
Package ‘pwalign’
April 1, 2025

Title Perform pairwise sequence alignments

Description The two main functions in the package are pairwiseAlignment() and
stringDist(). The former solves (Needleman-Wunsch) global alignment,
(Smith-Waterman) local alignment, and (ends-free) overlap alignment
problems. The latter computes the Levenshtein edit distance or pairwise
alignment score matrix for a set of strings.

biocViews Alignment, SequenceMatching, Sequencing, Genetics

URL https://bioconductor.org/packages/pwalign

BugReports https://github.com/Bioconductor/pwalign/issues

Version 1.2.0

License Artistic-2.0

Encoding UTF-8

Depends BiocGenerics, S4Vectors, IRanges, Biostrings (>= 2.71.5)

Imports methods, utils

LinkingTo S4Vectors, IRanges, XVector, Biostrings

Enhances Rmpi

Suggests RUnit

Collate 00datacache.R utils.R InDel-class.R AlignedXStringSet-class.R
PairwiseAlignments-class.R
PairwiseAlignmentsSingleSubject-class.R PairwiseAlignments-io.R
align-utils.R pid.R substitution_matrices.R pairwiseAlignment.R
stringDist.R zzz.R

git_url https://git.bioconductor.org/packages/pwalign

git_branch RELEASE_3_20

git_last_commit 9d0fa61

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2025-03-31

Author Patrick Aboyoun [aut],
Robert Gentleman [aut],
Hervé Pagès [cre]

Maintainer Hervé Pagès <hpages.on.github@gmail.com>

1

https://bioconductor.org/packages/pwalign
https://github.com/Bioconductor/pwalign/issues

2 align-utils

Contents
align-utils . 2
AlignedXStringSet-class . 4
InDel-class . 6
pairwiseAlignment . 6
PairwiseAlignments-class . 9
PairwiseAlignments-io . 13
phiX174Phage . 16
pid . 17
predefined_scoring_matrices . 18
stringDist . 19
substitution_matrices . 21

Index 24

align-utils Utility functions related to sequence alignment

Description

A variety of different functions used to deal with sequence alignments.

Usage

nedit(x) # also nmatch and nmismatch

mismatchTable(x, shiftLeft=0L, shiftRight=0L, ...)
mismatchSummary(x, ...)

S4 method for signature 'AlignedXStringSet0'
coverage(x, shift=0L, width=NULL, weight=1L)

S4 method for signature 'PairwiseAlignmentsSingleSubject'
coverage(x, shift=0L, width=NULL, weight=1L)

compareStrings(pattern, subject)

S4 method for signature 'PairwiseAlignmentsSingleSubject'
consensusMatrix(x,

as.prob=FALSE, shift=0L, width=NULL,
baseOnly=FALSE, gapCode="-", endgapCode="-")

Arguments

x A character vector or matrix, XStringSet, XStringViews, PairwiseAlignments,
or list of FASTA records containing the equal-length strings.

shiftLeft, shiftRight
Non-positive and non-negative integers respectively that specify how many pre-
ceding and succeeding characters to and from the mismatch position to include
in the mismatch substrings.

... Further arguments to be passed to or from other methods.

align-utils 3

shift, width See ?coverage.

weight An integer vector specifying how much each element in x counts.
pattern, subject

The strings to compare. Can be of type character, XString, XStringSet,
AlignedXStringSet, or, in the case of pattern, PairwiseAlignments.
If the first argument of compareStrings() (pattern) is a PairwiseAlignments
object, then the second argument (subject) must be missing. In this case
compareStrings(x) is equivalent to compareStrings(pattern(x), subject(x)).

as.prob If TRUE then probabilities are reported, otherwise counts (the default).

baseOnly TRUE or FALSE. If TRUE, the returned vector only contains frequencies for the
letters in the "base" alphabet i.e. "A", "C", "G", "T" if x is a "DNA input", and
"A", "C", "G", "U" if x is "RNA input". When x is a BString object (or an
XStringViews object with a BString subject, or a BStringSet object), then the
baseOnly argument is ignored.

gapCode, endgapCode
The codes in the appropriate alphabet to use for the internal and end gaps.

Value

nedit(): An integer vector of the same length as the input PairwiseAlignments object reporting
the number of edits (i.e. nb of mismatches + nb of indels) for each alignment.

mismatchTable(): A data.frame containing the positions and substrings of the mismatches for the
AlignedXStringSet or PairwiseAlignments object.

mismatchSummary(): A list of data.frame objects containing counts and frequencies of the mis-
matches for the AlignedXStringSet or PairwiseAlignmentsSingleSubject object.

compareStrings(): Combines two equal-length strings that are assumed to be aligned into a single
character string containing that replaces mismatches with "?", insertions with "+", and deletions
with "-".

Author(s)

P. Aboyoun

See Also

pairwiseAlignment, consensusMatrix, XString-class, XStringSet-class, XStringViews-class, AlignedXStringSet-
class, PairwiseAlignments-class, match-utils

Examples

Compare two globally aligned strings
string1 <- "ACTTCACCAGCTCCCTGGCGGTAAGTTGATC---AAAGG---AAACGCAAAGTTTTCAAG"
string2 <- "GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC"
compareStrings(string1, string2)

Create a consensus matrix
nw1 <- pairwiseAlignment(

AAStringSet(c("HLDNLKGTF", "HVDDMPNAL")), AAString("SMDDTEKMSMKL"),
substitutionMatrix = "BLOSUM50", gapOpening = 3, gapExtension = 1)

consensusMatrix(nw1)

4 AlignedXStringSet-class

Examine the consensus between the bacteriophage phi X174 genomes
data(phiX174Phage)
phageConsmat <- consensusMatrix(phiX174Phage, baseOnly = TRUE)
phageDiffs <- which(apply(phageConsmat, 2, max) < length(phiX174Phage))
phageDiffs
phageConsmat[,phageDiffs]

AlignedXStringSet-class

AlignedXStringSet and QualityAlignedXStringSet objects

Description

The AlignedXStringSet and QualityAlignedXStringSet classes are containers for storing an
aligned XStringSet.

Details

Before we define the notion of alignment, we introduce the notion of "filled-with-gaps subse-
quence". A "filled-with-gaps subsequence" of a string string1 is obtained by inserting 0 or any
number of gaps in a subsequence of s1. For example L-A–ND and A–N-D are "filled-with-gaps
subsequences" of LAND. An alignment between two strings string1 and string2 results in two
strings (align1 and align2) that have the same length and are "filled-with-gaps subsequences" of
string1 and string2.

For example, this is an alignment between LAND and LEAVES:

L-A
LEA

An alignment can be seen as a compact representation of one set of basic operations that transforms
string1 into align1. There are 3 different kinds of basic operations: "insertions" (gaps in align1),
"deletions" (gaps in align2), "replacements". The above alignment represents the following basic
operations:

insert E at pos 2
insert V at pos 4
insert E at pos 5
replace by S at pos 6 (N is replaced by S)
delete at pos 7 (D is deleted)

Note that "insert X at pos i" means that all letters at a position >= i are moved 1 place to the right
before X is actually inserted.

There are many possible alignments between two given strings string1 and string2 and a common
problem is to find the one (or those ones) with the highest score, i.e. with the lower total cost in
terms of basic operations.

