
Package ‘hiReadsProcessor’
March 31, 2025

Title Functions to process LM-PCR reads from 454/Illumina data

Version 1.42.0

Date 2024-04-24

Author Nirav V Malani <malnirav@gmail.com>

Maintainer Nirav V Malani <malnirav@gmail.com>

Description hiReadsProcessor contains set of functions which allow
users to process LM-PCR products sequenced using any platform.
Given an excel/txt file containing parameters for
demultiplexing and sample metadata, the functions automate
trimming of adaptors and identification of the genomic product.
Genomic products are further processed for QC and abundance
quantification.

Depends Biostrings, pwalign, GenomicAlignments, BiocParallel,
hiAnnotator, R (>= 3.0)

Imports sonicLength, dplyr, BiocGenerics, GenomicRanges, readxl,
methods

License GPL-3

VignetteBuilder knitr

Suggests knitr, testthat, markdown

biocViews Sequencing, Preprocessing

LazyLoad yes

SystemRequirements BLAT, UCSC hg18 in 2bit format for BLAT

RoxygenNote 7.3.1

git_url https://git.bioconductor.org/packages/hiReadsProcessor

git_branch RELEASE_3_20

git_last_commit 2f341e3

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2025-03-31

1

2 Contents

Contents
addFeature . 3
addListNameToReads . 4
annotateSites . 4
blatListedSet . 6
blatSeqs . 6
chunkize . 8
clusterSites . 9
crossOverCheck . 10
dereplicateReads . 11
doRCtest . 12
extractFeature . 13
extractSeqs . 14
findAndRemoveVector . 15
findAndTrimSeq . 16
findBarcodes . 17
findIntegrations . 19
findLinkers . 21
findLTRs . 22
findPrimers . 24
findVector . 25
getIntegrationSites . 26
getSectorsForSamples . 27
getSonicAbund . 28
hiReadsProcessor . 30
isuSites . 30
otuSites . 31
pairUpAlignments . 33
pairwiseAlignSeqs . 34
primerIDAlignSeqs . 35
psl . 37
pslCols . 38
pslToRangedObject . 38
read.BAMasPSL . 39
read.blast8 . 40
read.psl . 41
read.sampleInfo . 42
read.SeqFolder . 44
read.seqsFromSector . 45
removeReadsWithNs . 46
replicateReads . 46
sampleSummary . 47
seqProps . 48
splitByBarcode . 48
splitSeqsToFiles . 49
startgfServer . 50
trimSeqs . 51
troubleshootLinkers . 52
vpairwiseAlignSeqs . 53
write.listedDNAStringSet . 54
write.psl . 56

addFeature 3

Index 57

addFeature Add a specific feature/attribute to the sampleInfo object.

Description

Given a sampleInfo object, the function adds a new feature for the given samples & sectors.

Usage

addFeature(
sampleInfo,
sector = NULL,
samplename = NULL,
feature = NULL,
value = NULL

)

Arguments

sampleInfo sample information SimpleList object, which samples per sector/quadrant infor-
mation along with other metadata.

sector a vector or a specific sector to add the new feature(s) to. Default is NULL, in
which case the sectors are searched from samplename parameter.

samplename a character vector or a specific sample to add the new feature(s) to. Default is
NULL.

feature a string of naming the new feature to add for the defined samplename and sector.

value named vector of samplenames & values which is assigned for the defined sector,
samplename, and feature. Example: c("Sample1"="ACDTDASD")

Value

modified sampleInfo object with new feature(s) added.

See Also

findPrimers, extractSeqs, trimSeqs, extractFeature, getSectorsForSamples

Examples

load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
extractFeature(seqProps, sector="2",
samplename="Roth-MLV3p-CD4TMLVWell6-MseI", feature="metadata")
seqProps <- addFeature(seqProps, sector="2",
samplename="Roth-MLV3p-CD4TMLVWell6-MseI", feature="foo",
value=c("Roth-MLV3p-CD4TMLVWell6-MseI"="woo"))
extractFeature(seqProps, sector="2",
samplename="Roth-MLV3p-CD4TMLVWell6-MseI", feature="metadata")

4 annotateSites

addListNameToReads Prepend name attribute of a list to DNAStringSet

Description

Given a named listed DNAStringSet object returned from extractSeqs, the function prepends the
sample name to read names.

Usage

addListNameToReads(dnaSet, flatten = FALSE)

Arguments

dnaSet output from extractSeqs

flatten should the output be unlisted? Default is FALSE.

Value

listed DNAStringSet with the names attribute prepended with the name of the list. If flatten is
TRUE, then a DNAStringSet object

See Also

extractFeature, extractSeqs, getSectorsForSamples, write.listedDNAStringSet

Examples

load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
samples <- c('Roth-MLV3p-CD4TMLVWell6-Tsp509I',
'Roth-MLV3p-CD4TMLVWell6-MseI', 'Roth-MLV3p-CD4TMLVwell5-MuA')
seqs <- extractSeqs(seqProps, sector = '2', samplename = samples,
feature="genomic")
addListNameToReads(seqs, TRUE)

annotateSites Find the 5’ primers and add results to SampleInfo object.

Description

Given a sampleInfo object, the function finds 5’ primers for each sample per sector and adds the
results back to the object. This is a specialized function which depends on many other functions
shown in ’see also section’ to perform specialized trimming of 5’ primer/adaptor found in the sam-
pleInfo object. The sequence itself is never trimmed but rather coordinates of primer portion is
recorded back to the object and used subsequently by extractSeqs function to perform the trim-
ming.

annotateSites 5

Usage

annotateSites(
sampleInfo,
annots = NULL,
samplenames = NULL,
parallel = TRUE,
...

)

Arguments

sampleInfo sample information SimpleList object outputted from findIntegrations, which
holds genomic integration sites.

annots a named list of GRanges object holding features for annotating integration sites.
The name attribute of the list is used as column name.

samplenames a vector of samplenames to process. Default is NULL, which processes all sam-
ples from sampleInfo object.

parallel use parallel backend to perform calculation. Defaults to TRUE. If no parallel
backend is registered, then a serial version is ran using SerialParam. Parl-
lelization is done at sample level per sector. Use parallel2 for parallelization at
sequence level.

... additional parameters to be passed to doAnnotation except for sites.rd, fea-
tures.rd, and colnam.

Value

a SimpleList object similar to sampleInfo paramter supplied with new data added under each sector
and sample. New data attributes include: primed

See Also

clusterSites, isuSites, crossOverCheck, findIntegrations, getIntegrationSites, pslToRangedObject

Examples

Not run:
load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
data(genes)
genes <- makeGRanges(genes)
cpgs <- getUCSCtable("cpgIslandExt","CpG Islands")
cpgs <- makeGRanges(cbind(cpgs,strand="*"), chromCol = "chrom")
annots <- list("RefGenes"=genes,"CpG"=cpgs)
annotateSites(seqProps, annots, annotType="nearest", side="5p")

End(Not run)

6 blatSeqs

blatListedSet Align a listed DNAStringSet to a reference using gfClient or stan-
dalone BLAT.

Description

Align sequences from a listed DNAStringSet object returned from extractSeqs to an indexed
reference genome using gfServer/gfClient protocol or using standalone BLAT and return the psl file
as a GRanges object. This function heavily relies on defaults of blatSeqs.

Usage

blatListedSet(dnaSetList = NULL, ...)

Arguments

dnaSetList DNAStringSet object containing sequences to be aligned against the reference.

... parameters to be passed to blatSeqs.

Value

a list of GRanges object reflecting psl file type per set of sequences.

See Also

pairwiseAlignSeqs, vpairwiseAlignSeqs, startgfServer, stopgfServer, blatSeqs, read.psl,
pslToRangedObject, read.blast8

blatSeqs Align sequences using BLAT.

Description

Align batch of sequences using standalone BLAT or gfServer/gfClient protocol against an indexed
reference genome. Depending on parameters provided, the function either aligns batch of files
to a reference genome using gfClient or takes sequences from query & subject parameters and
aligns them using standalone BLAT. If standaloneBlat=FALSE and gfServer is not launched apriori,
this function will start one using startgfServer and kill it using stopgfServer upon successful
execution.

Usage

blatSeqs(
query = NULL,
subject = NULL,
standaloneBlat = TRUE,
port = 5560,
host = "localhost",
parallel = TRUE,
numServers = 1L,

blatSeqs 7

gzipResults = TRUE,
blatParameters = c(minIdentity = 90, minScore = 10, stepSize = 5, tileSize = 10,
repMatch = 112312, dots = 50, maxDnaHits = 10, q = "dna", t = "dna", out = "psl")

)

Arguments

query an object of DNAStringSet, a character vector of filename(s), or a path/pattern
of fasta files to BLAT. Default is NULL.

subject an object of DNAStringSet, a character vector, or a path to an indexed genome
(nibs,2bits) to serve as a reference or target to the query. Default is NULL. If
the subject is a path to a nib or 2bit file, then standaloneBlat will not work!

standaloneBlat use standalone BLAT as suppose to gfServer/gfClient protocol. Default is TRUE.

port the same number you started the gfServer with. Required if standaloneBlat=FALSE.
Default is 5560.

host name of the machine running gfServer. Default is ’localhost’ and only used
when standaloneBlat=FALSE.

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam.

numServers launch >1 gfServer and load balance jobs? This only applies when parallel=TRUE
and standaloneBlat=FALSE. Enable this option only if the machine has a lot of
RAM! Option ignored if launched gfServer is found at specified host and port.
Default is 1.

gzipResults gzip the output files? Default is TRUE.

blatParameters a character vector of options to be passed to gfClient/BLAT command except
for ’nohead’ option. Default: c(minIdentity=90, minScore=10, stepSize=5, tile-
Size=10, repMatch=112312, dots=50, maxDnaHits=10, q="dna", t="dna", out="psl").
Be sure to only pass parameters accepted by either BLAT or gfClient. For ex-
ample, if repMatch or stepSize parameters are specified when using gfClient,
then the function will simply ignore them! The defaults are configured to align
a 19bp sequence with 90% identity.

Value

a character vector of psl filenames. Each file provided is split by number of parallel workers and
with read number denoting the cut. Files are cut in smaller pieces to for the ease of read & write
into a single R session.

See Also

pairwiseAlignSeqs, vpairwiseAlignSeqs, startgfServer, stopgfServer, read.psl, splitSeqsToFiles,
read.blast8

Examples

Not run:
blatSeqs(dnaSeqs, subjectSeqs, blatParameters=c(minIdentity=90, minScore=10,
tileSize=10, dots=10, q="dna", t="dna", out="blast8"))
blatSeqs(dnaSeqs, "/usr/local/genomeIndex/hg18.2bit", standaloneBlat=FALSE)
blatSeqs("mySeqs.fa", "/usr/local/genomeIndex/hg18.2bit", standaloneBlat=FALSE)

8 chunkize

blatSeqs("my.*.fa", "/usr/local/genomeIndex/hg18.2bit", standaloneBlat=FALSE)

End(Not run)

chunkize Breaks an object into chunks of N size.

Description

Given a linear/vector like object, the function breaks it into equal sized chunks either by chunkSize.
This is a helper function used by functions in ’See Also’ section where each chunk is sent to a
parallel node for processing.

Usage

chunkize(x, chunkSize = NULL)

Arguments

x a linear object.

chunkSize number of rows to use per chunk of query. Defaults to length(x)/detectCores()
or length(query)/bpworkers() depending on parallel backend registered.

Value

a list of object split into chunks.

See Also

primerIDAlignSeqs, vpairwiseAlignSeqs, pairwiseAlignSeqs

Examples

x <- c("GAGGCTGTCACCGACAAGGTTCTGA", "AATAGCGTGGTGACAGCCCACATGC",
"GGTCTTCTAGGGAACCTACGCCACA", "TTTCCGGCGGCAGTCAGAGCCAAAG",
"TCCTGTCAACTCGTAGATCCAATCA", "ATGGTCACCTACACACAACGGCAAT",
"GTCAGGACACCTAATCACAAACGGA", "AGACGCAGGTTCAGGCTGGACTAGA",
"ATCGTTTCCGGAATTCGTGCACTGG", "CAATGCGGGCACACGCTCTTACAGT")

chunkize(DNAStringSet(x), 5)

clusterSites 9

clusterSites Cluster/Correct values within a window based on their frequency
given discrete factors

Description

Given a group of discrete factors (i.e. position ids) and integer values, the function tries to cor-
rect/cluster the integer values based on their frequency in a defined windowsize.

