation, these can be included in
design or block. correlatePairs will then attempt to ensure that these factors do not drive
strong correlations between genes. Examples might be to block on batch effects or cell cycle phase,
which may have substantial but uninteresting effects on expression.

The approach used to remove these factors depends on whether design or block is used. If there is
only one factor, e.g., for plate or animal of origin, block should be used. Each level of the factor is
defined as a separate group of cells. For each pair of genes, correlations are computed within each
group, and a mean of the correlations is taken across all groups. If equiweight=FALSE, a weighted
mean is computed based on the size of each group.

Similarly, parallelStouffer is used to combine the (one-sided) p-values across all groups. This
is done for each direction and a final p-value is computed for each gene pair using this Bonferri
method. The idea is to ensure that the final p-value is only low when correlations are in the same
direction across groups. If equiweight=FALSE, each p-value is weighted by the size of the corre-
sponding group.

correlatePairs 25

For experiments containing multiple factors or covariates, a design matrix should be passed into
design. The correlation between each pair of genes is then computed from the residuals of the fitted
model. However, we recommend using block wherever possible as design assumes normality of
errors and deals poorly with ties. Specifically, zero counts within or across groups may no longer
be tied when converted to residuals, potentially resulting in spuriously large correlations.

If any level of block has fewer than 3 cells, it is ignored. If all levels of block have fewer than 3
cells, all output statistics are set to NA. Similarly, if design has fewer than 3 residual d.f., all output
statistics are set to NA.

Gene selection

The pairings argument specifies the pairs of genes that should be used to compute correlations.
This can be:

• NULL, in which case correlations will be computed between all pairs of genes in x. Genes that
occur earlier in x are labelled as gene1 in the output DataFrame. Redundant permutations are
not reported.

• A list of two vectors, where each list element defines a subset of genes in x as an integer,
character or logical vector. In this case, correlations will be computed between one gene in
the first vector and another gene in the second vector. This improves efficiency if the only
correlations of interest are those between two pre-defined sets of genes. Genes in the first
vector are always reported as gene1.

• An integer/character matrix of two columns. In this case, each row is assumed to specify a
gene pair based on the row indices (integer) or row names (character) of x. Correlations will
then be computed for only those gene pairs, and the returned dataframe will not be sorted by
p-value. Genes in the first column of the matrix are always reported as gene1.

If subset.row is not NULL, only the genes in the selected subset are used to compute correlations
- see ?"scran-gene-selection". This will interact properly with pairings, such that genes in
pairings and not in subset.row will be ignored.

We recommend setting subset.row and/or pairings to contain only the subset of genes of interest.
This reduces computational time and memory usage by only computing statistics for the gene pairs
of interest. For example, we could select only HVGs to focus on genes contributing to cell-to-cell
heterogeneity (and thus more likely to be involved in driving substructure). There is no need to
account for HVG pre-selection in multiple testing, because rank correlations are unaffected by the
variance.

Author(s)

Aaron Lun

References

Lun ATL (2019). Some thoughts on testing for correlations. https://ltla.github.io/SingleCellThoughts/
software/correlations/corsim.html

See Also

Compare to cor for the standard Spearman’s calculation.

Use correlateGenes to get per-gene correlation statistics.

https://ltla.github.io/SingleCellThoughts/software/correlations/corsim.html
https://ltla.github.io/SingleCellThoughts/software/correlations/corsim.html

26 cyclone

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Basic pairwise application.
out <- correlatePairs(sce, subset.row=1:100)
head(out)

Computing between specific subsets of genes:
out <- correlatePairs(sce, pairings=list(1:10, 110:120))
head(out)

Computing between specific pairs:
out <- correlatePairs(sce, pairings=rbind(c(1,10), c(2, 50)))
head(out)

cyclone Cell cycle phase classification

Description

Classify single cells into their cell cycle phases based on gene expression data.

Usage

cyclone(x, ...)

S4 method for signature 'ANY'
cyclone(
x,
pairs,
gene.names = rownames(x),
iter = 1000,
min.iter = 100,
min.pairs = 50,
BPPARAM = SerialParam(),
verbose = FALSE,
subset.row = NULL

)

S4 method for signature 'SummarizedExperiment'
cyclone(x, ..., assay.type = "counts")

Arguments

x A numeric matrix-like object of gene expression values where rows are genes
and columns are cells.
Alternatively, a SummarizedExperiment object containing such a matrix.

cyclone 27

... For the generic, additional arguments to pass to specific methods.
For the SummarizedExperiment method, additional arguments to pass to the
ANY method.

pairs A list of data.frames produced by sandbag, containing pairs of marker genes.
gene.names A character vector of gene names, with one value per row in x.
iter An integer scalar specifying the number of iterations for random sampling to

obtain a cycle score.
min.iter An integer scalar specifying the minimum number of iterations for score esti-

mation.
min.pairs An integer scalar specifying the minimum number of pairs for cycle estimation.
BPPARAM A BiocParallelParam object to use for parallel processing across cells.
verbose A logical scalar specifying whether diagnostics should be printed to screen.
subset.row See ?"scran-gene-selection".
assay.type A string specifying which assay values to use, e.g., "counts" or "logcounts".

Details

This function implements the classification step of the pair-based prediction method described by
Scialdone et al. (2015). To illustrate, consider classification of cells into G1 phase. Pairs of marker
genes are identified with sandbag, where the expression of the first gene in the training data is
greater than the second in G1 phase but less than the second in all other phases. For each cell,
cyclone calculates the proportion of all marker pairs where the expression of the first gene is
greater than the second in the new data x (pairs with the same expression are ignored). A high
proportion suggests that the cell is likely to belong in G1 phase, as the expression ranking in the
new data is consistent with that in the training data.

Proportions are not directly comparable between phases due to the use of different sets of gene pairs
for each phase. Instead, proportions are converted into scores (see below) that account for the size
and precision of the proportion estimate. The same process is repeated for all phases, using the
corresponding set of marker pairs in pairs. Cells with G1 or G2M scores above 0.5 are assigned to
the G1 or G2M phases, respectively. (If both are above 0.5, the higher score is used for assignment.)
Cells can be assigned to S phase based on the S score, but a more reliable approach is to define S
phase cells as those with G1 and G2M scores below 0.5.

Pre-trained classifiers are provided for mouse and human datasets, see ?sandbag for more details.
However, note that the classifier may not be accurate for data that are substantially different from
those used in the training set, e.g., due to the use of a different protocol. In such cases, users
can construct a custom classifier from their own training data using the sandbag function. This is
usually necessary for other model organisms where pre-trained classifiers are not available.

Users should not filter out low-abundance genes before applying cyclone. Even if a gene is not
expressed in any cell, it may still be useful for classification if it is phase-specific. Its lack of
expression relative to other genes will still yield informative pairs, and filtering them out would
reduce power.

Value

A list is returned containing:

phases: A character vector containing the predicted phase for each cell.
scores: A data frame containing the numeric phase scores for each phase and cell (i.e., each row

is a cell).
normalized.scores: A data frame containing the row-normalized scores (i.e., where the row sum

for each cell is equal to 1).

28 cyclone

Description of the score calculation

To make the proportions comparable between phases, a distribution of proportions is constructed
by shuffling the expression values within each cell and recalculating the proportion. The phase
score is defined as the lower tail probability at the observed proportion. High scores indicate that
the proportion is greater than what is expected by chance if the expression of marker genes were
independent (i.e., with no cycle-induced correlations between marker pairs within each cell).

By default, shuffling is performed iter times to obtain the distribution from which the score is
estimated. However, some iterations may not be used if there are fewer than min.pairs pairs
with different expression, such that the proportion cannot be calculated precisely. A score is only
returned if the distribution is large enough for stable calculation of the tail probability, i.e., consists
of results from at least min.iter iterations.

Note that the score calculation in cyclone is slightly different from that described originally by
Scialdone et al. The original code shuffles all expression values within each cell, while in this im-
plementation, only the expression values of genes in the marker pairs are shuffled. This modification
aims to use the most relevant expression values to build the null score distribution.

Author(s)

Antonio Scialdone, with modifications by Aaron Lun

References

Scialdone A, Natarajana KN, Saraiva LR et al. (2015). Computational assignment of cell-cycle
stage from single-cell transcriptome data. Methods 85:54–61

See Also

sandbag, to generate the pairs from reference data.

Examples

set.seed(1000)
library(scuttle)
sce <- mockSCE(ncells=200, ngenes=1000)

Constructing a classifier:
is.G1 <- which(sce$Cell_Cycle %in% c("G1", "G0"))
is.S <- which(sce$Cell_Cycle=="S")
is.G2M <- which(sce$Cell_Cycle=="G2M")
out <- sandbag(sce, list(G1=is.G1, S=is.S, G2M=is.G2M))

Classifying a new dataset:
test <- mockSCE(ncells=50)
assignments <- cyclone(test, out)
head(assignments$scores)
table(assignments$phases)

decideTestsPerLabel 29

decideTestsPerLabel Decide tests for each label

Description

Decide which tests (i.e., genes) are significant for differential expression between conditions in
each label, using the output of pseudoBulkDGE. This mimics the decideTests functionality from
limma.

Usage

decideTestsPerLabel(
results,
method = c("separate", "global"),
threshold = 0.05,
pval.field = NULL,
lfc.field = "logFC"

)

summarizeTestsPerLabel(results, ...)

Arguments

results A List containing the output of pseudoBulkDGE. Each entry should be a DataFrame
with the same number and order of rows, containing at least a numeric "PValue"
column (and usually a "logFC" column).
For summarizeTestsPerLabel, this may also be a matrix produced by decideTestsPerLabel.

method String specifying whether the Benjamini-Hochberg correction should be applied
across all clustesr or separately within each label.

threshold Numeric scalar specifying the FDR threshold to consider genes as significant.

pval.field String containing the name of the column containing the p-value in each entry
of results. Defaults to "PValue", "P.Value" or "p.value" based on fields in
the first entry of results.

lfc.field String containing the name of the column containing the log-fold change. Ig-
nored if the column is not available Defaults to "logFC" if this field is available.

... Further arguments to pass to decideTestsPerLabel if results is a List.

Details

If a log-fold change field is available and specified in lfc.field, values of 1, -1 and 0 indicate
that the gene is significantly upregulated, downregulated or not significant, respectively. Note, the
interpretation of “up” and “down” depends on the design and contrast in pseudoBulkDGE.

Otherwise, if no log-fold change is available or if lfc.field=NULL, values of 1 or 0 indicate that a
gene is significantly DE or not, respectively.

NA values indicate either that the relevant gene was low-abundance for a particular label and filtered
out, or that the DE comparison for that label was not possible (e.g., no residual d.f.).

30 defunct

Value

For decideTestsPerLabel, an integer matrix indicating whether each gene (row) is significantly
DE between conditions for each label (column).

For summarizeTestsPerLabel, an integer matrix containing the number of genes of each DE status
(column) in each label (row).

Author(s)

Aaron Lun

See Also

pseudoBulkDGE, which generates the input to this function.

decideTests, which inspired this function.

Examples

example(pseudoBulkDGE)
head(decideTestsPerLabel(out))
summarizeTestsPerLabel(out)

defunct Defunct functions

Description

Functions that have passed on to the function afterlife. Their successors are also listed.

Usage

trendVar(...)

decomposeVar(...)

testVar(...)

improvedCV2(...)

technicalCV2(...)

makeTechTrend(...)

multiBlockVar(...)

multiBlockNorm(...)

overlapExprs(...)

parallelPCA(...)

defunct 31

bootstrapCluster(...)

clusterModularity(...)

clusterPurity(...)

clusterKNNGraph(...)

clusterSNNGraph(...)

coassignProb(...)

createClusterMST(...)

connectClusterMST(...)

orderClusterMST(...)

quickPseudotime(...)

testPseudotime(...)

doubletCells(...)

doubletCluster(...)

doubletRecovery(...)

Arguments

... Ignored arguments.

Value

All functions error out with a defunct message pointing towards its descendent (if available).

Variance modelling

trendVar, decomposeVar and testVar are succeeded by a suite of funtions related to modelGeneVar
and fitTrendVar.

improvedCV2 and technicalCV2 are succeeded by modelGeneCV2 and fitTrendCV2.

makeTechTrend is succeeded by modelGeneVarByPoisson.

multiBlockVar is succeeded by the block argument in many of the modelling functions, and
multiBlockNorm is no longer necessary.

Clustering-related functions

bootstrapCluster has been moved over to the bluster package, as the bootstrapStability
function.

neighborsToSNNGraph and neighborsToKNNGraph have been moved over to the bluster package.

clusterModularity has been moved over to the bluster package, as the pairwiseModularity
function.

32 denoisePCA

clusterPurity has been moved over to the bluster package, as the neighborPurity function.

clusterSNNGraph and clusterKNNGraph have been replaced by clusterRows with NNGraph-
Param or TwoStepParam from the bluster package.

coassignProb and clusterRand have been replaced by pairwiseRand from the bluster package.

Pseudotime-related functions

createClusterMST, quickPseudotime and testPseudotime have been moved over to the TSCAN
package.

connectClusterMST has been moved over to the TSCAN package, as the reportEdges function.

orderClusterMST has been moved over to the TSCAN package, as the orderCells function.

Doublet-related functions

doubletCells has been moved over to the scDblFinder package, as the computeDoubletDensity
function.

doubletCluster has been moved over to the scDblFinder package, as the findDoubletClusters
function.

doubletRecovery has been moved over to the scDblFinder package, as the recoverDoublets
function.

Other functions

overlapExprs is succeeded by findMarkers with test.type="wilcox".

parallelPCA has been moved over to the PCAtools package.

Author(s)

Aaron Lun

Examples

try(trendVar())

denoisePCA Denoise expression with PCA

Description

Denoise log-expression data by removing principal components corresponding to technical noise.

Usage

getDenoisedPCs(x, ...)

S4 method for signature 'ANY'
getDenoisedPCs(
x,
technical,
subset.row,

denoisePCA 33

min.rank = 5,
max.rank = 50,
fill.missing = FALSE,
BSPARAM = bsparam(),
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
getDenoisedPCs(x, ..., assay.type = "logcounts")

denoisePCA(
x,
...,
value = c("pca", "lowrank"),
preserve.shape = TRUE,
assay.type = "logcounts",
name = NULL

)

denoisePCANumber(var.exp, var.tech, var.total)

Arguments

x For getDenoisedPCs, a numeric matrix of log-expression values, where rows
are genes and columns are cells. Alternatively, a SummarizedExperiment object
containing such a matrix.
For denoisePCA, a SingleCellExperiment object containing a log-expression
amtrix.

... For the getDenoisedPCs generic, further arguments to pass to specific methods.
For the SingleCellExperiment method, further arguments to pass to the ANY
method.
For the denoisePCA function, further arguments to pass to the getDenoisedPCs
function.

technical An object containing the technical components of variation for each gene in x.
This can be:

• a function that computes the technical component of the variance for a gene
with a given mean log-expression, as generated by fitTrendVar.

• a numeric vector of length equal to the number of rows in x, containing the
technical component for each gene.

• a DataFrame of variance decomposition results generated by modelGeneVarWithSpikes
or related functions.

subset.row A logical, character or integer vector specifying the rows of x to use in the PCA.
Defaults to NULL (i.e., all rows used) with a warning.

min.rank, max.rank
Integer scalars specifying the minimum and maximum number of PCs to retain.

fill.missing Logical scalar indicating whether entries in the rotation matrix should be im-
puted for genes that were not used in the PCA. Only relevant if subset.row is
not NULL.

BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA.

BPPARAM A BiocParallelParam object to use for parallel processing.

34 denoisePCA

assay.type A string specifying which assay values to use.

value String specifying the type of value to return. "pca" will return the PCs, "n"
will return the number of retained components, and "lowrank" will return a
low-rank approximation.

preserve.shape Logical scalar indicating whether or not the output SingleCellExperiment should
be subsetted to subset.row. Only used if subset.row is not NULL.

name String containing the name which which to store the results. Defaults to "PCA"
in the reducedDimNames for value="pca" and "lowrank" in the assays for
value="lowrank".

var.exp A numeric vector of the variances explained by successive PCs, starting from
the first (but not necessarily containing all PCs).

var.tech A numeric scalar containing the variance attributable to technical noise.

var.total A numeric scalar containing the total variance in the data.

Details

This function performs a principal components analysis to eliminate random technical noise in
the data. Random noise is uncorrelated across genes and should be captured by later PCs, as the
variance in the data explained by any single gene is low. In contrast, biological processes should
be captured by earlier PCs as more variance can be explained by the correlated behavior of sets
of genes in a particular pathway. The idea is to discard later PCs to remove noise and improve
resolution of population structure. This also has the benefit of reducing computational work for
downstream steps.

The choice of the number of PCs to discard is based on the estimates of technical variance in
technical. This argument accepts a number of different values, depending on how the techni-
cal noise is calculated - this generally involves functions such as modelGeneVarWithSpikes or
modelGeneVarByPoisson. The percentage of variance explained by technical noise is estimated
by summing the technical components across genes and dividing by the summed total variance.
Genes with negative biological components are ignored during downstream analyses to ensure that
the total variance is greater than the overall technical estimate.

Now, consider the retention of the first d PCs. For a given value of d, we compute the variance
explained by all of the later PCs. We aim to find the smallest value of d such that the sum of
variances explained by the later PCs is still less than the variance attributable to technical noise. This
choice of d represents a lower bound on the number of PCs that can be retained before biological
variation is definitely lost. We use this value to obtain a “reasonable” dimensionality for the PCA
output.

Note that d will be coerced to lie between min.rank and max.rank. This mitigates the effect of
occasional extreme results when the percentage of noise is very high or low.

Value

For getDenoisedPCs, a list is returned containing:

• components, a numeric matrix containing the selected PCs (columns) for all cells (rows). This
has number of columns between min.rank and max.rank inclusive.

• rotation, a numeric matrix containing rotation vectors (columns) for some or all genes
(rows). This has number of columns between min.rank and max.rank inclusive.

• var.explained, a numeric vector containing the variance explained by the first max.rank
PCs.

denoisePCA 35

• percent.var, a numeric vector containing the percentage of variance explained by the first
max.rank PCs. Note that this may not sum to 100% if max.rank is smaller than the total
number of PCs.

• used.rows, a integer vector specifying the rows of x that were used in the PCA.

denoisePCA will return a modified x with:

• the PC results stored in the reducedDims as a "PCA" entry, if type="pca".

• a low-rank approximation as a new "lowrank" assay, if type="lowrank". This is represented
as a LowRankMatrix.

denoisePCANumber will return an integer scalar specifying the number of PCs to retain. This is
equivalent to the output from getDenoisedPCs after setting value="n", but ignoring any setting of
min.rank or max.rank.

Effects of gene selection

We can use subset.row to perform the PCA on a subset of genes of interest. This is typically
used to subset to HVGs to reduce computational time and increase the signal-to-noise ratio of
downstream analyses. Note that only rows with positive components are actually used in the PCA,
even if we explicitly specified them in subset.row. The final set of genes used in the PCA is
returned in used.rows.

If fill.missing=TRUE, entries of the rotation matrix are imputed for all genes in x. This in-
cludes “unselected” genes, i.e., with negative biological components or that were not selected with
subset.row. Rotation vectors are extrapolated to these genes by projecting their expression profiles
into the low-dimensional space defined by the SVD on the selected genes. This is useful for guar-
anteeing that any low-rank approximation has the same dimensions as the input x. For example,
calling denoisePCA with preserve.shape=TRUE will use fill.missing=TRUE internally, which
guarantees that any value="lowrank" setting will be of the same dimensions as the input x.

Otherwise, if fill.missing=FALSE and preserve.shape=FALSE, the output is exactly the same as
if the function had been run on x[subset.row,].

Caveats with interpretation

The function’s choice of d is only optimal if the early PCs capture all the biological variation with
minimal noise. This is unlikely to be true as the PCA cannot distinguish between technical noise
and weak biological signal in the later PCs. In practice, the chosen d can only be treated as a lower
bound for the retention of signal, and it is debatable whether this has any particular relation to the
“best” choice of the number of PCs. For example, many aspects of biological variation are not that
interesting (e.g., transcriptional bursting, metabolic fluctuations) and it is often the case that we
do not need to retain this signal, in which case the chosen d - despite being a lower bound - may
actually be higher than necessary.

Interpretation of the choice of d is even more complex if technical was generated with modelGeneVar
rather than modelGeneVarWithSpikes or modelGeneVarByPoisson. The former includes “unin-
teresting” biological variation in its technical component estimates, increasing the proportion of
variance attributed to technical noise and yielding a lower value of d. Indeed, use of results from
modelGeneVar often results in d being set to to min.rank, which can be problematic if secondary
factors of biological variation are discarded.

Author(s)

Aaron Lun

36 Distance-to-median

References

Lun ATL (2018). Discussion of PC selection methods for scRNA-seq data. https://github.com/
LTLA/PCSelection2018

See Also

modelGeneVarWithSpikes and modelGeneVarByPoisson, for methods of computing technical
components.

runSVD, for the underlying SVD algorithm(s).

