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adjMatToElist converts adjacency matrix to edge list

Description

converts adjacency matrix to edge list

Usage

adjMatToElist(adj_mat)

Arguments

adj_mat adjacency matrix

Value

edge list

alpaca Main ALPACA function

Description
This function compares two networks and finds the sets of nodes that best characterize the change
in modular structure

Usage

alpaca(net.table, file.stem, verbose = FALSE)

Arguments
net.table A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.
file.stem The folder location and title under which all results will be stored.
verbose Indicates whether the full differential modularity matrix should also be written
to a file. Defaults to FALSE. modularity
Value

List where first element is the membership vector and second element is the contribution score of
each node to its module’s total differential modularity
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Examples

example_path <- system.file("extdata”, "Example_2comm.txt",
package = "netZooR"”, mustWork = TRUE)

simp.mat <- read.table(example_path,header=TRUE)

simp.alp <- alpaca(simp.mat,NULL,verbose=FALSE)

alpacaCommunityStructureRotation
Comparing node community membership between two networks

Description

This function uses the pseudo-inverse to find the optimal linear transformation mapping the com-
munity structures of two networks, then ranks nodes in the network by how much they deviate from
the linear mapping.

Usage

alpacaCommunityStructureRotation(net1.memb, net2.memb)

Arguments
net1.memb The community membership for Network 1.
net2.memb The community membership for Network 2.
Value

A ranked list of nodes.

Examples

a <- 1 #place holder

alpacaComputeDifferentialScoreFromDWBM
Compute Differential modularity score from differential modularity
matrix

Description
This functions takes the precomputed differential modularity matrix and the genLouvain member-
ship to compute the differential modularity score.

Usage

alpacaComputeDifferentialScoreFromDWBM(dwbm, louv.memb)

Arguments

dwbm differential modularity matrix

louv.memb louvain community membership
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Value

Vector of differntial modularity score

alpacaComputeDWBMmatmScale
Differential modularity matrix

Description

This function computes the differential modularity matrix for weighted bipartite networks. The
community structure of the healthy network is rescaled by the ratio of m (the total edge weight) of
each network.

Usage

alpacaComputeDWBMmatmScale(edge.mat, ctrl.memb)

Arguments
edge.mat A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.
ctrl.memb The community membership for the control (healthy) network.
Value

The differential modularity matrix, with rows representing "from" nodes and columns representing
"to" nodes.

Examples

a <- 1 # place holder

alpacaComputeWBMmat Compute modularity matrix for weighted bipartite network

Description

This function computes the modularity matrix for a weighted bipartite network.

Usage

alpacaComputeWBMmat (edge.mat)

Arguments

edge.mat A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the network of interest.
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Value

Modularity matrix with rows representing TFs ("from" nodes) and columns repesenting targets ("to"
nodes)

Examples

a <- 1 # example place holder

alpacaCrane Find the robust nodes in ALPACA community using CRANE

Description

Find the robust nodes in ALPACA community using CRANE

Usage

alpacaCrane(input, alp, alpha = 0.1, beta = @, iteration = 30, isParallel = F)

Arguments
input same input for alpaca: first column TF, second column Genes, third column
edge weights from baseline condition, fourth column edge weights from disease
condition.
alp alpca object in list format (output from alpaca package)
alpha alpha paramter perturbs each edge weights
beta beta parameter perturbs the strength of each node. Set this to 0 if you want nodes
to have node strength identical to the orignal network.
iteration Number of CRANE distributions to create. Higher value leads to better ranking
but longer runtime.
isParallel TRUE = use Multithread / FALSE = do not use Multithread
Value

list of data frames

Examples

## Not run:
input=cbind(nonAng,ang[,3])

alp=alpaca(input,NULL,verbose = F)
alpListObject=alpacaCrane(input, alp, isParallel = T)

## End(Not run)
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alpacaDeltaZAnalysis  Edge subtraction method (CONDOR optimizaton)

Description
Takes two networks, subtracts edges individually, and then clusters the subtracted network using
CONDOR.

Usage

alpacaDeltaZAnalysis(net.table, file.stem)

Arguments
net.table A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.
file.stem The folder location and title under which all results will be stored.
Value

List where first element is the membership vector and second element is the contribution score of
each node to its community’s modularity in the final edge-subtracted network

Examples

a <- 1 # example place holder

alpacaDeltaZAnalysislLouvain
Edge subtraction method (Louvain optimizaton)

Description

Takes two networks, subtracts edges individually, and then clusters the subtracted network using
Louvain method.

Usage

alpacaDeltaZAnalysislLouvain(net.table, file.stem)

Arguments

net.table A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.

file.stem The folder location and title under which all results will be stored.
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Value

List where first element is the membership vector and second element is the contribution score of
each node to its community’s modularity in the final edge-subtracted network

Examples

a <- 1 # example place holder

alpacaExtractTopGenes Extract core target genes in differential modules

Description

This function outputs the top target genes in each module, ranked by their contribution to the dif-
ferential modularity of the particular module in which they belong.

Usage

alpacaExtractTopGenes(module.result, set.lengths)

Arguments

module.result A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.

set.lengths The desired lengths of the top gene lists.

Value

List with two elements. First element is a list of the top target genes in each cluster. Second element
is a vector with the names of the gene sets. The names are in the format "number_length", where
number is the module number label and length is the length of the gene set.

Examples

example_path <- system.file("extdata”, "Example_2comm.txt",
package = "netZooR"”, mustWork = TRUE)

simp.mat <- read.table(example_path,header=TRUE)

simp.alp <- alpaca(simp.mat,NULL,verbose=FALSE)
alpacaExtractTopGenes(simp.alp, set.lengths=c(2,2))



10
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alpacaGenLouvain Generalized Louvain optimization

Description

This function implements the Louvain optimization scheme on a general symmetric matrix. First,
nodes are all placed in separate communities, and merged iteratively according to which merge
moves result in the greatest increase in the modularity sum. Note that nodes are iterated in the order
of the input matrix (not randomly) so that all results are reproducible. Second, the final community
membership is used to form a alpacaMetaNetwork whose nodes represent communities from the
prevous step, and which are connected by effective edge weights. The merging process is then
repeated on the alpacaMetaNetwork. These two steps are repeated until the modularity sum does

not increase more than a very small tolerance factor. New

Usage

alpacaGenLouvain(B)
Arguments

B Symmetric modularity matrix
Value

The community membership vector

Examples

a <- 1 # example place holder

alpacaGetMember get the member vector from alpaca object

Description

get the member vector from alpaca object

Usage
alpacaGetMember (alp, target = "all")

Arguments
alp alpaca object
target tf, gene, or all
Value

member vector
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alpacaGOtabtogenes The top GO term associated genes in each module

Description

Get all the genes in the top-scoring lists which are annotated with the enriched GO terms. Only GO
terms with at least 3 genes in the overlap are included.

Usage

alpacaGOtabtogenes(go.result, dm.top)

Arguments

go.result The result of the GO term analysis (alpacaListToGo)

dm. top The result of extracting the top genes of the differential modules (dm.top)
Value

A vector with strings representing gene lists, each element of the vector has the genes in that GO
term and community pasted together with spaces in between.

Examples

a <- 1 # example place holder

alpacaGoToGenes Map GO terms to gene symbols

Description

This function extracts all the gene symbols associated with a GO term and its descendants. (v1)

Usage

alpacaGoToGenes(go.term)

Arguments

go.term The GO Biological Process ID (string).

Value

A vector of all gene symbols associated with the GO term.

Examples

a <- 1 # example place holder
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alpacalistToGo GO term enrichment for a list of gene sets

Description
GO term enrichment is run using the GOstats package, and corrected for multiple testing using the
Benjamini-Hochberg method.

Usage

alpacalistToGo(gene.list, univ.vec, comm.nums)

Arguments
gene.list A list consisting of vectors of genes; genes must be identified by their official
gene symbols.
univ.vec A vector of all gene symbols that were present in the original network. This set
is used as the universe for running the hypergeometric test in GOstats.
comm. nums A vector of names for the gene sets in the input parameter "gene.list". These are
used to create the table of final results.
Value

A table whose rows represent enriched GO terms (p_adj<0.05) and columns describe useful prop-
erties, like the name of the GO term, the label of the gene set which is enriched in that GO term, the
adjusted p-value and Odds Ratio.

Examples

a <- 1 # example place holder

alpacaMetaNetwork Create alpacaMetaNetwork for Louvain optimization

Description
Computes the "effective" adjacency matrix of a alpacaMetaNetwork whose nodes represent com-
munities in the larger input matrix.

Usage

alpacaMetaNetwork(J, S)

Arguments

J The modularity matrix

S The community membership vector from the previous round of agglomeration.
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Value
The differential modularity matrix, with rows representing "from" nodes and columns representing
"to" nodes.

Examples

a <- 1 # example place holder

alpacaNodeToGene Remove tags from gene names

Description

In gene regulatory networks, transcription factors can act as both "from" nodes (regulators) and
"to" nodes (target genes), so the network analysis functions automatically tag the two columns to
differentiate them. This function removes those tags from the gene identifiers.

Usage

alpacaNodeToGene (x)
Arguments

X Tagged node identifier
Value

Untagged node name

Examples

a <- 1 # example place holder

alpacaObjectToDfList  Converts alpaca output into list of data frames

Description

Converts alpaca output into list of data frames

Usage

alpacaObjectToDfList(alp)

Arguments

alp alpaca object

Value

list of data frames
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alpacaRotationAnalysis
Community comparison method (CONDOR optimizaton)

Description
Takes two networks, finds community structure of each one individually using CONDOR, and then
ranks the nodes that show the biggest difference in their community membership.

Usage

alpacaRotationAnalysis(net.table)

Arguments
net.table A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.
Value

Vector of nodes ordered by how much they change their community membership between the two
networks.

Examples

a <- 1 # example place holder

alpacaRotationAnalysislLouvain
Community comparison method (CONDOR optimizaton)

Description

Takes two networks, finds community structure of each one individually using a generalization of
the Louvain method, and then ranks the nodes that show the biggest difference in their community
membership.

Usage

alpacaRotationAnalysisLouvain(net.table)

Arguments

net.table A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.
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Value
Vector of nodes ordered by how much they change their community membership between the two
networks.

Examples

a <- 1 # example place holder

alpacaSimulateNetwork Simulated networks

Description

This function creates a pair of networks given user-defined parameters for the modular structure of
the first (healthy) network and the type of added module in the second (disease) network.

Usage

alpacaSimulateNetwork(
comm.sizes,
edge.mat,
num.module,
size.module,
dens.module

)
Arguments
comm.sizes A two-column matrix indicating the number of "from" nodes (left column) and
number of "to" nodes (right column) in each community (row).
edge.mat A matrix indicating the number of edges from the TFs in community i (rows) to
target genes in community j (columns).
num.module The number of modules that will be added to simulate the disease network.
size.module A two-column matrix indicating the number of "from" and "to" nodes in each
new module (row) that will be added to simulate the disease network.
dens.module A vector of length num.module, indicating the edge density of each added mod-
ule.
Value

A list with two elements. The first element is a four-column edge table of the same form that is
input into the differential modularity function. The second element is a list of all the new nodes in
the modules that were added to create the disease network.