Usage

clusterSites(
posID = NULL,
value = NULL,
grouping = NULL,
psl.rd = NULL,
weight = NULL,
windowSize = 5L,
byQuartile = FALSE,
quartile = 0.7,
parallel = TRUE,
sonicAbund = FALSE

)

Arguments

posID a vector of groupings for the value parameter (i.e. Chr,strand). Required if psl.rd
parameter is not defined.

value a vector of integer with values that needs to corrected or clustered (i.e. Posi-
tions). Required if psl.rd parameter is not defined.

grouping additional vector of grouping of length posID or psl.rd by which to pool the rows
(i.e. samplenames). Default is NULL.

psl.rd a GRanges object returned from getIntegrationSites. Default is NULL.

weight a numeric vector of weights to use when calculating frequency of value by posID
and grouping if specified. Default is NULL.

windowSize size of window within which values should be corrected or clustered. Default is
5.

byQuartile flag denoting whether quartile based technique should be employed. See notes
for details. Default is TRUE.

quartile if byQuartile=TRUE, then the quartile which serves as the threshold. Default is
0.70.

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam. Process is split by the grouping the column.

sonicAbund calculate breakpoint abundance using getSonicAbund. Default is FALSE.

10 crossOverCheck

Value

a data frame with clusteredValues and frequency shown alongside with the original input. If psl.rd
parameter is defined then a GRanges object is returned with three new columns appended at the
end: clusteredPosition, clonecount, and clusterTopHit (a representative for a given cluster chosen
by best scoring hit!).

Note

The algorithm for clustering when byQuartile=TRUE is as follows: for all values in each grouping,
get a distribution and test if their frequency is >= quartile threshold. For values below the quartile
threshold, test if any values overlap with the ones that passed the threshold and is within the defined
windowSize. If there is a match, then merge with higher value, else leave it as is. This is only
useful if the distribution is wide and polynodal. When byQuartile=FALSE, for each group the
values within the defined window are merged with the next highest frequently occuring value, if
freuquencies are tied then lowest value is used to represent the cluster. When psl.rd is passed, then
multihits are ignored and only unique sites are clustered. All multihits will be tagged as a good
’clusterTopHit’.

See Also

findIntegrations, getIntegrationSites, otuSites, isuSites, crossOverCheck, pslToRangedObject,
getSonicAbund

Examples

clusterSites(posID = c('chr1-', 'chr1-', 'chr1-', 'chr2+', 'chr15-',
'chr16-','chr11-'), value = c(rep(1000, 2), 5832, 1000, 12324, 65738, 928042),
grouping = c('a', 'a', 'a', 'b', 'b', 'b', 'c'), parallel = FALSE)
Not run:
data(psl)
psl <- psl[sample(nrow(psl), 100),]
psl.rd <- getIntegrationSites(pslToRangedObject(psl))
psl.rd$grouping <- sub("(.+)-.+", "\\1", psl.rd$qName)
clusterSites(grouping = psl.rd$grouping, psl.rd = psl.rd)

End(Not run)

crossOverCheck Remove values/positions which are overlapping between discrete
groups based on their frequency.

Description

Given a group of discrete factors (i.e. position ids) and integer values, the function tests if they
overlap between groups. If overlap is found, then the group having highest frequency of a given
position wins, else the position is filtered out from all the groups. The main use of this function is
to remove crossover sites from different samples in the data.

dereplicateReads 11

Usage

crossOverCheck(
posID = NULL,
value = NULL,
grouping = NULL,
weight = NULL,
windowSize = 1,
psl.rd = NULL

)

Arguments

posID a vector of groupings for the value parameter (i.e. Chr,strand). Required if psl.rd
parameter is not defined.

value a vector of integer locations/positions that needs to be binned, i.e. genomic
location. Required if psl.rd parameter is not defined.

grouping additional vector of grouping of length posID or psl.rd by which to pool the rows
(i.e. samplenames). Default is NULL.

weight a numeric vector of weights to use when calculating frequency of value by posID
and grouping if specified. Default is NULL.

windowSize size of window within which values should be checked. Default is 1.

psl.rd a GRanges object. Default is NULL.

Value

a data frame of the original input with columns denoting whether a given row was a Candidate and
isCrossover. If psl.rd parameter is defined, then a GRanges object with ’isCrossover’, ’Candidate’,
and ’FoundIn’ columns appended at the end.

See Also

clusterSites, otuSites, findIntegrations, getIntegrationSites, pslToRangedObject

Examples

crossOverCheck(posID = c('chr1-', 'chr1-', 'chr1-', 'chr1-', 'chr2+', 'chr15-',
'chr16-', 'chr11-'), value = c(rep(1000, 3), 5832, 1000, 12324, 65738, 928042),
grouping = c('a', 'a', 'b', 'b', 'b', 'b', 'c', 'c'))

dereplicateReads Removes duplicate sequences from DNAStringSet object.

Description

Given a DNAStringSet object, the function dereplicates reads and adds counts=X to the definition
line to indicate replication.

Usage

dereplicateReads(dnaSet)

12 doRCtest

Arguments

dnaSet DNAStringSet object to dereplicate.

Value

DNAStringSet object with names describing frequency of repeat.

See Also

replicateReads, removeReadsWithNs, findBarcodes, splitByBarcode

Examples

dnaSet <- c("CCTGAATCCTGGCAATGTCATCATC", "ATCCTGGCAATGTCATCATCAATGG",
"ATCAGTTGTCAACGGCTAATACGCG", "ATCAATGGCGATTGCCGCGTCTGCA",
"CCGCGTCTGCAATGTGAGGGCCTAA", "GAAGGATGCCAGTTGAAGTTCACAC",
"CCTGAATCCTGGCAATGTCATCATC", "ATCCTGGCAATGTCATCATCAATGG",
"ATCAGTTGTCAACGGCTAATACGCG", "ATCAATGGCGATTGCCGCGTCTGCA",
"CCGCGTCTGCAATGTGAGGGCCTAA", "GAAGGATGCCAGTTGAAGTTCACAC")
dereplicateReads(dnaSet)

doRCtest Test if pattern aligns better in +/- orientation.

Description

Given a fixed length pattern sequence and variable length subject sequences, the function roughly
finds which orientation of pattern yields the most hits. The function doing the heavylifting is
vcountPattern. This is an accessory function used in function listed under See Also section below.

Usage

doRCtest(
subjectSeqs = NULL,
patternSeq = NULL,
qualityThreshold = 0.5,
parallel = TRUE

)

Arguments

subjectSeqs DNAStringSet object containing sequences to be searched for the pattern.

patternSeq DNAString object or a sequence containing the query sequence to search.
qualityThreshold

percent of patternSeq to match. Default is 0.50, half match. This is supplied
to max.mismatch parameter of vcountPattern as round(nchar(patternSeq)*(1-
qualityThreshold)).

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
FALSE. If no parallel backend is registered, then a serial version is ran using
SerialParam.

extractFeature 13

Value

patternSeq that aligned the best.

See Also

pairwiseAlignSeqs, vpairwiseAlignSeqs, primerIDAlignSeqs

Examples

subjectSeqs <- c("CCTGAATCCTGGCAATGTCATCATC", "ATCCTGGCAATGTCATCATCAATGG",
"ATCAGTTGTCAACGGCTAATACGCG", "ATCAATGGCGATTGCCGCGTCTGCA",
"CCGCGTCTGCAATGTGAGGGCCTAA", "GAAGGATGCCAGTTGAAGTTCACAC")
subjectSeqs <- xscat("AAAAAAAAAA", subjectSeqs)
doRCtest(subjectSeqs, "TTTTTTTTT")

extractFeature Extract a specific feature/attribute of the sampleInfo object.

Description

Given a sampleInfo object, the function extracts a defined feature(s) for given sample or sector.

Usage

extractFeature(sampleInfo, sector = NULL, samplename = NULL, feature = NULL)

Arguments

sampleInfo sample information SimpleList object, which samples per sector/quadrant infor-
mation along with other metadata.

sector a vector or specific sector to extract the feature from. Default is NULL, which
extracts all sectors.

samplename a character vector or a specific sample to extract feature from. Default is NULL,
which extracts all samples.

feature Options include: primed, LTRed, linkered, decoded, and any of the metadata.
Default is NULL. When feature=’metadata’, then it returns names of all the
metadata elements associated with the sample as a comma separated list.

Value

a list or list of lists depending upon which parameters were supplied.

See Also

addFeature, findPrimers, findLTRs, findLinkers, extractSeqs, trimSeqs, getSectorsForSamples

14 extractSeqs

Examples

load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
samples <- c('Roth-MLV3p-CD4TMLVWell6-Tsp509I',
'Roth-MLV3p-CD4TMLVWell6-MseI', 'Roth-MLV3p-CD4TMLVwell5-MuA')
extractFeature(seqProps, sector='2', samplename=samples, feature="primed")
extractFeature(seqProps, sector='2', samplename=samples, feature="linkered")
extractFeature(seqProps, sector='2', samplename=samples, feature="metadata")

extractSeqs Extract sequences for a feature in the sampleInfo object.

Description

Given a sampleInfo object, the function extracts sequences for a defined feature.

Usage

extractSeqs(
sampleInfo,
sector = NULL,
samplename = NULL,
feature = "genomic",
trim = TRUE,
minReadLength = 1,
sideReturn = NULL,
pairReturn = "both",
strict = FALSE

)

Arguments

sampleInfo sample information SimpleList object, which samples per sector/quadrant infor-
mation along with other metadata.

sector specific sector to extract sequences from. Default is NULL, which extracts all
sectors.

samplename specific sample to extract sequences from. Default is NULL, which extracts all
samples.

feature which part of sequence to extract (case sensitive). Options include: primed,
!primed, LTRed, !LTRed, linkered, !linkered, primerIDs, genomic, genomi-
cLinkered, decoded, and unDecoded. If a sample was primerIDed and pro-
cessed by primerIDAlignSeqs, then all the rejected and unmatched attributes
can be prepended to the feature. Example: vectored, Rejectedlinkered, Reject-
edprimerIDslinkered, Absentlinkered, or unAnchoredprimerIDslinkered. When
feature is genomic, it includes sequences which are primed, LTRed, linkered,
and !linkered. The genomicLinkered is same as genomic minus the !linkered.
When feature is decoded, it includes everything that demultiplexed. The ’!’ in
front of a feature extracts the inverse. One can only get unDecoded sequences
if returnUnmatched was TRUE in findBarcodes. If findVector was run and
"vectored" feature was found in the sampleInfo object, then genomic & genomi-
cLinkered output will have vectored reads removed.

findAndRemoveVector 15

trim whether to trim the given feature from sequences or keep it. Default is TRUE.
This option is ignored for feature with ’!’.

minReadLength threshold for minimum length of trimmed sequences to return.
sideReturn if trim=TRUE, which side of the sequence to return: left, middle, or right. De-

faults to NULL and determined automatically. Doesn’t apply to features: de-
coded, genomic or genomicLinkered.

pairReturn if the data is paired end, then from which pair to return the feature. Options are
"pair1", "pair2", or defaults to "both". Ignored if data is single end.

strict this option is used when feature is either ’genomic’ or ’genomicLinkered’. When
a sample has no LTRed reads, primer ends are used as starting points by default
to extract the genomic part. Enabling this option will strictly ensure that only
reads with primer and LTR are trimmed for the ’genomic’ or ’genomicLinkered’
feature. Default is FALSE.

Value

a listed DNAStringSet object structed by sector then sample. Note: when feature=’genomic’ or
’genomicLinkered’ and when data is paired end, then "pair2" includes union of reads from both
pairs which found LTR.