AlignedXStringSet-class 5

Accessor methods

In the code snippets below, x is a AlignedXStringSet or QualityAlignedXStringSet object.

unaligned(x): The original string.

aligned(x, degap = FALSE): If degap = FALSE, the "filled-with-gaps subsequence" representing
the aligned substring. If degap = TRUE, the "gap-less subsequence" representing the aligned
substring.

ranges(x): The bounds of the aligned substring.

start(x): The start of the aligned substring.

end(x): The end of the aligned substring.

width(x): The width of the aligned substring, ignoring gaps.

indel(x): The positions, in the form of an IRanges object, of the insertions or deletions (depend-
ing on what x represents).

nindel(x): A two-column matrix containing the length and sum of the widths for each of the
elements returned by indel.

length(x): The length of the aligned(x).

nchar(x): The nchar of the aligned(x).

alphabet(x): Equivalent to alphabet(unaligned(x)).

as.character(x): Converts aligned(x) to a character vector.

toString(x): Equivalent to toString(as.character(x)).

Subsetting methods

x[i]: Returns a new AlignedXStringSet or QualityAlignedXStringSet object made of the
selected elements.

rep(x, times): Returns a new AlignedXStringSet or QualityAlignedXStringSet object made
of the repeated elements.

Author(s)

P. Aboyoun

See Also

pairwiseAlignment, PairwiseAlignments-class, XStringSet-class

Examples

pattern <- AAString("LAND")
subject <- AAString("LEAVES")
pa1 <- pairwiseAlignment(pattern, subject, substitutionMatrix="BLOSUM50",

gapOpening=3, gapExtension=1)

alignedPattern <- pattern(pa1)
class(alignedPattern) # AlignedXStringSet object

unaligned(alignedPattern)
aligned(alignedPattern)
as.character(alignedPattern)
nchar(alignedPattern)

6 pairwiseAlignment

InDel-class InDel objects

Description

The InDel class is a container for storing insertion and deletion information.

Details

This is a generic class that stores any insertion and deletion information.

Accessor methods

In the code snippets below, x is a InDel object.

insertion(x): The insertion information.

deletion(x): The deletion information.

Author(s)

P. Aboyoun

See Also

pairwiseAlignment, PairwiseAlignments-class

Examples

pa <- PairwiseAlignments("-PA--W-HEAE", "HEAGAWGHE-E")
pa_indel <- indel(pa) # an InDel object
insertion(pa_indel)
deletion(pa_indel)

pairwiseAlignment Optimal Pairwise Alignment

Description

Solves (Needleman-Wunsch) global alignment, (Smith-Waterman) local alignment, and (ends-free)
overlap alignment problems.

pairwiseAlignment 7

Usage

pairwiseAlignment(pattern, subject, ...)

S4 method for signature 'ANY,ANY'
pairwiseAlignment(pattern, subject,

patternQuality=PhredQuality(22L),
subjectQuality=PhredQuality(22L),
type="global",
substitutionMatrix=NULL, fuzzyMatrix=NULL,
gapOpening=10, gapExtension=4,
scoreOnly=FALSE)

S4 method for signature 'QualityScaledXStringSet,QualityScaledXStringSet'
pairwiseAlignment(pattern, subject,

type="global",
substitutionMatrix=NULL, fuzzyMatrix=NULL,
gapOpening=10, gapExtension=4,
scoreOnly=FALSE)

Arguments

pattern a character vector or XStringSet derivative of any length, or an XString deriva-
tive.

subject a character vector or XStringSet derivative of length 1 or length(pattern),
or an XString derivative.

patternQuality, subjectQuality
objects of class XStringQuality representing the respective quality scores for
pattern and subject that are used in a quality-based method for generating a
substitution matrix. These two arguments are ignored if !is.null(substitutionMatrix)
or if its respective string set (pattern, subject) is of class QualityScaledXStringSet.

type type of alignment. One of "global", "local", "overlap", "global-local",
and "local-global" where "global" = align whole strings with end gap penal-
ties, "local" = align string fragments, "overlap" = align whole strings without
end gap penalties, "global-local" = align whole strings in pattern with con-
secutive subsequence of subject, "local-global" = align consecutive subse-
quence of pattern with whole strings in subject.

substitutionMatrix

substitution matrix representing the fixed substitution scores for an alignment.
It cannot be used in conjunction with patternQuality and subjectQuality
arguments.

fuzzyMatrix fuzzy match matrix for quality-based alignments. It takes values between 0 and
1; where 0 is an unambiguous mismatch, 1 is an unambiguous match, and values
in between represent a fraction of "matchiness". (See details section below.)

gapOpening the cost for opening a gap in the alignment.

gapExtension the incremental cost incurred along the length of the gap in the alignment.

scoreOnly logical to denote whether or not to return just the scores of the optimal pairwise
alignment.

... optional arguments to generic function to support additional methods.

8 pairwiseAlignment

Details

Quality-based alignments are based on the paper the Bioinformatics article by Ketil Malde listed in
the Reference section below. Let ϵi be the probability of an error in the base read. For "Phred"
quality measures Q in [0, 99], these error probabilities are given by ϵi = 10−Q/10. For "Solexa"
quality measures Q in [−5, 99], they are given by ϵi = 1 − 1/(1 + 10−Q/10). Assuming inde-
pendence within and between base reads, the combined error probability of a mismatch when the
underlying bases do match is ϵc = ϵ1 + ϵ2 − (n/(n − 1)) ∗ ϵ1 ∗ ϵ2, where n is the number of
letters in the underlying alphabet (i.e. n = 4 for DNA input, n = 20 for amino acid input, oth-
erwise n is the number of distinct letters in the input). Using ϵc, the substitution score is given by
b∗ log2(γx,y ∗ (1− ϵc)∗n+(1−γx,y)∗ ϵc ∗ (n/(n−1))), where b is the bit-scaling for the scoring
and γx,y is the probability that characters x and y represents the same underlying information (e.g.
using IUPAC, γA,A = 1 and γA,N = 1/4. In the arguments listed above fuzzyMatch represents
γx,y and patternQuality and subjectQuality represents ϵ1 and ϵ2 respectively.

If scoreOnly == FALSE, a pairwise alignment with the maximum alignment score is returned. If
more than one pairwise alignment produces the maximum alignment score, then the alignment with
the smallest initial deletion whose mismatches occur before its insertions and deletions is chosen.
For example, if pattern = "AGTA" and subject = "AACTAACTA", then the alignment pattern: [1]
AG-TA; subject: [1] AACTA is chosen over pattern: [1] A-GTA; subject: [1] AACTA or pattern:
[1] AG-TA; subject: [5] AACTA if they all achieve the maximum alignment score.

Value

If scoreOnly == FALSE (the default), the function returns a PairwiseAlignmentsSingleSubject
object (if a single subject was supplied) or a PairwiseAlignments object (if more than one subject
was supplied). In both cases, the returned object contains N optimal pairwise alignments where N is
the number of supplied patterns, that is, N = length(pattern) if pattern is a character vector or
XStringSet derivative, or N = 1 if it’s an XString derivative. If more than one subject was supplied,
the alignments in the returned PairwiseAlignments object are obtained by aligning pattern[[1]]
to subject[[1]], pattern[[2]] to subject[[2]], pattern[[3]] to subject[[3]], etc...