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Modelling the variance:
var.stats <- modelGeneVar(sce)
hvgs <- getTopHVGs(var.stats, n=5000)

Denoising:
pcs <- getDenoisedPCs(sce, technical=var.stats)
head(pcs$components)
head(pcs$rotation)
head(pcs$percent.var)

Automatically storing the results.
sce <- denoisePCA(sce, technical=var.stats, subset.row=hvgs)
reducedDimNames(sce)

Distance-to-median Compute the distance-to-median statistic

Description

Compute the distance-to-median statistic for the CV2 residuals of all genes

Usage

DM(mean, cv2, win.size=51)

Arguments

mean A numeric vector of average counts for each gene.

cv2 A numeric vector of squared coefficients of variation for each gene.

win.size An integer scalar specifying the window size for median-based smoothing. This
should be odd or will be incremented by 1.

https://github.com/LTLA/PCSelection2018
https://github.com/LTLA/PCSelection2018

findMarkers 37

Details

This function will compute the distance-to-median (DM) statistic described by Kolodziejczyk et
al. (2015). Briefly, a median-based trend is fitted to the log-transformed cv2 against the log-
transformed mean using runmed. The DM is defined as the residual from the trend for each gene.
This statistic is a measure of the relative variability of each gene, after accounting for the empirical
mean-variance relationship. Highly variable genes can then be identified as those with high DM
values.

Value

A numeric vector of DM statistics for all genes.

Author(s)

Jong Kyoung Kim, with modifications by Aaron Lun

References

Kolodziejczyk AA, Kim JK, Tsang JCH et al. (2015). Single cell RNA-sequencing of pluripotent
states unlocks modular transcriptional variation. Cell Stem Cell 17(4), 471–85.

Examples

Mocking up some data
ngenes <- 1000
ncells <- 100
gene.means <- 2^runif(ngenes, 0, 10)
dispersions <- 1/gene.means + 0.2
counts <- matrix(rnbinom(ngenes*ncells, mu=gene.means, size=1/dispersions), nrow=ngenes)

Computing the DM.
means <- rowMeans(counts)
cv2 <- apply(counts, 1, var)/means^2
dm.stat <- DM(means, cv2)
head(dm.stat)

findMarkers Find marker genes

Description

Find candidate marker genes for groups of cells (e.g., clusters) by testing for differential expression
between pairs of groups.

Usage

findMarkers(x, ...)

S4 method for signature 'ANY'
findMarkers(
x,
groups,

38 findMarkers

test.type = c("t", "wilcox", "binom"),
...,
pval.type = c("any", "some", "all"),
min.prop = NULL,
log.p = FALSE,
full.stats = FALSE,
sorted = TRUE,
row.data = NULL,
add.summary = FALSE,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
findMarkers(x, ..., assay.type = "logcounts")

S4 method for signature 'SingleCellExperiment'
findMarkers(x, groups = colLabels(x, onAbsence = "error"), ...)

Arguments

x A numeric matrix-like object of expression values, where each column corre-
sponds to a cell and each row corresponds to an endogenous gene. This is ex-
pected to be normalized log-expression values for most tests - see Details.
Alternatively, a SummarizedExperiment or SingleCellExperiment object con-
taining such a matrix.

... For the generic, further arguments to pass to specific methods.
For the ANY method:

• For test.type="t", further arguments to pass to pairwiseTTests.
• For test.type="wilcox", further arguments to pass to pairwiseWilcox.
• For test.type="binom", further arguments to pass to pairwiseBinom.

Common arguments for all testing functions include gene.names, direction,
block and BPPARAM. Test-specific arguments are also supported for the appro-
priate test.type.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

groups A vector of length equal to ncol(x), specifying the group to which each cell
is assigned. If x is a SingleCellExperiment, this defaults to colLabels(x) if
available.

test.type String specifying the type of pairwise test to perform - a t-test with "t", a
Wilcoxon rank sum test with "wilcox", or a binomial test with "binom".

pval.type A string specifying how p-values are to be combined across pairwise compar-
isons for a given group/cluster.

min.prop Numeric scalar specifying the minimum proportion of significant comparisons
per gene, Defaults to 0.5 when pval.type="some", otherwise defaults to zero.

log.p A logical scalar indicating if log-transformed p-values/FDRs should be returned.

full.stats A logical scalar indicating whether all statistics in de.lists should be stored in
the output for each pairwise comparison.

findMarkers 39

sorted Logical scalar indicating whether each output DataFrame should be sorted by a
statistic relevant to pval.type.

row.data A DataFrame containing additional row metadata for each gene in x, to be in-
cluded in each of the output DataFrames. This should generally have row names
identical to those of x.
Alternatively, a list containing one such DataFrame per level of groups, where
each DataFrame contains group-specific metadata for each gene to be included
in the appropriate output DataFrame.

add.summary Logical scalar indicating whether statistics from summaryMarkerStats should
be added.

BPPARAM A BiocParallelParam object indicating whether and how parallelization should
be performed across genes.

assay.type A string specifying which assay values to use, usually "logcounts".

Details

This function provides a convenience wrapper for marker gene identification between groups of
cells, based on running pairwiseTTests or related functions and passing the result to combineMarkers.
All of the arguments above are supplied directly to one of these two functions - refer to the relevant
function’s documentation for more details.

If x contains log-normalized expression values generated with a pseudo-count of 1, it can be used
in any of the pairwise testing procedures. If x is scale-normalized but not log-transformed, it can be
used with test.type="wilcox" and test.type="binom". If x contains raw counts, it can only be
used with test.type="binom".

Note that log.p only affects the combined p-values and FDRs. If full.stats=TRUE, the p-values
for each individual pairwise comparison will always be log-transformed, regardless of the value of
log.p. Log-transformed p-values and FDRs are reported using the natural base.

The choice of pval.type determines whether the highly ranked genes are those that are DE between
the current group and:

• any other group ("any")

• all other groups ("all")

• some other groups ("some")

See ?combineMarkers for more details.

Value

A named list of DataFrames, each of which contains a sorted marker gene list for the corresponding
group. In each DataFrame, the top genes are chosen to enable separation of that group from all
other groups. See ?combineMarkers for more details on the output format.

If row.data is provided, the additional fields are added to the front of the DataFrame for each
cluster. If add.summary=TRUE, extra statistics for each cluster are also computed and added.

Any log-fold changes are reported as differences in average x between groups (usually in base 2,
depending on the transformation applied to x).

Author(s)

Aaron Lun

40 fitTrendCV2

See Also

pairwiseTTests, pairwiseWilcox, pairwiseBinom, for the underlying functions that compute
the pairwise DE statistics.

combineMarkers, to combine pairwise statistics into a single marker list per cluster.

summaryMarkerStats, to incorporate additional summary statistics per cluster.

getMarkerEffects, to easily extract a matrix of effect sizes from each DataFrame.

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Any clustering method is okay, only using k-means for convenience.
kout <- kmeans(t(logcounts(sce)), centers=4)

out <- findMarkers(sce, groups=kout$cluster)
names(out)
out[[1]]

More customization of the tests:
out <- findMarkers(sce, groups=kout$cluster, test.type="wilcox")
out[[1]]

out <- findMarkers(sce, groups=kout$cluster, lfc=1, direction="up")
out[[1]]

out <- findMarkers(sce, groups=kout$cluster, pval.type="all")
out[[1]]

fitTrendCV2 Fit a trend to the CV2

Description

Fit a mean-dependent trend to the squared coefficient of variation, computed from count data after
size factor normalization.

Usage

fitTrendCV2(
means,
cv2,
ncells,
min.mean = 0.1,
nls.args = list(),
simplified = TRUE,
nmads = 6,
max.iter = 50

)

fitTrendCV2 41

Arguments

means A numeric vector containing mean normalized expression values for all genes.

cv2 A numeric vector containing the squared coefficient of variation computed from
normalized expression values for all genes.

ncells Integer scalar specifying the number of cells used to compute cv2 and means.

min.mean Numeric scalar specifying the minimum mean to use for trend fitting.

nls.args A list of parameters to pass to nls.

simplified Logical scalar indicating whether the function can automatically use a simpler
trend if errors are encountered for the usual paramterization.

nmads Numeric scalar specifying the number of MADs to use to compute the tricube
bandwidth during robustification.

max.iter Integer scalar specifying the maximum number of robustness iterations to per-
form.

Details

This function fits a mean-dependent trend to the CV2 of normalized expression values for the se-
lected features. Specifically, it fits a trend of the form

y = A+
B

x

using an iteratively reweighted least-squares approach implemented via nls. This trend is based on
a similar formulation from DESeq2 and generally captures the mean-CV2 trend well.

Trend fitting is performed after weighting each observation according to the inverse of the density
of observations at the same mean. This avoids problems with differences in the distribution of
means that would otherwise favor good fits in highly dense intervals at the expense of sparser
intervals. Low-abundance genes with means below min.mean are also removed prior to fitting, to
avoid problems with discreteness and the upper bound on the CV2 at low counts.

Robustness iterations are also performed to protect against outliers. An initial fit is performed and
each observation is weighted using tricube-transformed standardized residuals (in addition to the
existing inverse-density weights). The bandwidth of the tricube scheme is defined as nmads multi-
plied by the median standardized residual. Iterations are performed until convergence or max.iters
is reached.

Occasionally, there are not enough high-abundance points to uniquely determine the A parameter.
In such cases, the function collapses back to fitting a simpler trend

y =
B

x

to avoid errors about singular gradients in nls. If simplified=FALSE, this simplification is not
allowed and the error is directly reported.

Value

A named list is returned containing:

trend: A function that returns the fitted value of the trend at any value of the mean.

std.dev: A numeric scalar containing the robust standard deviation of the ratio of var to the fitted
value of the trend across all features used for trend fitting.

42 fitTrendPoisson

Author(s)

Aaron Lun

References

Brennecke P, Anders S, Kim JK et al. (2013). Accounting for technical noise in single-cell RNA-seq
experiments. Nat. Methods 10:1093-95

See Also

modelGeneCV2 and modelGeneCV2WithSpikes, where this function is used.

Examples

library(scuttle)
sce <- mockSCE()
normcounts <- normalizeCounts(sce, log=FALSE)

Fitting a trend:
library(DelayedMatrixStats)
means <- rowMeans(normcounts)
cv2 <- rowVars(normcounts)/means^2
fit <- fitTrendCV2(means, cv2, ncol(sce))

Examining the trend fit:
plot(means, cv2, pch=16, cex=0.5,

xlab="Mean", ylab="CV2", log="xy")
curve(fit$trend(x), add=TRUE, col="dodgerblue", lwd=3)

fitTrendPoisson Generate a trend for Poisson noise

Description

Create a mean-variance trend for log-normalized expression values derived from Poisson-distributed
counts.

Usage

fitTrendPoisson(
means,
size.factors,
npts = 1000,
dispersion = 0,
pseudo.count = 1,
BPPARAM = SerialParam(),
...

)

fitTrendPoisson 43

Arguments

means A numeric vector of length 2 or more, containing the range of mean counts
observed in the dataset.

size.factors A numeric vector of size factors for all cells in the dataset.

npts An integer scalar specifying the number of interpolation points to use.

dispersion A numeric scalar specifying the dispersion for the NB distribution. If zero, a
Poisson distribution is used.

pseudo.count A numeric scalar specifying the pseudo-count to be added to the scaled counts
before log-transformation.

BPPARAM A BiocParallelParam object indicating how parallelization should be performed
across interpolation points.

... Further arguments to pass to fitTrendVar for trend fitting.

Details

This function is useful for modelling technical noise in highly diverse datasets without spike-ins,
where fitting a trend to the endogenous genes would not be appropriate given the strong biological
heterogeneity. It is mostly intended for UMI datasets where the technical noise is close to Poisson-
distributed.

This function operates by simulating Poisson or negative binomial-distributed counts, computing
log-transformed normalized expression values from those counts, calculating the mean and variance
and then passing those metrics to fitTrendVar. The log-transformation ensures that variance is
modelled in the same space that is used for downstream analyses like PCA.

Simulations are performed across a range of values in means to achieve reliable interpolation, with
the stability of the trend determined by the number of simulation points in npts. The number of
cells is determined from the length of size.factors, which are used to scale the distribution means
prior to sampling counts.

Value

A named list is returned containing:

trend: A function that returns the fitted value of the trend at any value of the mean.

std.dev: A numeric scalar containing the robust standard deviation of the ratio of var to the fitted
value of the trend across all features used for trend fitting.

Author(s)

Aaron Lun

See Also

fitTrendVar, which is used to fit the trend.

Examples

Mocking up means and size factors:
sf <- 2^rnorm(1000, sd=0.1)
sf <- sf/mean(sf)
means <- rexp(100, 0.1)

44 fitTrendVar

Using these to construct a Poisson trend:
out <- fitTrendPoisson(means, sf)
curve(out$trend(x), xlim=c(0, 10))

fitTrendVar Fit a trend to the variances of log-counts

Description

Fit a mean-dependent trend to the variances of the log-normalized expression values derived from
count data.

Usage

fitTrendVar(
means,
vars,
min.mean = 0.1,
parametric = TRUE,
lowess = TRUE,
density.weights = TRUE,
nls.args = list(),
...

)

Arguments

means A numeric vector containing the mean log-expression value for each gene.

vars A numeric vector containing the variance of log-expression values for each gene.

min.mean A numeric scalar specifying the minimum mean to use for trend fitting.

parametric A logical scalar indicating whether a parametric fit should be attempted.

lowess A logical scalar indicating whether a LOWESS fit should be attempted.
density.weights

A logical scalar indicating whether to use inverse density weights.

nls.args A list of parameters to pass to nls if parametric=TRUE.

... Further arguments to pass to weightedLowess for LOWESS fitting.

Details

This function fits a mean-dependent trend to the variance of the log-normalized expression for the
selected features. The fitted trend can then be used to decompose the variance of each gene into
biological and technical components, as done in modelGeneVar and modelGeneVarWithSpikes.

The default fitting process follows a two-step procedure when parametric=TRUE and lowess=TRUE:

1. A non-linear curve of the form
y =

ax

xn + b

is fitted to the variances against the means using nls. Starting values and the number of
iterations are automatically set if not explicitly specified in nls.args.

fitTrendVar 45

2. weightedLowess is applied to the log-ratios of the variance of each gene to the corresponding
fitted value from the non-linear curve. The final trend is defined as the product of the fitted
values from the non-linear curve and the exponential of the LOWESS fitted value. If any
tuning is necessary, the most important parameter here is span, which can be passed in the
... arguments.

The aim is to use the parametric curve to reduce the sharpness of the expected mean-variance
relationship for easier smoothing. Conversely, the parametric form is not exact, so the smoothers
will model any remaining trends in the residuals.

If parametric=FALSE, LOWESS smoothing is performed directly on the log-variances using weightedLowess.
This may be helpful in situations where the data does not follow the expected parametric curve, e.g.,
for transformed data that spans negative values where the expression is not defined. (Indeed, the
expression above is purely empirical, chosen simply as it matched the shape of the observed trend
in many datasets.)

If lowess=FALSE, the LOWESS smoothing step is omitted and the parametric fit is used directly.
This may be necessary in situations where the LOWESS overfits, e.g., because of very few points
at high abundances.

Value

A named list is returned containing:

trend: A function that returns the fitted value of the trend at any value of the mean.

std.dev: A numeric scalar containing the robust standard deviation of the ratio of var to the fitted
value of the trend across all features used for trend fitting.

Filtering by mean

Genes with mean log-expression below min.mean are not used in trend fitting. This aims to re-
move the majority of low-abundance genes and preserve the sensitivity of span-based smoothers at
moderate-to-high abundances. It also protects against discreteness, which can interfere with esti-
mation of the variability of the variance estimates and accurate scaling of the trend.

Filtering is applied on the mean log-expression to avoid introducing spurious trends at the filter
boundary. The default threshold is chosen based on the point at which discreteness is observed
in variance estimates from Poisson-distributed counts. For heterogeneous droplet data, a lower
threshold of 0.001-0.01 may be more appropriate, though this usually does not matter all too much.

When extrapolating to values below the smallest observed mean (or min.mean), the output function
will approach zero as the mean approaches zero. This reflects the fact that the variance should be
zero at a log-expression of zero (assuming a pseudo-count of 1 was used). When extrapolating to
values above the largest observed mean, the output function will be set to the fitted value of the
trend at the largest mean.

Weighting by density

All fitting (with nls and weightedLowess) is performed by weighting each observation according
to the inverse of the density of observations at the same mean. This ensures that parts of the curve
with few points are fitted as well as parts of the trend with many points. Otherwise, differences in
the distribution of means would favor good fits in highly dense intervals at the expense of sparser
intervals. (Note that these densities are computed after filtering on min.mean, so the high density
of points at zero has no effect.)

That being said, the density weighting can give inappropriate weight to very sparse intervals, es-
pecially those at high abundance. This results in overfitting where the trend is compelled to pass

46 fixedPCA

through each point at these intervals. For most part, this is harmless as most high-abundance genes
are not highly variable so an overfitted trend is actually appropriate. However, if high-abundance
genes are variable, it may be better to set density.weights=FALSE to avoid this overfitting effect.

Author(s)

Aaron Lun

See Also

modelGeneVar and modelGeneVarWithSpikes, where this function is used.

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Fitting a trend:
library(DelayedMatrixStats)
means <- rowMeans(logcounts(sce))
vars <- rowVars(logcounts(sce))
fit <- fitTrendVar(means, vars)

Comparing the two trend fits:
plot(means, vars, pch=16, cex=0.5, xlab="Mean", ylab="Variance")
curve(fit$trend(x), add=TRUE, col="dodgerblue", lwd=3)

fixedPCA PCA with a fixed number of components

Description

Perform a PCA where the desired number of components is known ahead of time.

Usage

fixedPCA(
x,
rank = 50,
value = c("pca", "lowrank"),
subset.row,
preserve.shape = TRUE,
assay.type = "logcounts",
name = NULL,
BSPARAM = bsparam(),
BPPARAM = SerialParam()

)

fixedPCA 47

Arguments

x A SingleCellExperiment object containing a log-expression amtrix.
rank Integer scalar specifying the number of components.
value String specifying the type of value to return. "pca" will return the PCs, "n"

will return the number of retained components, and "lowrank" will return a
low-rank approximation.

subset.row A logical, character or integer vector specifying the rows of x to use in the PCA.
Defaults to NULL (i.e., all rows used) with a warning.

preserve.shape Logical scalar indicating whether or not the output SingleCellExperiment should
be subsetted to subset.row. Only used if subset.row is not NULL.

assay.type A string specifying which assay values to use.
name String containing the name which which to store the results. Defaults to "PCA"

in the reducedDimNames for value="pca" and "lowrank" in the assays for
value="lowrank".

BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA.
BPPARAM A BiocParallelParam object to use for parallel processing.

Details

In theory, there is an optimal number of components for any given application, but in practice, the
criterion for the optimum is difficult to define. As a result, it is often satisfactory to take an a priori-
defined “reasonable” number of PCs for downstream analyses. A good rule of thumb is to set this
to the upper bound on the expected number of subpopulations in the dataset (see the reasoning in
getClusteredPCs.

We can use subset.row to perform the PCA on a subset of genes. This is typically used to subset to
HVGs to reduce computational time and increase the signal-to-noise ratio of downstream analyses.
If preserve.shape=TRUE, the rotation matrix is extrapolated to include loadings for “unselected”
genes, i.e., not in subset.row. This is done by projecting their expression profiles into the low-
dimensional space defined by the SVD on the selected genes. By doing so, we ensure that the output
always has the same number of rows as x such that any value="lowrank" can fit into the assays.

Otherwise, if preserve.shape=FALSE, the output is subsetted by any non-NULL value of subset.row.
This is equivalent to the return value after calling the function on x[subset.row,].

Value

A modified x with:

• the PC results stored in the reducedDims as a "PCA" entry, if type="pca". The attributes
contain the rotation matrix, the variance explained and the percentage of variance explained.
(Note that the last may not sum to 100% if max.rank is smaller than the total number of PCs.)

• a low-rank approximation stored as a new "lowrank" assay, if type="lowrank". This is
represented as a LowRankMatrix.

Author(s)

Aaron Lun

See Also

denoisePCA, where the number of PCs is automatically chosen.

getClusteredPCs, another method to choose the number of PCs.

48 Gene selection

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Modelling the variance:
var.stats <- modelGeneVar(sce)
hvgs <- getTopHVGs(var.stats, n=1000)

Defaults to pulling out the top 50 PCs.
set.seed(1000)
sce <- fixedPCA(sce, subset.row=hvgs)
reducedDimNames(sce)

Get the percentage of variance explained.
attr(reducedDim(sce), "percentVar")

Gene selection Gene selection

Description

Details on how gene selection is performed in almost all scran functions.

Subsetting by row

For functions accepting some gene-by-cell matrix x, we can choose to perform calculations only
on a subset of rows (i.e., genes) with the subset.row argument. This can be a logical, integer or
character vector indicating the rows of x to use. If a character vector, it must contain the names of the
rows in x. Future support will be added for more esoteric subsetting vectors like the Bioconductor
Rle classes.

The output of running a function with subset.row will always be the same as the output of sub-
setting x beforehand and passing it into the function. However, it is often more efficient to use
subset.row as we can avoid constructing an intermediate subsetted matrix. The same reasoning
applies for any x that is a SingleCellExperiment object.

Filtering by mean

Some functions will have a min.mean argument to filter out low-abundance genes prior to process-
ing. Depending on the function, the filter may be applied to the average library size-adjusted count
computed by calculateAverage, the average log-count, or some other measure of abundance - see
the documentation for each function for details.

Any filtering on min.mean is automatically intersected with a specified subset.row. For example,
only subsetted genes that pass the filter are retained if subset.row is specified alongside min.mean.

Author(s)

Aaron Lun

getClusteredPCs 49

getClusteredPCs Use clusters to choose the number of PCs

Description

Cluster cells after using varying number of PCs, and pick the number of PCs using a heuristic based
on the number of clusters.

Usage

getClusteredPCs(
pcs,
FUN = NULL,
...,
BLUSPARAM = NNGraphParam(),
min.rank = 5,
max.rank = ncol(pcs),
by = 1

)

Arguments

pcs A numeric matrix of PCs, where rows are cells and columns are dimensions
representing successive PCs.

