Package ‘gCrisprTools’

March 10, 2025

Type Package

Title Suite of Functions for Pooled Crispr Screen QC and Analysis
Version 2.12.0

Date 2021-08-23

Author Russell Bainer, Dariusz Ratman, Steve Lianoglou, Peter Haverty
Maintainer Russell Bainer <russ.bainer@gmail.com>

Description Set of tools for evaluating pooled high-throughput screening experiments,
typically employing CRISPR/Cas9 or shRNA expression cassettes. Contains methods for interro-
gating
library and cassette behavior within an experiment, identifying differentially abundant
cassettes, aggregating signals to identify candidate targets for empirical validation,
hypothesis testing, and comprehensive reporting. Version 2.0 extends these applications to include
a variety of tools for contextualizing and integrating signals across many experiments, incorpo-
rates
extended signal enrichment methodologies via the " " sparrow" package, and
streamlines many formal requirements to aid in interpretablity.

License Artistic-2.0

Imports Biobase, limma, RobustRankAggreg, ggplot2,
SummarizedExperiment, grid, rmarkdown, grDevices, graphics,
methods, ComplexHeatmap, stats, utils, parallel

Suggests edgeR, knitr, AnnotationDbi, org.Mm.eg.db, org.Hs.eg.db,
BiocGenerics, markdown, RUnit, sparrow, msigdbr, fgsea

RoxygenNote 7.2.1
VignetteBuilder knitr
Encoding UTF-8

biocViews ImmunoOncology, CRISPR, PooledScreens, ExperimentalDesign,
Biomedicallnformatics, CellBiology, FunctionalGenomics,
Pharmacogenomics, Pharmacogenetics, SystemsBiology,
DifferentialExpression, GeneSetEnrichment, Genetics,
MultipleComparison, Normalization, Preprocessing,
QualityControl, RNASeq, Regression, Software, Visualization

NeedsCompilation no

Depends R (>=4.1)

git_url https://git.bioconductor.org/packages/gCrisprTools
git_branch RELEASE_3_20

2 Contents

git_last_commit bc6c181
git_last_commit_date 2024-10-29
Repository Bioconductor 3.20
Date/Publication 2025-03-10

Contents
gCrisprTools-package e 3
aln ..o e 3
3 o 4
appendDateAndEXxt L 4
ctalignmentChart 5
ctalphaBeta 5
ctapplyAlpha e 6
ctbuildSE e 7
ct.CAT . . . e 8
ct.compareCONMIASES« v v vt e e e e e e e e e e e e e e 9
ctcontrastBarchart oL 10
ct.DirectionalTests L 11
ctdrawColorLegend L 12
ctdrawFlat e e e e 13
cteecdf . . oL L e e 13
ctexpandAnnotation oL e e e 14
ctexprsColor L 15
ctfilterReads e e 15
ct.GCbias e e e e 16
ct.generateResults L L 17
ctGREATdb. e 19
ct.gRNARankByReplicate 20
ct.guideCDF e 21
ctinputCheck L L 22
ctkeyCheck e 23
ctmakeContrastReport L 24
ctmakeQCReport L 25
ctmakeReport 27
ctmakeRhoNull 28
ctnormalizeBySlope 29
ctnormalizeFQ e 30
ctnormalizeGuides 31
ctnormalizeMedians 32
ctnormalizeNTC 33
ctnormalizeSpline e 34
CLIOUMCOIES .« « . . v v v v ettt e e e e e et e e e e e e e e 35
ct.parseGeneSymbol L 36
ctPRC . . . e 37
Ct.prepare AnnOtation e e e e e e e e e 38
ctpreprocessFit oL 39
ctrankSimple L e 40
ctrawCountDensities L 41
ctregularizeContrastso e e e e e e 42