If scoreOnly == TRUE, a numeric vector containing the scores for the N optimal pairwise align-
ments is returned.

Note

Use matchPattern or vmatchPattern if you need to find all the occurrences (eventually with
indels) of a given pattern in a reference sequence or set of sequences.

Use matchPDict if you need to match a (big) set of patterns against a reference sequence.

Author(s)

P. Aboyoun

References

R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis, Cambridge UP 1998,
sec 2.3.

B. Haubold, T. Wiehe, Introduction to Computational Biology, Birkhauser Verlag 2006, Chapter 2.

K. Malde, The effect of sequence quality on sequence alignment, Bioinformatics 2008 24(7):897-
900.

PairwiseAlignments-class 9

See Also

writePairwiseAlignments, stringDist, PairwiseAlignments-class, XStringQuality-class, sub-
stitution_matrices, matchPattern

Examples

Nucleotide global, local, and overlap alignments
s1 <-

DNAString("ACTTCACCAGCTCCCTGGCGGTAAGTTGATCAAAGGAAACGCAAAGTTTTCAAG")
s2 <-

DNAString("GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC")

First use a fixed substitution matrix
mat <- nucleotideSubstitutionMatrix(match = 1, mismatch = -3, baseOnly = TRUE)
globalAlign <-

pairwiseAlignment(s1, s2, substitutionMatrix = mat,
gapOpening = 5, gapExtension = 2)

localAlign <-
pairwiseAlignment(s1, s2, type = "local", substitutionMatrix = mat,

gapOpening = 5, gapExtension = 2)
overlapAlign <-

pairwiseAlignment(s1, s2, type = "overlap", substitutionMatrix = mat,
gapOpening = 5, gapExtension = 2)

Then use quality-based method for generating a substitution matrix
pairwiseAlignment(s1, s2,

patternQuality = SolexaQuality(rep(c(22L, 12L), times = c(36, 18))),
subjectQuality = SolexaQuality(rep(c(22L, 12L), times = c(40, 20))),
scoreOnly = TRUE)

Now assume can't distinguish between C/T and G/A
pairwiseAlignment(s1, s2,

patternQuality = SolexaQuality(rep(c(22L, 12L), times = c(36, 18))),
subjectQuality = SolexaQuality(rep(c(22L, 12L), times = c(40, 20))),
type = "local")

mapping <- diag(4)
dimnames(mapping) <- list(DNA_BASES, DNA_BASES)
mapping["C", "T"] <- mapping["T", "C"] <- 1
mapping["G", "A"] <- mapping["A", "G"] <- 1
pairwiseAlignment(s1, s2,

patternQuality = SolexaQuality(rep(c(22L, 12L), times = c(36, 18))),
subjectQuality = SolexaQuality(rep(c(22L, 12L), times = c(40, 20))),
fuzzyMatrix = mapping,
type = "local")

Amino acid global alignment
pairwiseAlignment(AAString("PAWHEAE"), AAString("HEAGAWGHEE"),

substitutionMatrix = "BLOSUM50",
gapOpening = 0, gapExtension = 8)

PairwiseAlignments-class

PairwiseAlignments, PairwiseAlignmentsSingleSubject, and Pair-
wiseAlignmentsSingleSubjectSummary objects

10 PairwiseAlignments-class

Description

The PairwiseAlignments class is a container for storing a set of pairwise alignments.

The PairwiseAlignmentsSingleSubject class is a container for storing a set of pairwise align-
ments with a single subject.

The PairwiseAlignmentsSingleSubjectSummary class is a container for storing the summary of
a set of pairwise alignments.

Usage

Constructors:
When subject is missing, pattern must be of length 2
S4 method for signature 'XString,XString'
PairwiseAlignments(pattern, subject,
type = "global", substitutionMatrix = NULL, gapOpening = 0, gapExtension = 1)

S4 method for signature 'XStringSet,missing'
PairwiseAlignments(pattern, subject,
type = "global", substitutionMatrix = NULL, gapOpening = 0, gapExtension = 1)

S4 method for signature 'character,character'
PairwiseAlignments(pattern, subject,
type = "global", substitutionMatrix = NULL, gapOpening = 0, gapExtension = 1,
baseClass = "BString")

S4 method for signature 'character,missing'
PairwiseAlignments(pattern, subject,
type = "global", substitutionMatrix = NULL, gapOpening = 0, gapExtension = 1,
baseClass = "BString")

Arguments

pattern a character vector of length 1 or 2, an XString, or an XStringSet object of
length 1 or 2.

subject a character vector of length 1 or an XString object.

type type of alignment. One of "global", "local", "overlap", "global-local",
and "local-global" where "global" = align whole strings with end gap penal-
ties, "local" = align string fragments, "overlap" = align whole strings without
end gap penalties, "global-local" = align whole strings in pattern with con-
secutive subsequence of subject, "local-global" = align consecutive subse-
quence of pattern with whole strings in subject.

substitutionMatrix

substitution matrix for the alignment. If NULL, the diagonal values and off-
diagonal values are set to 0 and 1 respectively.

gapOpening the cost for opening a gap in the alignment.

gapExtension the incremental cost incurred along the length of the gap in the alignment.

baseClass the base XString class to use in the alignment.

Details

Before we define the notion of alignment, we introduce the notion of "filled-with-gaps subse-
quence". A "filled-with-gaps subsequence" of a string string1 is obtained by inserting 0 or any
number of gaps in a subsequence of s1. For example L-A–ND and A–N-D are "filled-with-gaps
subsequences" of LAND. An alignment between two strings string1 and string2 results in two

PairwiseAlignments-class 11

strings (align1 and align2) that have the same length and are "filled-with-gaps subsequences" of
string1 and string2.

For example, this is an alignment between LAND and LEAVES:

L-A
LEA

An alignment can be seen as a compact representation of one set of basic operations that transforms
string1 into align1. There are 3 different kinds of basic operations: "insertions" (gaps in align1),
"deletions" (gaps in align2), "replacements". The above alignment represents the following basic
operations:

insert E at pos 2
insert V at pos 4
insert E at pos 5
replace by S at pos 6 (N is replaced by S)
delete at pos 7 (D is deleted)

Note that "insert X at pos i" means that all letters at a position >= i are moved 1 place to the right
before X is actually inserted.

There are many possible alignments between two given strings string1 and string2 and a common
problem is to find the one (or those ones) with the highest score, i.e. with the lower total cost in
terms of basic operations.

Object extraction methods

In the code snippets below, x is a PairwiseAlignments object, except otherwise noted.

alignedPattern(x), alignedSubject(x): Extract the aligned patterns or subjects as an XStringSet
object. The 2 objects returned by alignedPattern(x) and alignedSubject(x) are guaran-
teed to have the same shape (i.e. same length() and width()).

pattern(x), subject(x): Extract the aligned patterns or subjects as an AlignedXStringSet0
object.

summary(object, ...): Generates a summary for the PairwiseAlignments object.

General information methods

In the code snippets below, x is a PairwiseAlignments object, except otherwise noted.

alphabet(x): Equivalent to alphabet(unaligned(subject(x))).

length(x): The common length of alignedPattern(x) and alignedSubject(x). There is a
method for PairwiseAlignmentsSingleSubjectSummary as well.

type(x): The type of the alignment ("global", "local", "overlap", "global-local", or "local-global").
There is a method for PairwiseAlignmentsSingleSubjectSummary as well.