FUN A clustering function that takes a numeric matrix with rows as cells and returns
a vector containing a cluster label for each cell. Defaults to clusterRows.

... Further arguments to pass to FUN. Ignored if FUN=NULL, use BLUSPARAM instead.

BLUSPARAM A BlusterParam object specifying the clustering to use when FUN=NULL.

min.rank Integer scalar specifying the minimum number of PCs to use.

max.rank Integer scalar specifying the maximum number of PCs to use.

by Integer scalar specifying what intervals should be tested between min.rank and
max.rank.

Details

Assume that the data contains multiple subpopulations, each of which is separated from the others
on a different axis. For example, each subpopulation could be defined by a unique set of marker
genes that drives separation on its own PC. If we had x subpopulations, we would need at least
x − 1 PCs to successfully distinguish all of them. This motivates the choice of the number of PCs
provided we know the number of subpopulations in the data.

In practice, we do not know the number of subpopulations so we use the number of clusters as a
proxy instead. We apply a clustering function FUN on the first d PCs, and only consider the values
of d that yield no more than d+1 clusters. If we see more clusters with fewer dimensions, we con-
sider this to represent overclustering rather than distinct subpopulations, as multiple subpopulations
should not be distinguishable on the same axes (based on the assumption above).

We choose d that satisfies the constraint above and maximizes the number of clusters. The idea is
that more PCs should include more biological signal, allowing FUN to detect more distinct subpopu-
lations; until the point that the extra signal outweights the added noise at high dimensions, such that
resolution decreases and it becomes more difficult for FUN to distinguish between subpopulations.

50 getMarkerEffects

Any FUN can be used that automatically chooses the number of clusters based on the data. The
default is a graph-based clustering method using makeSNNGraph and cluster_walktrap, where
arguments in ... are passed to the former. Users should not supply FUN where the number of
clusters is fixed in advance, (e.g., k-means, hierarchical clustering with known k in cutree).

The identities of the output clusters are returned at each step for comparison, e.g., using methods
like clustree.

Value

A DataFrame with one row per tested number of PCs. This contains the fields:

n.pcs: Integer scalar specifying the number of PCs used.

n.clusters: Integer scalar specifying the number of clusters identified.

clusters: A List containing the cluster identities for this number of PCs.

The metadata of the DataFrame contains chosen, an integer scalar specifying the “ideal” number
of PCs to use.

Author(s)

Aaron Lun

See Also

runPCA, to compute the PCs in the first place.

clusterRows and BlusterParam, for possible choices of BLUSPARAM.

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

sce <- scater::runPCA(sce)
output <- getClusteredPCs(reducedDim(sce))
output

metadata(output)$chosen

getMarkerEffects Get marker effect sizes

Description

Utility function to extract the marker effect sizes as a matrix from the output of findMarkers.

Usage

getMarkerEffects(x, prefix = "logFC", strip = TRUE, remove.na.col = FALSE)

getTopHVGs 51

Arguments

x A DataFrame containing marker statistics for a given group/cluster, usually one
element of the List returned by findMarkers.

prefix String containing the prefix for the columns containing the effect size.

strip Logical scalar indicating whether the prefix should be removed from the output
column names.

remove.na.col Logical scalar indicating whether to remove columns containing any NAs.

Details

Setting remove.na.col=TRUE may be desirable in applications involving blocked comparisons,
where some pairwise comparisons are not possible if the relevant levels occur in different blocks.
In such cases, the resulting column is filled with NAs that may interfere with downstream steps like
clustering.

Value

A numeric matrix containing the effect sizes for the comparison to every other group/cluster.

Author(s)

Aaron Lun

See Also

findMarkers and combineMarkers, to generate the DataFrames.

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

kout <- kmeans(t(logcounts(sce)), centers=4)
out <- findMarkers(sce, groups=kout$cluster)

eff1 <- getMarkerEffects(out[[1]])
str(eff1)

getTopHVGs Identify HVGs

Description

Define a set of highly variable genes, based on variance modelling statistics from modelGeneVar or
related functions.

52 getTopHVGs

Usage

getTopHVGs(
stats,
var.field = "bio",
n = NULL,
prop = NULL,
var.threshold = 0,
fdr.field = "FDR",
fdr.threshold = NULL,
row.names = !is.null(rownames(stats))

)

Arguments

stats A DataFrame of variance modelling statistics with one row per gene. Alterna-
tively, a SummarizedExperiment object, in which case it is supplied to modelGeneVar
to generate the required DataFrame.

var.field String specifying the column of stats containing the relevant metric of varia-
tion.

n Integer scalar specifying the number of top HVGs to report.

prop Numeric scalar specifying the proportion of genes to report as HVGs.

var.threshold Numeric scalar specifying the minimum threshold on the metric of variation.

fdr.field String specifying the column of stats containing the adjusted p-values. If NULL,
no filtering is performed on the FDR.

fdr.threshold Numeric scalar specifying the FDR threshold.

row.names Logical scalar indicating whether row names should be reported.

Details

This function will identify all genes where the relevant metric of variation is greater than var.threshold.
By default, this means that we retain all genes with positive values in the var.field column of
stats. If var.threshold=NULL, the minimum threshold on the value of the metric is not applied.

If fdr.threshold is specified, we further subset to genes that have FDR less than or equal to
fdr.threshold. By default, FDR thresholding is turned off as modelGeneVar and related functions
determine significance of large variances relative to other genes. This can be overly conservative if
many genes are highly variable.

If n=NULL and prop=NULL, the resulting subset of genes is directly returned. Otherwise, the top
set of genes with the largest values of the variance metric are returned, where the size of the set is
defined as the larger of n and prop*nrow(stats).

Value

A character vector containing the names of the most variable genes, if row.names=TRUE.

Otherwise, an integer vector specifying the indices of stats containing the most variable genes.

Author(s)

Aaron Lun

getTopMarkers 53

See Also

modelGeneVar and friends, to generate stats.

modelGeneCV2 and friends, to also generate stats.

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

stats <- modelGeneVar(sce)
str(getTopHVGs(stats))
str(getTopHVGs(stats, fdr.threshold=0.05)) # more stringent

Or directly pass in the SingleCellExperiment:
str(getTopHVGs(sce))

Alternatively, use with the coefficient of variation:
stats2 <- modelGeneCV2(sce)
str(getTopHVGs(stats2, var.field="ratio"))

getTopMarkers Get top markers

Description

Obtain the top markers for each pairwise comparison between clusters, or for each cluster.

Usage

getTopMarkers(
de.lists,
pairs,
n = 10,
pval.field = "p.value",
fdr.field = "FDR",
pairwise = TRUE,
pval.type = c("any", "some", "all"),
fdr.threshold = 0.05,
...

)

Arguments

de.lists A list-like object where each element is a data.frame or DataFrame. Each
element should represent the results of a pairwise comparison between two
groups/clusters, in which each row should contain the statistics for a single
gene/feature. Rows should be named by the feature name in the same order
for all elements.

54 getTopMarkers

pairs A matrix, data.frame or DataFrame with two columns and number of rows equal
to the length of de.lists. Each row should specify the pair of clusters being
compared for the corresponding element of de.lists.

n Integer scalar specifying the number of markers to obtain from each pairwise
comparison, if pairwise=FALSE.
Otherwise, the number of top genes to take from each cluster’s combined marker
set, see Details.

pval.field String specifying the column of each DataFrame in de.lists to use to identify
top markers. Smaller values are assigned higher rank.

fdr.field String specifying the column containing the adjusted p-values.

pairwise Logical scalar indicating whether top markers should be returned for every pair-
wise comparison. If FALSE, one marker set is returned for every cluster.

pval.type String specifying how markers from pairwise comparisons are to be combined if
pairwise=FALSE. This has the same effect as pval.type in combineMarkers.

fdr.threshold Numeric scalar specifying the FDR threshold for filtering. If NULL, no filtering
is performed on the FDR.

... Further arguments to pass to combineMarkers if pairwise=FALSE.

Details

This is a convenience utility that converts the results of pairwise comparisons into a marker list that
can be used in downstream functions, e.g., as the marker sets in SingleR. By default, it returns a list
of lists containing the top genes for every pairwise comparison, which is useful for feature selection
to select genes distinguishing between closely related clusters. The top n genes are chosen with
adjusted p-values below fdr.threshold.

If pairwise=FALSE, combineMarkers is called on de.lists and pairs to obtain a per-cluster
ranking of genes from all pairwise comparisons involving that cluster. If pval.type="any", the
top genes with Top values no greater than n are retained; this is equivalent to taking the union of the
top n genes from each pairwise comparison for each cluster. Otherwise, the top n genes with the
smallest p-values are retained. In both cases, genes are further filtered by fdr.threshold.

Value

If pairwise=TRUE, a List of Lists of character vectors is returned. Each element of the outer list
corresponds to cluster X, each element of the inner list corresponds to another cluster Y, and each
character vector specifies the marker genes that distinguish X from Y.

If pairwise=FALSE, a List of character vectors is returned. Each character vector contains the
marker genes that distinguish X from any, some or all other clusters, depending on combine.type.

Author(s)

Aaron Lun

See Also

pairwiseTTests and friends, to obtain de.lists and pairs.

combineMarkers, for another function that consolidates pairwise DE comparisons.

modelGeneCV2 55

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Any clustering method is okay.
kout <- kmeans(t(logcounts(sce)), centers=3)

out <- pairwiseTTests(logcounts(sce),
groups=paste0("Cluster", kout$cluster))

Getting top pairwise markers:
top <- getTopMarkers(out$statistics, out$pairs)
top[[1]]
top[[1]][[2]]

Getting top per-cluster markers:
top <- getTopMarkers(out$statistics, out$pairs, pairwise=FALSE)
top[[1]]

modelGeneCV2 Model the per-gene CV2

Description

Model the squared coefficient of variation (CV2) of the normalized expression profiles for each
gene, fitting a trend to account for the mean-variance relationship across genes.

Usage

modelGeneCV2(x, ...)

S4 method for signature 'ANY'
modelGeneCV2(
x,
size.factors = NULL,
block = NULL,
subset.row = NULL,
subset.fit = NULL,
...,
equiweight = TRUE,
method = "fisher",
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
modelGeneCV2(x, ..., assay.type = "counts")

S4 method for signature 'SingleCellExperiment'
modelGeneCV2(x, size.factors = NULL, ...)

56 modelGeneCV2

Arguments

x A numeric matrix of counts where rows are genes and columns are cells.
Alternatively, a SummarizedExperiment or SingleCellExperiment containing such
a matrix.

... For the generic, further arguments to pass to each method.
For the ANY method, further arguments to pass to fitTrendCV2.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

size.factors A numeric vector of size factors for each cell in x.

block A factor specifying the blocking levels for each cell in x. If specified, variance
modelling is performed separately within each block and statistics are combined
across blocks.

subset.row See ?"scran-gene-selection", specifying the rows for which to model the
variance. Defaults to all genes in x.

subset.fit An argument similar to subset.row, specifying the rows to be used for trend
fitting. Defaults to subset.row.

equiweight A logical scalar indicating whether statistics from each block should be given
equal weight. Otherwise, each block is weighted according to its number of
cells. Only used if block is specified.

method String specifying how p-values should be combined when block is specified,
see combineParallelPValues.

BPPARAM A BiocParallelParam object indicating whether parallelization should be per-
formed across genes.

assay.type String or integer scalar specifying the assay containing the counts.

Details

For each gene, we compute the CV2 and mean of the counts after scaling them by size.factors.
A trend is fitted to the CV2 against the mean for all genes using fitTrendCV2. The fitted value
for each gene is used as a proxy for the technical noise, assuming that most genes exhibit a low
baseline level of variation that is not biologically interesting. The ratio of the total CV2 to the trend
is used as a metric to rank interesting genes, with larger ratios being indicative of strong biological
heterogeneity.

By default, the trend is fitted using all of the genes in x. If subset.fit is specified, the trend is
fitted using only the specified subset, and the values of trend for all other genes are determined by
extrapolation or interpolation. This could be used to perform the fit based on genes that are known
to have low variance, thus weakening the assumption above. Note that this does not refer to spike-in
transcripts, which should be handled via modelGeneCV2WithSpikes.

If no size factors are supplied, they are automatically computed depending on the input type:

• If size.factors=NULL for the ANY method, the sum of counts for each cell in x is used to
compute a size factor via the librarySizeFactors function.

• If size.factors=NULL for the SingleCellExperiment method, sizeFactors(x) is used if
available. Otherwise, it defaults to library size-derived size factors.

If size.factors are supplied, they will override any size factors present in x.

modelGeneCV2 57

Value

A DataFrame is returned where each row corresponds to a gene in x (or in subset.row, if specified).
This contains the numeric fields:

mean: Mean normalized expression per gene.

total: Squared coefficient of variation of the normalized expression per gene.

trend: Fitted value of the trend.

ratio: Ratio of total to trend.

p.value, FDR: Raw and adjusted p-values for the test against the null hypothesis that ratio<=1.

If block is not specified, the metadata of the DataFrame contains the output of running fitTrendCV2
on the specified features, along with the mean and cv2 used to fit the trend.

If block is specified, the output contains another per.block field. This field is itself a DataFrame
of DataFrames, where each internal DataFrame contains statistics for the variance modelling within
each block and has the same format as described above. Each internal DataFrame’s metadata
contains the output of fitTrendCV2 for the cells of that block.

Computing p-values

The p-value for each gene is computed by assuming that the CV2 estimates are normally distributed
around the trend, and that the standard deviation of the CV2 distribution is proportional to the value
of the trend. This is used to construct a one-sided test for each gene based on its ratio, under the
null hypothesis that the ratio is equal to or less than 1. The proportionality constant for the standard
deviation is set to the std.dev returned by fitTrendCV2. This is estimated from the spread of per-
gene CV2 values around the trend, so the null hypothesis effectively becomes “is this gene more
variable than other genes of the same abundance?”

Handling uninteresting factors

Setting block will estimate the mean and variance of each gene for cells in each level of block
separately. The trend is fitted separately for each level, and the variance decomposition is also
performed separately. Per-level statistics are then combined to obtain a single value per gene:

• For means and CV2 values, this is done by taking the geometric mean across blocking levels.
If equiweight=FALSE, a weighted average is used where the value for each level is weighted
by the number of cells. By default, all levels are equally weighted when combining statistics.

• Per-level p-values are combined using combineParallelPValues according to method. By
default, Fisher’s method is used to identify genes that are highly variable in any batch. Whether
or not this is responsive to equiweight depends on the chosen method.

• Blocks with fewer than 2 cells are completely ignored and do not contribute to the combined
mean, variance component or p-value.

Author(s)

Aaron Lun

Examples

library(scuttle)
sce <- mockSCE()

Simple case:

58 modelGeneCV2WithSpikes

spk <- modelGeneCV2(sce)
spk

plot(spk$mean, spk$total, pch=16, log="xy")
curve(metadata(spk)$trend(x), add=TRUE, col="dodgerblue")

With blocking:
block <- sample(LETTERS[1:2], ncol(sce), replace=TRUE)
blk <- modelGeneCV2(sce, block=block)
blk

par(mfrow=c(1,2))
for (i in colnames(blk$per.block)) {

current <- blk$per.block[[i]]
plot(current$mean, current$total, pch=16, log="xy")
curve(metadata(current)$trend(x), add=TRUE, col="dodgerblue")

}

modelGeneCV2WithSpikes

Model the per-gene CV2 with spike-ins

Description

Model the squared coefficient of variation (CV2) of the normalized expression profiles for each
gene, using spike-ins to estimate the baseline level of technical noise at each abundance.

Usage

modelGeneCV2WithSpikes(x, ...)

S4 method for signature 'ANY'
modelGeneCV2WithSpikes(
x,
spikes,
size.factors = NULL,
spike.size.factors = NULL,
block = NULL,
subset.row = NULL,
...,
equiweight = TRUE,
method = "fisher",
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
modelGeneCV2WithSpikes(x, ..., assay.type = "counts")

S4 method for signature 'SingleCellExperiment'
modelGeneCV2WithSpikes(
x,

modelGeneCV2WithSpikes 59

spikes,
size.factors = NULL,
spike.size.factors = NULL,
...,
assay.type = "counts"

)

Arguments

x A numeric matrix of counts where rows are (usually endogenous) genes and
columns are cells.
Alternatively, a SummarizedExperiment or SingleCellExperiment containing such
a matrix.

... For the generic, further arguments to pass to each method.
For the ANY method, further arguments to pass to fitTrendCV2.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

spikes A numeric matrix of counts where each row corresponds to a spike-in transcript.
This should have the same number of columns as x.
Alternatively, for the SingleCellExperiment method, this can be a string or an
integer scalar specifying the altExp containing the spike-in count matrix.

size.factors A numeric vector of size factors for each cell in x, to be used for scaling gene
expression.

spike.size.factors

A numeric vector of size factors for each cell in spikes, to be used for scaling
spike-ins.

block A factor specifying the blocking levels for each cell in x. If specified, variance
modelling is performed separately within each block and statistics are combined
across blocks.

subset.row See ?"scran-gene-selection", specifying the rows for which to model the
variance. Defaults to all genes in x.

equiweight A logical scalar indicating whether statistics from each block should be given
equal weight. Otherwise, each block is weighted according to its number of
cells. Only used if block is specified.

method String specifying how p-values should be combined when block is specified,
see combineParallelPValues.

BPPARAM A BiocParallelParam object indicating whether parallelization should be per-
formed across genes.

assay.type String or integer scalar specifying the assay containing the counts.
For the SingleCellExperiment method, this is used to retrieve both the endoge-
nous and spike-in counts.

Details

For each gene and spike-in transcript, we compute the variance and CV2 of the normalized expres-
sion values. A trend is fitted to the CV2 against the mean for spike-in transcripts using fitTrendCV2.
The value of the trend at the abundance of each gene is used to define the variation attributable to

60 modelGeneCV2WithSpikes

technical noise. The ratio to the trend is then used to define overdispersion corresponding to inter-
esting biological heterogeneity.

This function is almost the same as modelGeneCV2, with the only theoretical difference being that
the trend is fitted on spike-in CV2 rather than using the means and CV2 of endogenous genes.
This is because there are certain requirements for how normalization is performed when comparing
spike-in transcripts with endogenous genes - see comments in “Explanation for size factor rescal-
ing”. We enforce this by centering the size factors for both sets of features and recomputing nor-
malized expression values.

Value

A DataFrame is returned where each row corresponds to a gene in x (or in subset.row, if specified).
This contains the numeric fields:

mean: Mean normalized expression per gene.
total: Squared coefficient of variation of the normalized expression per gene.
trend: Fitted value of the trend.
ratio: Ratio of total to trend.
p.value, FDR: Raw and adjusted p-values for the test against the null hypothesis that ratio<=1.

If block is not specified, the metadata of the DataFrame contains the output of running fitTrendCV2
on the spike-in transcripts, along with the mean and cv2 used to fit the trend.

If block is specified, the output contains another per.block field. This field is itself a DataFrame
of DataFrames, where each internal DataFrame contains statistics for the variance modelling within
each block and has the same format as described above. Each internal DataFrame’s metadata
contains the output of fitTrendCV2 for the cells of that block.

Computing p-values

The p-value for each gene is computed by assuming that the CV2 estimates are normally distributed
around the trend, and that the standard deviation of the CV2 distribution is proportional to the value
of the trend. This is used to construct a one-sided test for each gene based on its ratio, under the
null hypothesis that the ratio is equal to 1. The proportionality constant for the standard deviation
is set to the std.dev returned by fitTrendCV2. This is estimated from the spread of CV2 values
for spike-in transcripts, so the null hypothesis effectively becomes “is this gene more variable than
spike-in transcripts of the same abundance?”

Default size factor choices

If no size factors are supplied, they are automatically computed depending on the input type:

• If size.factors=NULL for the ANY method, the sum of counts for each cell in x is used to
compute a size factor via the librarySizeFactors function.

• If spike.size.factors=NULL for the ANY method, the sum of counts for each cell in spikes
is used to compute a size factor via the librarySizeFactors function.

• If size.factors=NULL for the SingleCellExperiment method, sizeFactors(x) is used if
available. Otherwise, it defaults to library size-derived size factors.

• If spike.size.factors=NULL for the SingleCellExperiment method and spikes is not a ma-
trix, sizeFactors(altExp(x, spikes) is used if available. Otherwise, it defaults to library
size-derived size factors.

If size.factors or spike.size.factors are supplied, they will override any size factors present
in x.

modelGeneCV2WithSpikes 61

Explanation for size factor rescaling

The use of a spike-in-derived trend makes several assumptions. The first is that a constant amount
of spike-in RNA was added to each cell, such that any differences in observed expression of the
spike-in transcripts can be wholly attributed to technical noise. The second is that endogenous
genes and spike-in transcripts follow the same mean-variance relationship, i.e., a spike-in transcript
captures the technical noise of an endogenous gene at the same mean count.

Here, the spike-in size factors across all cells are scaled so that their mean is equal to that of the
gene-based size factors for the same set of cells. This ensures that the average normalized abun-
dances of the spike-in transcripts are comparable to those of the endogenous genes, allowing the
trend fitted to the former to be used to determine the biological component of the latter. Otherwise,
differences in scaling of the size factors would shift the normalized expression values of the former
away from the latter, violating the second assumption.

If block is specified, rescaling is performed separately for all cells in each block. This aims to
avoid problems from (frequent) violations of the first assumption where there are differences in
the quantity of spike-in RNA added to each batch. Without scaling, these differences would lead
to systematic shifts in the spike-in abundances from the endogenous genes when fitting a batch-
specific trend (even if there is no global difference in scaling across all batches).