ctresultCheck e 42

gCrisprTools-package 3

Index

ctROC . . e 43
ctRRAalpha. e 44
ctRRAalphaBatch 45
ctRRAaPvals e e 46
CLSCAMETt v e o e i e e e e e e e e e e e e e e e e e 47
CLSCAS .« v v v v e e e e e e e e e e e e e 48
ctseasPrep . . . L L L L e e 49
ctsignalSummaryo L. e e e 50
ctsimpleResult 51
ct.softlogo 52
ct.stackGuides e e e e e 52
cttargetSetEnrichment L o 53
cttopTargets e e e e e e 55
CLUPSEL . . . o e e e 56
ctviewControls L e e e e e 57
ctviewGuides L. e e e 58
dirwritable 59
€S o e e e e e e e 60
essential.g@enes L. e e e e 60
it . e 61
itOutDir e e e e e e 61
renderReport oL 62
resultsDF e 62

63

gCrisprTools-package gCrisprTools

Description

Pipeline for using CRISPR screen data

aln

Precalculated alignment statistics of a crispr screen

Description

Example alignment matrix file for the provided example Crispr screen. All sample, gRNA, and
Gene information has been anonymized and randomized.

Source

Genentech, Inc.

See Also

Please see ‘vignettes/Crispr_example_workflow.R’ for details.

Examples

data('aln')
head(aln)

4 appendDate AndExt

ann Annotation file for a mouse Crispr library

Description

Example annotation file for the screen data provided in es. All sample, gRNA, and Gene informa-
tion has been anonymized and randomized.

Source

Genentech, Inc.

See Also

Please see ‘vignettes/Crispr_example_workflow.R’ for details.

Examples

data('ann')
head(ann)

appendDateAndExt Add formatted timestamp and extension to a file name

Description

Add formatted timestamp and extension to a file name

Usage

appendDateAndExt(name, ext)

Arguments

name character

ext character - extension including a *.".
Value

character

ct.alignmentChart 5

ct.alignmentChart View a Barchart Summarizing Alignment Statistics for a Crispr Screen

Description
This function displays the alignemnt statistics for a pooled Crispr screen, reported directly from an
alignment statistic matrix.

Usage
ct.alignmentChart(aln, sampleKey = NULL)

Arguments
aln A numeric matrix of alignment statistics for a Crispr experiment. Corresponds
to a 4xN matrix of read counts, with columns indicating samples and rows in-
dicating the number of ’targets’, 'nomatch’, ’rejections’, and ’double_match’
reads. Details about these classes may be found in the best practices vignette or
as part of the report generated with ct.makeReport().
sampleKey An optional ordered factor linking the samples to experimental variables. The
names attribute should exactly match those present in aln.
Value

A grouped barplot displaying the alignment statistics for each sample included in the alignment
matrix, which usually corresponds to all of the samples in the experiment.

Author(s)

Russell Bainer

Examples

data('aln')
ct.alignmentChart(aln)

ct.alphaBeta Aggregation of P-value Ranks using a Beta Distribution and Alpha
Cutoff

Description

This function calculates an alpha-modified rho statistic from a set of normalized ranks by comparing
them to a uniform distribution. Specifically, the ranks are ordered and p-values calculated at each
position in the ordered vector by comparison to a Beta distribution. The rho value returned is the
smallest p-value identified in this way across all scores. Should not be used by end users.

Usage
ct.alphaBeta(p.in)

6 ct.applyAlpha
Arguments
p.in A single column matrix of rank scores, with row.names indicating the gRNA
labels.
Value
A numeric rho value corresponding to the minimum rank order P.
Author(s)
Russell Bainer, modified from code from the RobustRankAggreg package.
Citation: Kolde, R. et al, Bioinformatics. 2012 Feb 15;28(4):573-80. doi: 10.1093/bioinformat-
ics/btr709.
Examples
testp <- runif(20)
ct.alphaBeta(testp)
ct.applyAlpha Apply RRA ’alpha’ cutoff to RRAalpha input
Description
The “alpha’ part of RRAalpha is used to consider only the top guide-level scores for gene-level
statistics. Practically, all guides failing the cutoff get a pvalue of 1. There are three ways of deter-
mining which guides fail. See ’scoring’ below.
Usage
ct.applyAlpha(
stats,
RRAalphaCutoff = 0.1,
scoring = c("combined”, "pvalue", "fc")
)
Arguments
stats three-column numeric matrix with pvalues for down and up one-sided test with
guide-level fold changes (coefficients from the relevant contrast).
RRAalphaCutoff A cutoff to use when defining gRNAs with significantly altered abundance dur-