See Also

findPrimers, findLTRs, findLinkers, trimSeqs, extractFeature, getSectorsForSamples

Examples

load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
samples <- c('Roth-MLV3p-CD4TMLVWell6-Tsp509I',
'Roth-MLV3p-CD4TMLVWell6-MseI', 'Roth-MLV3p-CD4TMLVwell5-MuA')
extractSeqs(seqProps, sector='2', samplename=samples, feature="primed")
extractSeqs(seqProps, sector='2', samplename=samples, feature="!primed")
extractSeqs(seqProps, sector='2', samplename=samples, feature="linkered")
extractSeqs(seqProps, sector='2', samplename=samples, feature="genomic")

findAndRemoveVector Find and trim vector sequence from reads.

Description

This function facilitates finding and trimming of long/short fragments of vector present in LM-PCR
products. The algorithm looks for vector sequence present anywhere within the read and trims
according longest contiguous match on either end of the read. Alignment is doing using BLAT

Usage

findAndRemoveVector(
reads,
Vector,
minLength = 10,
returnCoords = FALSE,
parallel = TRUE

)

16 findAndTrimSeq

Arguments

reads DNAStringSet object containing sequences to be trimmed for vector.

Vector DNAString object containing vector sequence to be searched in reads.

minLength integer value dictating minimum length of trimmed sequences to return. Default
is 10.

returnCoords return the coordinates of vector start-stop for the matching reads. Defaults to
FALSE.

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam.

Value

DNAStringSet object with Vector sequence removed from the reads. If returnCoords=TRUE, then
a list of two named elements "hits" & "reads". The first element, "hits" is a GRanges object with
properties of matched region and whether it was considered valid denoted by ’good.row’. The
second element, "reads" is a DNAStringSet object with Vector sequence removed from the reads.

Note

If parallel=TRUE, then be sure to have a parallel backend registered before running the function.
One can use any of the following MulticoreParam SnowParam

See Also

pairwiseAlignSeqs, vpairwiseAlignSeqs, pslToRangedObject, blatSeqs, read.blast8, findAndTrimSeq

findAndTrimSeq Find and trim a short pattern sequence from the subject.

Description

This function facilitates finding and trimming of a short pattern sequence from a collection of sub-
ject sequences. The trimming is dictated by side parameter. For more information on the trimming
process see the ’side’ parameter documentation in trimSeqs. For information regarding the pat-
tern alignment see the documentation for pairwiseAlignSeqs. This function is meant for aligning
a short pattern onto large collection of subjects. If you are looking to align a vector sequence to
subjects, then please use BLAT.

Usage

findAndTrimSeq(
patternSeq,
subjectSeqs,
side = "left",
offBy = 0,
alignWay = "slow",
...

)

findBarcodes 17

Arguments

patternSeq DNAString object or a sequence containing the query sequence to search.

subjectSeqs DNAStringSet object containing sequences to be searched for the pattern.

side which side of the sequence to perform the search & trimming: left, right or
middle. Default is ’left’.

offBy integer value dictating if the trimming base should be offset by X number of
bases. Default is 0.

alignWay method to utilize for detecting the primers. One of following: "slow" (Default),
"fast", or "blat". Fast, calls vpairwiseAlignSeqs and uses vmatchPattern
at its core, which is less accurate with indels and mismatches but much faster.
Slow, calls pairwiseAlignSeqs and uses pairwiseAlignment at its core, which
is accurate with indels and mismatches but slower. Blat will use blatSeqs.

... parameters to be passed to pairwiseAlignment, vpairwiseAlignSeqs or blatSeqs
depending on which method is defined in ’alignWay’ parameter.

Value

DNAStringSet object with pattern sequence removed from the subject sequences.

Note

If parallel=TRUE, then be sure to have a parallel backend registered before running the function.
One can use any of the following MulticoreParam SnowParam

See Also

pairwiseAlignSeqs, vpairwiseAlignSeqs, extractFeature, extractSeqs, primerIDAlignSeqs,
findPrimers, findLinkers

Examples

findAndTrimSeq(patternSeq="AGACCCTTTT",
subjectSeqs=DNAStringSet(c("AGACCCTTTTGAGCAGCAT","AGACCCTTGGTCGACTCA",
"AGACCCTTTTGACGAGCTAG")), qualityThreshold=.85, doRC=FALSE, side="left",
offBy=1, alignWay = "slow")

findBarcodes Demultiplex reads by their barcodes

Description

Given a sample information object, the function reads in the raw fasta/fastq file, demultiplexes
reads by their barcodes, and appends it back to the sampleInfo object. Calls splitByBarcode to
perform the actual splitting of file by barcode sequences. If supplied with a character vector and
reads themselves, the function behaves a bit differently. See the examples.

18 findBarcodes

Usage

findBarcodes(
sampleInfo,
sector = NULL,
dnaSet = NULL,
showStats = FALSE,
returnUnmatched = FALSE,
dereplicate = FALSE,
alreadyDecoded = FALSE

)

Arguments

sampleInfo sample information SimpleList object created using read.sampleInfo, which
holds barcodes and sample names per sector/quadrant/lane or a character vector
of barcodes to sample name associations. Ex: c("ACATCCAT"="Sample1",
"GAATGGAT"="Sample2",...)

sector If sampleInfo is a SimpleList object, then a numeric/character value or vector
representing sector(s) in sampleInfo. Optionally if on high memory machine
sector=’all’ will decode/demultiplex sequences from all sectors/quadrants. This
option is ignored if sampleInfo is a character vector. Default is NULL.

dnaSet DNAStringSet object containing sequences to be decoded or demultiplexed. De-
fault is NULL. If sampleInfo is a SimpleList object, then reads are automatically
extracted using read.seqsFromSector and parameters defined in sampleInfo
object.

showStats toggle output of search statistics. Default is FALSE.

returnUnmatched

return unmatched sequences. Returns results as a list where x[["unDecodedSeqs"]]
has culprits. Default is FALSE.

dereplicate return dereplicated sequences. Calls dereplicateReads, which appends counts=X
to sequence names/deflines. Default is FALSE. Not applicable for paired end
data since it can cause insyncronicity.

alreadyDecoded if reads have be already decoded and split into respective files per sample and
’seqfilePattern’ parameter in read.SeqFolder is set to reading sample files and
not the sector files, then set this to TRUE. Default is FALSE. Enabling this
parameter skips the barcode detection step and loads the sequence file as is into
the sampleInfo object.

Value

If sampleInfo is an object of SimpleList then decoded sequences are appeneded to respective sample
slots, else a named list of DNAStringSet object. If returnUnmatched=TRUE, then x[["unDecodedSeqs"]]
has the unmatched sequences.

See Also

splitByBarcode, dereplicateReads, replicateReads

findIntegrations 19

Examples

dnaSet <- DNAStringSet(c("read1" = "ACATCCATAGAGCTACGACGACATCGACATA",
"read2"="GAATGGATGACGACTACAGCACGACGAGCAGCTACT",
"read3"="GAATGGATGCGCTAAGAAGAGA", "read4"="ACATCCATTCTACACATCT"))
findBarcodes(sampleInfo = c("ACATCCAT" = "Sample1", "GAATGGAT" = "Sample2"),
dnaSet=dnaSet, showStats=TRUE, returnUnmatched=TRUE)
Not run:
load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
findBarcodes(seqProps, sector = "all", showStats = TRUE)

End(Not run)

findIntegrations Find the integration sites and add results to SampleInfo object.

Description

Given a SampleInfo object, the function finds integration sites for each sample using their respec-
tive settings and adds the results back to the object. This is an all-in-one function which aligns,
finds best hit per read per sample, cluster sites, and assign ISU IDs. It calls blatSeqs, read.psl,
getIntegrationSites, clusterSites, otuSites. here must be linkered reads within the sam-
pleInfo object in order to use this function using the default parameters. If you are planning on
BLATing non-linkered reads, then change the seqType to one of accepted options for the ’feature’
parameter of extractSeqs, except for ’!’ based features.

Usage

findIntegrations(
sampleInfo,
seqType = NULL,
genomeIndices = NULL,
samplenames = NULL,
parallel = TRUE,
autoOptimize = FALSE,
doSonic = FALSE,
doISU = FALSE,
...

)

Arguments

sampleInfo sample information SimpleList object outputted from findLinkers, which holds
decoded, primed, LTRed, and Linkered sequences for samples per sector/quadrant
along with metadata.

seqType which type of sequence to align and find integration sites. Default is NULL
and determined automatically based on type of restriction enzyme or isola-
tion method used. If restriction enzyme is Fragmentase, MuA, Sonication,
or Sheared then this parameter is set to genomicLinkered, else it is genomic.
Any one of following options are valid: genomic, genomicLinkered, decoded,
primed, LTRed, linkered.

20 findIntegrations

genomeIndices an associative character vector of freeze to full or relative path of respective of
indexed genomes from BLAT(.nib or .2bit files). For example: c("hg18"="/usr/local/blatSuite34/hg18.2bit",
"mm8"="/usr/local/blatSuite34/mm8.2bit"). Be sure to supply an index per freeze
supplied in the sampleInfo object. Default is NULL.

samplenames a vector of samplenames to process. Default is NULL, which processes all sam-
ples from sampleInfo object.

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam.

autoOptimize if aligner=’BLAT’, then should the blatParameters be automatically optimized
based on the reads? Default is FALSE. When TRUE, following parameters are
adjusted within the supplied blatParameters vector: stepSize, tileSize, minScore,
minIdentity. This parameter is useful when aligning reads of various lengths to
the genome. Optimization is done using only read lengths. In beta phase!

doSonic calculate integration sites abundance using breakpoints. See getSonicAbund
for more details. Default is FALSE.

doISU calculate integration site unit for multihits. See isuSites for more details. De-
fault is FALSE.

... additional parameters to be passed to blatSeqs.

Value

a SimpleList object similar to sampleInfo parameter supplied with new data added under each sector
and sample. New data attributes include: psl, and sites. The psl attributes holds the genomic hits
per read along with QC information. The sites attribute holds the condensed integration sites where
genomic hits have been clustered by the Position column and cherry picked to have each site pass
all the QC steps.

Note

If parallel=TRUE, then be sure to have a parallel backend registered before running the function.
One can use any of the following MulticoreParam SnowParam

See Also

findPrimers, findLTRs, findLinkers, startgfServer, read.psl, blatSeqs, blatListedSet,
pslToRangedObject, clusterSites, isuSites, crossOverCheck, getIntegrationSites, getSonicAbund,
annotateSites

Examples

Not run:
load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
findIntegrations(seqProps,
genomeIndices=c("hg18"="/usr/local/genomeIndexes/hg18.noRandom.2bit"),
numServers=2)

End(Not run)

findLinkers 21

findLinkers Find the 3’ linkers and add results to SampleInfo object.

Description

Given a sampleInfo object, the function finds 3’ linkers for each sample per sector and adds the
results back to the object. This is a specialized function which depends on many other functions
shown in ’see also section’ to perform specialized trimming of 3’ primer/linker adaptor sequence
found in the sampleInfo object. The sequence itself is never trimmed but rather coordinates of linker
portion is recorded back to the object and used subsequently by extractSeqs function to perform
the trimming. This function heavily relies on either pairwiseAlignSeqs or primerIDAlignSeqs
depending upon whether linkers getting aligned have primerID in it or not.

Usage

findLinkers(
sampleInfo,
showStats = FALSE,
doRC = FALSE,
parallel = TRUE,
samplenames = NULL,
bypassChecks = FALSE,
parallel2 = FALSE,
...

)

Arguments

sampleInfo sample information SimpleList object outputted from findPrimers or findLTRs,
which holds decoded sequences for samples per sector/quadrant along with in-
formation of sample to primer associations.

showStats toggle output of search statistics. Default is FALSE.

doRC perform reverse complement search of the defined pattern/linker sequence. De-
fault is FALSE.

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam. Parllelization is done at sample level per sector.

samplenames a vector of samplenames to process. Default is NULL, which processes all sam-
ples from sampleInfo object.

bypassChecks skip checkpoints which detect if something was odd with the data? Default is
FALSE.

parallel2 perform parallelization is sequence level. Default is FALSE. Useful in cases
where each sector has only one sample with numerous sequences.

... extra parameters to be passed to pairwiseAlignment.