12 PairwiseAlignments-class

Aligned sequence methods

In the code snippets below, x is a PairwiseAlignmentsSingleSubject object, except otherwise
noted.

aligned(x, degap = FALSE, gapCode="-", endgapCode="-"): If degap = FALSE, "align" the align-
ments by returning an XStringSet object containing the aligned patterns without insertions. If
degap = TRUE, returns aligned(pattern(x), degap=TRUE). The gapCode and endgapCode
arguments denote the code in the appropriate alphabet to use for the internal and end gaps.

as.character(x): Equivalent to as.character(alignedPattern(x)).

as.matrix(x): Returns an "exploded" character matrix representation of aligned(x).

toString(x): Equivalent to toString(as.character(x)).

Subject position methods

In the code snippets below, x is a PairwiseAlignmentsSingleSubject object, except otherwise
noted.

consensusMatrix(x, as.prob=FALSE, baseOnly=FALSE, gapCode="-", endgapCode="-"): See
‘consensusMatrix‘ for more information.

consensusString(x): See ‘consensusString‘ for more information.

coverage(x, shift=0L, width=NULL, weight=1L): See ‘coverage,PairwiseAlignmentsSingleSubject-
method‘ for more information.

Views(subject, start=NULL, end=NULL, width=NULL, names=NULL): The XStringViews ob-
ject that represents the pairwise alignments along unaligned(subject(subject)). The
start and end arguments must be either NULL/NA or an integer vector of length 1 that de-
notes the offset from start(subject(subject)).

Numeric summary methods

In the code snippets below, x is a PairwiseAlignments object, except otherwise noted.

nchar(x): The nchar of the aligned(pattern(x)) and aligned(subject(x)). There is a method
for PairwiseAlignmentsSingleSubjectSummary as well.

insertion(x): An CompressedIRangesList object containing the locations of the insertions from
the perspective of the pattern.

deletion(x): An CompressedIRangesList object containing the locations of the deletions from
the perspective of the pattern.

indel(x): An InDel object containing the locations of the insertions and deletions from the per-
spective of the pattern.

nindel(x): An InDel object containing the number of insertions and deletions.

score(x): The score of the alignment. There is a method for PairwiseAlignmentsSingleSubjectSummary
as well.

Subsetting methods

x[i]: Returns a new PairwiseAlignments object made of the selected elements.

rep(x, times): Returns a new PairwiseAlignments object made of the repeated elements.

Author(s)

P. Aboyoun

PairwiseAlignments-io 13

See Also

pairwiseAlignment, writePairwiseAlignments, AlignedXStringSet-class, XString-class, XStringViews-
class, align-utils, pid

Examples

PairwiseAlignments("-PA--W-HEAE", "HEAGAWGHE-E")

pattern <- AAStringSet(c("HLDNLKGTF", "HVDDMPNAKLLL"))
subject <- AAString("SHLDTEKMSMKLL")
pa1 <- pairwiseAlignment(pattern, subject, substitutionMatrix="BLOSUM50",

gapOpening=3, gapExtension=1)
pa1

alignedPattern(pa1)
alignedSubject(pa1)
stopifnot(identical(width(alignedPattern(pa1)),

width(alignedSubject(pa1))))

as.character(pa1)

aligned(pa1)
as.matrix(pa1)
nchar(pa1)
score(pa1)

PairwiseAlignments-io Write a PairwiseAlignments object to a file

Description

The writePairwiseAlignments function writes a PairwiseAlignments object to a file. Only the
"pair" format is supported at the moment.

Usage

writePairwiseAlignments(x, file="", Matrix=NA, block.width=50)

Arguments

x A PairwiseAlignments object, typically returned by the pairwiseAlignment
function.

file A connection, or a character string naming the file to print to. If "" (the default),
writePairwiseAlignments prints to the standard output connection (aka the
console) unless redirected by sink. If it is "|cmd", the output is piped to the
command given by cmd, by opening a pipe connection.

Matrix A single string containing the name of the substitution matrix (e.g. "BLOSUM50")
used for the alignment. See the substitutionMatrix argument of the pairwiseAlignment
function for the details. See ?substitution_matrices for a list of predefined
substitution matrices available in the pwalign package.

block.width A single integer specifying the maximum number of sequence letters (including
the "-" letter, which represents gaps) per line.

14 PairwiseAlignments-io

Details

The "pair" format is one of the numerous pairwise sequence alignment formats supported by the
EMBOSS software. See http://emboss.sourceforge.net/docs/themes/AlignFormats.html
for a brief (and rather informal) description of this format.

Value

Nothing (invisible NULL).

Note

This brief description of the "pair" format suggests that it is best suited for global pairwise align-
ments, because, in that case, the original pattern and subject sequences can be inferred (by just
removing the gaps).

However, even though the "pair" format can also be used for non global pairwise alignments (i.e.
for global-local, local-global, and local pairwise alignments), in that case the original pattern and
subject sequences cannot be inferred. This is because the alignment written to the file doesn’t
necessarily span the entire pattern (if type(x) is local-global or local) or the entire subject (if
type(x) is global-local or local).

As a consequence, the writePairwiseAlignments function can be used on a PairwiseAlignments
object x containing non global alignments (i.e. with type(x) != "global"), but with the 2 follow-
ing caveats:

1. The type of the alignments (type(x)) is not written to the file.

2. The original pattern and subject sequences cannot be inferred. Furthermore, there is no way
to infer their lengths (because we don’t know whether they were trimmed or not).

Also note that the pairwiseAlignment function interprets the gapOpening and gapExtension ar-
guments differently than most other alignment tools. As a consequence the values of the Gap_penalty
and Extend_penalty fields written to the file are not the same as the values that were passed to the
gapOpening and gapExtension arguments. With the following relationship:

• Gap_penalty = gapOpening + gapExtension

• Extend_penalty = gapExtension

Author(s)

H. Pagès

References

http://emboss.sourceforge.net/docs/themes/AlignFormats.html

See Also

• pairwiseAlignment

• PairwiseAlignments-class

• substitution_matrices

http://emboss.sourceforge.net/docs/themes/AlignFormats.html
http://emboss.sourceforge.net/docs/themes/AlignFormats.html

PairwiseAlignments-io 15

Examples

A. WITH ONE PAIR

pattern <- DNAString("CGTACGTAACGTTCGT")
subject <- DNAString("CGTCGTCGTCCGTAA")
pa1 <- pairwiseAlignment(pattern, subject)
pa1
writePairwiseAlignments(pa1)
writePairwiseAlignments(pa1, block.width=10)
The 2 bottom-right numbers (16 and 15) are the lengths of
the original pattern and subject, respectively.

pa2 <- pairwiseAlignment(pattern, subject, type="global-local")
pa2 # score is different!
writePairwiseAlignments(pa2)
By just looking at the file, we can't tell the length of the
original subject! Could be 13, could be more...

pattern <- DNAString("TCAACTTAACTT")
subject <- DNAString("GGGCAACAACGGG")
pa3 <- pairwiseAlignment(pattern, subject, type="global-local",

gapOpening=-2, gapExtension=-1)
writePairwiseAlignments(pa3)