ing the RRAa aggregation step, which may be specified as a single numeric
value on the unit interval or as a logical vector. When supplied as a logical
vector (of length equal to nrows(fit)), this parameter directly indicates the
gRNAs to include during RRAa aggregation. Otherwise, if scoring is set to
pvalue or combined, this parameter is interpreted as the maximum nominal p-
value required to consider a gRNA’s abundance meaningfully altered during the
aggregation step. If scoring is fc, this parameter is interpreted as the propor-
tion of the list to be considered meaningfully altered in the experiment (e.g., if
RRAalphaCutoff is set to 0.05, only consider the rankings of the 5 (or down-
regulated) gRNAs for the purposes of RRAa calculations).

ct.buildSE 7

scoring The gRNA ranking method to use in RRAa aggregation. May take one of three
values: pvalue, fc, or ’combined’. pvalue indicates that the gRNA ranking
statistic should be created from the (one-sided) p-values in the fit object. fc
indicates that the ranks of the gRNA coefficients should be used instead, and
combined indicates that that the coefficents should be used as the ranking statis-
tic but gRNAs are discarded in the aggregation step based on the corresponding
nominal p-value in the fit object.

Value
data.frame with guide-level pvals, fold change, and scores.deplete and scores.enrich which are the
input the RRAalpha

Author(s)

Russell Bainer

Examples

fakestats <- matrix(runif(300), ncol = 3)
colnames(fakestats) = c('Depletion.P', 'Enrichment.P', 'lfc')
ct.applyAlpha(fakestats)

ct.buildSE Package Screen Data into a ‘SummarizedExperiment‘ Object

Description

Convenience function to package major components of a screen into a ‘SummarizedExperiment*
container for downstream visualization and analysis. All arguments are optional except for ‘es‘.

Usage
ct.buildSE(
es,
sampleKey = NULL,
ann = NULL,
vm = NULL,
fit = NULL,
summarylList = NULL
)
Arguments
es An ‘ExpressionSet* of screen data. Required.
sampleKey a gCrisprTools ‘sampleKey* object, to be added to the ‘colData‘.
ann Annotation object to be packaged into the ‘rowData‘
vm A ‘voom‘-derived normalized object
fit a ‘MArrayLM°* object containing the contrast information and model results
summarylList A named list of data. frames, returned by ct.generateResults. if you need

to generate one of these by hand for some reason, see the example resultsDF
object loaded in the example below.

8 ct.CAT

Value

A ‘SummarizedExperiment‘ object.

Author(s)

Russell Bainer

Examples

data('ann', 'es', 'fit', 'resultsDF')
ct.buildSE(es, ann = ann, fit = 'fit', summaryList = list('resA' = resultsDF, 'resB' = resultsDF))

ct.CAT Compare Two CRISPR Screens via a CAT plot

Description

This is a function for comparing the results of two screening experiments. Given two summaryDF,
the function places them in register with one another, generates a Concordance At The Top (CAT)
plot, and returns an invisible dataframe containing the relevant gene-level signals. Signals are ag-
gregated by P-value threshold, such that the concordance is represented as the portion of shared
values meeting or exceeding that significance threshold.