Value

a SimpleList object similar to sampleInfo paramter supplied with new data added under each sec-
tor and sample. New data attributes include: linkered. If linkers have primerID then, primerIDs
attribute is appended as well.

22 findLTRs

Note

• For paired end data, qualityThreshold for pair 2 is increased by 0.25 or set to 1 whichever is
lower to increase quality & full match to linker sequence.

• If no linker matches are found with default options, then try doRC=TRUE.

• If parallel=TRUE, then be sure to have a parallel backend registered before running the func-
tion. One can use any of the following MulticoreParam SnowParam

See Also

pairwiseAlignSeqs, vpairwiseAlignSeqs, primerIDAlignSeqs, findLTRs, findPrimers, extractFeature,
extractSeqs, findAndTrimSeq, findIntegrations

Examples

Not run:
load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
findLinkers(seqProps, showStats=TRUE, doRC=TRUE)

End(Not run)

findLTRs Find the 5’ LTRs and add results to SampleInfo object.

Description

Given a sampleInfo object, the function finds 5’ LTR following the primer for each sample per sector
and adds the results back to the object. This is a specialized function which depends on many other
functions shown in ’see also section’ to perform specialized trimming of 5’ viral LTRs found in the
sampleInfo object. The sequence itself is never trimmed but rather coordinates of LTR portion is
added to primer coordinates and recorded back to the object and used subsequently by extractSeqs
function to perform the trimming. This function heavily relies on pairwiseAlignSeqs.

Usage

findLTRs(
sampleInfo,
showStats = FALSE,
doRC = FALSE,
parallel = TRUE,
samplenames = NULL,
bypassChecks = FALSE,
parallel2 = FALSE,
...

)

findLTRs 23

Arguments

sampleInfo sample information SimpleList object outputted from findPrimers, which holds
decoded and primed sequences for samples per sector/quadrant along with in-
formation of sample to LTR associations.

showStats toggle output of search statistics. Default is FALSE. For paired end data, stats
for "pair2" is relative to decoded and/or primed reads.

doRC perform reverse complement search of the defined pattern/LTR sequence. De-
fault is FALSE.

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam. Parllelization is done at sample level per sector.

samplenames a vector of samplenames to process. Default is NULL, which processes all sam-
ples from sampleInfo object.

bypassChecks skip checkpoints which detect if something was odd with the data? Default is
FALSE.

parallel2 perform parallelization is sequence level. Default is FALSE. Useful in cases
where each sector has only one sample with numerous sequences.

... extra parameters to be passed to pairwiseAlignment.

Value

a SimpleList object similar to sampleInfo paramter supplied with new data added under each sector
and sample. New data attributes include: LTRed

Note

• For paired end data, qualityThreshold for pair 2 is decreased by 0.05 to increase chances of
matching LTR sequence.

• If parallel=TRUE, then be sure to have a parallel backend registered before running the func-
tion. One can use any of the following MulticoreParam SnowParam

See Also

pairwiseAlignSeqs, vpairwiseAlignSeqs, extractFeature, extractSeqs, primerIDAlignSeqs,
findPrimers, findLinkers, findAndTrimSeq

Examples

Not run:
load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
findLTRs(seqProps, showStats=TRUE)

End(Not run)

24 findPrimers

findPrimers Find the 5’ primers and add results to SampleInfo object.

Description

Given a sampleInfo object, the function finds 5’ primers for each sample per sector and adds the
results back to the object. This is a specialized function which depends on many other functions
shown in ’see also section’ to perform specialized trimming of 5’ primer/adaptor found in the sam-
pleInfo object. The sequence itself is never trimmed but rather coordinates of primer portion is
recorded back to the object and used subsequently by extractSeqs function to perform the trim-
ming.

Usage

findPrimers(
sampleInfo,
alignWay = "slow",
showStats = FALSE,
doRC = FALSE,
parallel = TRUE,
samplenames = NULL,
bypassChecks = FALSE,
parallel2 = FALSE,
...

)

Arguments

sampleInfo sample information SimpleList object outputted from findBarcodes, which
holds decoded sequences for samples per sector/quadrant along with informa-
tion of sample to primer associations.

alignWay method to utilize for detecting the primers. One of following: "slow" (Default),
or "fast". Fast, calls vpairwiseAlignSeqs and uses vmatchPattern at its core,
which is less accurate with indels and mismatches but much faster. Slow, calls
pairwiseAlignSeqs and uses pairwiseAlignment at its core, which is accu-
rate with indels and mismatches but slower.

showStats toggle output of search statistics. Default is FALSE.

doRC perform reverse complement search of the defined pattern/primer. Default is
FALSE.

parallel use parallel backend to perform calculation . Defaults to TRUE. If no parallel
backend is registered, then a serial version is ran using SerialParam. Parl-
lelization is done at sample level per sector. Use parallel2 for parallelization at
sequence level.

samplenames a vector of samplenames to process. Default is NULL, which processes all sam-
ples from sampleInfo object.

bypassChecks skip checkpoints which detect if something was odd with the data? Default is
FALSE.

parallel2 perform parallelization is sequence level. Default is FALSE. Useful in cases
where each sector has only one sample with numerous sequences.

findVector 25

... extra parameters to be passed to either vmatchPattern or pairwiseAlignment
depending on ’alignWay’ parameter.

Value

a SimpleList object similar to sampleInfo paramter supplied with new data added under each sector
and sample. New data attributes include: primed

Note

• For paired end data, qualityThreshold for pair 2 is decreased by 0.10 to increase chances of
matching primer sequence.

• If parallel=TRUE, then be sure to have a parallel backend registered before running the func-
tion. One can use any of the following MulticoreParam SnowParam

See Also

pairwiseAlignSeqs, vpairwiseAlignSeqs, extractFeature, extractSeqs, primerIDAlignSeqs,
findLTRs, findLinkers, findAndTrimSeq

Examples

Not run:
load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
findPrimers(seqProps, showStats=TRUE)

End(Not run)

findVector Find vector DNA in reads and add results to SampleInfo object.

Description

Given a sampleInfo object, the function finds vector fragments following the LTR piece for each
sample per sector and adds the results back to the object. This is a specialized function which
depends on many other functions shown in ’see also section’ to perform specialized trimming of
5’ viral LTRs found in the sampleInfo object. The sequence itself is never trimmed but rather
coordinates of vector portion is added to LTR coordinates and recorded back to the object and
used subsequently by extractSeqs function to perform the trimming. This function heavily relies
on blatSeqs. In order for this function to work, it needs vector sequence which is read in using
’vectorFile’ metadata supplied in the sample information file in read.sampleInfo

Usage

findVector(sampleInfo, showStats = FALSE, parallel = TRUE, samplenames = NULL)

26 getIntegrationSites

Arguments

sampleInfo sample information SimpleList object outputted from findLTRs, which holds
decoded, primed, and LTRed sequences for samples per sector/quadrant.

showStats toggle output of search statistics. Default is FALSE.

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam. Parllelization is done at sample level per sector. Use parallel2
for parallelization at sequence level.

samplenames a vector of samplenames to process. Default is NULL, which processes all sam-
ples from sampleInfo object.

Value

a SimpleList object similar to sampleInfo paramter supplied with new data added under each sector
and sample. New data attributes include: vectored

Note

• If parallel=TRUE, then be sure to have a parallel backend registered before running the func-
tion. One can use any of the following MulticoreParam SnowParam

See Also

pairwiseAlignSeqs, blatSeqs, extractFeature, extractSeqs, findPrimers, findLTRs, findLinkers,
findAndTrimSeq, findAndRemoveVector

Examples

Not run:
load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
findVector(seqProps, showStats=TRUE)

End(Not run)

getIntegrationSites Obtain integration sites from BLAT output

Description

Given a GRanges object from read.psl, the function uses specified filtering parameters to obtain
integration sites and maintain sequence attrition. The function will remove any non-best scoring
alignments from the object if not already filtered apriori.

getSectorsForSamples 27

Usage

getIntegrationSites(
psl.rd = NULL,
startWithin = 3,
alignRatioThreshold = 0.7,
genomicPercentIdentity = 0.98,
correctByqStart = TRUE,
oneBased = FALSE

)

Arguments

psl.rd a GRanges object reflecting psl format where tName is the seqnames.

startWithin upper bound limit of where the alignment should start within the query. Default
is 3.

alignRatioThreshold

cuttoff for (alignment span/read length). Default is 0.7.
genomicPercentIdentity

cuttoff for (1-(misMatches/matches)). Default is 0.98.
correctByqStart

use qStart to correct genomic position. This would account for sequencing/trimming
errors. Position=ifelse(strand=="+",tStart-qStart,tEnd+qStart). Default is TRUE.

oneBased the coordinates in psl files are "zero based half open". The first base in a se-
quence is numbered zero rather than one. Enabling this would add +1 to the
start and leave the end as is. Default is FALSE.

Value

a GRanges object with integration sites which passed all filtering criteria. Each filtering param-
eter creates a new column to flag if a sequence/read passed that filter which follows the scheme:
’pass.FilterName’. Integration Site is marked by new column named ’Position’.

See Also

startgfServer, read.psl, blatSeqs, blatListedSet, findIntegrations, pslToRangedObject,
clusterSites, isuSites, crossOverCheck, read.blast8

Examples

data(psl)
psl.rd <- pslToRangedObject(psl)
getIntegrationSites(psl.rd)

getSectorsForSamples Get sectors for samples defined in the sampleInfo object.

Description

Given a sampleInfo object, the function gets the sectors for each samplename. This is an accessory
function utilized by other functions of this package to aid sector retrieval.

28 getSonicAbund

Usage

getSectorsForSamples(
sampleInfo,
sector = NULL,
samplename = NULL,
returnDf = FALSE

)

Arguments

sampleInfo sample information SimpleList object, which samples per sector/quadrant infor-
mation along with other metadata.

sector a specific sector or vector of sectors if known ahead of time. Default is NULL,
which extracts all sectors.

samplename a specific sample or vector of samplenames to get sectors for. Default is NULL,
which extracts all samples.

returnDf return results in a dataframe. Default is FALSE.

Value

If returnDf=TRUE, then a dataframe of sector associated with each samplename, else a named list
of length two: x[["sectors"]] and x[["samplenames"]]

See Also

extractSeqs, extractFeature, addFeature

Examples

load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
samples <- c('Roth-MLV3p-CD4TMLVWell6-Tsp509I',
'Roth-MLV3p-CD4TMLVWell6-MseI', 'Roth-MLV3p-CD4TMLVwell5-MuA')
getSectorsForSamples(seqProps, samplename=samples)
getSectorsForSamples(seqProps, samplename=samples, returnDf=TRUE)

getSonicAbund Calculate breakpoint/sonic abundance of integration sites in a popu-
lation

Description

Given distinct fragment lengths per integration, the function calculates sonic abundance as described
in sonicLength. This function is called by clusterSites and needs all individual fragments
lengths per position to properly estimate the clonal abundance of an integration sites in a given
population.

getSonicAbund 29

Usage

getSonicAbund(
posID = NULL,
fragLen = NULL,
grouping = NULL,
replicateNum = NULL,
psl.rd = NULL,
parallel = TRUE

)

Arguments

posID a vector of discrete positions, i.e. Chr,strand,Position. Required if psl.rd param-
eter is not defined.

fragLen a vector of fragment length per posID. Required if psl.rd parameter is not de-
fined.

grouping additional vector of grouping of length posID or psl.rd by which to pool the rows
(i.e. samplenames). Default is NULL.

replicateNum an optional vector of the replicate number per grouping and posID. Default is
NULL.

psl.rd a GRanges object returned from getIntegrationSites Default is NULL.

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam. Process is split by the grouping the column.

Value

a data frame with estimated sonic abundance shown alongside with the original input. If psl.rd
parameter is defined then a GRanges object is returned with a new column ’estAbund’.

Note

For samples isolated using traditional restriction digest method, the abundance will be inaccurate
as it is designed for sonicated or sheared sample preparation method.