B. WITH MORE THAN ONE PAIR (AND NAMED PATTERNS)

pattern <- DNAStringSet(c(myp1="ACCA", myp2="ACGCA", myp3="ACGGCA"))
pa4 <- pairwiseAlignment(pattern, subject)
pa4
writePairwiseAlignments(pa4)

C. REPRODUCING THE ALIGNMENT SHOWN AT
http://emboss.sourceforge.net/docs/themes/alnformats/align.pair

pattern <- c("TSPASIRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQAT",

"GGWKTCSGTCTTSTSTRHRGRSGWSARTTTAACLRASRKSMRAACSRSAG",
"SRPNRFAPTLMSSCITSTTGPPAWAGDRSHE")

subject <- c("TSPASIRPPAGPSSRRPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGT",
"CTTSTSTRHRGRSGWRASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTT",
"GPPAWAGDRSHE")

pattern <- unlist(AAStringSet(pattern))
subject <- unlist(AAStringSet(subject))
pattern # original pattern
subject # original subject
data(BLOSUM62)
pa5 <- pairwiseAlignment(pattern, subject,

substitutionMatrix=BLOSUM62,
gapOpening=9.5, gapExtension=0.5)

pa5
writePairwiseAlignments(pa5, Matrix="BLOSUM62")

16 phiX174Phage

phiX174Phage Versions of bacteriophage phiX174 complete genome and sample
short reads

Description

Six versions of the complete genome for bacteriophage ϕ X174 as well as a small number of Solexa
short reads, qualities associated with those short reads, and counts for the number times those short
reads occurred.

Format

phiX174Phage: A DNAStringSet containing the following six naturally occurring versions of the
bacteriophage ϕ X174 genome cited in Smith et al.:

1. Genbank: The version of the genome from GenBank (NC_001422.1, GI:9626372).

2. RF70s: A preparation of ϕ X double-stranded replicative form (RF) of DNA by Clyde A.
Hutchison III from the late 1970s.

3. SS78: A preparation of ϕ X virion single-stranded DNA from 1978.

4. Bull: The sequence of wild-type ϕ X used by Bull et al.

5. G’97: The ϕ X replicative form (RF) of DNA from Bull et al.

6. NEB’03: A ϕ X replicative form (RF) of DNA from New England BioLabs (NEB).

srPhiX174: A DNAStringSet containing short reads from a Solexa machine.

quPhiX174: A BStringSet containing Solexa quality scores associated with srPhiX174.

wtPhiX174: An integer vector containing counts associated with srPhiX174.

Author(s)

P. Aboyoun

References

• http://www.genome.jp/dbget-bin/www_bget?refseq+NC_001422

• Bull, J. J., Badgett, M. R., Wichman, H. A., Huelsenbeck, Hillis, D. M., Gulati, A., Ho, C. &
Molineux, J. (1997) Genetics 147, 1497-1507.

• Smith, Hamilton O.; Clyde A. Hutchison, Cynthia Pfannkoch, J. Craig Venter (2003-12-23).
"Generating a synthetic genome by whole genome assembly: {phi}X174 bacteriophage from
synthetic oligonucleotides". Proceedings of the National Academy of Sciences 100 (26):
15440-15445. doi:10.1073/pnas.2237126100.

Examples

data(phiX174Phage)
nchar(phiX174Phage)
genBankPhage <- phiX174Phage[[1]]
genBankSubstring <- substring(genBankPhage, 2793-34, 2811+34)

data(srPhiX174)
srPhiX174

http://www.genome.jp/dbget-bin/www_bget?refseq+NC_001422

pid 17

quPhiX174
summary(wtPhiX174)

alignPhiX174 <- pairwiseAlignment(srPhiX174, genBankSubstring,
patternQuality=SolexaQuality(quPhiX174),
subjectQuality=SolexaQuality(99L),
type="global-local")

summary(alignPhiX174, weight=wtPhiX174)

pid Percent Sequence Identity

Description

Calculates the percent sequence identity for a pairwise sequence alignment.

Usage

pid(x, type="PID1")

Arguments

x a PairwiseAlignments object.

type one of percent sequence identity. One of "PID1", "PID2", "PID3", and "PID4".
See Details for more information.

Details

Since there is no universal definition of percent sequence identity, the pid function calculates this
statistic in the following types:

"PID1": 100 * (identical positions) / (aligned positions + internal gap positions)

"PID2": 100 * (identical positions) / (aligned positions)

"PID3": 100 * (identical positions) / (length shorter sequence)

"PID4": 100 * (identical positions) / (average length of the two sequences)

Value

A numeric vector containing the specified sequence identity measures.

Author(s)

P. Aboyoun

References

A. May, Percent Sequence Identity: The Need to Be Explicit, Structure 2004, 12(5):737.

G. Raghava and G. Barton, Quantification of the variation in percentage identity for protein se-
quence alignments, BMC Bioinformatics 2006, 7:415.

18 predefined_scoring_matrices

See Also

pairwiseAlignment, PairwiseAlignments-class, match-utils

Examples

s1 <- DNAString("AGTATAGATGATAGAT")
s2 <- DNAString("AGTAGATAGATGGATGATAGATA")

palign1 <- pairwiseAlignment(s1, s2)
palign1
pid(palign1)

palign2 <-
pairwiseAlignment(s1, s2,
substitutionMatrix =
nucleotideSubstitutionMatrix(match = 2, mismatch = 10, baseOnly = TRUE))

palign2
pid(palign2, type = "PID4")

predefined_scoring_matrices

Predefined scoring matrices

Description

Predefined scoring matrices for nucleotide and amino acid alignments.

Usage

data(BLOSUM45)
data(BLOSUM50)
data(BLOSUM62)
data(BLOSUM80)
data(BLOSUM100)
data(PAM30)
data(PAM40)
data(PAM70)
data(PAM120)
data(PAM250)

Format

The BLOSUM and PAM matrices are square symmetric matrices with integer coefficients, whose
row and column names are identical and unique: each name is a single letter representing a nu-
cleotide or an amino acid.

Details

The BLOSUM and PAM matrices are not unique. For example, the definition of the widely used
BLOSUM62 matrix varies depending on the source, and even a given source can provide different
versions of "BLOSUM62" without keeping track of the changes over time. NCBI provides many

stringDist 19

matrices here ftp://ftp.ncbi.nih.gov/blast/matrices/ but their definitions don’t match those of the
matrices bundled with their stand-alone BLAST software available here ftp://ftp.ncbi.nih.gov/blast/

The BLOSUM45, BLOSUM62, BLOSUM80, PAM30 and PAM70 matrices were taken from NCBI
stand-alone BLAST software.