This function is conceptually similar to the ‘ct. ROC* and ‘ct.PRC()‘ functions, but is appropriate
when considering consistency of ranked values rather than an interchangeable set; the most common
use case is for comparing primary and replication screens, where the underlying technology and
selection criteria are expected to be highly similar. CAT plots are fundamentally about comparing
rankings, and so only targets in common between the two provided screens are considered. If the
totality of list overlap is important, consider using ‘ct. PRC()‘ or ‘ct. ROC()*.

Usage

ct.CAT(
dflist,
targets = c("geneSymbol”, "genelD"),
switch.dir = FALSE,
plot.it = TRUE

)
Arguments

dflist A list of results dataframes. Names will be preserved, and the enrichment cal-
culation is conditioned on the first element of the list.

targets Column of the provided summaryDF to consider. Must be geneID or geneSymbol.

switch.dir Logical indicating whether to test overlap of signals in the same direction, or
whether the directionality is expected to reverse. ‘same.dir = FALSE® looks at
the consistency between depleted signals in ‘df1° and enriched signals in ‘df2°.

plot.it Logical indicating whether to compose the plots on the default device. Two CAT

plots summarizing overlap in both enrichment directions are drawn.

ct.compareContrasts 9

Value

Invisibly, a data.frame containing the relevant summary stats for each target in both screens.

Author(s)

Russell Bainer

Examples

data('resultsDF')
cat <- ct.CAT(list('first' = resultsDF, 'second' = resultsDF[1:2000,]1))
head(cat)

ct.compareContrasts Identify Replicated Signals in Pooled Screens Using Conditional Scor-
ing

Description

This function identifies signals that are present in one or more screening experiment contrasts using
a conditional strategy. Specifically, this function identifies all significant signals (according to user
definitions) in a set of provided results DF and returns a ‘simplifiedResult* dataframe derived from
the first provided contrast with an appended logical column indicating whether there is evidence for
signal replication in the other provided resultsDFs.

Signals are considered replicated if they cross the specified stringent threshold (default: Q = 0.1)
in one or more of the provided contrasts, and are similarly enriched or depleted at the relaxed
threshold (default: P = 0.1) in all of the remaining contrasts. If a single contrast is provided, all
signals crossing the stringent threshold are considered replicated.

Signals are compared across screens on the basis of ct.regularizeContrasts, so users must
provide an identifier with which to standardize targets (‘genelD* by default).

Usage

ct.compareContrasts(
dflist,
statistics = c("best.q", "best.p"),
cutoffs = c(0.1, 0.1),
same.dir = rep(TRUE, length(dflist)),
return.stats = FALSE,
nperm = 10000,

)

Arguments
dflist A list of (possibly simplified) results data.frames produced by ct. generateResults.
statistics Statistics to use to define congruence; may be a single value, but internally co-

erced to a vector of length 2 where the first value corresponds to the stringent
cutoff annd the second value is used for the relaxed cutoff. Must be ’best.p’ or
"best.q’.

10

cutoffs

same.dir

return.stats

nperm

Value

If ‘return.stats® is

ct.contrastBarchart

Numeric value(s) corresponding to the significance cutoff(s) used to define strin-
gent and relaxed values of ‘statistics‘. Internally coerced to a vector of length
2.

Logical vector of the same length as ‘dflist‘ indicating whether replicating sig-
nals are expected to go in the same direction (e.g., enrich/deplete in their respec-
tive screens). For example, a ‘dflist‘ of length 3 could be specified as ¢c(TRUE,
TRUE, FALSE), indicating that replicating signals should be enriched in both
of the first two contrasts and depleted in the third to be considered replicated (or
vise-versa). Default is ‘rep(TRUE, length(dflist))‘.

When TRUE, return the significance of overlap instead of the logical vector (by
permutation).

numeric indicating number of permutations when ‘return.stats‘ is true (default
10000).

Other arguments to ‘ct.simpleResult()‘, especially ‘collapse®.

‘FALSE®, returns the first contrast as a ‘simplifiedResult’ data.frame, with a

‘replicated‘ logical column indicating whether each signal replicates in all of the provided screens
according to the specified logic.