See Also

clusterSites, otuSites, findIntegrations, getIntegrationSites, pslToRangedObject

Examples

data("A1",package='sonicLength')
A1 <- droplevels(A1[1:1000,])
bore <- with(A1, getSonicAbund(locations, lengths, "A", replicates))
head(bore)

30 isuSites

hiReadsProcessor Functions to process LM-PCR reads from 454/Illumina data

Description

hiReadsProcessor contains set of functions which allow users to process LM-PCR products se-
quenced using any platform. Given an excel/txt file containing parameters for demultiplexing and
sample metadata, the functions automate trimming of adaptors and identification of the genomic
product. Genomic products are further processed for QC and abundance quantification.

Author(s)

Nirav V Malani

isuSites Bin values or make ISUs by assigning a unique ID to them within
discrete factors.

Description

Given a group of values or genomic positions per read/clone, the function tries to yield a unique ISU
(Integration Site Unit) ID for the collection based on overlap of locations to other reads/clones by
grouping. This is mainly useful when each read has many locations which needs to be considered
as one single group of sites.

Usage

isuSites(
posID = NULL,
value = NULL,
readID = NULL,
grouping = NULL,
psl.rd = NULL,
maxgap = 5,
parallel = TRUE

)

Arguments

posID a vector of groupings for the value parameter (i.e. Chr,strand). Required if psl.rd
parameter is not defined.

value a vector of integer locations/positions that needs to be binned, i.e. genomic
location. Required if psl.rd parameter is not defined.

readID a vector of read/clone names which is unique to each row, i.e. deflines.

grouping additional vector of grouping of length posID or psl.rd by which to pool the rows
(i.e. samplenames). Default is NULL.

psl.rd a GRanges object returned from clusterSites. Default is NULL.

otuSites 31

maxgap max distance allowed between two non-overlapping position to trigger the merg-
ing. Default is 5.

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam. Process is split by the grouping the column.

Value

a data frame with binned values and isuID shown alongside the original input. If psl.rd parameter is
defined, then a GRanges object where object is first filtered by clusterTopHit column and the isuID
column appended at the end.

Note

The algorithm for making isus of sites is as follows: for each readID check how many positions are
there. Separate readIDs with only position from the rest. Check if any readIDs with >1 position
match to any readIDs with only one position. If there is a match, then assign both readIDs with the
same ISU ID. Check if any positions from readIDs with >1 position match any other readIDs with
>1 position. If yes, then assign same ISU ID to all readIDs sharing 1 or more positions.

See Also

clusterSites, isuSites, crossOverCheck, findIntegrations, getIntegrationSites, pslToRangedObject

Examples

isuSites(posID = c('chr1-', 'chr1-', 'chr1-', 'chr2+', 'chr15-', 'chr16-', 'chr11-'),
value = c(rep(1000, 2), 5832, 1000, 12324, 65738, 928042),
readID = paste('read', sample(letters, 7), sep = '-'),
grouping = c('a', 'a', 'a', 'b', 'b', 'b', 'c'), parallel = FALSE)

otuSites Bin values or make OTUs by assigning a unique ID to them within
discrete factors.

Description

Given a group of values or genomic positions per read/clone, the function tries to yield a unique
OTU (operation taxinomical unit) ID for the collection based on overlap of locations to other
reads/clones by grouping. This is mainly useful when each read has many locations which needs to
be considered as one single group of sites.

Usage

otuSites(
posID = NULL,
value = NULL,
readID = NULL,
grouping = NULL,
psl.rd = NULL,
maxgap = 5,
parallel = TRUE

)

32 otuSites

Arguments

posID a vector of groupings for the value parameter (i.e. Chr,strand). Required if psl.rd
parameter is not defined.

value a vector of integer locations/positions that needs to be binned, i.e. genomic
location. Required if psl.rd parameter is not defined.

readID a vector of read/clone names which is unique to each row, i.e. deflines.

grouping additional vector of grouping of length posID or psl.rd by which to pool the rows
(i.e. samplenames). Default is NULL.

psl.rd a GRanges object returned from clusterSites. Default is NULL.

maxgap max distance allowed between two non-overlapping position to trigger the merg-
ing. Default is 5.

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam. Process is split by the grouping the column.

Value

a data frame with binned values and otuID shown alongside the original input. If psl.rd parameter
is defined, then a GRanges object.

Note

The algorithm for making OTUs of sites is as follows:

• for each grouping & posID, fix values off by maxgap parameter

• create bins of fixed values per readID

• assign arbitrary numeric ID to each distinct bins above & obtain its frequency

• perform overlap b/w readIDs with only one value (singletons) to readIDs with >1 value (non-
singletons)

• - for any overlapping values, tag non-singleton readID with the ID of singleton readID

• - if non-singleton readID matched with more than one singleton readID, then pick on at ran-
dom

• for any non-tagged & non-singleton readIDs, perform an overlap of values within themselves
using the maxgap parameter

• - tag any overlapping positions across any readID with the ID of most frequently occuring bin

• positions with no overlap are left as is with the original arbitrary ID

See Also

clusterSites, isuSites, crossOverCheck, findIntegrations, getIntegrationSites, pslToRangedObject

Examples

otuSites(posID = c('chr1-', 'chr1-', 'chr1-', 'chr2+', 'chr15-', 'chr16-', 'chr11-'),
value = c(1000, 1003, 5832, 1000, 12324, 65738, 928042),
readID = paste('read', sample(letters, 7), sep = '-'),
grouping = c('a', 'a', 'a', 'b', 'b', 'b', 'c'), parallel = FALSE)

pairUpAlignments 33

pairUpAlignments Pair up alignments in a GRanges object

Description

Given a GRanges object, the function uses specified gaplength parameter to pair up reads where the
qName column ends with "atpersand pairname atpersand" which is outputted by extractSeqs.

Usage

pairUpAlignments(
psl.rd = NULL,
maxGapLength = 2500,
sameStrand = TRUE,
parallel = TRUE

)

Arguments

psl.rd a GRanges object with qNames ending in "atpersand pairname atpersand".

maxGapLength maximum gap allowed between end of pair1 and start of pair2. Default is 2500
bp.

sameStrand should pairs be aligned to the same strand or in same orientationin the reference
genome? Default is TRUE. This is ’TRUE’ because pair2 reads are reverseC-
omplemented when reading in data in findBarcodes

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam.

Value

a GRanges object with reads paired up denoted by "paired" column. Improper pairs or unpaired
reads are returned with "paired" column as FALSE.

See Also

pairwiseAlignSeqs, blatSeqs, read.blast8, read.psl, getIntegrationSites, read.BAMasPSL

Examples

Not run:
psl.rd <- read.BAMasPSL(bamFile=c("sample1hits.bam","sample2hits.bam"))
pairUpAlignments(psl.rd)

End(Not run)

34 pairwiseAlignSeqs

pairwiseAlignSeqs Align a short pattern to variable length target sequences.

Description

Align a fixed length short pattern sequence (i.e. primers or adaptors) to subject sequences using
pairwiseAlignment. This function uses default of type="overlap", gapOpening=-1, and gapExtension=-
1 to align the patternSeq against subjectSeqs. One can adjust these parameters if prefered, but not
recommended. This function is meant for aligning a short pattern onto large collection of sub-
jects. If you are looking to align a vector sequence to subjects, then please use BLAT or see one of
following blatSeqs, findAndRemoveVector

Usage

pairwiseAlignSeqs(
subjectSeqs = NULL,
patternSeq = NULL,
side = "left",
qualityThreshold = 1,
showStats = FALSE,
bufferBases = 5,
doRC = TRUE,
returnUnmatched = FALSE,
returnLowScored = FALSE,
parallel = FALSE,
...

)

Arguments

subjectSeqs DNAStringSet object containing sequences to be searched for the pattern. This
is generally bigger than patternSeq, and cases where subjectSeqs is smaller than
patternSeq will be ignored in the alignment.

patternSeq DNAString object or a sequence containing the query sequence to search. This
is generally smaller than subjectSeqs.

side which side of the sequence to perform the search: left, right or middle. Default
is ’left’.

qualityThreshold

percent of patternSeq to match. Default is 1, full match.

showStats toggle output of search statistics. Default is FALSE.

bufferBases use x number of bases in addition to patternSeq length to perform the search.
Beneficial in cases where the pattern has homopolymers or indels compared to
the subject. Default is 5. Doesn’t apply when side=’middle’.

doRC perform reverse complement search of the defined pattern. Default is TRUE.
returnUnmatched

return sequences which had no or less than 5% match to the patternSeq. Default
is FALSE.

returnLowScored

return sequences which had quality score less than the defined qualityThreshold.
Default is FALSE.

primerIDAlignSeqs 35

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
FALSE. If no parallel backend is registered, then a serial version is ran using
SerialParam.

... extra parameters for pairwiseAlignment

Value

• IRanges object with starts, stops, and names of the aligned sequences.

• If returnLowScored or returnUnmatched = T, then a CompressedIRangesList where x[["hits"]]
has the good scoring hits, x[["Rejected"]] has the failed to match qualityThreshold hits, and
x[["Absent"]] has the hits where the aligned bit is <=10% match to the patternSeq.

Note

• For qualityThreshold, the alignment score is calculated by (matches*2)-(mismatches+gaps)
which programatically translates to round(nchar(patternSeq)*qualityThreshold)*2.

• Gaps and mismatches are weighed equally with value of -1 which can be overriden by defining
extra parameters ’gapOpening’ & ’gapExtension’.

• If qualityThreshold is 1, then it is a full match, if 0, then any match is accepted which is useful
in searching linker sequences at 3’ end. Beware, this function only searches for the pattern
sequence in one orientation. If you are expecting to find the pattern in both orientation, you
might be better off using BLAST/BLAT!

• If parallel=TRUE, then be sure to have a parallel backend registered before running the func-
tion. One can use any of the following MulticoreParam SnowParam

See Also

primerIDAlignSeqs, vpairwiseAlignSeqs, doRCtest, findAndTrimSeq, blatSeqs, findAndRemoveVector

Examples

subjectSeqs <- c("CCTGAATCCTGGCAATGTCATCATC", "ATCCTGGCAATGTCATCATCAATGG",
"ATCAGTTGTCAACGGCTAATACGCG", "ATCAATGGCGATTGCCGCGTCTGCA",
"CCGCGTCTGCAATGTGAGGGCCTAA", "GAAGGATGCCAGTTGAAGTTCACAC")
subjectSeqs <- DNAStringSet(xscat("AAAAAAAAAA", subjectSeqs))
pairwiseAlignSeqs(subjectSeqs, "AAAAAAAAAA", showStats=TRUE)
pairwiseAlignSeqs(subjectSeqs, "AAATAATAAA", showStats=TRUE,
qualityThreshold=0.5)

primerIDAlignSeqs Align a short pattern with PrimerID to variable length target se-
quences.

36 primerIDAlignSeqs

Description

Align a fixed length short pattern sequence containing primerID to variable length subject se-
quences using pairwiseAlignment. This function uses default of type="overlap", gapOpening=-
1, and gapExtension=-1 to align the patterSeq against subjectSeqs. The search is broken up into
as many pieces +1 as there are primerID and then compared against subjectSeqs. For example,
patternSeq="AGCATCAGCANNNNNNNNNACGATCTACGCC" will launch two search jobs one
per either side of Ns. For each search, qualityThreshold is used to filter out candidate alignments
and the area in between is chosen to be the primerID. This strategy is benefical because of Indels
introduced through homopolymer errors. Most likely the length of primerID(s) wont the same as
you expected!

Usage

primerIDAlignSeqs(
subjectSeqs = NULL,
patternSeq = NULL,
qualityThreshold1 = 0.75,
qualityThreshold2 = 0.5,
doAnchored = FALSE,
doRC = TRUE,
returnUnmatched = FALSE,
returnRejected = FALSE,
showStats = FALSE,
...

)

Arguments

subjectSeqs DNAStringSet object containing sequences to be searched for the pattern.

patternSeq DNAString object or a sequence containing the query sequence to search with
the primerID.

qualityThreshold1

percent of first part of patternSeq to match. Default is 0.75.
qualityThreshold2

percent of second part of patternSeq to match. Default is 0.50.

doAnchored for primerID based patternSeq, use the base before and after primer ID in pat-
ternSeq as anchors?. Default is FALSE.

doRC perform reverse complement search of the defined pattern. Default is TRUE.
returnUnmatched

return sequences if it had no or less than 5% match to the first part of patternSeq
before the primerID. Default is FALSE.

returnRejected return sequences if it only has a match to one side of patternSeq or primerID
length does not match # of Ns +/-2 in the pattern. Default is FALSE.

showStats toggle output of search statistics. Default is FALSE.