Handling uninteresting factors

Setting block will estimate the mean and variance of each gene for cells in each level of block
separately. The trend is fitted separately for each level, and the variance decomposition is also
performed separately. Per-level statistics are then combined to obtain a single value per gene:

• For means and CV2 values, this is done by taking the geometric mean across blocking levels.
If equiweight=FALSE, a weighted average is used where the value for each level is weighted
by the number of cells. By default, all levels are equally weighted when combining statistics.

• Per-level p-values are combined using combineParallelPValues according to method. By
default, Fisher’s method is used to identify genes that are highly variable in any batch. Whether
or not this is responsive to equiweight depends on the chosen method.

• Blocks with fewer than 2 cells are completely ignored and do not contribute to the combined
mean, variance component or p-value.

Author(s)

Aaron Lun

See Also

fitTrendCV2, for the trend fitting options.

modelGeneCV2, for modelling variance without spike-in controls.

Examples

library(scuttle)
sce <- mockSCE()

Using spike-ins.
spk <- modelGeneCV2WithSpikes(sce, "Spikes")
spk

plot(spk$mean, spk$total)

62 modelGeneVar

points(metadata(spk)$mean, metadata(spk)$var, col="red", pch=16)
curve(metadata(spk)$trend(x), add=TRUE, col="dodgerblue")

With blocking (and spike-ins).
block <- sample(LETTERS[1:2], ncol(sce), replace=TRUE)
blk <- modelGeneCV2WithSpikes(sce, "Spikes", block=block)
blk

par(mfrow=c(1,2))
for (i in colnames(blk$per.block)) {

current <- blk$per.block[[i]]
plot(current$mean, current$total)
points(metadata(current)$mean, metadata(current)$var, col="red", pch=16)
curve(metadata(current)$trend(x), add=TRUE, col="dodgerblue")

}

modelGeneVar Model the per-gene variance

Description

Model the variance of the log-expression profiles for each gene, decomposing it into technical and
biological components based on a fitted mean-variance trend.

Usage

S4 method for signature 'ANY'
modelGeneVar(
x,
block = NULL,
design = NULL,
subset.row = NULL,
subset.fit = NULL,
...,
equiweight = TRUE,
method = "fisher",
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
modelGeneVar(x, ..., assay.type = "logcounts")

Arguments

x A numeric matrix of log-normalized expression values where rows are genes
and columns are cells.
Alternatively, a SummarizedExperiment containing such a matrix.

block A factor specifying the blocking levels for each cell in x. If specified, variance
modelling is performed separately within each block and statistics are combined
across blocks.

modelGeneVar 63

design A numeric matrix containing blocking terms for uninteresting factors of varia-
tion.

subset.row See ?"scran-gene-selection", specifying the rows for which to model the
variance. Defaults to all genes in x.

subset.fit An argument similar to subset.row, specifying the rows to be used for trend
fitting. Defaults to subset.row.

... For the generic, further arguments to pass to each method.
For the ANY method, further arguments to pass to fitTrendVar.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.

equiweight A logical scalar indicating whether statistics from each block should be given
equal weight. Otherwise, each block is weighted according to its number of
cells. Only used if block is specified.

method String specifying how p-values should be combined when block is specified,
see combineParallelPValues.

BPPARAM A BiocParallelParam object indicating whether parallelization should be per-
formed across genes.

assay.type String or integer scalar specifying the assay containing the log-expression val-
ues.

Details

For each gene, we compute the variance and mean of the log-expression values. A trend is fitted
to the variance against the mean for all genes using fitTrendVar. The fitted value for each gene
is used as a proxy for the technical component of variation for each gene, under the assumption
that most genes exhibit a low baseline level of variation that is not biologically interesting. The
biological component of variation for each gene is defined as the the residual from the trend.

Ranking genes by the biological component enables identification of interesting genes for down-
stream analyses in a manner that accounts for the mean-variance relationship. We use log-transformed
expression values to blunt the impact of large positive outliers and to ensure that large variances are
driven by strong log-fold changes between cells rather than differences in counts. Log-expression
values are also used in downstream analyses like PCA, so modelling them here avoids inconsisten-
cies with different quantifications of variation across analysis steps.

By default, the trend is fitted using all of the genes in x. If subset.fit is specified, the trend is fitted
using only the specified subset, and the technical components for all other genes are determined by
extrapolation or interpolation. This could be used to perform the fit based on genes that are known
to have low variance, thus weakening the assumption above. Note that this does not refer to spike-in
transcripts, which should be handled via modelGeneVarWithSpikes.

Value

A DataFrame is returned where each row corresponds to a gene in x (or in subset.row, if specified).
This contains the numeric fields:

mean: Mean normalized log-expression per gene.

total: Variance of the normalized log-expression per gene.

bio: Biological component of the variance.

tech: Technical component of the variance.

p.value, FDR: Raw and adjusted p-values for the test against the null hypothesis that bio<=0.

64 modelGeneVar

If block is not specified, the metadata of the DataFrame contains the output of running fitTrendVar
on the specified features, along with the mean and var used to fit the trend.

If block is specified, the output contains another per.block field. This field is itself a DataFrame
of DataFrames, where each internal DataFrame contains statistics for the variance modelling within
each block and has the same format as described above. Each internal DataFrame’s metadata
contains the output of fitTrendVar for the cells of that block.

Handling uninteresting factors

Setting block will estimate the mean and variance of each gene for cells in each level of block
separately. The trend is fitted separately for each level, and the variance decomposition is also
performed separately. Per-level statistics are then combined to obtain a single value per gene:

• For means and variance components, this is done by averaging values across levels. If equiweight=FALSE,
a weighted average is used where the value for each level is weighted by the number of cells.
By default, all levels are equally weighted when combining statistics.

• Per-level p-values are combined using combineParallelPValues according to method. By
default, Fisher’s method is used to identify genes that are highly variable in any batch. Whether
or not this is responsive to equiweight depends on the chosen method.

• Blocks with fewer than 2 cells are completely ignored and do not contribute to the combined
mean, variance component or p-value.

Use of block is the recommended approach for accounting for any uninteresting categorical factor
of variation. In addition to accounting for systematic differences in expression between levels of
the blocking factor, it also accommodates differences in the mean-variance relationships.

Alternatively, uninteresting factors can be used to construct a design matrix to pass to the function
via design. In this case, a linear model is fitted to the expression profile for each gene and the
residual variance is calculated. This approach is useful for covariates or additive models that cannot
be expressed as a one-way layout for use in block. However, it assumes that the error is normally
distributed with equal variance for all observations of a given gene.

Use of block and design together is currently not supported and will lead to an error.

Computing p-values

The p-value for each gene is computed by assuming that the variance estimates are normally dis-
tributed around the trend, and that the standard deviation of the variance distribution is proportional
to the value of the trend. This is used to construct a one-sided test for each gene based on its bio,
under the null hypothesis that the biological component is equal to zero. The proportionality con-
stant for the standard deviation is set to the std.dev returned by fitTrendVar. This is estimated
from the spread of per-gene variance estimates around the trend, so the null hypothesis effectively
becomes “is this gene more variable than other genes of the same abundance?”

Author(s)

Aaron Lun

See Also

fitTrendVar, for the trend fitting options.

modelGeneVarWithSpikes, for modelling variance with spike-in controls.

modelGeneVarByPoisson 65

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Fitting to all features.
allf <- modelGeneVar(sce)
allf

plot(allf$mean, allf$total)
curve(metadata(allf)$trend(x), add=TRUE, col="dodgerblue")

Using a subset of features for fitting.
subf <- modelGeneVar(sce, subset.fit=1:100)
subf

plot(subf$mean, subf$total)
curve(metadata(subf)$trend(x), add=TRUE, col="dodgerblue")
points(metadata(subf)$mean, metadata(subf)$var, col="red", pch=16)

With blocking.
block <- sample(LETTERS[1:2], ncol(sce), replace=TRUE)
blk <- modelGeneVar(sce, block=block)
blk

par(mfrow=c(1,2))
for (i in colnames(blk$per.block)) {

current <- blk$per.block[[i]]
plot(current$mean, current$total)
curve(metadata(current)$trend(x), add=TRUE, col="dodgerblue")

}

modelGeneVarByPoisson Model the per-gene variance with Poisson noise

Description

Model the variance of the log-expression profiles for each gene, decomposing it into technical and
biological components based on a mean-variance trend corresponding to Poisson noise.

Usage

modelGeneVarByPoisson(x, ...)

S4 method for signature 'ANY'
modelGeneVarByPoisson(
x,
size.factors = NULL,
block = NULL,
design = NULL,
subset.row = NULL,
npts = 1000,

66 modelGeneVarByPoisson

dispersion = 0,
pseudo.count = 1,
...,
equiweight = TRUE,
method = "fisher",
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
modelGeneVarByPoisson(x, ..., assay.type = "counts")

S4 method for signature 'SingleCellExperiment'
modelGeneVarByPoisson(x, size.factors = sizeFactors(x), ...)

Arguments

x A numeric matrix of counts where rows are (usually endogenous) genes and
columns are cells.
Alternatively, a SummarizedExperiment or SingleCellExperiment containing such
a matrix.

... For the generic, further arguments to pass to each method.
For the ANY method, further arguments to pass to fitTrendVar.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

size.factors A numeric vector of size factors for each cell in x, to be used for scaling gene
expression.

block A factor specifying the blocking levels for each cell in x. If specified, variance
modelling is performed separately within each block and statistics are combined
across blocks.

design A numeric matrix containing blocking terms for uninteresting factors of varia-
tion.

subset.row See ?"scran-gene-selection", specifying the rows for which to model the
variance. Defaults to all genes in x.

npts An integer scalar specifying the number of interpolation points to use.

dispersion A numeric scalar specifying the dispersion for the NB distribution. If zero, a
Poisson distribution is used.

pseudo.count Numeric scalar specifying the pseudo-count to add prior to log-transformation.

equiweight A logical scalar indicating whether statistics from each block should be given
equal weight. Otherwise, each block is weighted according to its number of
cells. Only used if block is specified.

method String specifying how p-values should be combined when block is specified,
see combineParallelPValues.

BPPARAM A BiocParallelParam object indicating whether parallelization should be per-
formed across genes.

assay.type String or integer scalar specifying the assay containing the counts.

modelGeneVarByPoisson 67

Details

For each gene, we compute the variance and mean of the log-expression values. A trend is fitted
to the variance against the mean for simulated Poisson counts as described in fitTrendPoisson.
The technical component for each gene is defined as the value of the trend at that gene’s mean
abundance. The biological component is then defined as the residual from the trend.

This function is similar to modelGeneVarWithSpikes, with the only difference being that the trend
is fitted on simulated Poisson count-derived variances rather than spike-ins. The assumption is
that the technical component is Poisson-distributed, or at least negative binomial-distributed with a
known constant dispersion. This is useful for UMI count data sets that do not have spike-ins and
are too heterogeneous to assume that most genes exhibit negligible biological variability.

If no size factors are supplied, they are automatically computed depending on the input type:

• If size.factors=NULL for the ANY method, the sum of counts for each cell in x is used to
compute a size factor via the librarySizeFactors function.

• If size.factors=NULL for the SingleCellExperiment method, sizeFactors(x) is used if
available. Otherwise, it defaults to library size-derived size factors.

If size.factors are supplied, they will override any size factors present in x.

Value

A DataFrame is returned where each row corresponds to a gene in x (or in subset.row, if specified).
This contains the numeric fields:

mean: Mean normalized log-expression per gene.

total: Variance of the normalized log-expression per gene.

bio: Biological component of the variance.

tech: Technical component of the variance.

p.value, FDR: Raw and adjusted p-values for the test against the null hypothesis that bio<=0.

If block is not specified, the metadata of the DataFrame contains the output of running fitTrendVar
on the simulated counts, along with the mean and var used to fit the trend.

If block is specified, the output contains another per.block field. This field is itself a DataFrame
of DataFrames, where each internal DataFrame contains statistics for the variance modelling within
each block and has the same format as described above. Each internal DataFrame’s metadata
contains the output of fitTrendVar for the cells of that block.

Computing p-values

The p-value for each gene is computed by assuming that the variance estimates are normally dis-
tributed around the trend, and that the standard deviation of the variance distribution is proportional
to the value of the trend. This is used to construct a one-sided test for each gene based on its bio,
under the null hypothesis that the biological component is equal to zero. The proportionality con-
stant for the standard deviation is set to the std.dev returned by fitTrendVar. This is estimated
from the spread of variance estimates for the simulated Poisson-distributed counts, so the null hy-
pothesis effectively becomes “is this gene more variable than a hypothetical gene with only Poisson
noise?”

68 modelGeneVarByPoisson

Handling uninteresting factors

Setting block will estimate the mean and variance of each gene for cells in each level of block
separately. The trend is fitted separately for each level, and the variance decomposition is also
performed separately. Per-level statistics are then combined to obtain a single value per gene:

• For means and variance components, this is done by averaging values across levels. If equiweight=FALSE,
a weighted average is used where the value for each level is weighted by the number of cells.
By default, all levels are equally weighted when combining statistics.

• Per-level p-values are combined using combineParallelPValues according to method. By
default, Fisher’s method is used to identify genes that are highly variable in any batch. Whether
or not this is responsive to equiweight depends on the chosen method.

• Blocks with fewer than 2 cells are completely ignored and do not contribute to the combined
mean, variance component or p-value.

Use of block is the recommended approach for accounting for any uninteresting categorical factor
of variation. In addition to accounting for systematic differences in expression between levels of
the blocking factor, it also accommodates differences in the mean-variance relationships.

Alternatively, uninteresting factors can be used to construct a design matrix to pass to the function
via design. In this case, a linear model is fitted to the expression profile for each gene and the
residual variance is calculated. This approach is useful for covariates or additive models that cannot
be expressed as a one-way layout for use in block. However, it assumes that the error is normally
distributed with equal variance for all observations of a given gene.

Use of block and design together is currently not supported and will lead to an error.

Author(s)

Aaron Lun

See Also

fitTrendVar, for the trend fitting options.

modelGeneVar, for modelling variance without spike-in controls.

Examples

library(scuttle)
sce <- mockSCE()

Using spike-ins.
pois <- modelGeneVarByPoisson(sce)
pois

plot(pois$mean, pois$total, ylim=c(0, 10))
points(metadata(pois)$mean, metadata(pois)$var, col="red", pch=16)
curve(metadata(pois)$trend(x), add=TRUE, col="dodgerblue")

With blocking.
block <- sample(LETTERS[1:2], ncol(sce), replace=TRUE)
blk <- modelGeneVarByPoisson(sce, block=block)
blk

par(mfrow=c(1,2))
for (i in colnames(blk$per.block)) {

modelGeneVarWithSpikes 69

current <- blk$per.block[[i]]
plot(current$mean, current$total, ylim=c(0, 10))
points(metadata(current)$mean, metadata(current)$var, col="red", pch=16)
curve(metadata(current)$trend(x), add=TRUE, col="dodgerblue")

}

modelGeneVarWithSpikes

Model the per-gene variance with spike-ins

Description

Model the variance of the log-expression profiles for each gene, decomposing it into technical and
biological components based on a mean-variance trend fitted to spike-in transcripts.

Usage

modelGeneVarWithSpikes(x, ...)

S4 method for signature 'ANY'
modelGeneVarWithSpikes(
x,
spikes,
size.factors = NULL,
spike.size.factors = NULL,
block = NULL,
design = NULL,
subset.row = NULL,
pseudo.count = 1,
...,
equiweight = TRUE,
method = "fisher",
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
modelGeneVarWithSpikes(x, ..., assay.type = "counts")

S4 method for signature 'SingleCellExperiment'
modelGeneVarWithSpikes(
x,
spikes,
size.factors = NULL,
spike.size.factors = NULL,
...,
assay.type = "counts"

)

70 modelGeneVarWithSpikes

Arguments

x A numeric matrix of counts where rows are (usually endogenous) genes and
columns are cells.
Alternatively, a SummarizedExperiment or SingleCellExperiment containing such
a matrix.

... For the generic, further arguments to pass to each method.
For the ANY method, further arguments to pass to fitTrendVar.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

spikes A numeric matrix of counts where each row corresponds to a spike-in transcript.
This should have the same number of columns as x.
Alternatively, for the SingleCellExperiment method, this can be a string or an
integer scalar specifying the altExp containing the spike-in count matrix.

size.factors A numeric vector of size factors for each cell in x, to be used for scaling gene
expression.

spike.size.factors

A numeric vector of size factors for each cell in spikes, to be used for scaling
spike-ins.

block A factor specifying the blocking levels for each cell in x. If specified, variance
modelling is performed separately within each block and statistics are combined
across blocks.

design A numeric matrix containing blocking terms for uninteresting factors of varia-
tion.

subset.row See ?"scran-gene-selection", specifying the rows for which to model the
variance. Defaults to all genes in x.

pseudo.count Numeric scalar specifying the pseudo-count to add prior to log-transformation.

equiweight A logical scalar indicating whether statistics from each block should be given
equal weight. Otherwise, each block is weighted according to its number of
cells. Only used if block is specified.

method String specifying how p-values should be combined when block is specified,
see combineParallelPValues.

BPPARAM A BiocParallelParam object indicating whether parallelization should be per-
formed across genes.

assay.type String or integer scalar specifying the assay containing the counts.
For the SingleCellExperiment method, this is used to retrieve both the endoge-
nous and spike-in counts.

Details

For each gene and spike-in transcript, we compute the variance and mean of the log-expression
values. A trend is fitted to the variance against the mean for spike-in transcripts using fitTrendVar.
The technical component for each gene is defined as the value of the trend at that gene’s mean
abundance. The biological component is then defined as the residual from the trend.

This function is almost the same as modelGeneVar, with the only difference being that the trend
is fitted on spike-in variances rather than using the means and variances of endogenous genes. It

modelGeneVarWithSpikes 71

assumes that a constant amount of spike-in RNA was added to each cell, such that any differences
in observed expression of the spike-in transcripts can be wholly attributed to technical noise; and
that endogenous genes and spike-in transcripts follow the same mean-variance relationship.

Unlike modelGeneVar, modelGeneVarWithSpikes starts from a count matrix (for both genes and
spike-ins) and requires size factors and a pseudo-count specification to compute the log-expression
values. This is because there are certain requirements for how normalization is performed when
comparing spike-in transcripts with endogenous genes - see comments in “Explanation for size fac-
tor rescaling”. We enforce this by centering the size factors for both sets of features and recomputing
the log-expression values prior to computing means and variances.

Value

A DataFrame is returned where each row corresponds to a gene in x (or in subset.row, if specified).
This contains the numeric fields:

mean: Mean normalized log-expression per gene.

total: Variance of the normalized log-expression per gene.

bio: Biological component of the variance.

tech: Technical component of the variance.

p.value, FDR: Raw and adjusted p-values for the test against the null hypothesis that bio<=0.

If block is not specified, the metadata of the DataFrame contains the output of running fitTrendVar
on the spike-in transcripts, along with the mean and var used to fit the trend.

If block is specified, the output contains another per.block field. This field is itself a DataFrame
of DataFrames, where each internal DataFrame contains statistics for the variance modelling within
each block and has the same format as described above. Each internal DataFrame’s metadata
contains the output of fitTrendVar for the cells of that block.

Default size factor choices

If no size factors are supplied, they are automatically computed depending on the input type:

• If size.factors=NULL for the ANY method, the sum of counts for each cell in x is used to
compute a size factor via the librarySizeFactors function.

• If spike.size.factors=NULL for the ANY method, the sum of counts for each cell in spikes
is used to compute a size factor via the librarySizeFactors function.

• If size.factors=NULL for the SingleCellExperiment method, sizeFactors(x) is used if
available. Otherwise, it defaults to library size-derived size factors.

• If spike.size.factors=NULL for the SingleCellExperiment method and spikes is not a ma-
trix, sizeFactors(altExp(x, spikes) is used if available. Otherwise, it defaults to library
size-derived size factors.

If size.factors or spike.size.factors are supplied, they will override any size factors present
in x.

Explanation for size factor rescaling

The use of a spike-in-derived trend makes several assumptions. The first is that a constant amount
of spike-in RNA was added to each cell, such that any differences in observed expression of the
spike-in transcripts can be wholly attributed to technical noise. The second is that endogenous
genes and spike-in transcripts follow the same mean-variance relationship, i.e., a spike-in transcript
captures the technical noise of an endogenous gene at the same mean count.

72 modelGeneVarWithSpikes

Here, the spike-in size factors across all cells are scaled so that their mean is equal to that of the
gene-based size factors for the same set of cells. This ensures that the average normalized abun-
dances of the spike-in transcripts are comparable to those of the endogenous genes, allowing the
trend fitted to the former to be used to determine the biological component of the latter. Otherwise,
differences in scaling of the size factors would shift the normalized expression values of the former
away from the latter, violating the second assumption.

If block is specified, rescaling is performed separately for all cells in each block. This aims to
avoid problems from (frequent) violations of the first assumption where there are differences in
the quantity of spike-in RNA added to each batch. Without scaling, these differences would lead
to systematic shifts in the spike-in abundances from the endogenous genes when fitting a batch-
specific trend (even if there is no global difference in scaling across all batches).

Computing p-values

The p-value for each gene is computed by assuming that the variance estimates are normally dis-
tributed around the trend, and that the standard deviation of the variance distribution is proportional
to the value of the trend. This is used to construct a one-sided test for each gene based on its bio, un-
der the null hypothesis that the biological component is equal to zero. The proportionality constant
for the standard deviation is set to the std.dev returned by fitTrendVar. This is estimated from
the spread of variance estimates for spike-in transcripts, so the null hypothesis effectively becomes
“is this gene more variable than spike-in transcripts of the same abundance?”