If ‘return.stats‘ is “TRUE, returns a dataframe indicating the permutation-based test statistics sum-
marizing the evidence for significantly enriched signal replication across the provided contrasts
(enrich, deplete, and all together).

Author(s)

Russell Bainer

Examples

data('resultsDF')

summary (ct.compareContrasts(list(resultsDF, resultsDF[1:5000,]))%replicated)
ct.compareContrasts(list(resultsDF, resultsDF[1:5000,]), return.stats = TRUE)

ct.contrastBarchart Visualize Signal Across A List of Contrasts

Description

Given a list of provided results ‘data.frame‘s summarizing a series of contrasts from one or more
pooled screens, this function visualizes their respective signals as a series of stacked barcharts.
Enriched signals are represented in the positive direction, and depleted signals are represented in
the negative direction. Note that the provided contrast results are not regularized by this function.

This function may be used to compare signals across different screen contrasts, or to compare
signals within interesting subsets of targets ascertained within a single experiment.

ct.Directional Tests 11

Usage

ct.contrastBarchart(
dflist,
background = TRUE,
statistic = c("best.q", "best.p"),

)
Arguments
dflist A named list of ‘data.frame‘s summarizing the results of one or more screen
contrasts, returned by the function ct.generateResults.
background Logical indicating whether to represent the nonsignificant hits in the barchart.
statistic Should cutoffs be calculated based on FDR (‘best.q‘) or P-value (‘best.p‘)?
Other parameters to lower functions, especially ‘ct.simpleResult()*
Value

A summary plot on the current device. Invisibly, the data.frame tallying signals at various thresh-
olds.

Author(s)

Russell Bainer

Examples

data('resultsDF')
ct.contrastBarchart(list('FirstResult' = resultsDF, 'SecondResult' = resultsDF))
ct.contrastBarchart(list('FirstResult' = resultsDF, 'SecondResult' = resultsDF), background = FALSE)
ct.contrastBarchart(list('FirstResult' = resultsDF[1:1000,], 'SecondResult' = resultsDF))

ct.DirectionalTests Compute Directional P-values from eBayes Output

Description

This function produces two sets of one-sided P-values derived from the moderated t-statistics pro-
duced by eBayes.

Usage

ct.DirectionalTests(fit, contrast.term = NULL)

Arguments
fit An object of class MArrayLM containing, at minimum, a df . residual slot con-
taining the appropriate degres of freedom for each test, and a t slot containing t
statistics.

contrast.term If a fit object with multiple coefficients is passed in, a string indiating the coef-
ficient of interest.

12 ct.drawColorLegend

Value

A matrix object with two numeric columns, indicating the p-values quantifying the evidence for
enrichment and depletion of each feature in the relevant model contrast.

Author(s)

Russell Bainer

Examples

data('fit')
ct.DirectionalTests(fit)

ct.drawColorLegend Draw a density color legend.

Description

This is a function called internally by ct.viewGuides to generate the color legend. End users should
not use it.

Usage

ct.drawColorLegend(dens, colorscale)

Arguments

dens A density object.

colorscale A vector of colors to draw behind the density.
Value

A color legend on the current graphics device.

Author(s)

Russell Bainer

ct.drawFlat 13

ct.drawFlat Draw a horizontal line of a specified color.

Description
This is a function called internally by ct.viewGuides to generate the color legend. End users should
not use it.

Usage

ct.drawFlat(x, y, color, width = 1)

Arguments
X,y Minimal coordinates to specify the line, which is drawn from the Y axis.
color Guess!
width Line width.

Value

A line on an open device.

Author(s)

Russell Bainer

ct.ecdf Generate a cumulative tally of reads by guide rank

Description

This function returns a numeric vector of the same length as the input, where each element n con-
tains the proportion the sum of the full vector that is captured by its first 1-n elements (arranged in
descending order).