The BLOSUM50, BLOSUM100, PAM40, PAM120 and PAM250 matrices were taken from ftp://ftp.ncbi.nih.gov/blast/matrices/

Author(s)

H. Pagès and P. Aboyoun

See Also

nucleotideSubstitutionMatrix, pairwiseAlignment, PairwiseAlignments-class, DNAString-
class, AAString-class, PhredQuality-class, SolexaQuality-class, IlluminaQuality-class

Examples

Align two amino acid sequences with the BLOSUM62 matrix:
aa1 <- AAString("HXBLVYMGCHFDCXVBEHIKQZ")
aa2 <- AAString("QRNYMYCFQCISGNEYKQN")
pairwiseAlignment(aa1, aa2, substitutionMatrix="BLOSUM62",

gapOpening=3, gapExtension=1)

See how the gap penalty influences the alignment:
pairwiseAlignment(aa1, aa2, substitutionMatrix="BLOSUM62",

gapOpening=6, gapExtension=2)

See how the substitution matrix influences the alignment:
pairwiseAlignment(aa1, aa2, substitutionMatrix="BLOSUM50",

gapOpening=3, gapExtension=1)

if (interactive()) {
Compare our BLOSUM62 with BLOSUM62 from
ftp://ftp.ncbi.nih.gov/blast/matrices/:
data(BLOSUM62)
BLOSUM62["Q", "Z"]
file <- "ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM62"
b62 <- as.matrix(read.table(file, check.names=FALSE))
b62["Q", "Z"]

}

stringDist String Distance/Alignment Score Matrix

Description

Computes the Levenshtein edit distance or pairwise alignment score matrix for a set of strings.

20 stringDist

Usage

stringDist(x, method = "levenshtein", ignoreCase = FALSE, diag = FALSE, upper = FALSE, ...)
S4 method for signature 'XStringSet'
stringDist(x, method = "levenshtein", ignoreCase = FALSE, diag = FALSE,

upper = FALSE, type = "global", quality = PhredQuality(22L),
substitutionMatrix = NULL, fuzzyMatrix = NULL, gapOpening = 0,
gapExtension = 1)

S4 method for signature 'QualityScaledXStringSet'
stringDist(x, method = "quality", ignoreCase = FALSE,

diag = FALSE, upper = FALSE, type = "global", substitutionMatrix = NULL,
fuzzyMatrix = NULL, gapOpening = 0, gapExtension = 1)

Arguments

x a character vector or an XStringSet object.

method calculation method. One of "levenshtein", "hamming", "quality", or "substitutionMatrix".

ignoreCase logical value indicating whether to ignore case during scoring.

diag logical value indicating whether the diagonal of the matrix should be printed by
print.dist.

upper logical value indicating whether the upper triangle of the matrix should be printed
by print.dist.

type (applicable when method = "quality" or method = "substitutionMatrix").
type of alignment. One of "global", "local", and "overlap", where "global"
= align whole strings with end gap penalties, "local" = align string fragments,
"overlap" = align whole strings without end gap penalties.

quality (applicable when method = "quality"). object of class XStringQuality rep-
resenting the quality scores for x that are used in a quality-based method for
generating a substitution matrix.

substitutionMatrix

(applicable when method = "substitutionMatrix"). symmetric matrix repre-
senting the fixed substitution scores in the alignment.

fuzzyMatrix (applicable when method = "quality"). fuzzy match matrix for quality-based
alignments. It takes values between 0 and 1; where 0 is an unambiguous mis-
match, 1 is an unambiguous match, and values in between represent a fraction
of "matchiness".

gapOpening (applicable when method = "quality" or method = "substitutionMatrix").
penalty for opening a gap in the alignment.

gapExtension (applicable when method = "quality" or method = "substitutionMatrix").
penalty for extending a gap in the alignment

... optional arguments to generic function to support additional methods.

Details

When method = "hamming", uses the underlying neditStartingAt code to calculate the distances,
where the Hamming distance is defined as the number of substitutions between two strings of equal
length. Otherwise, uses the underlying pairwiseAlignment code to compute the distance/alignment
score matrix.

substitution_matrices 21

Value

Returns an object of class "dist".

Author(s)

P. Aboyoun

See Also

dist, agrep, pairwiseAlignment, substitution_matrices

Examples

stringDist(c("lazy", "HaZy", "crAzY"))
stringDist(c("lazy", "HaZy", "crAzY"), ignoreCase = TRUE)

data(phiX174Phage)
plot(hclust(stringDist(phiX174Phage), method = "single"))

data(srPhiX174)
stringDist(srPhiX174[1:4])
stringDist(srPhiX174[1:4], method = "quality",

quality = SolexaQuality(quPhiX174[1:4]),
gapOpening = 10, gapExtension = 4)

substitution_matrices Utilities to generate substitution matrices

Description

Utilities to generate substitution matrices.

Usage

nucleotideSubstitutionMatrix(match=1, mismatch=0, baseOnly=FALSE,
type="DNA", symmetric=TRUE)

qualitySubstitutionMatrices(fuzzyMatch=c(0, 1), alphabetLength=4L,
qualityClass="PhredQuality", bitScale=1)

errorSubstitutionMatrices(errorProbability, fuzzyMatch=c(0, 1),
alphabetLength=4L, bitScale=1)

Arguments

match the scoring for a nucleotide match.

mismatch the scoring for a nucleotide mismatch.

baseOnly TRUE or FALSE. If TRUE, only uses the letters in the "base" alphabet i.e. "A", "C",
"G", "T".

type either "DNA" or "RNA".

22 substitution_matrices

symmetric TRUE or FALSE. Default is TRUE. If FALSE, the resulting matrix will be asymmet-
ric.

fuzzyMatch a named or unnamed numeric vector representing the base match probability.
errorProbability

a named or unnamed numeric vector representing the error probability.

alphabetLength an integer representing the number of letters in the underlying string alphabet.
For DNA and RNA, this would be 4L. For Amino Acids, this could be 20L.

qualityClass a character string of "PhredQuality", "SolexaQuality", or "IlluminaQuality".

bitScale a numeric value to scale the quality-based substitution matrices. By default, this
is 1, representing bit-scale scoring.

Details

The quality matrices computed in qualitySubstitutionMatrices are based on the paper by Ketil
Malde. Let ϵi be the probability of an error in the base read. For "Phred" quality measures Q in
[0, 99], these error probabilities are given by ϵi = 10−Q/10. For "Solexa" quality measures Q in
[−5, 99], they are given by ϵi = 1−1/(1+10−Q/10). Assuming independence within and between
base reads, the combined error probability of a mismatch when the underlying bases do match is
ϵc = ϵ1+ϵ2−(n/(n−1))∗ϵ1∗ϵ2, where n is the number of letters in the underlying alphabet. Using
ϵc, the substitution score is given by when two bases match is given by b∗ log2(γx,y ∗ (1− ϵc)∗n+
(1−γx,y)∗ϵc∗(n/(n−1))), where b is the bit-scaling for the scoring and γx,y is the probability that
characters x and y represents the same underlying information (e.g. using IUPAC, γA,A = 1 and
γA,N = 1/4. In the arguments listed above fuzzyMatch represents γx,y and errorProbability
represents ϵi.

Value

A matrix.