Handling uninteresting factors

Setting block will estimate the mean and variance of each gene for cells in each level of block
separately. The trend is fitted separately for each level, and the variance decomposition is also
performed separately. Per-level statistics are then combined to obtain a single value per gene:

• For means and variance components, this is done by averaging values across levels. If equiweight=FALSE,
a weighted average is used where the value for each level is weighted by the number of cells.
By default, all levels are equally weighted when combining statistics.

• Per-level p-values are combined using combineParallelPValues according to method. By
default, Fisher’s method is used to identify genes that are highly variable in any batch. Whether
or not this is responsive to equiweight depends on the chosen method.

• Blocks with fewer than 2 cells are completely ignored and do not contribute to the combined
mean, variance component or p-value.

Use of block is the recommended approach for accounting for any uninteresting categorical factor
of variation. In addition to accounting for systematic differences in expression between levels of
the blocking factor, it also accommodates differences in the mean-variance relationships.

Alternatively, uninteresting factors can be used to construct a design matrix to pass to the function
via design. In this case, a linear model is fitted to the expression profile for each gene and the
residual variance is calculated. This approach is useful for covariates or additive models that cannot
be expressed as a one-way layout for use in block. However, it assumes that the error is normally
distributed with equal variance for all observations of a given gene.

Use of block and design together is currently not supported and will lead to an error.

Author(s)

Aaron Lun

multiMarkerStats 73

See Also

fitTrendVar, for the trend fitting options.

modelGeneVar, for modelling variance without spike-in controls.

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Using spike-ins.
spk <- modelGeneVarWithSpikes(sce, "Spikes")
spk

plot(spk$mean, spk$total, log="xy")
points(metadata(spk)$mean, metadata(spk)$cv2, col="red", pch=16)
curve(metadata(spk)$trend(x), add=TRUE, col="dodgerblue")

With blocking (and spike-ins).
block <- sample(LETTERS[1:2], ncol(sce), replace=TRUE)
blk <- modelGeneVarWithSpikes(sce, "Spikes", block=block)
blk

par(mfrow=c(1,2))
for (i in colnames(blk$per.block)) {

current <- blk$per.block[[i]]
plot(current$mean, current$total)
points(metadata(current)$mean, metadata(current)$cv2, col="red", pch=16)
curve(metadata(current)$trend(x), add=TRUE, col="dodgerblue")

}

multiMarkerStats Combine multiple sets of marker statistics

Description

Combine multiple sets of marker statistics, typically from different tests, into a single DataFrame
for convenient inspection.

Usage

multiMarkerStats(..., repeated = NULL, sorted = TRUE)

Arguments

... Two or more lists or Lists produced by findMarkers or combineMarkers. Each
list should contain DataFrames of results, one for each group/cluster of cells.
The names of each List should be the same; the universe of genes in each
DataFrame should be the same; and the same number of columns in each DataFrame
should be named. All elements in ... are also expected to be named.

74 multiMarkerStats

repeated Character vector of columns that are present in one or more DataFrames but
should only be reported once. Typically used to avoid reporting redundant
copies of annotation-related columns.

sorted Logical scalar indicating whether each output DataFrame should be sorted by
some relevant statistic.

Details

The combined statistics are designed to favor a gene that is highly ranked in each of the individual
test results. This is highly conservative and aims to identify robust DE that is significant under all
testing schemes.

A combined Top value of T indicates that the gene is among the top T genes of one or more pairwise
comparisons in each of the testing schemes. (We can be even more aggressive if the individual
results were generated with a larger min.prop value.) In effect, a gene can only achieve a low Top
value if it is consistently highly ranked in each test. If sorted=TRUE, this is used to order the genes
in the output DataFrame.

The combined p.value is effectively the result of applying an intersection-union test to the per-test
results. This will only be low if the gene has a low p-value in each of the test results. If sorted=TRUE
and Top is not present, this will be used to order the genes in the output DataFrame.

Value

A named List of DataFrames with one DataFrame per group/cluster. Each DataFrame contains
statistics from the corresponding entry of each List in ..., prefixed with the name of the List. In
addition, several combined statistics are reported:

• Top, the largest rank of each gene across all DataFrames for that group. This is only reported
if each list in ... was generated with pval.type="any" in combineMarkers.

• p.value, the largest p-value of each gene across all DataFrames for that group. This is re-
placed by log.p.value if p-values in ... are log-transformed.

• FDR, the BH-adjusted value of p.value. This is replaced by log.FDR if p-values in ... are
log-transformed.

Author(s)

Aaron Lun

See Also

findMarkers and combineMarkers, to generate elements in

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Any clustering method is okay, only using k-means for convenience.
kout <- kmeans(t(logcounts(sce)), centers=4)

tout <- findMarkers(sce, groups=kout$cluster, direction="up")
wout <- findMarkers(sce, groups=kout$cluster, direction="up", test="wilcox")

pairwiseBinom 75

combined <- multiMarkerStats(t=tout, wilcox=wout)
colnames(combined[[1]])

pairwiseBinom Perform pairwise binomial tests

Description

Perform pairwise binomial tests between groups of cells, possibly after blocking on uninteresting
factors of variation.

Usage

pairwiseBinom(x, ...)

S4 method for signature 'ANY'
pairwiseBinom(
x,
groups,
block = NULL,
restrict = NULL,
exclude = NULL,
direction = c("any", "up", "down"),
threshold = 1e-08,
lfc = 0,
log.p = FALSE,
gene.names = NULL,
subset.row = NULL,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
pairwiseBinom(x, ..., assay.type = "logcounts")

S4 method for signature 'SingleCellExperiment'
pairwiseBinom(x, groups = colLabels(x, onAbsence = "error"), ...)

Arguments

x A numeric matrix-like object of counts, where each column corresponds to a
cell and each row corresponds to a gene.

... For the generic, further arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

groups A vector of length equal to ncol(x), specifying the group assignment for each
cell. If x is a SingleCellExperiment, this is automatically derived from colLabels.

block A factor specifying the blocking level for each cell.

76 pairwiseBinom

restrict A vector specifying the levels of groups for which to perform pairwise compar-
isons.

exclude A vector specifying the levels of groups for which not to perform pairwise
comparisons.

direction A string specifying the direction of effects to be considered for the alternative
hypothesis.

threshold Numeric scalar specifying the value below which a gene is presumed to be not
expressed.

lfc Numeric scalar specifying the minimum absolute log-ratio in the proportion of
expressing genes between groups.

log.p A logical scalar indicating if log-transformed p-values/FDRs should be returned.

gene.names Deprecated, use row.data in findMarkers instead to add custom annotation.

subset.row See ?"scran-gene-selection".

BPPARAM A BiocParallelParam object indicating whether and how parallelization should
be performed across genes.

assay.type A string specifying which assay values to use, usually "logcounts".

Details

This function performs exact binomial tests to identify marker genes between pairs of groups of
cells. Here, the null hypothesis is that the proportion of cells expressing a gene is the same be-
tween groups. A list of tables is returned where each table contains the statistics for all genes
for a comparison between each pair of groups. This can be examined directly or used as input to
combineMarkers for marker gene detection.

Effect sizes for each comparison are reported as log2-fold changes in the proportion of expressing
cells in one group over the proportion in another group. We add a pseudo-count that squeezes the
log-FCs towards zero to avoid undefined values when one proportion is zero. This is closely related
to but somewhat more interpretable than the log-odds ratio, which would otherwise be the more
natural statistic for a proportion-based test.

If restrict is specified, comparisons are only performed between pairs of groups in restrict.
This can be used to focus on DEGs distinguishing between a subset of the groups (e.g., closely
related cell subtypes). Similarly, if any entries of groups are NA, the corresponding cells are are
ignored.

x can be a count matrix or any transformed counterpart where zeroes remain zero and non-zeroes
remain non-zero. This is true of any scaling normalization and monotonic transformation like the
log-transform. If the transformation breaks this rule, some adjustment of threshold is necessary.

A consequence of the transformation-agnostic behaviour of this function is that it will not respond
to normalization. Differences in library size will not be considered by this function. However, this is
not necessarily problematic for marker gene detection - users can treat this as retaining information
about the total RNA content, analogous to spike-in normalization.

Value

A list is returned containing statistics and pairs.

The statistics element is itself a list of DataFrames. Each DataFrame contains the statistics
for a comparison between a pair of groups, including the overlap proportions, p-values and false
discovery rates.

pairwiseBinom 77

The pairs element is a DataFrame with one row corresponding to each entry of statistics.
This contains the fields first and second, specifying the two groups under comparison in the
corresponding DataFrame in statistics.

In each DataFrame in statistics, the log-fold change represents the log-ratio of the proportion of
expressing cells in the first group compared to the expressing proportion in the second group.

Direction and magnitude of the effect

If direction="any", two-sided binomial tests will be performed for each pairwise comparisons
between groups of cells. For other direction, one-sided tests in the specified direction will be
used instead. This can be used to focus on genes that are upregulated in each group of interest,
which is often easier to interpret.

In practice, the two-sided test is approximated by combining two one-sided tests using a Bonferroni
correction. This is done for various logistical purposes; it is also the only way to combine p-values
across blocks in a direction-aware manner. As a result, the two-sided p-value reported here will not
be the same as that from binom.test. In practice, they are usually similar enough that this is not a
major concern.

To interpret the setting of direction, consider the DataFrame for group X, in which we are com-
paring to another group Y. If direction="up", genes will only be significant in this DataFrame if
they are upregulated in group X compared to Y. If direction="down", genes will only be signifi-
cant if they are downregulated in group X compared to Y. See ?binom.test for more details on the
interpretation of one-sided Wilcoxon rank sum tests.

The magnitude of the log-fold change in the proportion of expressing cells can also be tested by
setting lfc. By default, lfc=0 meaning that we will reject the null upon detecting any difference
in proportions. If this is set to some other positive value, the null hypothesis will change depending
on direction:

• If direction="any", the null hypothesis is that the true log-fold change in proportions lies
within [-lfc, lfc]. To be conservative, we perform one-sided tests against the boundaries
of this interval, and combine them to obtain a two-sided p-value.

• If direction="up", the null hypothesis is that the true log-fold change is less than lfc. A
one-sided p-value is computed against the boundary of this interval.

• If direction="down", the null hypothesis is that the true log-fold change is greater than -lfc.
A one-sided p-value is computed against the boundary of this interval.

Blocking on uninteresting factors

If block is specified, binomial tests are performed between groups of cells within each level of
block. For each pair of groups, the p-values for each gene across all levels of block are combined
using Stouffer’s weighted Z-score method.

The weight for the p-value in a particular level of block is defined as Nx +Ny , where Nx and Ny

are the number of cells in groups X and Y, respectively, for that level. This means that p-values
from blocks with more cells will have a greater contribution to the combined p-value for each gene.

When combining across batches, one-sided p-values in the same direction are combined first. Then,
if direction="any", the two combined p-values from both directions are combined. This ensures
that a gene only receives a low overall p-value if it changes in the same direction across batches.

When comparing two groups, blocking levels are ignored if no p-value was reported, e.g., if there
were insufficient cells for a group in a particular level. If all levels are ignored in this manner, the
entire comparison will only contain NA p-values and a warning will be emitted.

78 pairwiseTTests

Author(s)

Aaron Lun

References

Whitlock MC (2005). Combining probability from independent tests: the weighted Z-method is
superior to Fisher’s approach. J. Evol. Biol. 18, 5:1368-73.

See Also

binom.test and binomTest, on which this function is based.

combineMarkers, to combine pairwise comparisons into a single DataFrame per group.

getTopMarkers, to obtain the top markers from each pairwise comparison.

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Any clustering method is okay.
kout <- kmeans(t(logcounts(sce)), centers=2)

Vanilla application:
out <- pairwiseBinom(logcounts(sce), groups=kout$cluster)
out

Directional and with a minimum log-fold change:
out <- pairwiseBinom(logcounts(sce), groups=kout$cluster,

direction="up", lfc=1)
out

pairwiseTTests Perform pairwise t-tests

Description

Perform pairwise Welch t-tests between groups of cells, possibly after blocking on uninteresting
factors of variation.

Usage

pairwiseTTests(x, ...)

S4 method for signature 'ANY'
pairwiseTTests(
x,
groups,
block = NULL,
design = NULL,
restrict = NULL,

pairwiseTTests 79

exclude = NULL,
direction = c("any", "up", "down"),
lfc = 0,
std.lfc = FALSE,
log.p = FALSE,
gene.names = NULL,
subset.row = NULL,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
pairwiseTTests(x, ..., assay.type = "logcounts")

S4 method for signature 'SingleCellExperiment'
pairwiseTTests(x, groups = colLabels(x, onAbsence = "error"), ...)

Arguments

x A numeric matrix-like object of normalized log-expression values, where each
column corresponds to a cell and each row corresponds to an endogenous gene.
Alternatively, a SummarizedExperiment or SingleCellExperiment object con-
taining such a matrix.

... For the generic, further arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

groups A vector of length equal to ncol(x), specifying the group assignment for each
cell. If x is a SingleCellExperiment, this is automatically derived from colLabels.

block A factor specifying the blocking level for each cell.

design A numeric matrix containing blocking terms for uninteresting factors. Note that
these factors should not be confounded with groups.

restrict A vector specifying the levels of groups for which to perform pairwise compar-
isons.

exclude A vector specifying the levels of groups for which not to perform pairwise
comparisons.

direction A string specifying the direction of log-fold changes to be considered in the
alternative hypothesis.

lfc A positive numeric scalar specifying the log-fold change threshold to be tested
against.

std.lfc A logical scalar indicating whether log-fold changes should be standardized.

log.p A logical scalar indicating if log-transformed p-values/FDRs should be returned.

gene.names Deprecated, use row.data in findMarkers instead to add custom annotation.

subset.row See ?"scran-gene-selection".

BPPARAM A BiocParallelParam object indicating whether and how parallelization should
be performed across genes.

assay.type A string specifying which assay values to use, usually "logcounts".

80 pairwiseTTests

Details

This function performs t-tests to identify differentially expressed genes (DEGs) between pairs of
groups of cells. A typical aim is to use the DEGs to determine cluster identity based on expression
of marker genes with known biological activity. A list of tables is returned where each table contains
per-gene statistics for a comparison between one pair of groups. This can be examined directly or
used as input to combineMarkers for marker gene detection.

We use t-tests as they are simple, fast and perform reasonably well for single-cell data (Soneson
and Robinson, 2018). However, if one of the groups contains fewer than two cells, no p-value will
be reported for comparisons involving that group. A warning will also be raised about insufficient
degrees of freedom (d.f.) in such cases.

When log.p=TRUE, the log-transformed p-values and FDRs are reported using the natural base.
This is useful in cases with many cells such that reporting the p-values directly would lead to
double-precision underflow.

If restrict is specified, comparisons are only performed between pairs of groups in restrict.
This can be used to focus on DEGs distinguishing between a subset of the groups (e.g., closely
related cell subtypes).

If exclude is specified, comparisons are not performed between groups in exclude. Similarly, if
any entries of groups are NA, the corresponding cells are are ignored.

Value

A list is returned containing statistics and pairs.

The statistics element is itself a list of DataFrames. Each DataFrame contains the statistics for a
comparison between a pair of groups, including the log-fold changes, p-values and false discovery
rates.

The pairs element is a DataFrame where each row corresponds to an entry of statistics. This
contains the fields first and second, specifying the two groups under comparison in the corre-
sponding DataFrame in statistics.

In each DataFrame in statistics, the log-fold change represents the change in the first group
compared to the second group.

Direction and magnitude of the log-fold change

Log-fold changes are reported as differences in the values of x. Thus, all log-fold changes have the
same base as whatever was used to perform the log-transformation in x. If logNormCounts was
used, this would be base 2.

If direction="any", two-sided tests will be performed for each pairwise comparisons between
groups. Otherwise, one-sided tests in the specified direction will be used instead. This can be used
to focus on genes that are upregulated in each group of interest, which is often easier to interpret
when assigning cell type to a cluster.

To interpret the setting of direction, consider the DataFrame for group X, in which we are compar-
ing to another group Y. If direction="up", genes will only be significant in this DataFrame if they
are upregulated in group X compared to Y. If direction="down", genes will only be significant if
they are downregulated in group X compared to Y.

The magnitude of the log-fold changes can also be tested by setting lfc. By default, lfc=0 meaning
that we will reject the null upon detecting any differential expression. If this is set to some other
positive value, the null hypothesis will change depending on direction:

pairwiseTTests 81

• If direction="any", the null hypothesis is that the true log-fold change lies inside [-lfc,
lfc]. To be conservative, we perform one-sided tests against the boundaries of this interval,
and combine them to obtain a two-sided p-value.

• If direction="up", the null hypothesis is that the true log-fold change is less than or equal to
lfc. A one-sided p-value is computed against the boundary of this interval.

• If direction="down", the null hypothesis is that the true log-fold change is greater than or
equal to -lfc. A one-sided p-value is computed against the boundary of this interval.

This is similar to the approach used in treat and allows users to focus on genes with strong log-fold
changes.

If std.lfc=TRUE, the log-fold change for each gene is standardized by the variance. When the
Welch t-test is being used, this is equivalent to Cohen’s d. Standardized log-fold changes may be
more appealing for visualization as it avoids large fold changes due to large variance. The choice
of std.lfc does not affect the calculation of the p-values.

Blocking on uninteresting factors

If block is specified, Welch t-tests are performed between groups within each level of block. For
each pair of groups, the p-values for each gene across all levels of block are combined using
Stouffer’s weighted Z-score method. The reported log-fold change for each gene is also a weighted
average of log-fold changes across levels.

The weight for a particular level is defined as (1/Nx+1/Ny)
−1, where Nx and Ny are the number

of cells in groups X and Y, respectively, for that level. This is inversely proportional to the expected
variance of the log-fold change, provided that all groups and blocking levels have the same variance.

When comparing two groups, blocking levels are ignored if no p-value was reported, e.g., if there
were insufficient cells for a group in a particular level. This includes levels that contain fewer than
two cells for either group, as this cannot yield a p-value from the Welch t-test. If all levels are
ignored in this manner, the entire comparison will only contain NA p-values and a warning will be
emitted.

Regressing out unwanted factors

If design is specified, a linear model is instead fitted to the expression profile for each gene. This
linear model will include the groups as well as any blocking factors in design. A t-test is then
performed to identify DEGs between pairs of groups, using the values of the relevant coefficients
and the gene-wise residual variance.

Note that design must be full rank when combined with the groups terms, i.e., there should not be
any confounding variables. We make an exception for the common situation where design contains
an "(Intercept)" column, which is automatically detected and removed (emitting a warning along
the way).

We recommend using block instead of design for uninteresting categorical factors of variation.
The former accommodates differences in the variance of expression in each group via Welch’s t-
test. As a result, it is more robust to misspecification of the groups, as misspecified groups (and
inflated variances) do not affect the inferences for other groups. Use of block also avoids assuming
additivity of effects between the blocking factors and the groups.

Nonetheless, use of design is unavoidable when blocking on real-valued covariates. It is also
useful for ensuring that log-fold changes/p-values are computed for comparisons between all pairs
of groups (assuming that design is not confounded with the groups). This may not be the case with
block if a pair of groups never co-occur in a single blocking level.

82 pairwiseWilcox

Author(s)

Aaron Lun

References

Whitlock MC (2005). Combining probability from independent tests: the weighted Z-method is
superior to Fisher’s approach. J. Evol. Biol. 18, 5:1368-73.

Soneson C and Robinson MD (2018). Bias, robustness and scalability in single-cell differential
expression analysis. Nat. Methods

Lun ATL (2018). Comments on marker detection in scran. https://ltla.github.io/SingleCellThoughts/
software/marker_detection/comments.html

See Also

t.test, on which this function is based.

combineMarkers, to combine pairwise comparisons into a single DataFrame per group.

getTopMarkers, to obtain the top markers from each pairwise comparison.

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Any clustering method is okay.
kout <- kmeans(t(logcounts(sce)), centers=3)

Vanilla application:
out <- pairwiseTTests(logcounts(sce), groups=kout$cluster)
out

Directional with log-fold change threshold:
out <- pairwiseTTests(logcounts(sce), groups=kout$cluster,

direction="up", lfc=0.2)
out

pairwiseWilcox Perform pairwise Wilcoxon rank sum tests

Description

Perform pairwise Wilcoxon rank sum tests between groups of cells, possibly after blocking on
uninteresting factors of variation.

https://ltla.github.io/SingleCellThoughts/software/marker_detection/comments.html
https://ltla.github.io/SingleCellThoughts/software/marker_detection/comments.html

pairwiseWilcox 83

Usage

pairwiseWilcox(x, ...)

S4 method for signature 'ANY'
pairwiseWilcox(
x,
groups,
block = NULL,
restrict = NULL,
exclude = NULL,
direction = c("any", "up", "down"),
lfc = 0,
log.p = FALSE,
gene.names = NULL,
subset.row = NULL,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
pairwiseWilcox(x, ..., assay.type = "logcounts")

S4 method for signature 'SingleCellExperiment'
pairwiseWilcox(x, groups = colLabels(x, onAbsence = "error"), ...)

Arguments

x A numeric matrix-like object of normalized (and possibly log-transformed) ex-
pression values, where each column corresponds to a cell and each row corre-
sponds to an endogenous gene.
Alternatively, a SummarizedExperiment or SingleCellExperiment object con-
taining such a matrix.