Usage

ct.ecdf(vector)

Arguments

vector An input numeric vector to be aggregated.

Value

A numeric vector of the cumulative sum

Author(s)

Russell Bainer

14 ct.expandAnnotation

ct.expandAnnotation Expand an annotation object to allow annotations of reagents to mul-
tiple targets

Description

This function takes a gCrisprTools annotation object and expands it to allow 1:many mappings of
reagents. This mostly is used for internal processing, and users should interact with the wrapper
functions that call it (e.g., ‘ct.generateResults®).

Libraries targeting ambiguous biological elements (e.g., alternative promoters to a gene where the
boundaries between elements is contested) may contain reagents that are plausibly annotated to a
finite set of possible targets. To accomodate this, users may supply an alternative reagent annotation
in the form of a named list of vectors, where the names correspond to reagent ‘ID‘s in the annotation
object and each list element corresponds something coercible to a to a character vector of associated
targets that will ultimately be assembled into the ‘geneSymbol‘ column of the annotation object. It
is assumed that the ‘genelD* values are assigned unambiguously to the reagents, and are passed
through directly.

Usage

ct.expandAnnotation(ann, alt.annotation)

Arguments

ann A data.frame containing an annotation object with gRNA-level information
encoded as rows, typically produced by ‘ct.prepareAnnotation‘. The ‘ID* col-
umn should correspond to the individual reagent identifiers.

alt.annotation A named list of character vectors, which should be named identically to a value
in the ‘ID* column of the supplied annotation object. The values in the character
vectors will eventually form the ‘geneSymbol‘ column of the annotation file.

Value

A new annotation data frame, expanded as described above.

Author(s)

Russell Bainer

Examples

data('ann')
alt.annotation <- list('Target2089_b' = c('foo', 'bar'), 'Target2089_c' = 'foo', 'Target2089_a' = 'bar')
ct.expandAnnotation(ann, alt.annotation)

ct.exprsColor 15

ct.exprsColor Assign Colors Based on the Position of a Value in a Distribution

Description
This is a function to generate colors for plot elements on the basis of the position of a value within
a distribution. Called internally by ct.viewGuides.

Usage

ct.exprsColor(exprs, rankedexprs, colors)

Arguments
exprs The value whose color is to be returned.
rankedexprs A vector of values the length of cols that corresponds to the values in the distri-
bution.
colors The vector of colors to be used as a reference.
Value

A value contained in cols.

Author(s)

Russell Bainer

ct.filterReads Remove low-abundance elements from an ExpressionSet object

Description

This function removes gRNAs only present in very low abundance across all samples of a pooled
Crispr screening experiment. In most cases very low-abundance guides are the result of low-level
contamination from other libraries, and often distort standard normalization approaches. This func-
tion trims gRNAs in a largely heuristic way, assuming that the majority of 'real’ gRNAs within the
library are comparably abundant in at least some of the samples (such as unexpanded controls), and
that contaminants are present at negligible levels. Specifically, the function trims the trim most
abundant guides from the upper tail of each log-transformed sample distribution, and then omits
gRNAs whose abundances are always less than 1/(2*1og2.ratio) of this value.

Usage
ct.filterReads(
eset,
trim = 1000,

log2.ratio = 4,
sampleKey = NULL,
plot.it = TRUE,
read.floor = NULL

16

Arguments

eset

trim

log2.ratio

sampleKey

plot.it

read.floor

Value

ct.GCbias

An unnormalized ExpressionSet object containing, at minimum, a matrix of
gRNA counts accessible with exprs().

The number of gRNAs to be trimmed from the top of the distribution before
estimating the abundance range. Empirically, this usually should be equal to
about 2 to 5 percent of the guides in the library.

Maximum abundance of contaminant gRNAs, expressed on the log2 scale from
the top of the trimmed range of each sample. That is, log2.ratio = 4 means to
discard all gRNAs whose abundance is (1/2)"4 of the trimmed maximum.