Examples

a <- 1 # example place holder
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alpacaTestNodeRank Enrichment in ranked list

Description

This function computes the enrichment of selected nodes in a ranked list, using Wilcoxon, Kolmogorov-
Smirnov, and Fisher exact tests.

Usage

alpacaTestNodeRank(node.ordered, true.pos)

Arguments

node.ordered  An ordered list of nodes (high-scoring to low-scoring).

true.pos The selected set of nodes being tested for enrichment among the ranked list.

Value

A vector of 4 values. 1) Wilcoxon p-value, 2) KS p-value, 3) Fisher p-value, 4) Fisher odds ratio.

Examples

a <- 1 # example place holder

alpacaTidyConfig Renumbering community membership vector

Description

This is a helper function alpacaGenLouvain. It re-numbers the communities so that they run from 1
to N increasing through the vector.

Usage
alpacaTidyConfig(S)
Arguments
S The community membership vector derived from the previous round of agglom-
eration.
Value

The renumbered membership vector.

Examples

a <- 1 # example place holder
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alpacaTopEnsembltoTopSym
Translating gene identifiers to gene symbols

Description
Takes a list of gene sets named using gene identifiers and converts them to a list of symbols given a
user-defined annotation table.

Usage

alpacaTopEnsembltoTopSym(mod. top, annot.vec)

Arguments
mod. top A list of gene sets (gene identifiers)
annot.vec A vector of gene symbols with gene identifiers as the names of the vector, that
defines the translation between annotations.
Value

A list of sets of gene symbols.

Examples

a <- 1 # example place holder

alpacaWBMlouvain Generalized Louvain method for bipartite networks

Description
This function implements a generalized form of the Louvain method for weighted bipartite net-
works.

Usage

alpacaWBMlouvain(net.frame)

Arguments
net.frame A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the network of interest.
Value

List where first element is the community membership vector and second element is the contribution
score of each node to its community’s portion of the bipartite modularity.
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Examples

condorCluster

a <- 1 # example place holder

condorCluster

Main clustering function for condor.

Description

This function performs community structure clustering using the bipartite modularity described in
condorModularityMax. This function uses a standard (non-bipartite) community structure cluster-
ing of the uni-partite, weighted projection of the original bipartite graph as an initial guess for the
bipartite modularity.

Usage

condorCluster(

condor.object,
cs.method = "LCS",
project = TRUE,
low.memory = FALSE,
deltaQmin = "default”

Arguments

condor.object

cs.method

project

low.memory

deltaQmin

Value

Output of make.condor.object. This function uses condor.object$edges

is a string to specify which unipartite community structure algorithm should be
used for the seed clustering. Options are LCS (multilevel.community), LEC
(leading.eigenvector.community), FG (fastgreedy.community).

Provides options for initial seeding of the bipartite modularity maximization. If
TRUE, the nodes in the first column of condor.object$edges are projected
and clustered using cs.method. If FALSE, the complete bipartite network is
clustered using the unipartite clustering methods listed in cs.method.

If TRUE, uses condorModularityMax instead of condorMatrixModularity.
This is a slower implementation of the modularity maximization, which does not
store any matrices in memory. Useful on a machine with low RAM. However,
runtimes are (much) longer.

convergence parameter determining the minimum required increase in the mod-
ularity for each iteration. Default is min(10”-4,1/(number of edges)), with num-
ber of edges determined by nrow(condor.object$edges). User can set this
parameter by passing a numeric value to deltaQmin.

condor.object with condorModularityMax output included.
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Examples

r=c(1,1,1,2,2,2,3,3,3,4,4);

b =c(1,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice"”,"Sue","Janine"”,"Mary")
blues <- c("Bob","John","Ed", "Hank")

elist <- data.frame(red=reds[r],blue=blues[b])
condor.object <- createCondorObject(elist)
condor.object <- condorCluster(condor.object)

condorCoreEnrich Compare gscore distribution of a subset of nodes to all other nodes.

Description

Compute one-sided KS and wilcox tests to determine if a subset of nodes has a stochastically larger
gscore distribution.

Usage

condorCoreEnrich(test_nodes, g, perm = FALSE, plot.hist = FALSE, nsamp = 1000)

Arguments
test_nodes is a list containing the subset of nodes (of one node class —blue or red—only) to
be tested
q is a two column data frame containing the node names in the first column and
the g-scores in the second column.
perm if TRUE, run permutation tests. Else, run ks. test and wilcox. test only.
plot.hist if TRUE, produces two histograms of test statistics from permutation tests, one
for KS and one for wilcoxon and a red dot for true labeling. Only works if
perm=TRUE.
nsamp Number of permutation tests to run
Value

if perm=FALSE, the analytical p-values from ks. test and wilcox. test

if perm=TRUE, the permutation p-values are provided in addition to the analytical values.

Note

ks.test and wilcox.test will throw warnings due to the presence of ties, so the p-values will be
approximate. See those functions for further details.
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Examples

r=c(,1,1,2,2,2,3,3,3,4,4);

b=c(,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice","Sue”,"Janine","Mary")

blues <- c("Bob"”,"John","Ed","Hank")

elist <- data.frame(red=reds[r],blue=blues[b])

condor.object <- createCondorObject(elist)

condor.object <- condorCluster(condor.object)

condor.object <- condorQscore(condor.object)

g_in <- condor.object$gscores$red.qscore

out <- condorCoreEnrich(c("Alice","Mary"),q=q_in,perm=TRUE,plot.hist=TRUE)

condorCreateObject creates condor object

Description

creates condor object

Usage

condorCreateObject(elist)

Arguments

elist edge list

Value

condor object

condorMatrixModularity
Iteratively maximize bipartite modularity.

Description

This function is based on the bipartite modularity as defined in "Modularity and community detec-
tion in bipartite networks" by Michael J. Barber, Phys. Rev. E 76, 066102 (2007) This function uses
a slightly different implementation from the paper. It does not use the "adaptive BRIM" method for
identifying the number of modules. Rather, it simply continues to iterate until the difference in
modularity between iterations is less that 102-4. Starting from a random initial condition, this could
take some time. Use condorCluster for quicker runtimes and likely better clustering, it initializes
the blue node memberships by projecting the blue nodes into a unipartite "blue" network and then
identify communities in that network using a standard unipartite community detection algorithm
run on the projected network. See condorCluster for more details on that. This function loads the
entire adjacency matrix in memory, so if your network has more than ~50,000 nodes, you may want
to use condorModularityMax, which is slower, but does not store the matrices in memory. Or, of
course, you could move to a larger machine.
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Usage

condorMatrixModularity(
condor.object,
T0 = cbind(seq_len(q), rep(1, q)),
weights = 1,
deltaQmin = "default”

)

Arguments

condor.object isalist created by createCondorObject. condor.object$edges must contain
the edges in the giant connected component of a bipartite network

To is a two column data.frame with the initial community assignment for each
"blue" node, assuming there are more reds than blues, though this is not strictly
necessary. The first column contains the node name, the second column the
community assignment.

weights edgeweights for each edge in edgelist.

deltaQmin convergence parameter determining the minimum required increase in the mod-
ularity for each iteration. Default is min(10”-4,1/(number of edges)), with num-
ber of edges determined by nrow(condor.object$edges). User can set this
parameter by passing a numeric value to deltaQmin.

Value

Qcoms data.frame with modularity of each community.
modularity modularity value after each iteration.
red.memb community membership of the red nodes

blue.memb community membership of the blue.nodes

Examples

r=c(1,1,1,2,2,2,3,3,3,4,4);

b =c(1,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice"”,"Sue","Janine","Mary")

blues <- c("Bob"”,"John","Ed","Hank")

elist <- data.frame(red=reds[r],blue=blues[b])

condor.object <- createCondorObject(elist)

#randomly assign blues to their own community

T0O <- data.frame(nodes=blues,coms=seq_len(4))

condor.object <- condorMatrixModularity(condor.object,TO=T0Q)

condorModularityMax Iteratively maximize bipartite modularity.
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Description

condorModularityMax

This function is based on the bipartite modularity as defined in "Modularity and community detec-
tion in bipartite networks" by Michael J. Barber, Phys. Rev. E 76, 066102 (2007) This function uses
a slightly different implementation from the paper. It does not use the "adaptive BRIM" method for
identifying the number of modules. Rather, it simply continues to iterate until the difference in
modularity between iterations is less that 10”-4. Starting from a random initial condition, this could
take some time. Use condorCluster for quicker runtimes and likely better clustering, it initializes
the blue node memberships by projecting the blue nodes into a unipartite "blue" network and then
identify communities in that network using a standard unipartite community detection algorithm
run on the projected network. See condorCluster for more details that.

Usage

condorModularityMax(
condor.object,
To = cbind(seq_len(q), rep(1, q)),

weights = 1,

deltaQmin = "default”

Arguments

condor.object

TO

weights
deltaQmin

Value

is a list created by createCondorObject. condor.object$edges must contain
the edges in the giant connected component of a bipartite network

is a two column data.frame with the initial community assignment for each
"blue" node, assuming there are more reds than blues, though this is not strictly
necessary. The first column contains the node name, the second column the
community assignment.

edgeweights for each edge in edgelist.

convergence parameter determining the minimum required increase in the mod-
ularity for each iteration. Default is min(10”-4,1/(number of edges)), with num-

ber of edges determined by nrow(condor.object$edges). User can set this
parameter by passing a numeric value to deltaQmin.

Qcoms data.frame with modularity of each community.

modularity modularity value after each iteration.

red.memb community membership of the red nodes

blue.memb community membership of the blue.nodes

Examples

r=c(1,1,1,2,2,2,3,3,3,4,4);

b =c(1,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice”,"Sue”,"Janine","Mary")

blues <- c("Bob"”,"John","Ed","Hank")

elist <- data.frame(red=reds[r],blue=blues[b])
condor.object <- createCondorObject(elist)

#randomly assign blues to their own community

TO <- data.frame(nodes=blues,coms=1)

condor.object <- condorModularityMax(condor.object,TO=T0)
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condorPlotCommunities Plot adjacency matrix with links grouped and colored by community

Description

This function will generate the network link “heatmap’ with colored dots representing within-
community links and black dots between-community links

Usage

condorPlotCommunities(
condor.object,
color_list,
point.size = 0.01,
xlab = "SNP,
ylab = "Gene"

Arguments

condor.object output of either condorCluster or condorModularityMax

color_list vector of colors accepted by col inside the plot function. There must be as
many colors as communities.
point.size passed to cex in the plot
xlab x axis label
ylab y axis label
Value

produces a plot output.