... For the generic, further arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

groups A vector of length equal to ncol(x), specifying the group assignment for each
cell. If x is a SingleCellExperiment, this is automatically derived from colLabels.

block A factor specifying the blocking level for each cell.

restrict A vector specifying the levels of groups for which to perform pairwise compar-
isons.

exclude A vector specifying the levels of groups for which not to perform pairwise
comparisons.

direction A string specifying the direction of differences to be considered in the alternative
hypothesis.

lfc Numeric scalar specifying the minimum log-fold change for one observation to
be considered to be “greater” than another.

log.p A logical scalar indicating if log-transformed p-values/FDRs should be returned.

gene.names Deprecated, use row.data in findMarkers instead to add custom annotation.

84 pairwiseWilcox

subset.row See ?"scran-gene-selection".

BPPARAM A BiocParallelParam object indicating whether and how parallelization should
be performed across genes.

assay.type A string specifying which assay values to use, usually "logcounts".

Details

This function performs Wilcoxon rank sum tests to identify differentially expressed genes (DEGs)
between pairs of groups of cells. A list of tables is returned where each table contains the statistics
for all genes for a comparison between each pair of groups. This can be examined directly or used
as input to combineMarkers for marker gene detection.

The effect size for each gene in each comparison is reported as the area under the curve (AUC).
Consider the distribution of expression values for gene X within each of two groups A and B. The
AUC is the probability that a randomly selected cell in A has a greater expression of X than a
randomly selected cell in B. (Ties are assumed to be randomly broken.) Concordance probabilities
near 0 indicate that most observations in A are lower than most observations in B; conversely,
probabilities near 1 indicate that most observations in A are higher than those in B. The Wilcoxon
rank sum test effectively tests for significant deviations from an AUC of 0.5.

Wilcoxon rank sum tests are more robust to outliers and insensitive to non-normality, in contrast to
t-tests in pairwiseTTests. However, they take longer to run, the effect sizes are less interpretable,
and there are more subtle violations of its assumptions in real data. For example, the i.i.d. assump-
tions are unlikely to hold after scaling normalization due to differences in variance. Also note that
we approximate the distribution of the Wilcoxon rank sum statistic to deal with large numbers of
cells and ties.

If restrict is specified, comparisons are only performed between pairs of groups in restrict.
This can be used to focus on DEGs distinguishing between a subset of the groups (e.g., closely
related cell subtypes).

If exclude is specified, comparisons are not performed between groups in exclude. Similarly, if
any entries of groups are NA, the corresponding cells are are ignored.

Value

A list is returned containing statistics and pairs.

The statistics element is itself a list of DataFrames. Each DataFrame contains the statistics for
a comparison between a pair of groups, including the AUCs, p-values and false discovery rates.

The pairs element is a DataFrame with one row corresponding to each entry of statistics.
This contains the fields first and second, specifying the two groups under comparison in the
corresponding DataFrame in statistics.

In each DataFrame in statistics, the AUC represents the probability of sampling a value in the
first group greater than a random value from the second group.

Direction and magnitude of the effect

If direction="any", two-sided Wilcoxon rank sum tests will be performed for each pairwise com-
parisons between groups of cells. Otherwise, one-sided tests in the specified direction will be used
instead. This can be used to focus on genes that are upregulated in each group of interest, which is
often easier to interpret.

To interpret the setting of direction, consider the DataFrame for group X, in which we are com-
paring to another group Y. If direction="up", genes will only be significant in this DataFrame if

pairwiseWilcox 85

they are upregulated in group X compared to Y. If direction="down", genes will only be signif-
icant if they are downregulated in group X compared to Y. See ?wilcox.test for more details on
the interpretation of one-sided Wilcoxon rank sum tests.

Users can also specify a log-fold change threshold in lfc to focus on genes that exhibit large shifts
in location. This is equivalent to specifying the mu parameter in wilcox.test with some additional
subtleties depending on direction:

• If direction="any", the null hypothesis is that the true shift lies in [-lfc, lfc]. Two one-
sided p-values are computed against the boundaries of this interval by shifting X’s expression
values to either side by lfc, and these are combined to obtain a (conservative) two-sided
p-value.

• If direction="up", the null hypothesis is that the true shift is less than or equal to lfc. A
one-sided p-value is computed against the boundary of this interval.

• If direction="down", the null hypothesis is that the true shift is greater than or equal to -lfc.
A one-sided p-value is computed against the boundary of this interval.

The AUC is conveniently derived from the U-statistic used in the test, which ensures that it is
always consistent with the reported p-value. An interesting side-effect is that the reported AUC is
dependent on both the specified lfc and direction.

• If direction="up", the AUC is computed after shifting X’s expression values to the left by
the specified lfc. An AUC above 0.5 means that X’s values are “greater” than Y’s, even after
shifting down the former by lfc. This is helpful as a large AUC tells us that X and Y are
well-separated by at least lfc. However, an AUC below 0.5 cannot be interpreted as “X is
lower than Y”, only that “X - lfc is lower than Y”.

• If direction="down", the AUC is computed after shifting X’s expression values to the right
by the specified lfc. An AUC below 0.5 means that X’s values are “lower” than Y’s, even
after shifting up the former by lfc. This is helpful as a low AUC tells us that X and Y are
well-separated by at least lfc. However, an AUC above 0.5 cannot be interpreted as “X is
greater than Y”, only that “X + lfc is greater than Y”.

• If direction="any", the AUC is computed by averaging the AUCs obtained in each of the
two one-sided tests, i.e., after shifting in each direction. This considers an observation of Y
to be tied with an observation of X if their absolute difference is less than lfc. (Technically,
the test procedure should also consider these to be ties to be fully consistent, but we have not
done so for simplicity.) The AUC can be interpreted as it would be for lfc=0, i.e., above 0.5
means that X is greater than Y and below 0.5 means that X is less than Y.

Blocking on uninteresting factors

If block is specified, Wilcoxon tests are performed between groups of cells within each level of
block. For each pair of groups, the p-values for each gene across all levels of block are combined
using Stouffer’s Z-score method. The reported AUC is also a weighted average of the AUCs across
all levels.

The weight for a particular level of block is defined as NxNy , where Nx and Ny are the number
of cells in groups X and Y, respectively, for that level. This means that p-values from blocks with
more cells will have a greater contribution to the combined p-value for each gene.

When combining across batches, one-sided p-values in the same direction are combined first. Then,
if direction="any", the two combined p-values from both directions are combined. This ensures
that a gene only receives a low overall p-value if it changes in the same direction across batches.

When comparing two groups, blocking levels are ignored if no p-value was reported, e.g., if there
were insufficient cells for a group in a particular level. If all levels are ignored in this manner, the
entire comparison will only contain NA p-values and a warning will be emitted.

86 pseudoBulkDGE

Author(s)

Aaron Lun

References

Whitlock MC (2005). Combining probability from independent tests: the weighted Z-method is
superior to Fisher’s approach. J. Evol. Biol. 18, 5:1368-73.

Soneson C and Robinson MD (2018). Bias, robustness and scalability in single-cell differential
expression analysis. Nat. Methods

See Also

wilcox.test, on which this function is based.

combineMarkers, to combine pairwise comparisons into a single DataFrame per group.

getTopMarkers, to obtain the top markers from each pairwise comparison.

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Any clustering method is okay.
kout <- kmeans(t(logcounts(sce)), centers=2)

Vanilla application:
out <- pairwiseWilcox(logcounts(sce), groups=kout$cluster)
out

Directional and with a minimum log-fold change:
out <- pairwiseWilcox(logcounts(sce), groups=kout$cluster,

direction="up", lfc=0.2)
out

pseudoBulkDGE Quickly perform pseudo-bulk DE analyses

Description

A wrapper function around edgeR’s quasi-likelihood methods to conveniently perform differen-
tial expression analyses on pseudo-bulk profiles, allowing detection of cell type-specific changes
between conditions in replicated studies.

Usage

pseudoBulkDGE(x, ...)

S4 method for signature 'ANY'
pseudoBulkDGE(
x,

pseudoBulkDGE 87

col.data,
label,
design,
coef,
contrast = NULL,
condition = NULL,
lfc = 0,
include.intermediates = TRUE,
row.data = NULL,
sorted = FALSE,
method = c("edgeR", "voom"),
qualities = TRUE,
robust = TRUE,
sample = NULL

)

S4 method for signature 'SummarizedExperiment'
pseudoBulkDGE(x, col.data = colData(x), ..., assay.type = 1)

Arguments

x A numeric matrix of counts where rows are genes and columns are pseudo-
bulk profiles. Alternatively, a SummarizedExperiment object containing such a
matrix in its assays.

... For the generic, additional arguments to pass to individual methods.
For the SummarizedExperiment method, additional arguments to pass to the
ANY method.

col.data A data.frame or DataFrame containing metadata for each column of x.

label A vector of factor of length equal to ncol(x), specifying the cluster or cell type
assignment for each column of x.

design A formula to be used to construct a design matrix from variables in col.data.
Alternatively, a function that accepts a data.frame with the same fields as col.data
and returns a design matrix.

coef String or character vector containing the coefficients to drop from the design
matrix to form the null hypothesis. Can also be an integer scalar or vector spec-
ifying the indices of the relevant columns.

contrast Numeric vector or matrix containing the contrast of interest. Alternatively, a
character vector to be passed to makeContrasts to create this numeric vec-
tor/matrix. If specified, this takes precedence over coef.

condition A vector or factor of length equal to ncol(x), specifying the experimental con-
dition for each column of x. Only used for abundance-based filtering of genes.

lfc Numeric scalar specifying the log-fold change threshold to use in glmTreat or
treat.

include.intermediates

Logical scalar indicating whether the intermediate edgeR objects should be re-
turned.

row.data A DataFrame containing additional row metadata for each gene in x, to be in-
cluded in each of the output DataFrames. This should have the same number
and order of rows as x.

sorted Logical scalar indicating whether the output tables should be sorted by p-value.

88 pseudoBulkDGE

method String specifying the DE analysis framework to use.

qualities Logical scalar indicating whether quality weighting should be used when method="voom",
see voomWithQualityWeights for more details.

robust Logical scalar indicating whether robust empirical Bayes shrinkage should be
performed.

sample Deprecated.

assay.type String or integer scalar specifying the assay to use from x.

Details

In replicated multi-condition scRNA-seq experiments, we often have clusters comprised of cells
from different samples of different experimental conditions. It is often desirable to check for differ-
ential expression between conditions within each cluster, allowing us to identify cell-type-specific
responses to the experimental perturbation.

Given a set of pseudo-bulk profiles (usually generated by sumCountsAcrossCells), this function
loops over the labels and uses edgeR or voom to detect DE genes between conditions. The DE
analysis for each label is largely the same as a standard analysis for bulk RNA-seq data, using
design and coef or contrast as described in the edgeR or limma user guides. Generally speaking,
edgeR handles low counts better via its count-based model but method="voom" supports variable
sample precision when quality=TRUE.

Performing pseudo-bulk DGE enables us to reuse well-tested methods developed for bulk RNA-
seq data analysis. Each pseudo-bulk profile can be treated as an in silico mimicry of a real bulk
RNA-seq sample (though in practice, it tends to be much more variable due to the lower numbers
of cells). This also models the relevant variability between experimental replicates (i.e., across
samples) rather than that between cells in the same sample, without resorting to expensive mixed-
effects models.

The DE analysis for each label is independent of that for any other label. This aims to minimize
problems due to differences in abundance and variance between labels, at the cost of losing the
ability to share information across labels.

In some cases, it will be impossible to perform a DE analysis for a label. The most obvious reason
is if there are no residual degrees of freedom; other explanations include impossible contrasts or a
failure to construct an appropriate design matrix (e.g., if a cell type only exists in one condition).

Note that we assume that x has already been filtered to remove unstable pseudo-bulk profiles gen-
erated from few cells.

Value

A List with one DataFrame of DE results per unique (non-failed) level of cluster. This contains
columns from topTags if method="edgeR" or topTable if method="voom". All DataFrames have
row names equal to rownames(x).

The metadata of the List contains failed, a character vector with the names of the labels for which
the comparison could not be performed - see Details.

The metadata of the individual DataFrames contains design, the final design matrix for that label.
If include.intermediates, the metadata will also contain y, the DGEList used for the analysis;
and fit, the DGEGLM object after GLM fitting.

Comments on abundance filtering

For each label, abundance filtering is performed using filterByExpr prior to further analysis.
Genes that are filtered out will still show up in the DataFrame for that label, but with all statistics

pseudoBulkDGE 89

set to NA. As this is done separately for each label, a different set of genes may be filtered out for
each label, which is largely to be expected if there is any label-specific expression.

By default, the minimum group size for filterByExpr is determined using the design matrix. How-
ever, this may not be optimal if the design matrix contains additional terms (e.g., blocking factors)
in which case it is not easy to determine the minimum size of the groups relevant to the comparison
of interest. To overcome this, users can specify condition.field to specify the group to which
each sample belongs, which is used by filterByExpr to obtain a more appropriate minimum group
size.

Author(s)

Aaron Lun

References

Tung P-Y et al. (2017). Batch effects and the effective design of single-cell gene expression studies.
Sci. Rep. 7, 39921

Lun ATL and Marioni JC (2017). Overcoming confounding plate effects in differential expression
analyses of single-cell RNA-seq data. Biostatistics 18, 451-464

Crowell HL et al. (2019). On the discovery of population-specific state transitions from multi-
sample multi-condition single-cell RNA sequencing data. biorXiv

See Also

sumCountsAcrossCells, to easily generate the pseudo-bulk count matrix.

decideTestsPerLabel, to generate a summary of the DE results across all labels.

pseudoBulkSpecific, to look for label-specific DE genes.

pbDS from the muscat package, which uses a similar approach.

Examples

set.seed(10000)
library(scuttle)
sce <- mockSCE(ncells=1000)
sce$samples <- gl(8, 125) # Pretending we have 8 samples.

Making up some clusters.
sce <- logNormCounts(sce)
clusters <- kmeans(t(logcounts(sce)), centers=3)$cluster

Creating a set of pseudo-bulk profiles:
info <- DataFrame(sample=sce$samples, cluster=clusters)
pseudo <- sumCountsAcrossCells(sce, info)

Making up an experimental design for our 8 samples.
pseudo$DRUG <- gl(2,4)[pseudo$sample]

DGE analysis:
out <- pseudoBulkDGE(pseudo,

label=pseudo$cluster,
condition=pseudo$DRUG,
design=~DRUG,
coef="DRUG2"

90 pseudoBulkSpecific

)
out[[1]]
metadata(out[[1]])$design

pseudoBulkSpecific Label-specific pseudo-bulk DE

Description

Detect label-specific DE genes in a pseudo-bulk analysis, by testing whether the log-fold change is
more extreme than the average log-fold change of other labels.

Usage

pseudoBulkSpecific(x, ...)

S4 method for signature 'ANY'
pseudoBulkSpecific(
x,
label,
condition = NULL,
...,
method = c("edgeR", "voom"),
sorted = FALSE,
average = c("median", "mean"),
missing.as.zero = FALSE,
reference = NULL

)

S4 method for signature 'SummarizedExperiment'
pseudoBulkSpecific(x, ..., assay.type = 1)

Arguments

x A numeric matrix of counts where rows are genes and columns are pseudo-
bulk profiles. Alternatively, a SummarizedExperiment object containing such a
matrix in its assays.

... For the generic, further arguments to pass to individual methods.
For the ANY method, further arguments to pass to pseudoBulkDGE.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.

label A vector of factor of length equal to ncol(x), specifying the cluster or cell type
assignment for each column of x.

condition A vector or factor of length equal to ncol(x), specifying the experimental con-
dition for each column of x. Only used for abundance-based filtering of genes.

method String specifying the DE analysis framework to use.

sorted Logical scalar indicating whether the output tables should be sorted by p-value.

average String specifying the method to compute the average log-fold change of all other
labels.

pseudoBulkSpecific 91

missing.as.zero

Logical scalar indicating whether missing log-fold changes should be set to zero.

reference A List containing the (unsorted) output of pseudoBulkDGE. This can be supplied
to avoid redundant calculations but is automatically computed if NULL.

assay.type String or integer scalar specifying the assay to use from x.

Details

This function implements a quick and dirty method for detecting label-specific DE genes. For a
given label and gene, the null hypothesis is that the log-fold change lies between zero and the
average log-fold change for that gene across all other labels. Genes that reject this null either have
log-fold changes in the opposite sign or are significantly more extreme than the average.

To implement this, we test each gene against the two extremes and taking the larger of the two
p-values. The p-value is set to 1 if the log-fold change lies between the extremes. This is somewhat
similar to how treat might behave if the null interval was not centered at zero; however, our
approach is more conservative than the treat as the p-value calculations are not quite correct.

It is worth stressing that there are no guarantees that the DE genes detected in this manner are
truly label-specific. For any label and DEG, there may be one or more labels with stronger log-
fold changes, but the average may be pulled towards zero by other labels with weaker or opposing
effects. The use of the average is analogous to recommendations in the edgeR user’s guide for
testing against multiple groups. However, a more stringent selection can be achieved by applying
gates on decideTestsPerLabel.

Note that, if lfc is specified in the arguments to pseudoBulkDGE, the null interval is expanded in
both directions by the specified value.

Value

A List of DataFrames where each DataFrame contains DE statistics for one label. This is equivalent
to the output of pseudoBulkDGE; if reference is supplied, most of the statistics will be identical to
those reported there.

The main differences are that the p-values and FDR values are changed. Each DataFrame also has
an OtherAverage field containing the average log-fold change across all other labels.

Computing the average

The average log-fold change for each gene is computed by taking the median or mean (depending
on average) of the corresponding log-fold changes in each of the DE analyses for the other labels.
We use the median by default as this means that at least half of all other labels should have weaker
or opposing effects.

By default, low-abundance genes that were filtered out in a comparison do not contribute to the
average. Any log-fold changes that could be computed from them are considered to be too unstable.
If the gene is filtered out in all other labels, the average is set to zero for testing but is reported as
NA.

If missing.as.zero=TRUE, the log-fold changes for all filtered genes are set to zero. This is useful
when a gene is only expressed in the subset of labels and is consistently DEG in each comparison
of the subset. Testing against the average computed from only those labels in the subset would fail
to detect this DEG as subset-specific.

Author(s)

Aaron Lun

92 quickCluster

See Also

pseudoBulkDGE, for the underlying function that does all the heavy lifting.

Examples

set.seed(10000)
library(scuttle)
sce <- mockSCE(ncells=1000)
sce$samples <- gl(8, 125) # Pretending we have 8 samples.

Making up some clusters.
sce <- logNormCounts(sce)
clusters <- kmeans(t(logcounts(sce)), centers=3)$cluster

Creating a set of pseudo-bulk profiles:
info <- DataFrame(sample=sce$samples, cluster=clusters)
pseudo <- sumCountsAcrossCells(sce, info)

Making up an experimental design for our 8 samples
and adding a common DEG across all labels.
pseudo$DRUG <- gl(2,4)[pseudo$sample]
assay(pseudo)[1,pseudo$DRUG==1] <- assay(pseudo)[1,pseudo$DRUG==1] * 10

Label-specific analysis (note behavior of the first gene).
out <- pseudoBulkSpecific(pseudo,

label=pseudo$cluster,
condition=pseudo$DRUG,
design=~DRUG,
coef="DRUG2"

)

out[[1]]

quickCluster Quick clustering of cells

Description

Cluster similar cells based on their expression profiles, using either log-expression values or ranks.

Usage

quickCluster(x, ...)

S4 method for signature 'ANY'
quickCluster(
x,
min.size = 100,
method = c("igraph", "hclust"),
use.ranks = FALSE,
d = NULL,
subset.row = NULL,

quickCluster 93

min.mean = NULL,
graph.fun = "walktrap",
BSPARAM = bsparam(),
BPPARAM = SerialParam(),
block = NULL,
block.BPPARAM = SerialParam(),
...

)

S4 method for signature 'SummarizedExperiment'
quickCluster(x, ..., assay.type = "counts")

Arguments

x A numeric count matrix where rows are genes and columns are cells.
Alternatively, a SummarizedExperiment object containing such a matrix.

... For the generic, further arguments to pass to specific methods.
For the ANY method, additional arguments to be passed to NNGraphParam for
method="igraph", or to be included in cut.params argument for HclustParam
when method="hclust".
For the SummarizedExperiment method, additional arguments to pass to the
ANY method.

min.size An integer scalar specifying the minimum size of each cluster.

method String specifying the clustering method to use. "hclust" uses hierarchical clus-
tering while "igraph" uses graph-based clustering.

use.ranks A logical scalar indicating whether clustering should be performed on the rank
matrix, i.e., based on Spearman’s rank correlation.

d An integer scalar specifying the number of principal components to retain. If
d=NULL and use.ranks=TRUE, this defaults to 50. If d=NULL and use.rank=FALSE,
the number of PCs is chosen by denoisePCA. If d=NA, no dimensionality reduc-
tion is performed and the gene expression values (or their rank equivalents) are
directly used in clustering.

subset.row See ?"scran-gene-selection".

min.mean A numeric scalar specifying the filter to be applied on the average count for
each filter prior to computing ranks. Only used when use.ranks=TRUE, see
?scaledColRanks for details.

graph.fun A function specifying the community detection algorithm to use on the nearest
neighbor graph when method="igraph". Usually obtained from the igraph
package.

BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA, if d is not
NA.

BPPARAM A BiocParallelParam object to use for parallel processing within each block.

block A factor of length equal to ncol(x) specifying whether clustering should be
performed within pre-specified blocks. By default, all columns in x are treated
as a single block.

block.BPPARAM A BiocParallelParam object specifying whether and how parallelization should
be performed across blocks, if block is non-NULL and has more than one level.

assay.type A string specifying which assay values to use.