An (optional) sample key, supplied as an ordered factor linking the samples to
experimental variables. The names attribute should exactly match those present
in eset, and the control set is assumed to be the first level.

Logical value indicating whether to plot the adjusted gRNA densities on the
default device.

Optionally, the minimum number of reads required for each gRNA.

An ExpressionSet object, with trace-abundance gRNAs omitted.

Author(s)

Russell Bainer

Examples

data('es"')

ct.filterReads(es)

ct.GCbias

Visualization of gRNA GC Content Trends

Description

This function visualizes relationships between gRNA GC content and their measured abundance or
various differential expression model estimates.

Usage

ct.GCbias(data.obj, ann, sampleKey = NULL, lib.size = NULL)

Arguments

data.obj

ann

An ExpressionSet or fit (MArrayLM) object to be analyzed for the presence of
GC content bias.

An annotation data. frame, used to estimate GC content for each guide. Guides
are annotated by row, and the object must minimally contain a target col-
umn containing a character vector that indicates the corresponding nucleotide
sequences.

ct.generateResults 17

sampleKey An optional sample key, supplied as a factor linking the samples to experimental
variables. The names attribute should exactly match those present in eset, and
the control set is assumed to be the first level. Ignored in the analysis of model
fit objects.

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

Value

An image relating GC content to experimental observations on the default device. If the provided
data.obj is an ExpressionSet, this takes the form of a scatter plot where the GC with a smoothed
trendline within each sample. If data.obj is a fit object describing a linear model contrast, then
four panels are returned describing the GC content distribution and its relationship to guide-level
fold change, standard deviation, and P-value estimates.

Author(s)

Russell Bainer

Examples

data('es"')
data('ann')
data('fit")

ct.GCbhias(es, ann)
ct.GCbhias(fit, ann)

ct.generateResults Calculate results of a crispr screen from a contrast

Description

This is a wrapper function that enables direct generation of target-level p-values from a crispr screen.

Usage

ct.generateResults(
fit,
annotation,
RRAalphaCutoff = 0.1,
permutations = 1000,
contrast.term = NULL,
scoring = c("combined”, "pvalue", "fc"),
alt.annotation = NULL,
permutation.seed = NULL

18

Arguments

fit

annotation

RRAalphaCutoff

permutations

contrast.term

scoring

alt.annotation

ct.generateResults

An object of class MArrayLM containing, at minimum, a t slot with t-statistics
from the comparison, a df.residual slot with the corresponding residuals fo
the model fits, and an Amean slot with the respective mean abundances.

An annotation file for the experiment. gRNAs are annotated by row, and must
minimally contain columns geneSymbol and genelD.

A cutoff to use when defining gRNAs with significantly altered abundance dur-
ing the RRAa aggregation step, which may be specified as a single numeric
value on the unit interval or as a logical vector. When supplied as a logical
vector (of length equal to nrows(fit)), this parameter directly indicates the
gRNAs to include during RRAa aggregation. Otherwise, if scoring is set to
pvalue or combined, this parameter is interpreted as the maximum nominal p-
value required to consider a gRNA’s abundance meaningfully altered during the
aggregation step. If scoring is fc, this parameter is interpreted as the propor-
tion of the list to be considered meaningfully altered in the experiment (e.g., if
RRAalphaCutoff is set to 0.05, only consider the rankings of the 5 (or down-
regulated) gRNAs for the purposes of RRAa calculations).

Note that this function uses directional tests to identify enriched or depleted tar-
gets, and when RRAalphaCutoff is provided as a logical vector the interpretation
of the various aggregation statistics is going to be dependent on the specific cri-
teria used to select reagents for inclusion.

The number of permutations to use during the RRAa aggregation step.

If a fit object with multiple coefficients is passed in, a string indiating the coef-
ficient of interest.