Note

For the condor paper http://arxiv.org/abs/1509.02816, I used 35 colors from the "Tarnish"
palette with "hard" clustering

References

http://tools.medialab.sciences-po.fr/iwanthue/ for a nice color generator at

Examples

r=c(1,1,1,2,2,2,3,3,3,4,4);

b =c(1,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice"”,"Sue","Janine","Mary")

blues <- c("Bob"”,"John","Ed","Hank")

elist <- data.frame(red=reds[r],blue=blues[b])
condor.object <- createCondorObject(elist)
condor.object <- condorCluster(condor.object)
condorPlotCommunities(condor.object,
color_list=c("darkgreen”, "darkorange”),point.size=2,
xlab="Women",fylab="Men")


http://arxiv.org/abs/1509.02816
http://tools.medialab.sciences-po.fr/iwanthue/
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condorPlotHeatmap Plot weighted adjacency matrix with links grouped by community

Description

This function will generate the network link "heatmap’ for a weighted network

Usage

condorPlotHeatmap(condor.object, main = "", xlab = "blues”, ylab = "reds")

Arguments

condor.object output of either condorCluster or condorModularityMax

main plot title

xlab x axis label

ylab y axis label
Value

produces a plot output.

Examples

data(small1976)

condor.object <- createCondorObject(small1976)
condor.object <- condorCluster(condor.object, project=FALSE)
condorPlotHeatmap(condor.object)

condorQscore Calculate Qscore for all nodes

Description

Qscore is designed to calculate the fraction of the modularity contributed by each node to its com-
munity’s modularity

Usage

condorQscore(condor.object)

Arguments

condor.object output of condorCluster or condorModularityMax

Value

condor.object list has condor . object$gscores added to it. this includes two data.frames, blue.qgscore

and red.gscore which have the gscore for each red and blue node.
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Examples

r=c(1,1,1,2,2,2,3,3,3,4,4);
b=c(,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice”,"Sue","Janine","Mary")

blues <- c("Bob","John","Ed", "Hank")

elist <- data.frame(red=reds[r],blue=blues[b])
condor.object <- createCondorObject(elist)
condor.object <- condorCluster(condor.object)
condor.object <- condorQscore(condor.object)

condorRun Run CONDOR clustering

Description

Run CONDOR clustering

Usage

condorRun(elist, gscore = F)

Arguments

elist edge list

gscore TRUE = output gscore / FALSE = do not output gscore
Value

condor object

craneBipartite Pertrubs the bipartite network with fixed node strength

Description

Pertrubs the bipartite network with fixed node strength

Usage
craneBipartite(df, alpha = 0.1, beta = @, getAdj = F, randomStart = F)

Arguments
df Adjacency Matrix or Edge list
alpha alpha paramter perturbs each edge weights
beta beta parameter perturbs the strength of each node. Set this to 0 if you want nodes
to have node strength identical to the orignal network.
getAdj TRUE = this will return adjacency matrix instead of edge list

randomStart FALSE = initialize the first row with completely random edge weights.
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Value

edge list

Examples

## Not run:

# Using Edge list as input
elist=craneBipartite(nonAng)
elist=craneBipartite(nonAng,alpha=0.3)

# Using Edge list as input and Adjcency Matrix as output
adjMatrix=craneBipartite(nonAng,alpha=0.1,getAdj=T)

# Using Edge list as input and Adjcency Matrix as output

A=elistToAdjMat (nonAng)
elist=craneBipartite(A)

## End(Not run)

craneUnipartite Pertrubs the unipartite network with fixed node strength from adja-
cency matrix

Description

Pertrubs the unipartite network with fixed node strength from adjacency matrix

Usage

craneUnipartite(A, alpha = 0.1, isSelflLoop = F)

Arguments
A Adjacency Matrix
alpha alpha paramter perturbs each edge weights
isSelfLoop TRUE/FALSE if self loop exists. co-expression matrix will have a self-loop of
1. Thus TRUE
Value

adjacency matrix
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createCondorObject Create list amenable to analysis using condor package.

Description

Converts an edge list into a 1ist which is then an input for other functions in the condor package.

Usage

createCondorObject(edgelist, return.gcc = TRUE)

Arguments
edgelist a data.frame with ‘red’ nodes in the first column and ’blue’ nodes in the sec-
ond column, representing links from the node in the first column to the node in
the second column. There must be more unique 'red’ nodes than ’blue’ nodes.
Optionally, a third column may be provided to create a weighted network.
return.gcc if TRUE, returns the giant connected component
Value

G is an igraph graph object with a *color’ attribute based on the colnames of edgelist. This can be ac-
cessed via V(g)$color, which returns a vector indicating red/blue. Use V(g)$name with V(g)$color
to identify red/blue node names

edges corresponding to graph G. If return.gcc=TRUE, includes only those edges in the giant con-
nected component.

Qcoms output from condorCluster or condorModularityMax
modularity NULL output from condorCluster or condorModularityMax
red.memb NULL output from condorCluster or condorModularityMax
blue.memb NULL output from condorCluster or condorModularityMax

gscores NULL output from condorQscore

Examples

r=c(1,1,1,2,2,2,3,3,3,4,4);

b =c(1,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice"”,"Sue”,"Janine","Mary")
blues <- c("Bob"”,"John","Ed","Hank")

elist <- data.frame(red=reds[r],blue=blues[b])
condor.object <- createCondorObject(elist)
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createPandaStyle Create a Cytoscape visual style for PANDA network

Description

This function is able to create a Cytoscape visual style for any PANDA network output.

Usage

createPandaStyle(style_name = "PandaStyle")

Arguments

style_name Character string indicating the style name. Defaults to "PandaStyle"

Value

A visual style in Cytoscape Control Panel under "Style" button.

Examples

# Here we will load a customized visual style for our network, in which TF
# nodes are orange circles, target gene nodes are blue squares, and edges
# shade and width are the edge weight (likelyhood of regulatory interaction
# between the TF and gene). You can further customize the network style

# directly from Cytoscape.

createPandaStyle(style_name="PandaStyle")

degreeAdjust Function to adjust the degree so that the hub nodes are not penalized
in z-score transformation

Description

Function to adjust the degree so that the hub nodes are not penalized in z-score transformation

Usage

degreeAdjust(A)

Arguments

A Input adjacency matrix
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dragon

Run DRAGON in R.

Description

Description: Estimates a multi-omic Gaussian graphical model for two input layers of paired omic

data.
Usage
dragon(
layert,
layer2,
pval = FALSE,
gradient = "finite_difference”,
verbose = FALSE
)
Arguments
layeri : first layer of omics data; rows: samples (order must match layer2), columns:
variables
layer2 : second layer of omics data; rows: samples (order must match layer1), columns:
variables.
pval : calculate p-values for network edges. Not yet implemented in R; available in
netZooPy.
gradient : method for estimating parameters of p-value distribution, applies only if p-val
== TRUE. default = "finite_difference"; other option = "exact"
verbose : verbosity level (TRUE/FALSE)
Value

A list of model results. cov : the shrunken covariance matrix

cov the shrunken covariance matrix
prec the shrunken precision matrix

ggm the shrunken Gaussian graphical model; matrix of partial correlations. Self-edges (diago-
nal elements) are set to zero.

lambdas Vector of omics-specific tuning parameters (lambdal, lambda2) for layer1 and
layer2

gammas Reparameterized tuning parameters; gamma = 1 - lambda’2

risk_grid Risk grid, for assessing optimization. Grid boundaries are in terms of gamma.
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elistAddTags Adds "_A" to first column and "_B" to second column

Description

Adds "_A" to first column and "_B" to second column

Usage

elistAddTags(elist)

Arguments

elist edge list

Value

edge list

elistIsEdgeOrderEqual check if first two columns are identical

Description

check if first two columns are identical

Usage

elistIsEdgeOrderEqual(elistl, elist2)

Arguments
elist1 edge list
elist2 edge list
Value

boolean
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elistRemoveTags undo elistAddTags

Description

undo elistAddTags

Usage

elistRemoveTags(elist)

Arguments

elist edge list

Value

edge list

elistSort Sorts the edge list based on first two columns in alphabetical order

Description

Sorts the edge list based on first two columns in alphabetical order

Usage

elistSort(elist)
Arguments

elist edge list
Value

edge list
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elistToAdjMat Converts edge list to adjacency matrix

Description

Converts edge list to adjacency matrix

Usage
elistToAdjMat(elist, isBipartite = F)

Arguments

elist edge list
isBipartite TRUE = for bipartite / FALSE = for unipartite

Value

Adjcency Matrix

exon.size Gene length

Description

A vector of gene lengths. This will be used to normalize the gene mutation scores by the gene’s
length. This example is based on hg19 gene symbols. The gene length is based on the number of
non-overlapping exons. Data were downloaded and pre-processed as described in Kuijjer et al.

This data is a toy example data for SAMBAR, it contains length of Exons.

This data is a toy example data for SAMBAR, it contains gene annotations

Usage

data(exon.size)
data(exon.size)

data(genes)

Format

A integer vector of size 23459, with gene symbols as names
A list containing Exon sizes for 23459 genes

A vector containing names of 23459 genes

Value

A list of length 1
A vector of length 23459


https://doi.org/10.1101/228031
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References

Kuijjer, Marieke Lydia, et al. "Cancer subtype identification using somatic mutation data." British
journal of cancer 118.11 (2018): 1492-1501.

Kuijjer, Marieke Lydia, et al. "Cancer subtype identification using somatic mutation data." British
journal of cancer 118.11 (2018): 1492-1501.

genes Example of a gene list

Description

List of cancer-associated genes to subset the mutation data to, as described in Kuijjer et al.

Usage

data(genes)

Format

A character vector of length 2352

isElist Check if data frame is an edge list

Description

Check if data frame is an edge list

Usage

isElist(df)

Arguments

df some data frame

Value

Boolean


https://doi.org/10.1101/228031
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jutterDegree CRANE Beta perturbation function. This function will add noice to
the node strength sequence.

Description

CRANE Beta perturbation function. This function will add noice to the node strength sequence.

Usage

jutterDegree(nodeD, beta, beta_slope = T)

Arguments
nodeD Vector of node strength
beta beta
beta_slope TRUE=use predetermined slope to add noise / FALSE = use constant value for
noise
Value

vector with new strength distribution

lioness Compute LIONESS (Linear Interpolation to Obtain Network Esti-
mates for Single Samples)

Description

Compute LIONESS (Linear Interpolation to Obtain Network Estimates for Single Samples)

Usage
lioness(
expr,
motif = NULL,
ppi = NULL,
network.inference.method = "panda”,
ncores = 1,
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Arguments
expr A mandatory expression dataset, as a genes (rows) by samples (columns) data.frame
motif A motif dataset, a data.frame, matrix or exprSet containing 3 columns. Each
row describes an motif associated with a transcription factor (column 1) a gene
(column 2) and a score (column 3) for the motif.
ppi A Protein-Protein interaction dataset, a data.frame containing 3 columns. Each

row describes a protein-protein interaction between transcription factor 1(col-
umn 1), transcription factor 2 (column 2) and a score (column 3) for the interac-
tion.

network.inference.method
String specifying choice of network inference method. Default is "panda”. Op-
tions include "pearson".

ncores int specifying the number of cores to be used. Default is 1. (Note: constructing
panda networks can be memory-intensive, and the number of cores should take
into consideration available memory.)

additional arguments for panda analysis

Value

A list of length N, containing objects of class "panda" corresponding to each of the N samples in
the expression data set.