... extra parameters for pairwiseAlignment

Value

• A CompressedIRangesList of length two, where x[["hits"]] is hits covering the entire pat-
ternSeq, and x[["primerIDs"]] is the potential primerID region.

psl 37

• If returnUnmatched = T, then x[["Absent"]] is appended which includes reads not matching
the first part of patternSeq.

• If returnRejected=TRUE, then x[["Rejected"]] includes reads that only matched one part of
patternSeq or places where no primerID was found in between two part of patternSeq, and
x[["RejectedprimerIDs"]] includes primerIDs that didn’t match the correct length.

• If doAnchored=TRUE, then x[["unAnchoredprimerIDs"]] includes reads that didn’t match the
base before and after primer ID on patternSeq.

Note

• For qualityThreshold1 & qualityThreshold2, the alignment score is calculated by (matches*2)-
(mismatches+gaps) which programatically translates to round(nchar(patternSeq)*qualityThreshold)*2

• Gaps and mismatches are weighed equally with value of -1 which can be overriden by defining
extra parameters ’gapOpening’ & ’gapExtension’.

• If qualityThreshold is 1, then it is a full match, if 0, then any match is accepted which is useful
in searching linker sequences at 3’ end. Beware, this function only searches for the pattern
sequence in one orientation. If you are expecting to find the pattern in both orientation, you
might be better off using BLAST/BLAT!

See Also

vpairwiseAlignSeqs, pairwiseAlignSeqs, doRCtest, blatSeqs, findAndRemoveVector

Examples

subjectSeqs <- c("CCTGAATCCTGGCAATGTCATCATC", "ATCCTGGCAATGTCATCATCAATGG",
"ATCAGTTGTCAACGGCTAATACGCG", "ATCAATGGCGATTGCCGCGTCTGCA",
"CCGCGTCTGCAATGTGAGGGCCTAA", "GAAGGATGCCAGTTGAAGTTCACAC")
ids <- c("GGTTCTACGT", "AGGAGTATGA", "TGTCGGTATA", "GTTATAAAAC",
"AGGCTATATC", "ATGGTTTGTT")
subjectSeqs <- xscat(subjectSeqs, xscat("AAGCGGAGCCC",ids,"TTTTTTTTTTT"))
patternSeq <- "AAGCGGAGCCCNNNNNNNNNNTTTTTTTTTTT"
primerIDAlignSeqs(DNAStringSet(subjectSeqs), patternSeq, doAnchored = TRUE)

psl PSL file output

Description

Sample BLAT PSL file output from samples included Integration Sites Sequencing Data seqProps

Format

a data frame of 1000 rows and 21 columns

38 pslToRangedObject

pslCols Return PSL file columns with classes

Description

Print out required fields & classes of PSL file format

Usage

pslCols(withClass = TRUE)

Arguments

withClass return classes for each column.

Value

vector of PSL column names

See Also

pairwiseAlignSeqs, vpairwiseAlignSeqs, startgfServer, blatSeqs, read.blast8, read.BAMasPSL,
pslToRangedObject

Examples

pslCols()

pslToRangedObject Convert psl dataframe to GRanges

Description

Convert psl dataframe to GRanges object using either the query or target as the reference data
column.

Usage

pslToRangedObject(x, useTargetAsRef = TRUE, isblast8 = FALSE)

Arguments

x dataframe reflecting psl format

useTargetAsRef use target(tName) or query(qName) as the chromosome or the reference data.
Default is TRUE.

isblast8 the input dataframe blast8 format output from BLAT. Default is FALSE.

Value

a GRanges object reflecting psl file type.

read.BAMasPSL 39

See Also

read.psl, read.blast8, blatListedSet

Examples

data(psl)
psl <- head(psl)
pslToRangedObject(psl)
pslToRangedObject(psl, useTargetAsRef = FALSE)

read.BAMasPSL Reads a BAM/SAM file and converts it into a PSL like format.

Description

Given filename(s), the function reads the BAM/SAM file, converts into a PSL like format. Any
other file format will yield errors or erroneous results. This is intended to be used independently
with other short read aligners.

Usage

read.BAMasPSL(bamFile = NULL, removeFile = TRUE, asGRanges = TRUE)

Arguments

bamFile BAM/SAM filename, or vector of filenames, or a pattern of files to import.

removeFile remove the file(s) supplied in bamFile paramter after importing. Default is
FALSE.

asGRanges return a GRanges object. Default is TRUE

Value

a GRanges or GAlignments object reflecting psl file type.

See Also

pairwiseAlignSeqs, blatSeqs, read.blast8, read.psl, pslToRangedObject, pairUpAlignments

Examples

Not run:
read.BAMasPSL(bamFile="processed.*.bam$")
read.BAMasPSL(bamFile=c("sample1hits.bam","sample2hits.bam"))

End(Not run)

40 read.blast8

read.blast8 Read blast8 file(s) outputted by BLAT

Description

Given filename(s), the function reads the blast8 file format from BLAT as a data frame and performs
basic score filtering if indicated. Any other file format will yield errors or erroneous results.

Usage

read.blast8(
files = NULL,
asGRanges = FALSE,
removeFile = TRUE,
parallel = FALSE

)

Arguments

files blast8 filename, or vector of filenames, or a pattern of files to import.

asGRanges return a GRanges object instead of a dataframe. Default is TRUE Saves mem-
ory!

removeFile remove the blast8 file(s) after importing. Default is FALSE.

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam.

Value

a dataframe or GRanges object reflecting blast8 file type.

Note

If parallel=TRUE, then be sure to have a parallel backend registered before running the function.
One can use any of the following MulticoreParam SnowParam

See Also

pairwiseAlignSeqs, vpairwiseAlignSeqs, startgfServer, blatSeqs, read.psl

Examples

this function works similar to read.psl
#read.blast8(files="processed.*.blast8$")
#read.blast8(files=c("sample1hits.blast8","sample2hits.blast8"))

read.psl 41

read.psl Read PSL file(s) outputted by BLAT

Description

Given filename(s), the function reads the PSL file format from BLAT as a data frame and performs
basic score filtering if indicated. Any other file format will yield errors or erroneous results. Make
sure there is no header row! See required columns in pslCols.

Usage

read.psl(
pslFile = NULL,
bestScoring = TRUE,
asGRanges = FALSE,
removeFile = TRUE,
parallel = FALSE

)

Arguments

pslFile PSL filename, or vector of filenames, or a pattern of files to import.

bestScoring report only best scoring hits instead of all hits. Default is TRUE. Score is calcu-
lated by matches-misMatches-qBaseInsert-tBaseInsert.

asGRanges return a GRanges object instead of a dataframe. Default is FALSE

removeFile remove the PSL file(s) after importing. Default is FALSE.

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam.

Value

a dataframe reflecting psl file type. If asGRanges=TRUE, then a GRanges object.

Note

If parallel=TRUE, then be sure to have a parallel backend registered before running the function.
One can use any of the following MulticoreParam SnowParam

See Also

pairwiseAlignSeqs, vpairwiseAlignSeqs, startgfServer, blatSeqs, read.blast8, read.BAMasPSL,
pslToRangedObject, write.psl

Examples

Not run:
data(psl)
pslFile <- tempfile()
write.psl(psl, filename = pslFile)
head(read.psl(pslFile = pslFile))

42 read.sampleInfo

read many PSL files matching the regex
psl <- read.psl(pslFile = "processed.*.psl$")

End(Not run)

read.sampleInfo Read a sample information file and format appropriate metadata.

Description

Given a sample information file, the function checks if it includes required information to process
samples present on each sector/quadrant/region/lane. The function also adds other columns required
for processing with default values if not already defined ahead of time.

Usage

read.sampleInfo(sampleInfoPath = NULL, splitBySector = TRUE)

Arguments

sampleInfoPath full or relative path to the sample information file, which holds samples to quad-
rant/lane associations along with other metadata required to trim sequences or
process it.

splitBySector split the data frame into a list by sector column. Default is TRUE.

Details

• Required Column Description:

– sector => region/quadrant/lane of the sequencing plate the sample comes from. If files
have been split by samples apriori, then the filename associated per sample without the
extension. If this is a filename, then be sure to enable ’alreadyDecoded’ parameter in
findBarcodes, since contents of this column is pasted together with ’seqfilePattern’ pa-
rameter in read.SeqFolder to find the appropriate file needed. For paired end data, this
is basename of the FASTA/Q file holding the sample data from the LTR side. For ex-
ample, files such as Lib3_L001_R2_001.fastq.gz or Lib3_L001_R2_001.fastq would be
Lib3_L001_R2_001, and consequently Lib3_L001_R1_001 would be used as the second
pair!

– barcode => unique 4-12bp DNA sequence which identifies the sample. If providing file-
name as sector, then leave this blank since it is assumed that the data is already demulti-
plexed.

– primerltrsequence => DNA sequence of the viral LTR primer with/without the viral LTR
sequence following the primer landing site. If already trimmed, then mark this as SKIP.

– sampleName => Name of the sample associated with the barcode
– sampleDescription => Detailed description of the sample
– gender => sex of the sample: male or female or NA
– species => species of the sample: homo sapien, mus musculus, etc.
– freeze => UCSC freeze to which the sample should be aligned to.
– linkerSequence => DNA sequence of the linker adaptor following the genomic sequence.

If already trimmed, then mark this as SKIP.

read.sampleInfo 43

– restrictionEnzyme => Restriction enzyme used for digestion and sample recovery. Can
also be one of: Fragmentase or Sonication!

• Metadata Parameter Column Description:

– ltrBitSequence => DNA sequence of the viral LTR following the primer landing site.
Default is last 7bps of the primerltrsequence.

– ltrBitIdentity => percent of LTR bit sequence to match during the alignment. Default is
1.

– primerLTRidentity => percent of primer to match during the alignment. Default is .85
– linkerIdentity => percent of linker sequence to match during the alignment. Default is

0.55. Only applies to non-primerID/random tag based linker search.
– primerIdInLinker => whether the linker adaptor used has primerID/random tag in it?

Default is FALSE.
– primerIdInLinkerIdentity1 => percent of sequence to match before the random tag. De-

fault is 0.75. Only applies to primerID/random tag based linker search and when primeridin-
linker is TRUE.

– primerIdInLinkerIdentity2 => percent of sequence to match after the random tag. Default
is 0.50. Only applies to primerID/random tag based linker search and when primeridin-
linker is TRUE.

– celltype => celltype information associated with the sample
– user => name of the user who prepared or processed the sample
– pairedEnd => is the data paired end? Default is FALSE.
– vectorFile => fasta file containing the vector sequence

• Processing Parameter Column Description:

– startWithin => upper bound limit of where the alignment should start within the query.
Default is 3.

– alignRatioThreshold => cuttoff for (alignment span/read length). Default is 0.7.
– genomicPercentIdentity => cuttoff for (1-(misMatches/matches)). Default is 0.98.
– clusterSitesWithin => cluster integration sites within a defined window size based on

frequency which corrects for any sequencing errors. Default is 5.
– keepMultiHits => whether to keep sequences/reads that return multiple best hits, aka

ambiguous locations.
– processingDate => the date of processing

Value

if splitBySector=TRUE, then an object of SimpleList named by quadrant/lane information defined
in sampleInfo file, else a dataframe.

See Also

read.SeqFolder, findBarcodes, splitByBarcode

Examples

runData <- system.file(file.path("extdata", "FLX_sample_run"),
package = "hiReadsProcessor")
read.sampleInfo(file.path(runData, "sampleInfo.xlsx"))

44 read.SeqFolder

read.SeqFolder Read contents of a sequencing folder and make a SimpleList object

Description

Given a sequencing folder path, sample information file path, and sequence file extension pat-
tern, the function returns a list of variables required to process the data. The function also calls
read.sampleInfo which reads in sample processing metadata and formats it if needed.