94 quickCluster

Details

This function provides a convenient wrapper to quickly define clusters of a minimum size min.size.
Its intended use is to generate “quick and dirty” clusters for use in computeSumFactors. Two
clustering strategies are available:

• If method="hclust", a distance matrix is constructed; hierarchical clustering is performed
using Ward’s criterion; and cutreeDynamic is used to define clusters of cells.

• If method="igraph", a shared nearest neighbor graph is constructed using the buildSNNGraph
function. This is used to define clusters based on highly connected communities in the graph,
using the graph.fun function.

By default, quickCluster will apply these clustering algorithms on the principal component (PC)
scores generated from the log-expression values. These are obtained by running denoisePCA on
HVGs detected using the trend fitted to endogenous genes with modelGeneVar. If d is specified, the
PCA is directly performed on the entire x and the specified number of PCs is retained.

It is also possible to use the clusters from this function for actual biological interpretation. In such
cases, users should set min.size=0 to avoid aggregation of small clusters. However, it is often
better to call the relevant functions (modelGeneVar, denoisePCA and buildSNNGraph) manually as
this provides more opportunities for diagnostics when the meaning of the clusters is important.

Value

A character vector of cluster identities for each cell in x.

Clustering within blocks

We can break up the dataset by specifying block to cluster cells, usually within each batch or run.
This generates clusters within each level of block, which is entirely adequate for applications like
computeSumFactors where the aim of clustering is to separate dissimilar cells rather than group
together all similar cells. Blocking reduces computational work considerably by allowing each level
to be processed independently, without compromising performance provided that there are enough
cells within each batch.

Indeed, for applications like computeSumFactors, we can use block even in the absence of any
known batch structure. Specifically, we can set it to an arbitrary factor such as block=cut(seq_len(ncol(x)),
10) to split the cells into ten batches of roughly equal size. This aims to improve speed, especially
when combined with block.PARAM to parallelize processing of the independent levels.

Using ranks

If use.ranks=TRUE, clustering is instead performed on PC scores obtained from scaled and centred
ranks generated by scaledColRanks. This effectively means that clustering uses distances based
on the Spearman’s rank correlation between two cells. In addition, if x is a dgCMatrix and BSPARAM
has deferred=TRUE, ranks will be computed without loss of sparsity to improve speed and memory
efficiency during PCA.

When use.ranks=TRUE, the function will filter out genes with average counts (as defined by calculateAverage)
below min.mean prior to computing ranks. This removes low-abundance genes with many tied
ranks, especially due to zeros, which may reduce the precision of the clustering. We suggest setting
min.mean to 1 for read count data and 0.1 for UMI data - the function will automatically try to
determine this from the data if min.mean=NULL.

Setting use.ranks=TRUE is invariant to scaling normalization and avoids circularity between nor-
malization and clustering, e.g., in computeSumFactors. However, the default is to use the log-
expression values with use.ranks=FALSE, as this yields finer and more precise clusters.

quickCluster 95

Enforcing cluster sizes

With method="hclust", cutreeDynamic is used to ensure that all clusters contain a minimum
number of cells. However, some cells may not be assigned to any cluster and are assigned identities
of "0" in the output vector. In most cases, this is because those cells belong in a separate cluster with
fewer than min.size cells. The function will not be able to call this as a cluster as the minimum
threshold on the number of cells has not been passed. Users are advised to check that the unassigned
cells do indeed form their own cluster. Otherwise, it may be necessary to use a different clustering
algorithm.

When using method="igraph", clusters are first identified using the specified graph.fun. If the
smallest cluster contains fewer cells than min.size, it is merged with the closest neighbouring
cluster. In particular, the function will attempt to merge the smallest cluster with each other cluster.
The merge that maximizes the modularity score is selected, and a new merged cluster is formed.
This process is repeated until all (merged) clusters are larger than min.size.

Author(s)

Aaron Lun and Karsten Bach

References

van Dongen S and Enright AJ (2012). Metric distances derived from cosine similarity and Pearson
and Spearman correlations. arXiv 1208.3145

Lun ATL, Bach K and Marioni JC (2016). Pooling across cells to normalize single-cell RNA
sequencing data with many zero counts. Genome Biol. 17:75

See Also

computeSumFactors, where the clustering results can be used as clusters=.

buildSNNGraph, for additional arguments to customize the clustering when method="igraph".

cutreeDynamic, for additional arguments to customize the clustering when method="hclust".

scaledColRanks, to get the rank matrix that was used with use.rank=TRUE.

quickSubCluster, for a related function that uses a similar approach for subclustering.

Examples

library(scuttle)
sce <- mockSCE()

Basic application (lowering min.size for this small demo):
clusters <- quickCluster(sce, min.size=50)
table(clusters)

Operating on ranked expression values:
clusters2 <- quickCluster(sce, min.size=50, use.ranks=TRUE)
table(clusters2)

Using hierarchical clustering:
clusters <- quickCluster(sce, min.size=50, method="hclust")
table(clusters)

96 quickSubCluster

quickSubCluster Quick and dirty subclustering

Description

Performs a quick subclustering for all cells within each group.

Usage

quickSubCluster(x, ...)

S4 method for signature 'ANY'
quickSubCluster(x, normalize = TRUE, ...)

S4 method for signature 'SummarizedExperiment'
quickSubCluster(x, ...)

S4 method for signature 'SingleCellExperiment'
quickSubCluster(
x,
groups,
normalize = TRUE,
restricted = NULL,
prepFUN = NULL,
min.ncells = 50,
clusterFUN = NULL,
BLUSPARAM = NNGraphParam(),
format = "%s.%s",
assay.type = "counts",
simplify = FALSE

)

Arguments

x A matrix of counts or log-normalized expression values (if normalize=FALSE),
where each row corresponds to a gene and each column corresponds to a cell.
Alternatively, a SummarizedExperiment or SingleCellExperiment object con-
taining such a matrix.

... For the generic, further arguments to pass to specific methods.
For the ANY and SummarizedExperiment methods, further arguments to pass
to the SingleCellExperiment method.

normalize Logical scalar indicating whether each subset of x should be log-transformed
prior to further analysis.

groups A vector of group assignments for all cells, usually corresponding to cluster
identities.

restricted Character vector containing the subset of groups in groups to be subclustered.
By default, all unique groups in groups are used for subclustering, but this can
be restricted to specific groups of interest to save compute time.

quickSubCluster 97

prepFUN A function that accepts a single SingleCellExperiment object and returns another
SingleCellExperiment containing any additional elements required for cluster-
ing (e.g., PCA results).

min.ncells An integer scalar specifying the minimum number of cells in a group to be
considered for subclustering.

clusterFUN A function that accepts a single SingleCellExperiment object and returns a vec-
tor of cluster assignments for each cell in that object.

BLUSPARAM A BlusterParam object that is used to specify the clustering via clusterRows.
Only used when clusterFUN=NULL.

format A string to be passed to sprintf, specifying how the subclusters should be
named with respect to the parent level in groups and the level returned by
clusterFUN.

assay.type String or integer scalar specifying the relevant assay.

simplify Logical scalar indicating whether just the subcluster assignments should be re-
turned.

Details

quickSubCluster is a simple convenience function that loops over all levels of groups to perform
subclustering. It subsets x to retain all cells in one level and then runs prepFUN and clusterFUN to
cluster them. Levels with fewer than min.ncells are not subclustered and have "subcluster" set
to the name of the level.

The distinction between prepFUN and clusterFUN is that the former’s calculations are preserved
in the output. For example, we would put the PCA in prepFUN so that the PCs are returned in the
reducedDims for later use. In contrast, clusterFUN is only used to obtain the subcluster assign-
ments so any intermediate objects are lost.

By default, prepFUN will run modelGeneVar, take the top 10 clusterFUN will then perform clus-
tering on the PC matrix with clusterRows and BLUSPARAM. Either or both of these functions can be
replaced with custom functions.

The default behavior of this function is the same as running quickCluster on each subset with
default parameters except for min.size=0.

Value

By default, a named List of SingleCellExperiment objects. Each object corresponds to a level of
groups and contains a "subcluster" column metadata field with the subcluster identities for each
cell. The metadata of the List also contains index, a list of integer vectors specifying the cells in
x in each returned SingleCellExperiment object; and subcluster, a character vector of subcluster
identities (see next). If restricted is not NULL, only the specified groups in restricted will be
present in the output List.

If simplify=TRUE, the character vector of subcluster identities is returned. This is of length equal
to ncol(x) and each entry follows the format defined in format. The only exceptions are if the
number of cells in the parent cluster is less than min.cells, or parent cluster is not listed in a
non-NULL value of restricted. In such cases, the parent cluster’s name is used instead.

Author(s)

Aaron Lun

98 rhoToPValue

See Also

quickCluster, for a related function to quickly obtain clusters.

Examples

library(scuttle)
sce <- mockSCE(ncells=200)

Lowering min.size for this small demo:
clusters <- quickCluster(sce, min.size=50)

Getting subclusters:
out <- quickSubCluster(sce, clusters)

Defining custom prep functions:
out2 <- quickSubCluster(sce, clusters,

prepFUN=function(x) {
dec <- modelGeneVarWithSpikes(x, "Spikes")
top <- getTopHVGs(dec, prop=0.2)
scater::runPCA(x, subset_row=top, ncomponents=25)

}
)

Defining custom cluster functions:
out3 <- quickSubCluster(sce, clusters,

clusterFUN=function(x) {
kmeans(reducedDim(x, "PCA"), sqrt(ncol(x)))$cluster

}
)

rhoToPValue Spearman’s rho to a p-value

Description

Compute an approximate p-value against the null hypothesis that Spearman’s rho is zero. This
vectorizes the approximate p-value calculation in cor.test with method="spearman".

Usage

rhoToPValue(rho, n, positive = NULL)

Arguments

rho Numeric vector of rho values.

n Integer scalar specifying the number of observations used to compute rho.

positive Logical scalar indicating whether to perform a one-sided test for the alternative
of a positive (TRUE) or negative rho (FALSE). Default is to return statistics for
both directions.

sandbag 99

Value

If positive=NULL, a list of two numeric vectors is returned, containing p-values for the test against
the alternative hypothesis in each direction.

Otherwise, a numeric vector is returned containing the p-values for the test in the specified direction.

Author(s)

Aaron Lun

Examples

rhoToPValue(seq(-1, 1, 21), 50)

sandbag Cell cycle phase training

Description

Use gene expression data to train a classifier for cell cycle phase.

Usage

sandbag(x, ...)

S4 method for signature 'ANY'
sandbag(x, phases, gene.names = rownames(x), fraction = 0.5, subset.row = NULL)

S4 method for signature 'SummarizedExperiment'
sandbag(x, ..., assay.type = "counts")

Arguments

x A numeric matrix of gene expression values where rows are genes and columns
are cells.
Alternatively, a SummarizedExperiment object containing such a matrix.

... For the generic, additional arguments to pass to specific methods.
For the SummarizedExperiment method, additional arguments to pass to the
ANY method.

phases A list of subsetting vectors specifying which cells are in each phase of the cell
cycle. This should typically be of length 3, with elements named as "G1", "S"
and "G2M".

gene.names A character vector of gene names.

fraction A numeric scalar specifying the minimum fraction to define a marker gene pair.

subset.row See ?"scran-gene-selection".

assay.type A string specifying which assay values to use, e.g., "counts" or "logcounts".

100 sandbag

Details

This function implements the training step of the pair-based prediction method described by Scial-
done et al. (2015). Pairs of genes (A, B) are identified from a training data set where in each
pair, the fraction of cells in phase G1 with expression of A > B (based on expression values in
training.data) and the fraction with B > A in each other phase exceeds fraction. These pairs
are defined as the marker pairs for G1. This is repeated for each phase to obtain a separate marker
pair set.

Pre-defined sets of marker pairs are provided for mouse and human (see Examples). The mouse set
was generated as described by Scialdone et al. (2015), while the human training set was generated
with data from Leng et al. (2015). Classification from test data can be performed using the cyclone
function. For each cell, this involves comparing expression values between genes in each marker
pair. The cell is then assigned to the phase that is consistent with the direction of the difference in
expression in the majority of pairs.

Value

A named list of data.frames, where each data frame corresponds to a cell cycle phase and contains
the names of the genes in each marker pair.

Author(s)

Antonio Scialdone, with modifications by Aaron Lun

References

Scialdone A, Natarajana KN, Saraiva LR et al. (2015). Computational assignment of cell-cycle
stage from single-cell transcriptome data. Methods 85:54–61

Leng N, Chu LF, Barry C et al. (2015). Oscope identifies oscillatory genes in unsynchronized
single-cell RNA-seq experiments. Nat. Methods 12:947–50

See Also

cyclone, to perform the classification on a test dataset.

Examples

library(scuttle)
sce <- mockSCE(ncells=50, ngenes=200)

is.G1 <- 1:20
is.S <- 21:30
is.G2M <- 31:50
out <- sandbag(sce, list(G1=is.G1, S=is.S, G2M=is.G2M))
str(out)

Getting pre-trained marker sets
mm.pairs <- readRDS(system.file("exdata", "mouse_cycle_markers.rds", package="scran"))
hs.pairs <- readRDS(system.file("exdata", "human_cycle_markers.rds", package="scran"))

scaledColRanks 101

scaledColRanks Compute scaled column ranks

Description

Compute scaled column ranks from each cell’s expression profile for distance calculations based on
rank correlations.

Usage

scaledColRanks(
x,
subset.row = NULL,
min.mean = NULL,
transposed = FALSE,
as.sparse = FALSE,
withDimnames = TRUE,
BPPARAM = SerialParam()

)

Arguments

x A numeric matrix-like object containing cells in columns and features in the
rows.

subset.row A logical, integer or character scalar indicating the rows of x to use, see ?"scran-gene-selection".

min.mean A numeric scalar specifying the filter to be applied on the average normalized
count for each feature prior to computing ranks. Disabled by setting to NULL.

transposed A logical scalar specifying whether the output should be transposed.

as.sparse A logical scalar indicating whether the output should be sparse.

withDimnames A logical scalar specifying whether the output should contain the dimnames of
x.

BPPARAM A BiocParallelParam object specifying whether and how parallelization should
be performed. Currently only used for filtering if min.mean is not provided.

Details

Euclidean distances computed based on the output rank matrix are equivalent to distances computed
from Spearman’s rank correlation. This can be used in clustering, nearest-neighbour searches, etc.
as a robust alternative to Euclidean distances computed directly from x.

If as.sparse=TRUE, the most common average rank is set to zero in the output. This can be useful
for highly sparse input data where zeroes have the same rank and are themselves returned as zeroes.
Obviously, this means that the ranks are not centred, so this will have to be done manually prior to
any downstream distance calculations.

Value

A matrix of the same dimensions as x, where each column contains the centred and scaled ranks
of the expression values for each cell. If transposed=TRUE, this matrix is transposed so that rows
correspond to cells. If as.sparse, the columns are not centered to preserve sparsity.

102 scoreMarkers

Author(s)

Aaron Lun

See Also

quickCluster, where this function is used.

Examples

library(scuttle)
sce <- mockSCE()
rout <- scaledColRanks(counts(sce), transposed=TRUE)

For use in clustering:
d <- dist(rout)
table(cutree(hclust(d), 4))

g <- buildSNNGraph(rout, transposed=TRUE)
table(igraph::cluster_walktrap(g)$membership)

scoreMarkers Score marker genes

Description

Compute various summary scores for potential marker genes to distinguish between groups of cells.

Usage

scoreMarkers(x, ...)

S4 method for signature 'ANY'
scoreMarkers(
x,
groups,
block = NULL,
pairings = NULL,
lfc = 0,
row.data = NULL,
full.stats = FALSE,
subset.row = NULL,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
scoreMarkers(x, groups, ..., assay.type = "logcounts")

S4 method for signature 'SingleCellExperiment'
scoreMarkers(x, groups = colLabels(x, onAbsence = "error"), ...)

scoreMarkers 103

Arguments

x A matrix-like object containing log-normalized expression values, with genes
in rows and cells in columns. Alternatively, a SummarizedExperiment object
containing such a matrix in its assays.

... For the generic, further arguments to pass to individual methods.

For the SummarizedExperiment method, further arguments to pass to the ANY
method.

For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

groups A factor or vector containing the identity of the group for each cell in x.

block A factor or vector specifying the blocking level for each cell in x.

pairings A vector, list or matrix specifying how the comparisons are to be performed, see
details.

lfc Numeric scalar specifying the log-fold change threshold to compute effect sizes
against.

row.data A DataFrame with the same number and names of rows in x, containing extra
information to insert into each DataFrame.

full.stats Logical scalar indicating whether the statistics from the pairwise comparisons
should be directly returned.

subset.row See ?"scran-gene-selection".

BPPARAM A BiocParallelParam object specifying how the calculations should be paral-
lelized.

assay.type String or integer scalar specifying the assay containing the log-expression matrix
to use.

Details

Compared to findMarkers, this function represents a simpler and more intuitive summary of the
differences between the groups. We do this by realizing that the p-values for these types of compar-
isons are largely meaningless; individual cells are not meaningful units of experimental replication,
while the groups themselves are defined from the data. Thus, by discarding the p-values, we can
simplify our marker selection by focusing only on the effect sizes between groups.

Here, the strategy is to perform pairwise comparisons between each pair of groups to obtain various
effect sizes. For each group X , we summarize the effect sizes across all pairwise comparisons
involving that group, e.g., mean, min, max and so on. This yields a DataFrame for each group
where each column contains a different summarized effect and each row corresponds to a gene in
x. Reordering the rows by the summary of choice can yield a ranking of potential marker genes for
downstream analyses.

Value

A List of DataFrames containing marker scores for each gene in each group. Each DataFrame
corresponds to a group and each row corresponds to a gene in x. See Details for information about
the individual columns.

104 scoreMarkers

Choice of effect sizes

The logFC.cohen columns contain the standardized log-fold change, i.e., Cohen’s d. For each
pairwise comparison, this is defined as the difference in the mean log-expression for each group
scaled by the average standard deviation across the two groups. (Technically, we should use the
pooled variance; however, this introduces some unpleasant asymmetry depending on the variance
of the larger group, so we take a simple average instead.) Cohen’s d is analogous to the t-statistic
in a two-sample t-test and avoids spuriously large effect sizes from comparisons between highly
variable groups. We can also interpret Cohen’s d as the number of standard deviations between the
two group means.

The AUC columns contain the area under the curve. This is the probability that a randomly chosen
observation in one group is greater than a randomly chosen observation in the other group. The
AUC is closely related to the U-statistic used in the Wilcoxon rank sum test. Values greater than
0.5 indicate that a gene is upregulated in the first group.

The key difference between the AUC and Cohen’s d is that the former is less sensitive to the variance
within each group. The clearest example is that of two distributions that exhibit no overlap, where
the AUC is the same regardless of the variance of each distribution. This may or may not be
desirable as it improves robustness to outliers but reduces the information available to obtain a
highly resolved ranking. The most appropriate choice of effect size is left at the user’s discretion.

Finally, the logFC.detected columns contain the log-fold change in the proportion of cells with
detected (i.e., non-zero) expression between groups. This is specifically useful for detecting binary
expression patterns, e.g., activation of an otherwise silent gene. Note that the non-zero status of
the data is not altered by normalization, so differences in library size will not be removed when
computing this metric. This effect is not necessarily problematic - users can interpret it as retaining
information about the total RNA content, analogous to spike-in normalization.

Setting a log-fold change threshold

The default settings may yield highly ranked genes with large effect sizes but low log-fold changes
if the variance is low (Cohen’s d) or separation is clear (AUC). Such genes may not be particularly
interesting as the actual change in expression is modest. Setting lfc allows us to focus on genes with
large log-fold changes between groups, by simply shifting the “other” group’s expression values by
lfc before computing effect sizes.

When lfc is not zero, Cohen’s d is generalized to the standardized difference between the observed
log-fold change and lfc. For example, if we had lfc=2 and we obtained a Cohen’s d of 3, this
means that the observed log-fold change was 3 standard deviations above a value of 2. A side effect
is that we can only unambiguously interpret the direction of Cohen’s d when it has the same sign
as lfc. Our above example represents upregulation, but if our Cohen’s d was negative, this could
either mean downregulation or simply that our observed log-fold change was less than lfc.

When lfc is not zero, the AUC is generalized to the probability of obtaining a random observation in
one group that is greater than a random observation plus lfc in the other group. For example, if we
had lfc=2 and we obtained an AUC of 0.8, this means that we would observe a difference of lfc or
greater between the random observations. Again, we can only unambiguously interpret the direction
of the change when it is the same as the sign of the lfc. In this case, an AUC above 0.5 with a
positive lfc represents upregulation, but an AUC below 0.5 could mean either downregulation or a
log-fold change less than lfc.

A non-zero setting of lfc has no effect on the log-fold change in the proportion of cells with
detected expression.

scoreMarkers 105

Computing effect size summaries

To simplify interpretation, we summarize the effect sizes across all pairwise comparisons into a few
key metrics. For each group X , we consider the effect sizes from all pairwise comparisons between
X and other groups. We then compute the following values:

• mean.*, the mean effect size across all pairwise comparisons involving X . A large value (>0
for log-fold changes, >0.5 for the AUCs) indicates that the gene is upregulated in X compared
to the average of the other groups. A small value (<0 for the log-fold changes, <0.5 for the
AUCs) indicates that the gene is downregulated in X instead.

• median.*, the median effect size across all pairwise comparisons involving X . A large value
indicates that the gene is upregulated in X compared to most (>50%) other groups. A small
value indicates that the gene is downregulated in X instead.