"regNet" is the regulatory network

"coregNet" is the coregulatory network

"coopNet" is the cooperative network

References

Kuijjer, M.L., Tung, M., Yuan, G., Quackenbush, J. and Glass, K., 2015. Estimating sample-
specific regulatory networks. arXiv preprint arXiv:1505.06440. Kuijjer, M.L., Hsieh, PH., Quack-
enbush, J. et al. lionessR: single sample network inference in R. BMC Cancer 19, 1003 (2019).
https://doi.org/10.1186/s12885-019-6235-7

Examples

data(pandaToyData)
lionessRes <- lioness(expr = pandaToyData$expression[,1:3], motif = pandaToyData$motif, ppi = pandaToyData$ppi

lionessPy Run python implementation of LIONESS

Description

LIONESS(Linear Interpolation to Obtain Network Estimates for Single Samples) is a method to
estimate sample-specific regulatory networks. [(LIONESS publication)]).


https://pubmed.ncbi.nlm.nih.gov/30981959/
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Usage

lionessPy(

expr_file,
motif_file =
ppi_file = N
computing =
precision =
save_tmp = T
modeProcess
remove_missi
start_sample
end_sample =
save_single_
save_dir ="
save_fmt ="

Arguments

expr_file

motif_file

ppi_file

computing

precision

save_tmp

modeProcess

remove_missing

start_sample

end_sample

save_single_ne

lionessPy

NULL,
ULL,
"cpu”,

"double”,
RUE,
= "union",
ng = FALSE,

= ‘l,

"None",
network = FALSE,
lioness_output”,

npyu

Character string indicating the file path of expression values file, with each
gene(in rows) across samples(in columns).

An optional character string indicating the file path of a prior transcription fac-
tor binding motifs dataset. When this argument is not provided, analysis will
continue with Pearson correlation matrix.

An optional character string indicating the file path of protein-protein interaction
edge dataset. Also, this can be generated with a list of proteins of interest by
sourcePPI.

"cpu’ uses Central Processing Unit (CPU) to run PANDA; *gpu’ use the Graph-
ical Processing Unit (GPU) to run PANDA. The default value is "cpu".

’double’ computes the regulatory network in double precision (15 decimal dig-
its); ’single’ computes the regulatory network in single precision (7 decimal
digits) which is fastaer, requires half the memory but less accurate. The default
value is *double’.

"TRUE’ saves middle data like expression matrix and normalized networks;
"FALSE’ deletes the middle data. The default value is "TURE’.

’legacy’ refers to the processing mode in netZooPy<=0.5, 'union’: takes the
union of all TFs and genes across priors and fills the missing genes in the priors
with zeros; ’intersection’: intersects the input genes and TFs across priors and
removes the missing TFs/genes. Default values is "union’.

Only when modeProcess="legacy’: remove_missing="TRUE’ removes all un-
matched TF and genes; remove_missing="FALSE’ keeps all tf and genes. The
default value is FALSE.

Numeric indicating the start sample number, The default value is 1.

Numeric indicating the end sample number. The default value is "None’ mean-
ing no end sample, i.e. print out all samples.

twork
Boolean vector, "TRUE" wirtes out the single network in npy/txt/mat formats,
directory and format are specifics by params "save_dir" and "save_fmt". The
default value is "FALSE’
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save_dir Character string indicating the folder name of output lioness networks for each
sample by defined. The default is a folder named "lioness_output" under current
working directory. This paramter is valid only when save_single_network =
TRUE.

save_fmt Character string indicating the format of lioness network of each sample. The
dafault is "npy". The option is txt, npy, or mat. This paramter is valid only when
save_single_network = TRUE.

Value

A data frame with columns representing each sample, rows representing the regulator-target pair
in PANDA network generated by pandaPy. Each cell filled with the related score, representing the
estimated contribution of a sample to the aggregate network.

Examples

# refer to the input datasets files of control in inst/extdat as example
control_expression_file_path <- system.file("extdata”, "expri10_reduced. txt", package = "netZooR",
mustWork = TRUE)
motif_file_path <- system.file("extdata”, "chip_reduced.txt"”, package = "netZooR", mustWork = TRUE)
ppi_file_path <- system.file("extdata”, "ppi_reduced. txt", package = "netZooR", mustWork = TRUE)

# Run LIONESS algorithm
control_lioness_result <- lionessPy(expr_file = control_expression_file_path,

motif_file = motif_file_path, ppi_file = ppi_file_path,
modeProcess="union",start_sample=1, end_sample=1, precision="single")

monster MOdeling Network State Transitions from Expression and Regulatory
data (MONSTER)

Description

This function runs the MONSTER algorithm. Biological states are characterized by distinct patterns
of gene expression that reflect each phenotype’s active cellular processes. Driving these phenotypes
are gene regulatory networks in which transcriptions factors control when and to what degree in-
dividual genes are expressed. Phenotypic transitions, such as those that occur when disease arises
from healthy tissue, are associated with changes in these networks. MONSTER is an approach to
understanding these transitions. MONSTER models phenotypic-specific regulatory networks and
then estimates a "transition matrix" that converts one state to another. By examining the properties
of the transition matrix, we can gain insight into regulatory changes associated with phenotypic state
transition. Important note: the direct regulatory network observed from gene expression is currently
implemented as a regular correlation as opposed to the partial correlation described in the paper. Ci-
tation: Schlauch, Daniel, et al. "Estimating drivers of cell state transitions using gene regulatory
network models." BMC systems biology 11.1 (2017): 139. https://doi.org/10.1186/s12918-017-
0517-y
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Usage

monster(
expr,
design,
motif,
nullPerms
ni_method =
ni.coefficien
numMaxCores =

1

n

monster

00,

BERE”,
t.cutoff = NA,
1,

outputDir = NA,

alphaw = 0.5,
mode = "build

Arguments

expr

design

motif

nullPerms

ni_method

ni.coefficient.

numMaxCores

outputDir

alphaw

mode

Value

An object of class

Net"

Gene Expression dataset, can be matrix or data.frame of expression values or
ExpressionSet.

Binary vector indicating case control partition. 1 for case and O for control.

Regulatory data.frame consisting of three columns. For each row, a transcription
factor (column 1) regulates a gene (column 2) with a defined strength (column
3), usually taken to be O or 1

number of random permutations to run (default 100). Set to O to only calculate
observed transition matrix. When mode is is ’buildNet’ it randomly permutes
the case and control expression samples, if mode is ‘regNet’ it will randomly
permute the case and control networks.

non

String to indicate algorithm method. Must be one of "bere","pearson","cd","lda",
or "wed". Default is "bere"

cutoff

numeric to specify a p-value cutoff at the network inference step. Default is NA,
indicating inclusion of all coefficients.

requires doParallel, foreach. Runs MONSTER in parallel computing environ-
ment. Set to 1 to avoid parallelization, NA will take the default parallel pool in
the computer.

character vector specifying a directory or path in which which to save MON-
STER results, default is NA and results are not saved.

A weight parameter between 0 and 1 specifying proportion of weight to give to
indirect compared to direct evidence. The default is 0.5 to give an equal weight
to direct and indirect evidence.

A parameter telling whether to build the regulatory networks ("buildNet’) or to
use provided regulatory networks ('regNet’). If set to ‘regNet’, then the param-
eters motif, ni_method, ni.coefficient.cutoff, and alphaw will be set to NA.

"monsterAnalysis" containing results
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Examples

# Example with the network reconstruction step

data(yeast)

design <- c(rep(@,20),rep(NA,10),rep(1,20))

yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)

#monsterRes <- monster(yeast$exp.cc[1:500,], design, yeast$motif, nullPerms=10, numMaxCores=1)
# Example with provided networks

pandaResult <- panda(pandaToyData$motif, pandaToyData$expression, pandaToyData$ppi)
case=getRegNet (pandaResult)
nelemReg=dim(getRegNet(pandaResult))[1]*dim(getRegNet (pandaResult))[2]
nGenes=1length(colnames(getRegNet (pandaResult)))

control=matrix(rexp(nelemReg, rate=.1), ncol=nGenes)

colnames(control) = colnames(case)

rownames(control) = rownames(case)

expr = as.data.frame(cbind(control,case))

design=c(rep(@,nGenes),rep(1, nGenes))

monsterRes <- monster(expr, design, motif=NA, nullPerms=10, numMaxCores=1, mode='regNet')

monsterBereFull Bipartite Edge Reconstruction from Expression data (composite
method with direct/indirect)

Description

This function generates a complete bipartite network from gene expression data and sequence motif
data. This NI method serves as a default method for inferring bipartite networks in MONSTER.
Running monsterBereFull can generate these networks independently from the larger MONSTER

method.
Usage
monsterBereFull(
motif.data,
expr.data,
alpha = 0.5,
lambda = 10,
score = "motifincluded”
)
Arguments
motif.data A motif dataset, a data.frame, matrix or exprSet containing 3 columns. Each
row describes an motif associated with a transcription factor (column 1) a gene
(column 2) and a score (column 3) for the motif.
expr.data An expression dataset, as a genes (rows) by samples (columns) data.frame
alpha A weight parameter specifying proportion of weight to give to indirect compared
to direct evidence. See documentation.
lambda if using penalized, the lambda parameter in the penalized logistic regression
score String to indicate whether motif information will be readded upon completion

of the algorithm
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Value

An matrix or data.frame

Examples

data(yeast)
monsterRes <- monsterBereFull(yeast$motif, yeast$exp.cc, alpha=.5)

monsterCalculateTmPValues
Calculate p-values for a tranformation matrix

Description

This function calculates the significance of an observed transition matrix given a set of null transi-
tion matrices

Usage

monsterCalculateTmPValues(monsterObj, method = "z-score”)
Arguments

monsterObj monsterAnalysis Object

method one of ’z-score’ or ‘non-parametric’
Value

vector of p-values for each transcription factor

Examples

# data(yeast)

# design <- c(rep(0,20),rep(NA,10),rep(1,20))

# yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)

# monsterRes <- monster(yeast$exp.cc, design, yeast$motif, nullPerms=100, numMaxCores=4)
data(monsterRes)

monsterCalculateTmPValues(monsterRes)
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monsterCheckDataType  Checks that data is something MONSTER can handle

Description

Checks that data is something MONSTER can handle

Usage

monsterCheckDataType(expr)

Arguments

expr Gene Expression dataset

Value

expr Gene Expression dataset in the proper form (may be the same as input)

Examples

expr.matrix <- matrix(rnorm(2000),ncol=20)
monsterCheckDataType (expr.matrix)