Author(s)

P. Aboyoun, with contribution from Albert Vill (support for asymmetric matrices in nucleotideSubstitutionMatrix())

References

K. Malde, The effect of sequence quality on sequence alignment, Bioinformatics, Feb 23, 2008.

See Also

predefined_scoring_matrices, pairwiseAlignment, PairwiseAlignments-class, DNAString-class,
AAString-class, PhredQuality-class, SolexaQuality-class, IlluminaQuality-class

Examples

s1 <- DNAString("ACTTCACCAGCTCCCTGGCGGTAAGTTGATCAAAGGAAACGCAAAGTTTTCAAG")
s2 <- DNAString("GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC")
s3 <- DNAString("NCTTCRCCAGCTCCCTGGMGGTAAGTTGATCAAAGVAAACGCAAAGTTNTCAAG")

Fit a global pairwise alignment using edit distance scoring:
nsm <- nucleotideSubstitutionMatrix(0, -1, TRUE)
pairwiseAlignment(s1, s2, substitutionMatrix=nsm,

gapOpening=0, gapExtension=1)

substitution_matrices 23

Align sequences using an asymmetric substitution matrix.
The asymmetry of the matrix means that the query sequence is not
penalized for ambiguous bases in the subject / consensus sequence:
ansm <- nucleotideSubstitutionMatrix(symmetric=FALSE)
ansm["M", c("A","C","G","T")]
A C G T
0.5 0.5 0.0 0.0
ansm[c("A","C","G","T"), "M"]
A C G T
1 1 0 0
ansm["M", "H"]
1
ansm["H", "M"]
0.6666667

Due to this asymmetry, the order of the sequences is important:
pairwiseAlignment(s1, s3, substitutionMatrix=ansm)
pairwiseAlignment(s3, s1, substitutionMatrix=ansm)

Examine quality-based match and mismatch bit scores for DNA/RNA
strings in pairwiseAlignment. By default patternQuality and
subjectQuality are PhredQuality(22L):
qualityMatrices <- qualitySubstitutionMatrices()
qualityMatrices["22", "22", "1"]
qualityMatrices["22", "22", "0"]

pairwiseAlignment(s1, s2)

Get the substitution scores when the error probability is 0.1:
subscores <- errorSubstitutionMatrices(errorProbability=0.1)
submat <- matrix(subscores[, , "0"], 4, 4)
diag(submat) <- subscores[, , "1"]
dimnames(submat) <- list(DNA_ALPHABET[1:4], DNA_ALPHABET[1:4])
submat
pairwiseAlignment(s1, s2, substitutionMatrix=submat)

Index

∗ character
stringDist, 19

∗ classes
AlignedXStringSet-class, 4
InDel-class, 6
PairwiseAlignments-class, 9

∗ cluster
stringDist, 19

∗ datasets
phiX174Phage, 16
predefined_scoring_matrices, 18

∗ data
predefined_scoring_matrices, 18

∗ manip
PairwiseAlignments-io, 13

∗ methods
align-utils, 2
AlignedXStringSet-class, 4
InDel-class, 6
pairwiseAlignment, 6
PairwiseAlignments-class, 9
pid, 17

∗ models
pairwiseAlignment, 6

∗ multivariate
stringDist, 19

∗ utilities
PairwiseAlignments-io, 13
substitution_matrices, 21

AAString-class, 19, 22
agrep, 21
align-utils, 2, 13
aligned (AlignedXStringSet-class), 4
aligned,AlignedXStringSet0-method

(AlignedXStringSet-class), 4
aligned,PairwiseAlignmentsSingleSubject-method

(PairwiseAlignments-class), 9
alignedPattern

(PairwiseAlignments-class), 9
alignedPattern,PairwiseAlignments-method

(PairwiseAlignments-class), 9
alignedSubject

(PairwiseAlignments-class), 9

alignedSubject,PairwiseAlignments-method
(PairwiseAlignments-class), 9

AlignedXStringSet
(AlignedXStringSet-class), 4

AlignedXStringSet-class, 3, 4, 13
AlignedXStringSet0

(AlignedXStringSet-class), 4
AlignedXStringSet0-class

(AlignedXStringSet-class), 4
alphabet, 3, 12
as.character,AlignedXStringSet0-method

(AlignedXStringSet-class), 4
as.character,PairwiseAlignmentsSingleSubject-method

(PairwiseAlignments-class), 9
as.matrix,PairwiseAlignmentsSingleSubject-method

(PairwiseAlignments-class), 9

BLOSUM100
(predefined_scoring_matrices),
18

BLOSUM45 (predefined_scoring_matrices),
18

BLOSUM50 (predefined_scoring_matrices),
18

BLOSUM62 (predefined_scoring_matrices),
18

BLOSUM80 (predefined_scoring_matrices),
18

BString, 3
BStringSet, 3

class:AlignedXStringSet
(AlignedXStringSet-class), 4

class:AlignedXStringSet0
(AlignedXStringSet-class), 4

class:InDel (InDel-class), 6
class:PairwiseAlignments

(PairwiseAlignments-class), 9
class:PairwiseAlignmentsSingleSubject

(PairwiseAlignments-class), 9
class:PairwiseAlignmentsSingleSubjectSummary

(PairwiseAlignments-class), 9
class:QualityAlignedXStringSet

(AlignedXStringSet-class), 4

24

INDEX 25

compareStrings (align-utils), 2
compareStrings,AlignedXStringSet0,AlignedXStringSet0-method

(align-utils), 2
compareStrings,character,character-method

(align-utils), 2
compareStrings,PairwiseAlignments,missing-method

(align-utils), 2
compareStrings,XString,XString-method

(align-utils), 2
compareStrings,XStringSet,XStringSet-method

(align-utils), 2
CompressedIRangesList, 12
consensusMatrix, 3, 12
consensusMatrix,PairwiseAlignmentsSingleSubject-method

(align-utils), 2
consensusString, 12
coverage, 3
coverage,AlignedXStringSet0-method

(align-utils), 2
coverage,PairwiseAlignmentsSingleSubject-method,

12
coverage,PairwiseAlignmentsSingleSubject-method

(align-utils), 2
coverage,PairwiseAlignmentsSingleSubjectSummary-method

(align-utils), 2

deletion (InDel-class), 6
deletion,InDel-method (InDel-class), 6
deletion,PairwiseAlignments-method

(PairwiseAlignments-class), 9
dist, 21
DNAString-class, 19, 22

end,AlignedXStringSet0-method
(AlignedXStringSet-class), 4

errorSubstitutionMatrices
(substitution_matrices), 21

IlluminaQuality-class, 19, 22
InDel (InDel-class), 6
indel (AlignedXStringSet-class), 4
indel,AlignedXStringSet0-method

(AlignedXStringSet-class), 4
indel,PairwiseAlignments-method

(PairwiseAlignments-class), 9
InDel-class, 6
insertion (InDel-class), 6
insertion,InDel-method (InDel-class), 6
insertion,PairwiseAlignments-method

(PairwiseAlignments-class), 9

length,PairwiseAlignmentsSingleSubjectSummary-method
(PairwiseAlignments-class), 9

match-utils, 3, 18
matchPattern, 8, 9
matchPDict, 8
mismatch,AlignedXStringSet0,missing-method

(align-utils), 2
mismatchSummary (align-utils), 2
mismatchSummary,AlignedXStringSet0-method

(align-utils), 2
mismatchSummary,PairwiseAlignmentsSingleSubject-method

(align-utils), 2
mismatchSummary,PairwiseAlignmentsSingleSubjectSummary-method

(align-utils), 2
mismatchSummary,QualityAlignedXStringSet-method

(align-utils), 2
mismatchTable (align-utils), 2
mismatchTable,AlignedXStringSet0-method