• min.*, the minimum effect size across all pairwise comparisons involving X . A large value
indicates that the gene is upregulated in X compared to all other groups. A small value
indicates that the gene is downregulated in X compared to at least one other group.

• max.*, the maximum effect size across all pairwise comparisons involving X . A large value
indicates that the gene is upregulated in X compared to at least one other group. A small value
indicates that the gene is downregulated in X compared to all other groups.

• rank.*, the minimum rank (i.e., “min-rank”) across all pairwise comparisons involving X -
see ?computeMinRank for details. A small min-rank indicates that the gene is one of the top
upregulated genes in at least one comparison to another group.

One set of these columns is added to the DataFrame for each effect size described above. For
example, the mean column for the AUC would be mean.AUC. We can then reorder each group’s
DataFrame by our column of choice, depending on which summary and effect size we are interested
in. For example, if we ranked by decreasing min.logFC.detected, we would be aiming for marker
genes that exhibit strong binary increases in expression in X compared to all other groups.

If full.stats=TRUE, an extra full.* column is returned in the DataFrame. This contains a nested
DataFrame with number of columns equal to the number of other groups. Each column contains
the statistic from the comparison between X and the other group.

Keep in mind that the interpretations above also depend on the sign of lfc. The concept of a
“large” summary statistic (>0 for Cohen’s d, >0.5 for the AUCs) can only be interpreted as upreg-
ulation when lfc >= 0. Similarly, the concept of a “small” value (<0 for Cohen’s d, <0.5 for the
AUCs) cannot be interpreted as downregulation when lfc <= 0. For example, if lfc=1, a positive
min.logFC.cohen can still be interpreted as upregulation in X compared to all other groups, but a
negative max.logFC.cohen could not be interpreted as downregulation in X compared to all other
groups.

Computing other descriptive statistics

We report the mean log-expression of all cells in X , as well as the grand mean of mean log-
expression values for all other groups. This is purely descriptive; while it can be used to compute
an overall log-fold change, ranking is best performed on one of the effect sizes described above.
We also report the proportion of cells with detectable expression in X and the mean proportion for
all other groups.

When block is specified, the reported mean for each group is computed via correctGroupSummary.
Briefly, this involves fitting a linear model to remove the effect of the blocking factor from the per-
group mean log-expression. The same is done for the detected proportion, except that the values
are subjected to a logit transformation prior to the model fitting. In both cases, each group/block
combination is weighted by its number of cells in the model.

106 scoreMarkers

Controlling the pairings

The pairings argument specifies the pairs of groups that should be compared. This can be:

• NULL, in which case comparisons are performed between all groups in groups.

• A vector of the same type as group, specifying a subset of groups of interest. We then perform
all pairwise comparisons between groups in the subset.

• A list of two vectors, each of the same type as group and specifying a subset of groups.
Comparisons are performed between one group from the first vector and another group from
the second vector.

• A matrix of two columns of the same type as group. Each row is assumed to specify a pair of
groups to be compared.

Effect sizes (and their summaries) are computed for only the pairwise comparisons specified by
pairings. Similarly, the other.* values in X’s DataFrame are computed using only the groups
involved in pairwise comparisons with X . The default of pairings=NULL ensures that all groups
are used and effect sizes for all pairwise comparisons are reported; however, this may not be the
case for other values of pairings.

For list and matrix arguments, the first vector/column is treated as the first group in the effect size
calculations. Statistics for each comparison will only show up in the DataFrame for the first group,
i.e., a comparison between X and Y will have a valid full.AUC$Y field in X’s DataFrame but
not vice versa. If both directions are desired in the output, both of the corresponding permutations
should be explicitly specified in pairings.

Author(s)

Aaron Lun

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Any clustering method is okay, only using k-means for convenience.
kout <- kmeans(t(logcounts(sce)), centers=4)

out <- scoreMarkers(sce, groups=kout$cluster)
out

Ranking by a metric of choice:
of.interest <- out[[1]]
of.interest[order(of.interest$mean.AUC, decreasing=TRUE),1:4]
of.interest[order(of.interest$rank.AUC),1:4]
of.interest[order(of.interest$median.logFC.cohen, decreasing=TRUE),1:4]
of.interest[order(of.interest$min.logFC.detected, decreasing=TRUE),1:4]

summaryMarkerStats 107

summaryMarkerStats Summary marker statistics

Description

Compute additional gene-level statistics for each group to assist in identifying marker genes, to
complement the formal test statistics generated by findMarkers.

Usage

summaryMarkerStats(x, ...)

S4 method for signature 'ANY'
summaryMarkerStats(
x,
groups,
row.data = NULL,
average = "mean",
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
summaryMarkerStats(x, ..., assay.type = "logcounts")

Arguments

x A numeric matrix-like object of expression values, where each column corre-
sponds to a cell and each row corresponds to an endogenous gene. This is gen-
erally expected to be normalized log-expression values unless one knows better.
Alternatively, a SummarizedExperiment or SingleCellExperiment object con-
taining such a matrix.

... For the generic, further arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.

groups A vector of length equal to ncol(x), specifying the group to which each cell
is assigned. If x is a SingleCellExperiment, this defaults to colLabels(x) if
available.

row.data A DataFrame containing additional row metadata for each gene in x, to be in-
cluded in each of the output DataFrames. This should generally have row names
identical to those of x.
Alternatively, a list containing one such DataFrame per level of groups, where
each DataFrame contains group-specific metadata for each gene to be included
in the appropriate output DataFrame.

average String specifying the type of average, to be passed to sumCountsAcrossCells.

BPPARAM A BiocParallelParam object indicating whether and how parallelization should
be performed across genes.

assay.type A string specifying which assay values to use, usually "logcounts".

108 testLinearModel

Details

This function only generates descriptive statistics for each gene to assist marker selection. It does
not consider blocking factors or covariates that would otherwise be available from comparisons
between groups. For the sake of brevity, statistics for the “other” groups are summarized into a
single value.

Value

A named List of DataFrames, with one entry per level of groups. Each DataFrame has number of
rows corresponding to the rows in x and contains the fields:

• self.average, the average (log-)expression across all cells in the current group.

• other.average, the grand average of the average (log-)expression across cells in the other
groups.

• self.detected, the proportion of cells with detected expression in the current group.

• other.detected, the average proportion of cells with detected expression in the other groups.

Author(s)

Aaron Lun

See Also

findMarkers, where the output of this function can be used in row.data=.

Examples

library(scuttle)
sce <- mockSCE()
sce <- logNormCounts(sce)

Any clustering method is okay.
kout <- kmeans(t(logcounts(sce)), centers=3)
sum.out <- summaryMarkerStats(sce, kout$cluster)
sum.out[["1"]]

Add extra rowData if you like.
rd <- DataFrame(Symbol=sample(LETTERS, nrow(sce), replace=TRUE),

row.names=rownames(sce))
sum.out <- summaryMarkerStats(sce, kout$cluster, row.data=rd)
sum.out[["1"]]

testLinearModel Hypothesis tests with linear models

Description

Perform basic hypothesis tests with linear models in an efficient manner.

testLinearModel 109

Usage

testLinearModel(x, ...)

S4 method for signature 'ANY'
testLinearModel(
x,
design,
coefs = ncol(design),
contrasts = NULL,
block = NULL,
equiweight = FALSE,
method = "stouffer",
subset.row = NULL,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
testLinearModel(x, ..., assay.type = "logcounts")

Arguments

x A numeric matrix-like object containing log-expression values for cells (columns)
and genes (rows). Alternatively, a SummarizedExperiment containing such a
matrix.

... For the generic, further arguments to pass to specific methods.

For the SummarizedExperiment method, further arguments to pass to the ANY
method.

design A numeric design matrix with number of rows equal to ncol(x).

coefs An integer vector specifying the coefficients to drop to form the null model.
Only used if contrasts is not specified.

contrasts A numeric vector or matrix specifying the contrast of interest. This should have
length (if vector) or number of rows (if matrix) equal to ncol(x).

block A factor specifying the blocking levels for each cell in x. If specified, variance
modelling is performed separately within each block and statistics are combined
across blocks.

equiweight A logical scalar indicating whether statistics from each block should be given
equal weight. Otherwise, each block is weighted according to its number of
cells. Only used if block is specified.

method String specifying how p-values should be combined when block is specified,
see combineParallelPValues.

subset.row See ?"scran-gene-selection", specifying the rows for which to model the
variance. Defaults to all genes in x.

BPPARAM A BiocParallelParam object indicating whether parallelization should be per-
formed across genes.

assay.type String or integer scalar specifying the assay containing the log-expression val-
ues.

110 testLinearModel

Details

This function can be considered a more efficient version of lmFit that works on a variety of matrix
representations (see fitLinearModel). It also omits the empirical Bayes shrinkage step, which is
acceptable given the large number of residual d.f. in typical single-cell studies.

If contrasts is specified, the null hypothesis is defined by the contrast matrix or vector in the same
manner that is used in the limma and edgeR packages. Briefly, the contrast vector specifies a linear
combination of coefficients that sums to zero under the null. For contrast matrices, the joint null
consists of the intersection of the nulls defined by each column vector.

Otherwise, if only coefs is specified, the null model is formed by simply dropping all of the speci-
fied coefficients from design.

If block is specified, a linear model is fitted separately to the cells in each level. The results are
combined across levels by averaging coefficients and combining p-values with combinePValues.
By default, the contribution from each level is weighted by its number of cells; if equiweight=TRUE,
each level is given equal weight instead.

Value

A DataFrame containing test results with one row per row of x. It contains the estimated values of
the contrasted coefficients as well as the p-value and FDR for each gene.

Author(s)

Aaron Lun

See Also

fitLinearModel, which performs the hard work of fitting the linear models.

Examples

y <- matrix(rnorm(10000), ncol=100)

Example with categorical factors:
A <- gl(2, 50)
design <- model.matrix(~A)
testLinearModel(y, design, contrasts=c(0, 1))

Example with continuous variables:
u <- runif(100)
design <- model.matrix(~u)
testLinearModel(y, design, contrasts=c(0, 1))

Example with multiple variables:
B <- gl(4, 25)
design <- model.matrix(~B)
testLinearModel(y, design, contrasts=cbind(c(0,1,0,0), c(0,0,1,-1)))

Index

∗ variance
Distance-to-median, 36

.logBH, 3

altExp, 59, 60, 70, 71
assays, 34, 47

binom.test, 77, 78
binomTest, 78
BiocParallelParam, 5, 10, 21, 24, 27, 33, 39,

43, 47, 56, 59, 63, 66, 70, 76, 79, 84,
93, 101, 103, 107, 109

BiocSingularParam, 5, 33, 47, 93
BlusterParam, 6, 49, 50, 97
bootstrapCluster (defunct), 30
bootstrapStability, 31
buildKNNGraph (buildSNNGraph), 4
buildKNNGraph,ANY-method

(buildSNNGraph), 4
buildKNNGraph,SingleCellExperiment-method

(buildSNNGraph), 4
buildSNNGraph, 4, 94, 95
buildSNNGraph,ANY-method

(buildSNNGraph), 4
buildSNNGraph,SingleCellExperiment-method

(buildSNNGraph), 4
buildSNNGraph,SummarizedExperiment-method

(buildSNNGraph), 4

calculateAverage, 48, 94
calculateSumFactors

(computeSumFactors), 18
cluster_walktrap, 5, 50
clusterCells, 5, 6
clusterKNNGraph (defunct), 30
clusterModularity (defunct), 30
clusterPurity (defunct), 30
clusterRows, 6, 32, 49, 50, 97
clusterSNNGraph (defunct), 30
coassignProb (defunct), 30
colLabels, 38, 75, 79, 83, 107
combineBlocks, 7
combineCV2 (combineVar), 15

combineMarkers, 9, 18, 39, 40, 51, 54, 73, 74,
76, 78, 80, 82, 84, 86

combineParallelPValues, 8, 11, 13, 16, 17,
56, 57, 59, 61, 63, 64, 66, 68, 70, 72,
109

combinePValues, 13, 110
combineVar, 8, 15
computeMinRank, 10, 11, 17, 105
computePooledFactors, 18, 19
computeSumFactors, 18, 94, 95
connectClusterMST (defunct), 30
convertTo, 19
cor, 25
cor.test, 98
correctGroupSummary, 105
correlateGenes, 20, 25
correlateNull, 21
correlatePairs, 20–22, 23
correlatePairs,ANY-method

(correlatePairs), 23
correlatePairs,SummarizedExperiment-method

(correlatePairs), 23
createClusterMST (defunct), 30
cutree, 50
cutreeDynamic, 94, 95
cyclone, 26, 100
cyclone,ANY-method (cyclone), 26
cyclone,SummarizedExperiment-method

(cyclone), 26

DataFrame, 7–10, 15, 20, 24, 33, 39, 50–54,
57, 60, 63, 67, 71, 73, 76, 80, 84, 87,
88, 91, 107, 108, 110

decideTests, 29, 30
decideTestsPerLabel, 29, 89, 91
decomposeVar (defunct), 30
defunct, 30
denoisePCA, 32, 47, 93, 94
denoisePCANumber (denoisePCA), 32
DESeqDataSetFromMatrix, 20
dgCMatrix, 94
DGEList, 20
Distance-to-median, 36
DM (Distance-to-median), 36

111

112 INDEX

doubletCells (defunct), 30
doubletCluster (defunct), 30
doubletRecovery (defunct), 30

filterByExpr, 88
findMarkers, 12, 32, 37, 50, 51, 73, 74, 76,

79, 83, 103, 107, 108
findMarkers,ANY-method (findMarkers), 37
findMarkers,SingleCellExperiment-method

(findMarkers), 37
findMarkers,SummarizedExperiment-method

(findMarkers), 37
fitLinearModel, 110
fitTrendCV2, 31, 40, 56, 57, 59–61
fitTrendPoisson, 42, 67
fitTrendVar, 31, 33, 43, 44, 63, 64, 66–68,

70–73
fixedPCA, 46

Gene selection, 48
getClusteredPCs, 47, 49
getDenoisedPCs (denoisePCA), 32
getDenoisedPCs,ANY-method (denoisePCA),

32
getDenoisedPCs,SummarizedExperiment-method

(denoisePCA), 32
getMarkerEffects, 40, 50
getTopHVGs, 51
getTopMarkers, 53, 78, 82, 86
glmTreat, 87
graph, 5

HclustParam, 93

improvedCV2 (defunct), 30

librarySizeFactors, 56, 60, 67, 71
List, 10, 29, 50, 54, 73, 88, 91, 97, 108
lmFit, 110
logNormCounts, 80
LowRankMatrix, 35, 47

makeContrasts, 87
makeKNNGraph, 4, 5
makeSNNGraph, 4, 5, 50
makeTechTrend (defunct), 30
metadata, 88, 97
modelGeneCV2, 15–17, 31, 42, 53, 55, 60, 61
modelGeneCV2,ANY-method (modelGeneCV2),

55
modelGeneCV2,SingleCellExperiment-method

(modelGeneCV2), 55
modelGeneCV2,SummarizedExperiment-method

(modelGeneCV2), 55

modelGeneCV2WithSpikes, 15, 42, 56, 58
modelGeneCV2WithSpikes,ANY-method

(modelGeneCV2WithSpikes), 58
modelGeneCV2WithSpikes,SingleCellExperiment-method

(modelGeneCV2WithSpikes), 58
modelGeneCV2WithSpikes,SummarizedExperiment-method

(modelGeneCV2WithSpikes), 58
modelGeneVar, 8, 15–17, 31, 35, 44, 46,

51–53, 62, 68, 70, 71, 73, 94, 97
modelGeneVar,ANY-method (modelGeneVar),

62
modelGeneVar,SingleCellExperiment-method

(modelGeneVar), 62
modelGeneVar,SummarizedExperiment-method

(modelGeneVar), 62
modelGeneVarByPoisson, 31, 34–36, 65
modelGeneVarByPoisson,ANY-method

(modelGeneVarByPoisson), 65
modelGeneVarByPoisson,SingleCellExperiment-method

(modelGeneVarByPoisson), 65
modelGeneVarByPoisson,SummarizedExperiment-method

(modelGeneVarByPoisson), 65
modelGeneVarWithSpikes, 15, 33–36, 44, 46,

63, 64, 67, 69
modelGeneVarWithSpikes,ANY-method

(modelGeneVarWithSpikes), 69
modelGeneVarWithSpikes,SingleCellExperiment-method

(modelGeneVarWithSpikes), 69
modelGeneVarWithSpikes,SummarizedExperiment-method

(modelGeneVarWithSpikes), 69
multiBlockNorm (defunct), 30
multiBlockVar (defunct), 30
multiMarkerStats, 73

neighborPurity, 32
nls, 41, 44, 45
NNGraphParam, 32, 93

orderClusterMST (defunct), 30
overlapExprs (defunct), 30

pairwiseBinom, 10, 38, 40, 75
pairwiseBinom,ANY-method

(pairwiseBinom), 75
pairwiseBinom,SingleCellExperiment-method

(pairwiseBinom), 75
pairwiseBinom,SummarizedExperiment-method

(pairwiseBinom), 75
pairwiseModularity, 31
pairwiseRand, 32
pairwiseTTests, 10, 12, 38–40, 54, 78, 84
pairwiseTTests,ANY-method

(pairwiseTTests), 78

INDEX 113

pairwiseTTests,SingleCellExperiment-method
(pairwiseTTests), 78

pairwiseTTests,SummarizedExperiment-method
(pairwiseTTests), 78

pairwiseWilcox, 10, 12, 38, 40, 82
pairwiseWilcox,ANY-method

(pairwiseWilcox), 82
pairwiseWilcox,SingleCellExperiment-method

(pairwiseWilcox), 82
pairwiseWilcox,SummarizedExperiment-method

(pairwiseWilcox), 82
parallelPCA (defunct), 30
parallelStouffer, 24
pooledSizeFactors, 18, 19
pseudoBulkDGE, 29, 30, 86, 90–92
pseudoBulkDGE,ANY-method

(pseudoBulkDGE), 86
pseudoBulkDGE,SummarizedExperiment-method

(pseudoBulkDGE), 86
pseudoBulkSpecific, 89, 90
pseudoBulkSpecific,ANY-method

(pseudoBulkSpecific), 90
pseudoBulkSpecific,SummarizedExperiment-method

(pseudoBulkSpecific), 90

quickCluster, 92, 97, 98, 102
quickCluster,ANY-method (quickCluster),

92
quickCluster,SummarizedExperiment-method

(quickCluster), 92
quickPseudotime (defunct), 30
quickSubCluster, 95, 96
quickSubCluster,ANY-method

(quickSubCluster), 96
quickSubCluster,SingleCellExperiment-method

(quickSubCluster), 96
quickSubCluster,SummarizedExperiment-method

(quickSubCluster), 96

reducedDimNames, 34, 47
reducedDims, 5, 35, 47, 97
rhoToPValue, 24, 98
Rle, 48
runmed, 37
runPCA, 50
runSVD, 36

sandbag, 27, 28, 99
sandbag,ANY-method (sandbag), 99
sandbag,SummarizedExperiment-method

(sandbag), 99
scaledColRanks, 93–95, 101
scoreMarkers, 18, 102

scoreMarkers,ANY-method (scoreMarkers),
102

scoreMarkers,SingleCellExperiment-method
(scoreMarkers), 102

scoreMarkers,SummarizedExperiment-method
(scoreMarkers), 102

scran-gene-selection (Gene selection),
48

SingleCellExperiment, 4–6, 19, 33, 38, 47,
48, 56, 59, 60, 66, 67, 70, 71, 79, 83,
96, 97, 107

sizeFactors, 19, 56, 60, 67, 71
sprintf, 97
sumCountsAcrossCells, 88, 89, 107
SummarizedExperiment, 5, 6, 23, 26, 33, 38,

52, 56, 59, 62, 63, 66, 70, 79, 83, 93,
96, 99, 103, 107, 109

summarizeTestsPerLabel
(decideTestsPerLabel), 29

summaryMarkerStats, 39, 40, 107
summaryMarkerStats,ANY-method

(summaryMarkerStats), 107
summaryMarkerStats,SummarizedExperiment-method

(summaryMarkerStats), 107

t.test, 82
technicalCV2 (defunct), 30
testLinearModel, 8, 108
testLinearModel,ANY-method

(testLinearModel), 108
testLinearModel,SummarizedExperiment-method

(testLinearModel), 108
testPseudotime (defunct), 30
testVar (defunct), 30
topTable, 88
topTags, 88
treat, 81, 87, 91
trendVar (defunct), 30
TwoStepParam, 32

voom, 88
voomWithQualityWeights, 88

weightedLowess, 44, 45
wilcox.test, 85, 86

	.logBH
	buildSNNGraph
	clusterCells
	combineBlocks
	combineMarkers
	combinePValues
	combineVar
	computeMinRank
	computeSumFactors
	convertTo
	correlateGenes
	correlateNull
	correlatePairs
	cyclone
	decideTestsPerLabel
	defunct
	denoisePCA
	Distance-to-median
	findMarkers
	fitTrendCV2
	fitTrendPoisson
	fitTrendVar
	fixedPCA
	Gene selection
	getClusteredPCs
	getMarkerEffects
	getTopHVGs
	getTopMarkers
	modelGeneCV2
	modelGeneCV2WithSpikes
	modelGeneVar
	modelGeneVarByPoisson
	modelGeneVarWithSpikes
	multiMarkerStats
	pairwiseBinom
	pairwiseTTests
	pairwiseWilcox
	pseudoBulkDGE
	pseudoBulkSpecific
	quickCluster
	quickSubCluster
	rhoToPValue
	sandbag
	scaledColRanks
	scoreMarkers
	summaryMarkerStats
	testLinearModel
	Index