#TRUE

data(yeast)

class(yeast$exp.cc)
monsterCheckDataType(yeast$exp.cc)

#TRUE
monsterdTFIPlot This function plots the Off diagonal mass of an observed Transition
Matrix compared to a set of null TMs
Description

This function plots the Off diagonal mass of an observed Transition Matrix compared to a set of
null TMs

Usage

monsterdTFIPlot(
monsterObj,
rescale = "none”,
plot.title = NA,
highlight.tfs = NA,
nTFs = -1
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Arguments
monsterObj monsterAnalysis Object
rescale string indicating whether to reorder transcription factors according to their sta-
tistical significance and to rescale the values observed to be standardized by
the null distribution (’significance’), to reorder transcription factors according
to the largest dTFIs ("magnitude’) with the TF x axis labels proportional to their
significance , or finally without ordering them ('none’). When rescale is set to
’significance’, the results can be different between two MONSTER runs if the
number of permutations is not large enough to sample the null, that is why it is
the seed should be set prior to calling MONSTER to get reproducible results.
If rescale is set to another value such as “magnitude’ or none’, it will produce
deterministic results between two identical MONSTER runs.
plot.title String specifying the plot title
highlight.tfs vector specifying a set of transcription factors to highlight in the plot
nTFs number of TFs to plot in x axis. -1 takes all TFs.
Value

ggplot2 object for transition matrix comparing observed distribution to that estimated under the null

Examples

# data(yeast)

# yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)

# design <- c(rep(@,20),rep(NA,10),rep(1,20))

# monsterRes <- monster(yeast$exp.cc, design, yeast$motif, nullPerms=100, numMaxCores=4)#'
data(monsterRes)

monsterdTFIPlot(monsterRes)

monsterGetTm monsterGetTm

Description

acessor for the transition matrix in MONSTER object

Usage

monsterGetTm(x)

Arguments

X an object of class "monsterAnalysis"

Value

Transition matrix

Examples

data(monsterRes)
tm <- monsterGetTm(monsterRes)
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monsterHclHeatmapPlot Transformation matrix plot

Description

This function plots a hierachically clustered heatmap and corresponding dendrogram of a transac-
tion matrix

Usage

monsterHclHeatmapPlot (monsterObj, method = "pearson”)
Arguments

monsterObj monsterAnalysis Object

method distance metric for hierarchical clustering. Default is "Pearson correlation”
Value

ggplot2 object for transition matrix heatmap

Examples

# data(yeast)

# design <- c(rep(0,20),rep(NA,10),rep(1,20))

# yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)

# monsterRes <- monster(yeast$exp.cc, design, yeast$motif, nullPerms=10, numMaxCores=1)
data(monsterRes)

monsterHclHeatmapPlot (monsterRes)

monsterMonsterNI Bipartite Edge Reconstruction from Expression data

Description

This function generates a complete bipartite network from gene expression data and sequence motif
data

Usage

monsterMonsterNI(
motif.data,
expr.data,
verbose = FALSE,
randomize = "none”,
method = "bere”,
ni.coefficient.cutoff = NA,
alphaw = 1,
regularization = "none”,
score = "motifincluded”,
cpp = FALSE
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Arguments

motif.data

expr.data
verbose
randomize

method

monsterPlotMonsterAnalysis

A motif dataset, a data.frame, matrix or exprSet containing 3 columns. Each
row describes an motif associated with a transcription factor (column 1) a gene
(column 2) and a score (column 3) for the motif.

An expression dataset, as a genes (rows) by samples (columns)
logical to indicate printing of output for algorithm progress.

logical indicating randomization by genes, within genes or none

"non

String to indicate algorithm method. Must be one of "bere","pearson","cd","lda",
or "wed". Default is "bere". Important note: the direct regulatory network ob-
served from gene expression is currently implemented as a regular correlation
as opposed to the partial correlation described in the paper (please see Schlauch
et al., 2017, https://doi.org/10.1186/s12918-017-0517-y)

ni.coefficient.cutoff

alphaw

regularization

score

cpp

Value

numeric to specify a p-value cutoff at the network inference step. Default is NA,
indicating inclusion of all coefficients.

A weight parameter between 0 and 1 specifying proportion of weight to give to
indirect compared to direct evidence. The default is 0.5 to give an equal weight
to direct and indirect evidence.

String parameter indicating one of "none", "L1", "L2"

String to indicate whether motif information will be readded upon completion
of the algorithm to give to indirect compared to direct evidence. See documen-
tation.

logical use C++ for maximum speed, set to false if unable to run.

matrix for inferred network between TFs and genes

Examples

data(yeast)

cc.net <- monsterMonsterNI(yeast$motif,yeast$exp.cc)

monsterPlotMonsterAnalysis

monsterPlotMonsterAnalysis

Description

plots the sum of squares of off diagonal mass (differential TF Involvement)

Usage
monsterPlotMonsterAnalysis(x, ...)
Arguments
X an object of class "monsterAnalysis"

further arguments passed to or from other methods.
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Value

Plot of the dTFI for each TF against null distribution

Examples

data(yeast)

yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)
design <- c(rep(1,25),rep(0,10),rep(NA,15))

#monsterRes <- monster(yeast$exp.cc, design,

#yeast$motif, nullPerms=1@, numMaxCores=1)
#monsterPlotMonsterAnalysis(monsterRes)
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monsterPrintMonsterAnalysis
monsterPrintMonsterAnalysis

Description

summarizes the results of a MONSTER analysis

Usage
monsterPrintMonsterAnalysis(x, ...)
Arguments
X an object of class "monster”
further arguments passed to or from other methods.
Value

Description of transition matrices in object

Examples

data(yeast)

yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)
design <- c(rep(1,25),rep(0,10),rep(NA,15))
#monster(yeast$exp.cc,design,yeast$motif, nullPerms=10, numMaxCores=1)
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monsterRes MONSTER results from example cell-cycle yeast transition

Description

This data contains the MONSTER result from analysis of Yeast Cell cycle, included in data(yeast).
This result arbitrarily takes the first 20 gene expression samples in yeast$cc to be the baseline
condition, and the final 20 samples to be the final condition.

Usage

data(monsterRes)

Format

MONSTER obj # @references Schlauch, Daniel, et al. "Estimating drivers of cell state transitions
using gene regulatory network models." BMC systems biology 11.1 (2017): 1-10.

monsterTransformationMatrix
Bi-partite network analysis tools

Description

This function analyzes a bi-partite network.

Usage

monsterTransformationMatrix(
network.1,
network.2,
by.tfs = TRUE,
standardize = FALSE,
remove.diagonal = TRUE,
method = "ols”

)
Arguments

network.1 starting network, a genes by transcription factors data.frame with scores for the
existence of edges between

network.2 final network, a genes by transcription factors data.frame with scores for the
existence of edges between

by.tfs logical indicating a transcription factor based transformation. If false, gives gene
by gene transformation matrix

standardize logical indicating whether to standardize the rows and columns

remove.diagonal
logical for returning a result containing Os across the diagonal

method character specifying which algorithm to use, default="ols’
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Value

matrix object corresponding to transition matrix

Examples

data(yeast)

cc.net.1 <- monsterMonsterNI(yeast$motif,yeast$exp.cc[1:1000,1:20])
cc.net.2 <- monsterMonsterNI(yeast$motif,yeast$exp.cc[1:1000,31:50])
monsterTransformationMatrix(cc.net.1, cc.net.2)

monsterTransitionNetworkPlot
This function uses igraph to plot the transition matrix (directed graph)
as a network. The edges in the network should be read as A ’posi-
tively/negatively contributes to’ the targeting of B in the target state.

Description

This function uses igraph to plot the transition matrix (directed graph) as a network. The edges in
the network should be read as A ’positively/negatively contributes to’ the targeting of B in the target
state.

Usage

monsterTransitionNetworkPlot(
monsterObj,
numEdges = 100,
numTopTFs = 10,

rescale = "significance”
)
Arguments
monsteroObj monsterAnalysis Object
numEdges The number of edges to display
numTopTFs The number of TFs to display, only when rescale=significance’
rescale string to specify the order of edges. If set to ’significance’, the TFs with the

largest dTFI significance (smallest dTFI p-values) will be filtered first before
plotting the edges with the largest magnitude in the transition matrix. Otherwise
the filtering step will be skipped and the edges with the largest transitions will
be plotted. The plotted graph represents the top numEdges edges between the
numTopTFs if rescale=="significance’ and top numEdges edges otherwise. The
edge weight represents the observed transition edges standardized by the null
and the node size in the graph is proportional to the p-values of the dTFIs of each
TF. When rescale is set to "significance’, the results can be different between two
MONSTER runs if the number of permutations is not large enough to sample
the null, that is why it is the seed should be set prior to calling MONSTER to
get reproducible results. If rescale is set to another value such as 'none’, it will
produce deterministic results between two identical MONSTER runs.
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Value

plot the transition matrix (directed graph) as a network.

Examples

# data(yeast)

# yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)

# design <- c(rep(0,20),rep(NA,10),rep(1,20))

# monsterRes <- monster(yeast$exp.cc, design, yeast$motif, nullPerms=100, numMaxCores=4)#'
data(monsterRes)

monsterTransitionNetworkPlot(monsterRes, rescale='significance')
monsterTransitionNetworkPlot(monsterRes, rescale='none')

monsterTransitionPCAPlot
Principal Components plot of transformation matrix

Description

This function plots the first two principal components for a transaction matrix

Usage

monsterTransitionPCAPlot(
monsterObj,
title = "PCA Plot of Transition”,
clusters =1,

alpha =1
)
Arguments
monsteroObj a monsterAnalysis object resulting from a monster analysis
title The title of the plot
clusters A vector indicating the number of clusters to compute
alpha A vector indicating the level of transparency to be plotted
Value

ggplot2 object for transition matrix PCA

Examples

# data(yeast)

# design <- c(rep(@,20),rep(NA,10),rep(1,20))

# yeast$exp.cc[is.na(yeast$exp.cc)] <- mean(as.matrix(yeast$exp.cc),na.rm=TRUE)

# monsterRes <- monster(yeast$exp.cc, design, yeast$motif, nullPerms=100, numMaxCores=4)#'
data(monsterRes)

# Color the nodes according to cluster membership

clusters <- kmeans(monsterGetTm(monsterRes),3)$cluster

monsterTransitionPCAPlot (monsterRes,

title="PCA Plot of Transition - Cell Cycle vs Stress Response”,

clusters=clusters)
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mut.ucec Example of mutation data

Description

Somatic mutations of Uterine Corpus Endometrial Carcinoma from The Cancer Genome Atlas.
Data were downloaded and pre-processed as described in Kuijjer et al.

This data is a toy example data for SAMBAR, it contains gene annotations

Usage

data(mut.ucec)

data(mut.ucec)

Format

A table with 248 rows and 19754 columns

A binary dataframe where 1 indicates a mutation and O otherwise.