(align-utils), 2
mismatchTable,PairwiseAlignments-method

(align-utils), 2
mismatchTable,QualityAlignedXStringSet-method

(align-utils), 2

nchar,AlignedXStringSet0-method
(AlignedXStringSet-class), 4

nchar,PairwiseAlignments-method
(PairwiseAlignments-class), 9

nchar,PairwiseAlignmentsSingleSubjectSummary-method
(PairwiseAlignments-class), 9

nedit (align-utils), 2
nedit,PairwiseAlignments-method

(align-utils), 2
nedit,PairwiseAlignmentsSingleSubjectSummary-method

(align-utils), 2
nindel (AlignedXStringSet-class), 4
nindel,AlignedXStringSet0-method

(AlignedXStringSet-class), 4
nindel,PairwiseAlignments-method

(PairwiseAlignments-class), 9
nindel,PairwiseAlignmentsSingleSubjectSummary-method

(PairwiseAlignments-class), 9
nmatch,PairwiseAlignments,missing-method

(align-utils), 2
nmatch,PairwiseAlignmentsSingleSubjectSummary,missing-method

(align-utils), 2
nmismatch,AlignedXStringSet0,missing-method

(align-utils), 2
nmismatch,PairwiseAlignments,missing-method

(align-utils), 2
nmismatch,PairwiseAlignmentsSingleSubjectSummary,missing-method

(align-utils), 2
nucleotideSubstitutionMatrix, 19
nucleotideSubstitutionMatrix

(substitution_matrices), 21

26 INDEX

pairwiseAlignment, 3, 5, 6, 6, 13, 14, 18, 19,
21, 22

pairwiseAlignment,ANY,ANY-method
(pairwiseAlignment), 6

pairwiseAlignment,ANY,QualityScaledXStringSet-method
(pairwiseAlignment), 6

pairwiseAlignment,QualityScaledXStringSet,ANY-method
(pairwiseAlignment), 6

pairwiseAlignment,QualityScaledXStringSet,QualityScaledXStringSet-method
(pairwiseAlignment), 6

PairwiseAlignments, 8, 13, 14, 17
PairwiseAlignments

(PairwiseAlignments-class), 9
PairwiseAlignments,character,character-method

(PairwiseAlignments-class), 9
PairwiseAlignments,character,missing-method

(PairwiseAlignments-class), 9
PairwiseAlignments,XString,XString-method

(PairwiseAlignments-class), 9
PairwiseAlignments,XStringSet,missing-method

(PairwiseAlignments-class), 9
PairwiseAlignments-class, 3, 9, 9, 14, 18,

19, 22
PairwiseAlignments-io, 13
PairwiseAlignmentsSingleSubject, 8
PairwiseAlignmentsSingleSubject

(PairwiseAlignments-class), 9
PairwiseAlignmentsSingleSubject,character,character-method

(PairwiseAlignments-class), 9
PairwiseAlignmentsSingleSubject,character,missing-method

(PairwiseAlignments-class), 9
PairwiseAlignmentsSingleSubject,XString,XString-method

(PairwiseAlignments-class), 9
PairwiseAlignmentsSingleSubject,XStringSet,missing-method

(PairwiseAlignments-class), 9
PairwiseAlignmentsSingleSubject-class

(PairwiseAlignments-class), 9
PairwiseAlignmentsSingleSubjectSummary

(PairwiseAlignments-class), 9
PairwiseAlignmentsSingleSubjectSummary-class

(PairwiseAlignments-class), 9
PAM120 (predefined_scoring_matrices), 18
PAM250 (predefined_scoring_matrices), 18
PAM30 (predefined_scoring_matrices), 18
PAM40 (predefined_scoring_matrices), 18
PAM70 (predefined_scoring_matrices), 18
parallel_slot_names,AlignedXStringSet0-method

(AlignedXStringSet-class), 4
parallel_slot_names,PairwiseAlignments-method

(PairwiseAlignments-class), 9
parallelVectorNames,AlignedXStringSet0-method

(AlignedXStringSet-class), 4

pattern,PairwiseAlignments-method
(PairwiseAlignments-class), 9

phiX174Phage, 16
PhredQuality-class, 19, 22
pid, 13, 17
pid,PairwiseAlignments-method (pid), 17
predefined_scoring_matrices, 18, 22

QualityAlignedXStringSet
(AlignedXStringSet-class), 4

QualityAlignedXStringSet-class
(AlignedXStringSet-class), 4

QualityScaledXStringSet, 7
qualitySubstitutionMatrices

(substitution_matrices), 21
quPhiX174 (phiX174Phage), 16

ranges,AlignedXStringSet0-method
(AlignedXStringSet-class), 4

score,PairwiseAlignments-method
(PairwiseAlignments-class), 9

score,PairwiseAlignmentsSingleSubjectSummary-method
(PairwiseAlignments-class), 9

seqtype,AlignedXStringSet0-method
(AlignedXStringSet-class), 4

seqtype,PairwiseAlignments-method
(PairwiseAlignments-class), 9

show,AlignedXStringSet0-method
(AlignedXStringSet-class), 4

show,PairwiseAlignments-method
(PairwiseAlignments-class), 9

show,PairwiseAlignmentsSingleSubjectSummary-method
(PairwiseAlignments-class), 9

SolexaQuality-class, 19, 22
srPhiX174 (phiX174Phage), 16
start,AlignedXStringSet0-method

(AlignedXStringSet-class), 4
stringDist, 9, 19
stringDist,character-method

(stringDist), 19
stringDist,QualityScaledXStringSet-method

(stringDist), 19
stringDist,XStringSet-method

(stringDist), 19
subject,PairwiseAlignments-method

(PairwiseAlignments-class), 9
substitution_matrices, 9, 13, 14, 21, 21
summary,PairwiseAlignmentsSingleSubject-method

(PairwiseAlignments-class), 9

toString,AlignedXStringSet0-method
(AlignedXStringSet-class), 4

INDEX 27

toString,PairwiseAlignmentsSingleSubject-method
(PairwiseAlignments-class), 9

type (PairwiseAlignments-class), 9
type,PairwiseAlignments-method

(PairwiseAlignments-class), 9
type,PairwiseAlignmentsSingleSubjectSummary-method

(PairwiseAlignments-class), 9

unaligned (AlignedXStringSet-class), 4
unaligned,AlignedXStringSet0-method

(AlignedXStringSet-class), 4

Views,PairwiseAlignmentsSingleSubject-method
(PairwiseAlignments-class), 9

vmatchPattern, 8

width,AlignedXStringSet0-method
(AlignedXStringSet-class), 4

writePairwiseAlignments, 9, 13
writePairwiseAlignments

(PairwiseAlignments-io), 13
wtPhiX174 (phiX174Phage), 16

XString, 7, 8, 10
XString-class, 3, 13
XStringQuality, 7, 20
XStringQuality-class, 9
XStringSet, 7, 8, 10, 20
XStringSet-class, 3
XStringViews, 3
XStringViews-class, 3, 13

	align-utils
	AlignedXStringSet-class
	InDel-class
	pairwiseAlignment
	PairwiseAlignments-class
	PairwiseAlignments-io
	phiX174Phage
	pid
	predefined_scoring_matrices
	stringDist
	substitution_matrices
	Index