Usage

read.SeqFolder(
sequencingFolderPath = NULL,
sampleInfoFilePath = NULL,
seqfilePattern = NULL

)

Arguments

sequencingFolderPath

full or relative path to the sequencing folder
sampleInfoFilePath

full or relative path to the sample information file, which holds samples to quad-
rant/lane associations along with other metadata required to trim sequences or
process it. Default to NULL, where the function tries to find xls/xlsx or tab de-
liminated txt file in the sequencing folder which sounds similar to ’sampleinfo’
and present you with choices of file to select from.

seqfilePattern regex/string to describe sequence file endings. See examples. Default is NULL.

Value

a SimpleList list which is used by other functions to process and decode the data.

Note

• One must make sure that each sequencing file has sector name/number prefixed at the begin-
ning, else findBarcodes will fail trying to find the filename.

• For paired end Illumina runs, make sure the filenames include R1, R2, and I1 somewhere in
the name denoting pair1, pair2, and index/barcode reads, respectively.

See Also

read.sampleInfo, findBarcodes, splitByBarcode

Examples

runData <- system.file("extdata/FLX_sample_run/",
package = "hiReadsProcessor")
read.SeqFolder(runData, seqfilePattern=".+fna.gz$")
Not run:
read.SeqFolder(".", seqfilePattern = "\\.TCA.454Reads.fna$")

read.seqsFromSector 45

read.SeqFolder(".", seqfilePattern = ".+fastq$")

End(Not run)

read.seqsFromSector Read fasta/fastq given the path or sampleInfo object.

Description

Given a sequence reads file path, the function returns a DNAStringSet object.

Usage

read.seqsFromSector(seqFilePath = NULL, sector = 1, isPaired = FALSE)

Arguments

seqFilePath a path to fasta/fastq reads file or a sampleInfo object returned by read.SeqFolder

sector specific sector to reads sequences from. Default is 1, and not required if seq-
FilePath is a direct file path rather than sampleInfo object.

isPaired does the sector contain paired end reads? Default is FALSE

Value

if isPaired is FALSE, then a DNAStringSet object, else a list of DNAStringSet objects of three
elements corresponding to reads from "barcode", "pair1", and "pair2". Note: "pair2" is reverse
complemented!

See Also

findBarcodes, read.SeqFolder, extractSeqs

Examples

Not run:
load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
read.seqsFromSector(seqProps, sector="2")

End(Not run)

46 replicateReads

removeReadsWithNs Remove sequences with ambiguous nucleotides.

Description

Given a DNAStringSet object, the function removes any reads that has either repeating or total Ns
which is greater than to maxNs threshold

Usage

removeReadsWithNs(dnaSet, maxNs = 5, consecutive = TRUE)

Arguments

dnaSet DNAStringSet object to evaluate.

maxNs integer value denoting the threshold of maximum allowed Ns. Default is 5.

consecutive boolean flag denoting whether Ns to filter is consecutive or total . Default is
TRUE.

Value

DNAStringSet object.

See Also

dereplicateReads, replicateReads, findBarcodes, splitByBarcode

Examples

dnaSet <- c("CCTGAATCCTNNCAATGTCATCATC", "ATCCTGGCNATGTCATCATCAATGG",
"ATCAGTTGTCAACGGCTAATACGCG", "ATCAATGGCGATTGCCGCGTCTGCA",
"CCGNNTCTGCAATGTGNGGNCCTAN", "GAAGNNNNNNGTTGAAGTTCACAC")
removeReadsWithNs(dnaSet)
removeReadsWithNs(dnaSet, maxNs = 4, consecutive = FALSE)

replicateReads Replicate sequences from DNAStringSet object using counts identifier
or vector

Description

Given a DNAStringSet object, the function replicates reads using counts=X marker at the end of
definition line.

Usage

replicateReads(dnaSet, counts = NULL)

sampleSummary 47

Arguments

dnaSet DNAStringSet object to replicate.

counts an integer or a numeric vector of length length(dnaSet) indicating how many
times to repeat each sequence. Default is NULL, in which it uses counts=X
notation from the definition line to replicate reads.

Value

DNAStringSet object.

See Also

dereplicateReads, removeReadsWithNs, findBarcodes, splitByBarcode

Examples

dnaSet <- c("CCTGAATCCTGGCAATGTCATCATC", "ATCCTGGCAATGTCATCATCAATGG",
"ATCAGTTGTCAACGGCTAATACGCG", "ATCAATGGCGATTGCCGCGTCTGCA",
"CCGCGTCTGCAATGTGAGGGCCTAA", "GAAGGATGCCAGTTGAAGTTCACAC",
"CCTGAATCCTGGCAATGTCATCATC", "ATCCTGGCAATGTCATCATCAATGG",
"ATCAGTTGTCAACGGCTAATACGCG", "ATCAATGGCGATTGCCGCGTCTGCA",
"CCGCGTCTGCAATGTGAGGGCCTAA", "GAAGGATGCCAGTTGAAGTTCACAC")
dnaSet <- dereplicateReads(dnaSet)
replicateReads(dnaSet)

sampleSummary Simple summary of a sampleInfo object.

Description

Give a simple summary of major attributes in sampleInfo/SimpleList object.

Usage

sampleSummary(object, ...)

Arguments

object sample information SimpleList object, which samples per sector/quadrant infor-
mation along with other metadata.

... ignored for now.

Value

a dataframe summarizing counts of major attributes per sample and sector.

Examples

data(FLX_seqProps)
sampleSummary(seqProps)

48 splitByBarcode

seqProps Sample Integration Sites Sequencing Data

Description

This is a processed data object containing raw sequences and respective alignments to UCSC freeze
hg18 from 112 integration site samples. The object is of SimpleList class and follows a certain
structural hierarchy explained by the Introductory vignette.

Format

A SimpleList object

splitByBarcode Split DNAStringSet object using first X number of bases defined by a
vector.

Description

Given a character vector of barcodes/MID to sample association and a DNAStringSet object, the
function splits/demultiplexes the DNAStringSet object by first few bases dictated by length of bar-
codes/MID supplied. This is an accessory function used by findBarcodes

Usage

splitByBarcode(
barcodesSample,
dnaSet,
trimFrom = NULL,
showStats = FALSE,
returnUnmatched = FALSE

)

Arguments

barcodesSample a character vector of barcodes to sample name associations. Ex: c("ACATCCAT"="Sample1",
"GAATGGAT"="Sample2",...)

dnaSet DNAStringSet object to evaluate.

trimFrom integer value serving as start point to trim the sequences from. This is calculated
internally length barcode+1. Default is NULL.

showStats boolean flag denoting whether to show decoding statistics per sample & barcode.
Default is FALSE.

returnUnmatched

boolean flag denoting whether to return unmatched reads. Default is FALSE.

Value

DNAStringSet object split by sample name found in barcodesSample.

splitSeqsToFiles 49

See Also

findBarcodes, dereplicateReads, replicateReads

Examples

dnaSet <- DNAStringSet(c("read1" = "ACATCCATAGAGCTACGACGACATCGACATA",
"read2"="GAATGGATGACGACTACAGCACGACGAGCAGCTACT",
"read3"="GAATGGATGCGCTAAGAAGAGA", "read4"="ACATCCATTCTACACATCT"))
splitByBarcode(c("ACATCCAT" = "Sample1", "GAATGGAT" = "Sample2"), dnaSet,
showStats=TRUE)

splitSeqsToFiles Split DNA sequences into smaller files.

Description

Given a vector of sequences or DNAStringSet or a FASTA filename, the function splits it into
smaller pieces as denoted by totalFiles parameter.

Usage

splitSeqsToFiles(
x,
totalFiles = 4,
suffix = "tempy",
filename = "queryFile.fa",
outDir = getwd()

)

Arguments

x a DNAStringSet object, or a FASTA filename.

totalFiles an integer indicating how many files to create. Default is 4.

suffix a word to add to each file created. Default is "tempy".

filename name of the file if x is a DNAStringSet object. Default is "queryFile.fa".

outDir directory to write the output file. Default is current directory.

Value

a vector of filename names created.

See Also

blatSeqs

Examples

seqs <- DNAStringSet(sapply(sample(c(100:1000), 500),
function(size) paste(sample(DNA_BASES, size, replace = TRUE), collapse = "")))
splitSeqsToFiles(seqs, 5, "tempyQ", "myDNAseqs.fa", tempdir())

50 startgfServer

startgfServer Start/Stop a gfServer instance

Description

Start or Stop a gfServer with indexed reference genome to align batch of sequences using BLAT
gfServer/gfClient protocol.

Usage

startgfServer(
seqDir = NULL,
host = "localhost",
port = 5560,
gfServerOpts = c(repMatch = 112312, stepSize = 5, tileSize = 10, maxDnaHits = 10)

)

stopgfServer(host = "localhost", port = NULL)

Arguments

seqDir absolute or relative path to the genome index (nib/2bit files).

host name of the machine to run gfServer on. Default: localhost

port a port number to host the gfServer with. Default is 5560.

gfServerOpts a character vector of options to be passed to gfServer command on top of server
defaults. Default: c(repMatch=112312, stepSize=5, tileSize=10, maxDnaHits=10).
Set this to NULL to start gfServer with defaults.

Value

system command status for executing gfServer command.

See Also

stopgfServer, read.psl, blatSeqs, read.blast8

Examples

#startgfServer(seqDir="/usr/local/blatSuite34/hg18.2bit",port=5560)
#stopgfServer(port=5560)

trimSeqs 51

trimSeqs Trim sequences from a specific side.

Description

This function trims a DNAStringSet object using the ranges from left, right, or middle of the se-
quence. This is a helper function utilized in primerIDAlignSeqs and extractSeqs. If dnaSet
and coords are not the same length, then they are required to have a names attribute to perform the
matched trimming.

Usage

trimSeqs(dnaSet, coords, side = "middle", offBy = 0)

Arguments

dnaSet DNAStringSet object containing sequences to be trimmed.

coords IRanges object containing boundaries.

side either ’left’,’right’,or the Default ’middle’.

offBy integer value dictating if the supplied coordinates should be offset by X number
of bases. Default is 0.

Value

a DNAStringSet object with trimmed sequences.

Note

If side is left, then any sequence following end of coords+offBy is returned. If side is right, then
sequence preceding start of coords-offBy is returned. If side is middle, then sequence contained in
coords is returned where offBy is added to start and subtracted from end in coords.

See Also

extractSeqs, primerIDAlignSeqs

Examples

dnaSet <- DNAStringSet(c("AAAAAAAAAACCTGAATCCTGGCAATGTCATCATC",
"AAAAAAAAAAATCCTGGCAATGTCATCATCAATGG", "AAAAAAAAAAATCAGTTGTCAACGGCTAATACGCG",
"AAAAAAAAAAATCAATGGCGATTGCCGCGTCTGCA", "AAAAAAAAAACCGCGTCTGCAATGTGAGGGCCTAA",
"AAAAAAAAAAGAAGGATGCCAGTTGAAGTTCACAC"))
coords <- IRanges(start=1, width=rep(10,6))
trimSeqs(dnaSet, coords, side="left", offBy=1)
trimSeqs(dnaSet, coords, side="middle")

52 troubleshootLinkers

troubleshootLinkers Compare LTRed/Primed sequences to all linkers.

Description

Given a SampleInfo object, the function compares LTRed sequences from each sample per sector to
all the linker sequences present in the run. The output is a summary table of counts of good matches
to all the linkers per sample.

Usage

troubleshootLinkers(
sampleInfo,
qualityThreshold = 0.55,
qualityThreshold1 = 0.75,
qualityThreshold2 = 0.5,
doRC = TRUE,
parallel = TRUE,
samplenames = NULL,
...

)

Arguments

sampleInfo sample information SimpleList object outputted from findPrimers or findLTRs,
which holds decoded sequences for samples per sector/quadrant along with in-
formation of sample to primer associations.

qualityThreshold

percent of linker length to match, round(nchar(linker)*qualityThreshold). De-
fault is 0.55. Only applies to non-primerID based linkers

qualityThreshold1

percent of first part of patternSeq to match. Default is 0.75. Only applies to
primerID based linker search.

qualityThreshold2

percent of second part of patternSeq to match. Default is 0.50. Only applies to
primerID based linker search.

doRC perform reverse complement search of the linker sequence. Default is TRUE.
Highly recommended!