Value

A table of 19754 genes by 248 samples

References

Kuijjer, Marieke Lydia, et al. "Cancer subtype identification using somatic mutation data." British
journal of cancer 118.11 (2018): 1492-1501.

otter Run OTTER in R

Description

Description: OTTER infers gene regulatory networks using TF DNA binding motif (W), TF PPI
(P), and gene coexpression (C) through minimzing the following objective: min f(W) with f(W) =
(1-lambda)*IIWW’ - PlII*2 + lambda*IIW’W - ClI*2 + (gamma/2)*IIWII*2

Usage

otter(W, P, C, lambda = 0.035, gamma = 0.335, Iter = 60, eta = 1e-05, bexp = 1)


https://doi.org/10.1101/228031
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Arguments
W : TF-gene regulatory network based on TF motifs as a matrix of size (t,g),
g=number of genes, t=number of TFs
P : TE-TF protein interaction network as a matrix of size (t,t)
C : gene coexpression as a matrix of size (g,g)
lambda : tuning parameter in [0,1] (higher gives more weight to C)
gamma : regularization parameter
Iter : number of iterations of the algorithm
eta : learning rate
bexp : exponent influencing learning rate (higher means smaller)
Outputs:
Details
Inputs:
Value

W : Predicted TF-gene complete regulatory network as an adjacency matrix of size (t,g).

Examples

W=matrix(rexp(100, rate=.1), ncol=10)
C=matrix(rexp(100, rate=.1), ncol=10)
P=matrix(rexp(100, rate=.1), ncol=10)

# Run OTTER algorithm
W <- otter(W, P, C)

pandaDiffEdges Identify differential edges in two PANDA networks

Description

To determine the probability that an edge is "different”" between the networks, we first subtracted
the z-score weight values estimated by PANDA for the two networks and then determined the value
of the inverse cumulative distribution for this difference. The product of these two probabilities
represents the probability than an edge is both "supported" and "different.” We select edges for
which this combined probability is greater than a threshold probability (default value is 0.8).

Usage

pandaDiffEdges(
panda.net1,
panda.net2,
threshold = 0.8,
condition_name = "cond.1"



pandaPy 51

Arguments
panda.net1l vector indicating the PANDA networks of one condition or phenotype.
panda.net2 vector indicating the PANDA networks of another compared condition orphe-
notype.
threshold numerical vector indicating a threshold probability to select select edges.

condition_name string vector indicating the condition name of netl

Value

a data.frame with five columns: tf, gene, motif, Score and defined condition name(the row with "T"
in this column means this egde belongs to first condition or phenotype, "F" means this edge belongs
to the second condition or phenotype)

Examples

# refer to four input datasets files in inst/extdat

treated_expression_file_path <- system.file("extdata”, "expr4_matched.txt"”,
package = "netZooR"”, mustWork = TRUE)
control_expression_file_path <- system.file("”extdata”, "exprl@_matched.txt",

package = "netZooR"”, mustWork = TRUE)
motif_file_path <- system.file("extdata”, "chip_matched.txt", package = "netZooR", mustWork = TRUE)
ppi_file_path <- system.file("extdata”, "ppi_matched. txt", package = "netZooR", mustWork = TRUE)

# Run PANDA for treated and control network

#treated_all_panda_result <- pandaPy(expr_file = treated_expression_file_path,

#motif_file= motif_file_path, ppi_file = ppi_file_path, modeProcess="legacy", remove_missing = TRUE )
#control_all_panda_result <- pandaPy(expr_file = control_expression_file_path,

#motif_file= motif_file_path, ppi_file= ppi_file_path, modeProcess="legacy", remove_missing = TRUE )

# access PANDA regulatory network
#treated_net <- treated_all_panda_result$panda

#control_net <- control_all_panda_result$panda

#merged.panda <- pandaDiffEdges(treated_net, control_net, condition_name="treated")

pandaPy Run Python implementation PANDA in R

Description

PANDA (Passing Attributes between Networks for Data Assimilation) is a message-passing model
to reconstruct gene regulatory network, which integrates multiple sources of biological data-including
protein-protein interaction data, gene expression data, and transcription factor binding motifs data
to reconstruct genome-wide, condition-specific regulatory networks. [(Glass et al. 2013)]) This
function is designed to run the a derived PANDA implementation in Python Library "netZooPy"
netZooPy.


http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064832
https://github.com/netZoo/netZooPy
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Usage

pandaPy (
expr_file,
motif_file = NULL,
ppi_file = NULL,
computing = "cpu”,
precision = "double”,
save_memory = FALSE,
save_tmp = TRUE,
keep_expression_matrix = FALSE,
modeProcess = "union”,
remove_missing = FALSE,
with_header = FALSE

)
Arguments

expr_file Character string indicating the file path of expression values file, with each
gene(in rows) across samples(in columns).

motif_file An optional character string indicating the file path of a prior transcription fac-
tor binding motifs dataset. When this argument is not provided, analysis will
continue with Pearson correlation matrix.

ppi_file An optional character string indicating the file path of protein-protein interaction
edge dataset. Also, this can be generated with a list of proteins of interest by
sourcePPI.

computing "cpu’ uses Central Processing Unit (CPU) to run PANDA; *gpu’ use the Graph-
ical Processing Unit (GPU) to run PANDA. The default value is "cpu".

precision ’double’ computes the regulatory network in double precision (15 decimal dig-
its); ’single’ computes the regulatory network in single precision (7 decimal
digits) which is fastaer, requires half the memory but less accurate. The default
value is double’.

save_memory "TRUE’ removes temporary results from memory. The result network is weighted

adjacency matrix of size (nTFs, nGenes); 'FALSE’ keeps the temporary files in
memory. The result network has 4 columns in the form gene - TF - weight in
motif prior - PANDA edge. PANDA indegree/outdegree of panda network, only
if save_memory = FALSE. The default value is "FALSE’.

save_tmp "TRUE’ saves middle data like expression matrix and normalized networks;
"FALSE’ deletes the middle data. The default value is "TURE’.
keep_expression_matrix
"TRUE’ keeps the input expression matrix as an attribute in the result Panda
object’FALSE’ deletes the expression matrix attribute in the Panda object. The
default value is "FALSE’.

modeProcess ’legacy’ refers to the processing mode in netZooPy<=0.5, 'union’: takes the
union of all TFs and genes across priors and fills the missing genes in the priors
with zeros; ’intersection’: intersects the input genes and TFs across priors and
removes the missing TFs/genes. Default values is "union’.

remove_missing Only when modeProcess="legacy’: remove_missing="TRUE’ removes all un-
matched TF and genes; remove_missing="FALSE’ keeps all tf and genes. The
default value is "FALSE’.

with_header if TRUE reads header of expression matrix
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Value

When save_memory=FALSE(default), this function will return a list of three items: Use $panda to
access the standard output of PANDA as data frame, which consists of four columns: "TF", "Gene",
"Motif" using 0 or 1 to indicate if this edge belongs to prior motif dataset, and "Score".

Use $indegree to access the indegree of PANDA network as data frame, which consists of two
columns: "Gene", "Score".

Use $outdegree to access the outdegree of PANDA network as data frame, which consists of two
columns: "TF", "Score".

When save_memory=TRUE, this function will return a weigheted adjacency matirx of size (nTFs,
nGenes), use $WAMpanda to access.

Examples

# take the treated TB dataset as example here.
# refer to the datasets files path in inst/extdat

treated_expression_file_path <- system.file("extdata", "expr4_matched.txt”,
package = "netZooR"”, mustWork = TRUE)
treated_expression_file_path <- system.file("extdata”, "expr4_matched.txt”,

package = "netZooR", mustWork = TRUE)
motif_file_path <- system.file("extdata”, "chip_matched.txt"”, package = "netZooR", mustWork = TRUE)
ppi_file_path <- system.file("extdata”, "ppi_matched.txt", package = "netZooR", mustWork = TRUE)

# Run PANDA for treated and control network
treated_all_panda_result <- pandaPy(expr_file = treated_expression_file_path,
motif_file = motif_file_path, ppi_file = ppi_file_path,

modeProcess="legacy"”, remove_missing = TRUE )

# access PANDA regulatory network
treated_net <- treated_all_panda_result$panda

# access PANDA regulatory indegree network.
indegree_net <- treated_all_panda_result$indegree

# access PANDA regulatory outdegree networks
outdegree_net <- treated_all_panda_result$outdegree

pandaToAlpaca Use two PANDA network to generate an ALPACA result

Description

ALPACA (ALtered Partitions Across Community Architectures) is a method for comparing two
genome-scale networks derived from different phenotypic states to identify condition-specific mod-
ules. [(Padi and Quackenbush 2018)]) This function compares two networks generate by pandaPy
in this package and finds the sets of nodes that best characterize the change in modular structure.


https://www.nature.com/articles/s41540-018-0052-5
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Usage
pandaToAlpaca(panda.net1, panda.net2, file.stem = "./alpaca”, verbose = FALSE)
Arguments
panda.net1 data.frame indicating an complete network of one condition generated by pandaPy
panda.net?2 data.frame indicating an complete network of another condition generated by
pandaPy
file.stem String indicating the folder path and prefix of result files, where all results will
be stored.
verbose Boolean vector indicating whether the full differential modularity matrix should
also be written to a file. The default values is "FALSE’.
Value

A string message showing the location of output file if file.stem is given, and a List where the first
element is the membership vector and second element is the contribution score of each node to its
module’s total differential modularity

Examples

# refer to four input datasets files in inst/extdat

treated_expression_file_path <- system.file("extdata”, "expr4_matched.txt"”,
package = "netZooR"”, mustWork = TRUE)
control_expression_file_path <- system.file("”extdata”, "exprl@_matched.txt",

package = "netZooR"”, mustWork = TRUE)
motif_file_path <- system.file("extdata”, "chip_matched.txt", package = "netZooR", mustWork = TRUE)
ppi_file_path <- system.file("extdata”, "ppi_matched. txt", package = "netZooR", mustWork = TRUE)

# Run PANDA for treated and control network

treated_panda_net <- pandaPy(expr_file = treated_expression_file_path,
motif_file = motif_file_path, ppi_file = ppi_file_path,
modeProcess="1legacy"”, remove_missing = TRUE )$panda

control_panda_net <- pandaPy(expr_file = control_expression_file_path,
motif_file = motif_file_path, ppi_file = ppi_file_path,
modeProcess="legacy"”, remove_missing = TRUE )$panda

# Run ALPACA
alpaca<- pandaToAlpaca(treated_panda_net, control_panda_net, "./TB", verbose=TRUE)

pandaToCondorObject Turn PANDA network into a CONDOR object

Description

CONDOR (COmplex Network Description Of Regulators) implements methods for clustering bi-
apartite networks and estimatiing the contribution of each node to its community’s modularity,
[(Platig et al. 2016)]) This function uses the result of PANDA algorithm as the input dataset to run
CONDOR algorithm. More about condor package and usage.


http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005033
https://github.com/jplatig/condor
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Usage

pandaToCondorObject(panda.net, threshold)

Arguments
panda.net Data Frame indicating the result of PANDA regulatory network, created by
pandaPy
threshold Numeric vector of the customered threshold to select edges. Default value is the
the midpoint between the median edge-weight of prior ( 3rd column "Motif" is
1.0) edges and the median edge-weight of non-prior edges (3rd column "Motif"
is 0.0) in PANDA network. and the median edge-weight of non-prior edges (3rd
column "Motif" is 0.0) in PANDA network.
Value

a CONDOR object, see createCondorObject.