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam. Parllelization is done at sample level per sector.

samplenames a vector of samplenames to process. Default is NULL, which processes all sam-
ples from sampleInfo object.

... extra parameters to be passed to pairwiseAlignment.

Value

a dataframe of counts.

vpairwiseAlignSeqs 53

Note

If parallel=TRUE, then be sure to have a parallel backend registered before running the function.
One can use any of the following MulticoreParam SnowParam

See Also

pairwiseAlignSeqs, vpairwiseAlignSeqs, primerIDAlignSeqs, findLTRs, findPrimers, findAndTrimSeq

vpairwiseAlignSeqs Align a short pattern to variable length target sequences.

Description

Align a fixed length short pattern sequence to subject sequences using vmatchPattern. This func-
tion is meant for aligning a short pattern onto large collection of subjects. If you are looking to align
a vector sequence to subjects, then please use BLAT.

Usage

vpairwiseAlignSeqs(
subjectSeqs = NULL,
patternSeq = NULL,
side = "left",
qualityThreshold = 1,
showStats = FALSE,
bufferBases = 5,
doRC = TRUE,
parallel = FALSE,
...

)

Arguments

subjectSeqs DNAStringSet object containing sequences to be searched for the pattern. This
is generally bigger than patternSeq, and cases where subjectSeqs is smaller than
patternSeq will be ignored in the alignment.

patternSeq DNAString object or a sequence containing the query sequence to search. This
is generally smaller than subjectSeqs.

side which side of the sequence to perform the search: left, right, or middle. Default
is ’left’.

qualityThreshold

percent of patternSeq to match. Default is 1, full match. This is supplied
to max.mismatch parameter of vmatchPattern as round(nchar(patternSeq)*(1-
qualityThreshold)).

showStats toggle output of search statistics. Default is FALSE.

bufferBases use x number of bases in addition to patternSeq length to perform the search.
Beneficial in cases where the pattern has homopolymers or indels compared to
the subject. Default is 5. Doesn’t apply when side=’middle’.

doRC perform reverse complement search of the defined pattern. Default is TRUE.

54 write.listedDNAStringSet

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
FALSE. If no parallel backend is registered, then a serial version is ran using
SerialParam.

... extra parameters for vmatchPattern except for ’max.mismatch’ since it’s cal-
culated internally using the ’qualityThreshold’ parameter.

Value

IRanges object with starts, stops, and names of the aligned sequences.

Note

• For qualityThreshold, the alignment score is calculated by (matches*2)-(mismatches+gaps)
which programatically translates to round(nchar(patternSeq)*qualityThreshold)*2.

• No indels are allowed in the function, if expecting indels then use pairwiseAlignSeqs.

• If qualityThreshold is 1, then it is a full match, if 0, then any match is accepted which is useful
in searching linker sequences at 3’ end. Beware, this function only searches for the pattern
sequence in one orientation. If you are expecting to find the pattern in both orientation, you
might be better off using BLAST/BLAT!

• If parallel=TRUE, then be sure to have a parallel backend registered before running the func-
tion. One can use any of the following MulticoreParam SnowParam

See Also

pairwiseAlignSeqs, primerIDAlignSeqs, doRCtest, findAndTrimSeq, blatSeqs, findAndRemoveVector

Examples

subjectSeqs <- c("CCTGAATCCTGGCAATGTCATCATC", "ATCCTGGCAATGTCATCATCAATGG",
"ATCAGTTGTCAACGGCTAATACGCG", "ATCAATGGCGATTGCCGCGTCTGCA",
"CCGCGTCTGCAATGTGAGGGCCTAA", "GAAGGATGCCAGTTGAAGTTCACAC")
subjectSeqs <- DNAStringSet(xscat("AAAAAAAAAA", subjectSeqs))
vpairwiseAlignSeqs(subjectSeqs, "AAAAAAAAAA", showStats=TRUE)
vpairwiseAlignSeqs(subjectSeqs, "AAAAAAAAAA", showStats=TRUE,
qualityThreshold=0.5)

write.listedDNAStringSet

Write a fasta file per sample in parallel

Description

Given a listed DNAStringSet object return from extractSeqs, the function writes a fasta file for
each sample as defined in filePath parameter.

write.listedDNAStringSet 55

Usage

write.listedDNAStringSet(
dnaSet,
filePath = ".",
filePrefix = "processed",
prependSamplenames = TRUE,
format = "fasta",
parallel = FALSE

)

Arguments

dnaSet listed DNAStringSet object containing sequences to be written.

filePath a path write the fasta files per sample. Default is current working directory.

filePrefix prefix the filenames with a string. Default is ’processed’ followed by sample-
name.

prependSamplenames

Prepend definition lines with samplenames. Default is TRUE. Make sure the
dnaSet parameter is a named list where names are used as samplenames.

format either fasta (the default) or fastq.

parallel use parallel backend to perform calculation with BiocParallel. Defaults to
TRUE. If no parallel backend is registered, then a serial version is ran using
SerialParam.

Note

• Writing of the files is done using writeXStringSet with parameter append=TRUE. This is to
aggregate reads from a sample which might be present in more than one sector.

• If data is paired end, then each pair will be written separately with designations in the filename
as well as in the definition line as (at)pairX(at) appended at the end.

• If parallel=TRUE, then be sure to have a parallel backend registered before running the func-
tion. One can use any of the following MulticoreParam SnowParam

See Also

findBarcodes, read.SeqFolder, extractSeqs, addListNameToReads

Examples

Not run:
load(file.path(system.file("data", package = "hiReadsProcessor"),
"FLX_seqProps.RData"))
samples <- c('Roth-MLV3p-CD4TMLVWell6-Tsp509I',
'Roth-MLV3p-CD4TMLVWell6-MseI', 'Roth-MLV3p-CD4TMLVwell5-MuA')
seqs <- extractSeqs(seqProps, sector='2', samplename=samples, feature="primed")
write.listedDNAStringSet(seqs)

End(Not run)

56 write.psl

write.psl Write PSL file from dataframe or GRanges

Description

Given a data frame or GRanges object, the function write a tab deliminated PSL file

Usage

write.psl(x, filename = "out.psl", header = FALSE, includeOtherCols = FALSE)

Arguments

x data frame or GRanges object with required columns for psl file format.

filename name for the output PSL file. Default is "out.psl"

header include PSL header line. Default is FALSE.
includeOtherCols

nclude other non PSL specific columns from x in the output. Default is FALSE.

Value

name of the output PSL file

See Also

read.psl, blatSeqs, read.blast8, read.BAMasPSL, pslToRangedObject

Examples

data(psl)
pslFile <- tempfile()
write.psl(psl, filename = pslFile)

Index

∗ datasets
psl, 37
seqProps, 48

addFeature, 3, 13, 28
addListNameToReads, 4, 55
annotateSites, 4, 20

BiocParallel, 7, 9, 12, 16, 20, 21, 23, 26, 29,
31–33, 35, 40, 41, 52, 54, 55

blatListedSet, 6, 20, 27, 39
blatSeqs, 6, 6, 16, 17, 19, 20, 25–27, 33–35,

37–41, 49, 50, 54, 56

chunkize, 8
clusterSites, 5, 9, 11, 19, 20, 27–32
crossOverCheck, 5, 10, 10, 20, 27, 31, 32

decodeByBarcode (findBarcodes), 17
dereplicateReads, 11, 18, 46, 47, 49
doAnnotation, 5
doRCtest, 12, 35, 37, 54

extractFeature, 3, 4, 13, 15, 17, 22, 23, 25,
26, 28

extractSeqs, 3, 4, 6, 13, 14, 17, 19, 21–26,
28, 33, 45, 51, 54, 55

findAndRemoveVector, 15, 26, 34, 35, 37, 54
findAndTrimSeq, 16, 16, 22, 23, 25, 26, 35,

53, 54
findBarcodes, 12, 14, 17, 24, 33, 42–49, 55
findIntegrations, 5, 10, 11, 19, 22, 27, 29,

31, 32
findLinkers, 13, 15, 17, 19, 20, 21, 23, 25, 26
findLTRs, 13, 15, 20–22, 22, 25, 26, 52, 53
findPrimers, 3, 13, 15, 17, 20–23, 24, 26, 52,

53
findVector, 14, 25

getIntegrationSites, 5, 9–11, 19, 20, 26,
29, 31–33

getSectorsForSamples, 3, 4, 13, 15, 27
getSonicAbund, 9, 10, 20, 28

hiReadsProcessor, 30
hiReadsProcessor-package

(hiReadsProcessor), 30

isuSites, 5, 10, 20, 27, 30, 31, 32

MulticoreParam, 16, 17, 20, 22, 23, 25, 26,
35, 40, 41, 53–55

otuSites, 10, 11, 19, 29, 31

pairUpAlignments, 33, 39
pairwiseAlignment, 17, 21, 23–25, 34–36,

52
pairwiseAlignSeqs, 6–8, 13, 16, 17, 21–26,

33, 34, 37–41, 53, 54
primerIDAlignSeqs, 8, 13, 14, 17, 21–23, 25,

35, 35, 51, 53, 54
psl, 37
pslCols, 38, 41
pslToRangedObject, 5, 6, 10, 11, 16, 20, 27,

29, 31, 32, 38, 38, 39, 41, 56

read.BAMasPSL, 33, 38, 39, 41, 56
read.blast8, 6, 7, 16, 27, 33, 38, 39, 40, 41,

50, 56
read.psl, 6, 7, 19, 20, 26, 27, 33, 39, 40, 41,

50, 56
read.sampleInfo, 18, 25, 42, 44
read.SeqFolder, 18, 42, 43, 44, 45, 55
read.seqsFromSector, 18, 45
removeReadsWithNs, 12, 46, 47
replicateReads, 12, 18, 46, 46, 49

sampleSummary, 47
seqProps, 37, 48
SerialParam, 5, 7, 9, 12, 16, 20, 21, 23, 24,

26, 29, 31–33, 35, 40, 41, 52, 54, 55
SnowParam, 16, 17, 20, 22, 23, 25, 26, 35, 40,

41, 53–55
sonicLength, 28
splitByBarcode, 12, 17, 18, 43, 44, 46, 47, 48
splitSeqsToFiles, 7, 49
startgfServer, 6, 7, 20, 27, 38, 40, 41, 50
stopgfServer, 6, 7, 50

57

58 INDEX

stopgfServer (startgfServer), 50

trimSeqs, 3, 13, 15, 16, 51
troubleshootLinkers, 52

vcountPattern, 12
vmatchPattern, 17, 24, 25, 53, 54
vpairwiseAlignSeqs, 6–8, 13, 16, 17, 22–25,

35, 37, 38, 40, 41, 53, 53

write.listedDNAStringSet, 4, 54
write.psl, 41, 56
writeXStringSet, 55

	addFeature
	addListNameToReads
	annotateSites
	blatListedSet
	blatSeqs
	chunkize
	clusterSites
	crossOverCheck
	dereplicateReads
	doRCtest
	extractFeature
	extractSeqs
	findAndRemoveVector
	findAndTrimSeq
	findBarcodes
	findIntegrations
	findLinkers
	findLTRs
	findPrimers
	findVector
	getIntegrationSites
	getSectorsForSamples
	getSonicAbund
	hiReadsProcessor
	isuSites
	otuSites
	pairUpAlignments
	pairwiseAlignSeqs
	primerIDAlignSeqs
	psl
	pslCols
	pslToRangedObject
	read.BAMasPSL
	read.blast8
	read.psl
	read.sampleInfo
	read.SeqFolder
	read.seqsFromSector
	removeReadsWithNs
	replicateReads
	sampleSummary
	seqProps
	splitByBarcode
	splitSeqsToFiles
	startgfServer
	trimSeqs
	troubleshootLinkers
	vpairwiseAlignSeqs
	write.listedDNAStringSet
	write.psl
	Index