Examples

# refer to three input datasets files in inst/extdat

treated_expression_file_path <- system.file("extdata”, "expr4_matched.txt"”,

package = "netZooR"”, mustWork = TRUE)

motif_file_path <- system.file("extdata”, "chip_matched.txt", package = "netZooR", mustWork = TRUE)
ppi_file_path <- system.file("extdata”, "ppi_matched.txt"”, package = "netZooR", mustWork = TRUE)

# Run PANDA to construct the treated network

treated_all_panda_result <- pandaPy(expr_file = treated_expression_file_path,
motif_file= motif_file_path, ppi_file = ppi_file_path,
modeProcess="legacy"”, remove_missing = TRUE )

# access PANDA regulatory network
treated_net <- treated_all_panda_result$panda

# Obtain the condor.object from PANDA network
treated_condor_object <- pandaToCondorObject(treated_net, threshold = @)

# cluster condor.object
treated_condor_object <- condorCluster(treated_condor_object, project = FALSE)

# package igraph and package viridisLite are already loaded with this package.
library(viridisLite)

treated_color_num <- max(treated_condor_object$red.memb$com)
treated_color <- viridis(treated_color_num, alpha = 1, begin = @, end
direction = 1, option = "D")
condorPlotCommunities(treated_condor_object, color_list=treated_color,
point.size=0.04, xlab="Target”, ylab="Regulator")

1
—
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runEgret Run EGRET in R

Description

Description: NOTE: Beta version. EGRET infers individual-specific gene regulatory networks
using inidividual level data - a genotype vcf file (v) and QBiC binding predictions (q) - as well
as population/reference level data - eQTLs (b), a motif-gene prior (m), PPI network (p), and gene
expression (e). An annotation file g is also used to map TF names to their corresponding ensemble
ids.

Usage

runEgret(b, v, q, m, e, p, g, t)

Arguments

b : Data frame of eQTL data, each row containing an eQTL which exist within
motif regions adjacent to the eGene, with columns TF, gene, variant position,variant
chromosome, eQTL beta value.

v : Data frame of VCF file containing SNPs of the individual in question

q : Data frame of QBiC predictions of the effect of eQTL variants on TF binding.
Each row represents an eQTL variant with a predicted negative (disruptive) ef-
fect on the binding of the TF corresponding to the motif in which the eQTL vari-
ant resides. Colums are: eQTL variant as chr[chrNum]_position, TF, adjacent
eGene, QBiC binding effect size and QBiC binding effect (should be negative)

m : Motif prior data frame. Each row represents an edge in the bipartite motif
prior, with columns TF, gene and edge weight. The edge weight should be 1 or
0 based on the presence/absence of the TF motif in the promoter region of the
gene.

e : Gene expression data frame in which each row represents a gene and each
column represents the expression of that gene in a sample. The first column
should contain gene IDs.

p : PPI network data frame. Each row represents an edgem with columns TF, TF
and interaction weight.

g : Data frame mapping gene names to gene ids, with columns containing the gene
ID the corresponding gene name.

t : A string containing a name for the EGRET run. Output files will be labelled
with this tag.

Outputs:
Details
Inputs:
Value

EGRET : Predicted genotye-specific gene regulatory network saved as tag_egret.RData
BASELINE : A Baseline (PANDA) genotype-agnostic gene regulatory network saved as tag_panda.RData
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Examples

# Run EGRET algorithm

toy_gbic_path <- system.file("extdata”, "toy_gbic.txt", package = "netZooR",
mustWork = TRUE)

toy_genotype_path <- system.file("extdata”, "toy_genotype.vcf”,

package = "netZooR"”, mustWork = TRUE)

toy_motif_path <- system.file("extdata”, "toy_motif_prior.txt"”,

package = "netZooR", mustWork = TRUE)

toy_expr_path <- system.file("extdata”, "toy_expr.txt",

package = "netZooR"”, mustWork = TRUE)

toy_ppi_path <- system.file("extdata”, "toy_ppi_prior.txt",

package = "netZooR", mustWork = TRUE)

toy_eqtl_path <- system.file("extdata”, "toy_eQTL.txt",

package = "netZooR", mustWork = TRUE)

toy_map_path <- system.file("extdata”, "toy_map.txt"”,

package = "netZooR"”, mustWork = TRUE)

gbic <- read.table(file = toy_gbic_path, header = FALSE)

vcf <- read.table(toy_genotype_path, header = FALSE, sep = "\t",
stringsAsFactors = FALSE,

colClasses = c("character”, "numeric”, "character”, "character"”, "character”,
"character”, "character”, "character”, "character”, "character"))

motif <- read.table(toy_motif_path, sep = "\t", header = FALSE)

expr <- read.table(toy_expr_path, header = FALSE, sep = "\t"”, row.names = 1)
ppi <- read.table(toy_ppi_path, header = FALSE, sep = "\t")

gtl <- read.table(toy_eqtl_path, header = FALSE)

nameGeneMap <- read.table(toy_map_path, header = FALSE)

tag <- "my_toy_egret_run”

runkEgret(qtl,vcf,gbic,motif,expr,ppi,nameGeneMap, tag)

sambar Main SAMBAR function

Description

Main SAMBAR function.

Usage

sambar (

mutdata = mut.ucec,

esize = exon.size,

signatureset = system.file("extdata”, "h.all.v6.1.symbols.gmt"”, package = "netZooR",
mustWork = TRUE),

cangenes = genes,

kmin = 2,

kmax = 4
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Arguments

mutdata

esize

signatureset

cangenes

kmin

kmax

Value

sambarConvertgmt

Mutation data in matrix format. The number of mutations should be listed for
samples (rows) and genes (columns).

A integer vector of gene lengths, with gene symbols as names.

A file containing gene sets (signatures) in .gmt format. These gene sets will be
used to de-sparsify the gene-level mutation scores.

A vector of genes, for example of cancer-associated genes. This will be used to
subset the gene-level mutation data to.

The minimum number of subtypes the user wants to assess. Defaults to 2.

The maximum number of subtypes the user wants to assess. Defaults to 4.

A list of samples and the subtypes to which these samples are assigned, for each k.

Examples

data("exon.size")
data("mut.ucec”)

data("genes")

sambar(mutdata=mut.ucec, esize=exon.size, signatureset=system.file("extdata"”,
"h.all.v6.1.symbols.gmt", package="netZooR", mustWork=TRUE),
cangenes=genes, kmin=2, kmax=4)

sambarConvertgmt

Convert .gmt files into a binary matrix.

Description

Convert .gmt files into a binary matrix.

Usage

sambarConvertgmt (signature, cagenes)

Arguments

signature

cagenes

Value

A file containing gene sets (signatures) in .gmt format. These gene sets will be
used to de-sparsify the gene-level mutation scores.

A vector of genes, for example of cancer-associated genes. This will be used to
subset the gene-level mutation data to.

A matrix containing gene set mutation scores.
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sambarCorgenelength Normalize gene mutation scores by gene length.

Description

Normalize gene mutation scores by gene length.

Usage

sambarCorgenelength(x, cagenes, exonsize)

Arguments
X Mutation data, in the format of a matrix, including the number of mutations for
samples (rows) and genes (columns).
cagenes A vector of genes, for example of cancer-associated genes. This will be used to
subset the gene-level mutation data to.
exonsize A vector of gene lengths. This will be used to normalize the gene mutation
scores.
Value

Mutation rate-adjusted gene mutation scores.

sambarDesparsify De-sparsify gene-level mutation scores into gene set-level mutation
scores.

Description

De-sparsify gene-level mutation scores into gene set-level mutation scores.

Usage

sambarDesparsify(edgx, mutratecorx)

Arguments
edgx A binary matrix containing information on which genes belong to which gene
sets. Output from the sambarConvertgmt function.
mutratecorx Gene-level mutation scores corrected for the number of gene sets each gene
belongs to (from sambar function).
Value

De-sparsified mutation data.
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small1976 Pollinator-plant interactions

Description

A dataset containing the number of interactions 34 plants and 13 pollinators. The variables are as
follows:

Usage
data(small1976)

Format

A data frame with 442 rows and 3 variables

Details

* pollinator. Species name of insect pollinator
* plant. Species name of plant

* interactions. Number of visitors caught on each plant species

References

https://www.nceas.ucsb.edu/interactionweb/html/small_1976.html

sourcePPI Source the Protein-Protein interaction in STRING database

Description

This function uses a list of Transcription Factors (TF) of interest to source the Protein-Protein
interactions (PPI) from STRING database using all types of interactions not only the physical sub-
network Important: this function produces a simple unweighted network for tutorial purposes, and
does not support weighted PPI edges for the moment. For more complex PPI network modeling,
consider pulling the PPI network directly from STRINGdb directly or through their R package.

Usage

sourcePPI(TF, STRING.version = "10", species.index, ...)
Arguments

TF a data frame with one column indicating the TF of interest

STRING.version anumeric vector indicating the STRING version. Default valuve is 10
species.index anumeric vector indicating NCBI taxonomy identifiers

any dditional arguments passed to


https://www.nceas.ucsb.edu/interactionweb/html/small_1976.html
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Value

A PPI data.frame which contains three columns: "from" and "to" indicating the direction of protein-
protein interaction, and "score" indicating the interaction score between two proteins.

Examples

# the example motif file

motif_file_path <- system.file("extdata”, "chip_matched.txt"”, package = "netZooR", mustWork = TRUE)
motif <- read.table(motif_file_path, sep="\t")

# create a TF data frame with one column

TF <-data.frame(motif([,1])

# create PPI data frame by searching in STRING version 10

# and specifying specie to "Mycobacterium tuberculosis H37Rv".

# STRING verison 11 is only accessible to R 4.0.

if(R.Version()$major=="3"){PPI <- sourcePPI(TF, STRING.version="10",
species.index=83332, score_threshold=0)}
if(R.Version()$major=="4"){PPI <- sourcePPI(TF, STRING.version="11",
species.index=83332, score_threshold=0)}

# write out locally then can be used in \code{\link{pandaPy}}.

spider Seeding PANDA Interactions to Derive Epigenetic Regulation

Description

This function runs the SPIDER algorithm

Usage

spider(
motif,
expr = NULL,
epifilter = NULL,
ppi = NULL,
alpha = 0.1,
hamming = 0.001,
iter = NA,
output = c("regulatory”, "coexpression”, "cooperative"),

zScale = TRUE,

progress = FALSE,

randomize = c("None", "within.gene", "by.gene"),
cor.method = "pearson”,

scale.by.present = FALSE,

edgelist = FALSE,

remove.missing.ppi = FALSE,

remove.missing.motif = FALSE,
remove.missing.genes = FALSE,

mode = "union”
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Arguments

motif

expr

epifilter

ppi

alpha

hamming

iter

output

zScale
progress

randomize

cor.method

spider

A motif dataset, a data.frame, matrix or exprSet containing 3 columns. Each
row describes an motif associated with a transcription factor (column 1) a gene
(column 2) and a score (column 3) for the motif.

An expression dataset, as a genes (rows) by samples (columns) data.frame

A binary matrix that is of the same size as motif that will be used as a mask
to filter motif for open chromatin region. Motif interactions that fall in open
chromatin region will be kept and the others are removed.

A Protein-Protein interaction dataset, a data.frame containing 3 columns. Each
row describes a protein-protein interaction between transcription factor 1(col-
umn 1), transcription factor 2 (column 2) and a score (column 3) for the interac-
tion.

value to be used for update variable, alpha (default=0.1)

value at which to terminate the process based on hamming distance (default
101-3)

sets the maximum number of iterations SPIDER can run before exiting.

a vector containing which networks to return. Options include "regulatory”,

"non

"coregulatory", "cooperative".
Boolean to indicate use of z-scores in output. False will use [0,1] scale.
Boolean to indicate printing of output for algorithm progress.

method by which to randomize gene expression matrix. Default "None". Must

be one of "None", "within.gene", "by.genes". "within.gene" randomization scram-
bles each row of the gene expression matrix, "by.gene" scrambles gene labels.

Correlation method, default is "pearson".

scale.by.present

edgelist

Boolean to indicate scaling of correlations by percentage of positive samples.

Boolean to indicate if edge lists instead of matrices should be returned.

remove.missing.ppi

Boolean to indicate whether TFs in the PPI but not in the motif data should be
removed. Only when mode=="legacy’.

remove.missing.motif

Boolean to indicate whether genes targeted in the motif data but not the expres-
sion data should be removed. Only when mode=="legacy’.

remove.missing.genes

mode

Boolean to indicate whether genes in the expression data but lacking information
from the motif prior should be removed. Only when mode=="legacy’.

The data alignment mode. The mode ’union’ takes the union of the genes in
the expression matrix and the motif and the union of TFs in the ppi and mo-
tif and fills the matrics with zeros for nonintersecting TFs and gens, ’intersec-
tion’ takes the intersection of genes and TFs and removes nonintersecting sets,
’legacy’ is the old behavior with PANDAR version 1.19.3. # Parameters re-
move.missing.ppi, remove.missingmotif, remove.missing.genes work only with
mode=="legacy’.
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Value

An object of class "panda" containing matrices describing networks achieved by convergence with
SPIDER algorithm.

"regNet" is the regulatory network

"coregNet" is the coregulatory network

"coopNet" is the cooperative network

References

Sonawane, Abhijeet Rajendra, et al. "Constructing gene regulatory networks using epigenetic data."
npj Systems Biology and Applications 7.1 (2021): 1-13.

Examples

data(pandaToyData)

pandaToyData$epifilter = pandaToyData$motif

nind=floor(runif (5000, min=1, max=dim(pandaToyData$epifilter)[1]))
pandaToyData$epifilter[nind,3] = @

#spiderRes <- spider(pandaToyData$motif,pandaToyData$expression,

# pandaToyData$epifilter,pandaToyData$ppi,hamming=.1,progress=TRUE)

visPandaInCytoscape Plot PANDA network in Cytoscape

Description

This function is able to modify PANDA network and plot in Cytoscape. Please make sure that
Cytoscape is installed and open it before calling this function.

Usage

visPandaInCytoscape(panda.net, network_name = "PANDA")

Arguments

panda.net Character string indicating the input PANDA network in data frame structure
type.
network_name Character string indicating the name of Cytoscape network.

Value

PANDA network in Cytoscape

Examples

# refer to the input datasets files of control TB dataset in inst/extdat as example
control_expression_file_path <- system.file("extdata"”, "expr1@_matched.txt",

package = "netZooR"”, mustWork = TRUE)

motif_file_path <- system.file("extdata”, "chip_matched.txt", package = "netZooR", mustWork = TRUE)
ppi_file_path <- system.file("extdata”, "ppi_matched.txt"”, package = "netZooR", mustWork = TRUE)

# Run PANDA algorithm
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control_all_panda_result <- panda.py(expr = control_expression_file_path, motif = motif_file_path,
ppi = ppi_file_path, mode_process="legacy"”, rm_missing = TRUE )

# access PANDA regulatory network
control_net <- control_all_panda_result$panda

# select top 1000 edges in PANDA network by edge weight.
panda.net <- head(control_net[order(control_net$force,decreasing = TRUE),], 1000)

# run this function to create a network in Cytoscape.
visPandaInCytoscape(panda.net, network.name="PANDA")

yeast Toy data derived from three gene expression datasets and a mapping
from transcription factors to genes.

Description

This data is a list containing gene expression data from three separate yeast studies along with data
mapping yeast transcription factors with genes based on the presence of a sequence binding motif
for each transcription factor in the vicinity of each gene. The motif data.frame, yeast$motif, de-
scribes a set of pairwise connections where a specific known sequence motif of a transcription factor
was found upstream of the corresponding gene. The expression data, yeast$exp.ko, yeast$exp.cc,
and yeast$exp.sr, are three gene expression datasets measured in conditions of gene knockout, cell
cycle, and stress response, respectively.
Usage

data(yeast)

Format

A list containing 4 data.frames

Value

A list of length 4

References

Glass K, Huttenhower C, Quackenbush J, Yuan GC. Passing Messages Between Biological Net-
works to Refine Predicted Interactions. PLoS One. 2013 May 31;8(5):e64832.



Index

+ datasets
exon.size, 32
genes, 33
monsterRes, 46
mut.ucec, 49
small1976, 60
yeast, 64

* keywords
lioness, 34
spider, 61

adjMatToElist, 4
alpaca, 4
alpacaCommunityStructureRotation, 5
alpacaComputeDifferentialScoreFromDWBM,
5
alpacaComputeDWBMmatmScale, 6
alpacaComputeWBMmat, 6
alpacaCrane, 7
alpacaDeltaZAnalysis, 8
alpacaDeltaZAnalysislLouvain, 8
alpacaExtractTopGenes, 9
alpacaGenLouvain, 10
alpacaGetMember, 10
alpacaGOtabtogenes, 11
alpacaGoToGenes, 11
alpacalistToGo, 12
alpacaMetaNetwork, 12
alpacaNodeToGene, 13
alpacaObjectToDfList, 13
alpacaRotationAnalysis, 14
alpacaRotationAnalysislLouvain, 14
alpacaSimulateNetwork, 15
alpacaTestNodeRank, 16
alpacaTidyConfig, 16
alpacaTopEnsembltoTopSym, 17
alpacaWBMlouvain, 17

condorCluster, 18, 20, 22-24, 27
condorCoreEnrich, 19
condorCreateObject, 20
condorMatrixModularity, 18, 20
condorModularityMax, 18, 20, 21, 23, 24,27
condorPlotCommunities, 23

65

condorPlotHeatmap, 24
condorQscore, 24, 27
condorRun, 25

craneBipartite, 25
craneUnipartite, 26
createCondorObject, 21, 22,27, 55
createPandaStyle, 28

degreeAdjust, 28
dragon, 29

elistAddTags, 30
elistIsEdgeOrderEqual, 30
elistRemoveTags, 31
elistSort, 31
elistToAdjMat, 32
exon.size, 32

fastgreedy.community, /8
genes, 33

isElist, 33
jutterDegree, 34
ks.test, 19

leading.eigenvector.community, /8
lioness, 34
lionessPy, 35

monster, 37

monsterBereFull, 39
monsterCalculateTmPValues, 40
monsterCheckDataType, 41
monsterdTFIPlot, 41
monsterGetTm, 42
monsterHclHeatmapPlot, 43
monsterMonsterNI, 43
monsterPlotMonsterAnalysis, 44
monsterPrintMonsterAnalysis, 45
monsterRes, 46
monsterTransformationMatrix, 46
monsterTransitionNetworkPlot, 47



66 INDEX

monsterTransitionPCAPlot, 48
multilevel.community, /8
mut.ucec, 49

otter, 49

pandaDiffEdges, 50
pandaPy, 37, 51, 53-55
pandaToAlpaca, 53
pandaToCondorObject, 54
plot, 23, 24

runkEgret, 56

sambar, 57
sambarConvertgmt, 58
sambarCorgenelength, 59
sambarDesparsify, 59
small1976, 60
sourcePPI, 36, 52, 60
spider, 61

visPandaInCytoscape, 63
wilcox.test, 719

yeast, 64



	adjMatToElist
	alpaca
	alpacaCommunityStructureRotation
	alpacaComputeDifferentialScoreFromDWBM
	alpacaComputeDWBMmatmScale
	alpacaComputeWBMmat
	alpacaCrane
	alpacaDeltaZAnalysis
	alpacaDeltaZAnalysisLouvain
	alpacaExtractTopGenes
	alpacaGenLouvain
	alpacaGetMember
	alpacaGOtabtogenes
	alpacaGoToGenes
	alpacaListToGo
	alpacaMetaNetwork
	alpacaNodeToGene
	alpacaObjectToDfList
	alpacaRotationAnalysis
	alpacaRotationAnalysisLouvain
	alpacaSimulateNetwork
	alpacaTestNodeRank
	alpacaTidyConfig
	alpacaTopEnsembltoTopSym
	alpacaWBMlouvain
	condorCluster
	condorCoreEnrich
	condorCreateObject
	condorMatrixModularity
	condorModularityMax
	condorPlotCommunities
	condorPlotHeatmap
	condorQscore
	condorRun
	craneBipartite
	craneUnipartite
	createCondorObject
	createPandaStyle
	degreeAdjust
	dragon
	elistAddTags
	elistIsEdgeOrderEqual
	elistRemoveTags
	elistSort
	elistToAdjMat
	exon.size
	genes
	isElist
	jutterDegree
	lioness
	lionessPy
	monster
	monsterBereFull
	monsterCalculateTmPValues
	monsterCheckDataType
	monsterdTFIPlot
	monsterGetTm
	monsterHclHeatmapPlot
	monsterMonsterNI
	monsterPlotMonsterAnalysis
	monsterPrintMonsterAnalysis
	monsterRes
	monsterTransformationMatrix
	monsterTransitionNetworkPlot
	monsterTransitionPCAPlot
	mut.ucec
	otter
	pandaDiffEdges
	pandaPy
	pandaToAlpaca
	pandaToCondorObject
	runEgret
	sambar
	sambarConvertgmt
	sambarCorgenelength
	sambarDesparsify
	small1976
	sourcePPI
	spider
	visPandaInCytoscape
	yeast
	Index