The gRNA ranking method to use in RRAa aggregation. May take one of three
values: pvalue, fc, or ’combined’. pvalue indicates that the gRNA ranking
statistic should be created from the (one-sided) p-values in the fit object. fc
indicates that the ranks of the gRNA coefficients should be used instead, and
combined indicates that that the coefficents should be used as the ranking statis-
tic but gRNAs are discarded in the aggregation step based on the corresponding
nominal p-value in the fit object.

Libraries targeting ambiguous biological elements (e.g., alternative promoters
to a gene where the boundaries between elelments is contested) may contain
reagents that are plausibly annotated to a finite set of possible targets. To acco-
modate this, users may supply an alternative reagent annotation in the form of a
named list of vectors, where each list element corresponds something coercible
to a to a character vector of associated targets that will ultimately be assembled
into the ‘geneSymbol‘ column of the ‘resultsDF* object. Each of these character
vectors should be named identically to a row of the supplied fit object (e.g., the
‘row.names‘). It is assumed that the ‘genelD°‘ values are assigned unambigu-
ously to the reagents, and are passed through directly.

permutation.seed

Value

numeric seed for permutation reproducibility. Default: NULL means to not set
any seed. This argument is passed through to ct.RRAaPvals.

A dataframe containing gRNA-level and target-level statistics. In addition to the information present
in the supplied annotation object, the returned object indicates P-values and Q-values for the de-
pletion and enrichment of each gRNA and associated target, the median log2 fold change estimate

ct. GREATdb 19

among all gRNAs associated with the target, and Rho statistics that are calculated internally by the
RRAa algorithm that may be useful in ranking targets that are considered significant at a given alpha
or false discovery threshold.

A ‘resultsDF* formatted dataframe containing gene-level statistics.

Author(s)

Russell Bainer

Examples

data('fit')
data('ann')
output <- ct.generateResults(fit, ann, permutations = 10)
head(output)
p = seq(@, 1, length.out=20)
fc = seq(-3, 3, length.out=20)
fc[2] = NA
fc[3] = -20
stats = data.frame(
Depletion.P=p,
Enrichment.P=rev(p),
fe=fc
)
ct.applyAlpha(stats,scoring="'combined")

ct.GREATdb Update a gene-centric msdb object for GREAT-style enrichment anal-
ysis using a specified CRISPR annotation.

Description

Update a gene-centric ‘GeneSetDb* object for GREAT-style enrichment analysis using a specified
annotation.

Often, pooled screening libraries are constructed such that the gene targets of interest are associated
with variable numbers of semi-independent screen signals (associated with, e.g., sets of alternative
promoters or cis regulatory units). Such an arrangement is often unavoidable but produces to com-
plications when performing gene set enrichent analyses. This function conforms a standard ‘Gene-
SetDb* object to appropriately consider this form of ultiple testing during ontological enrichment
analyses according to the GREAT strategy outlined by [McLean et al. (2009)](https://doi.org/10.1038/nbt.1630).

Operationally, this means that genewise sets in the provided object will be translated to the corre-
sponding ‘geneSymbol‘ sets provided in the annotation file.

Usage

ct.GREATdb(
annotation,
gsdb = sparrow: :getMSigGeneSetDb(collection = c("h", "c2"), species = "human”, id.type
= "ensembl"),
minsize = 10,

20 ct.gRNARankByReplicate

Arguments
annotation an annotation object returned by ct.prepareAnnotation().
gsdb A gene-centric GeneSetDb object to conform to the relevant peakwise dataset.
minsize Minimum number of targets required to consider a geneset valid for analysis.
Additional arguments to be passed to ‘ct.prepare Annotation()°.
Value

A new GeneSetDb object with the features annotated genewise to pathways.

Examples

data(resultsDF)

data(ann)

gsdb <- ct.GREATdb(ann, gsdb = sparrow: :getMSigGeneSetDb(collection = 'h', species = 'human', id.type = 'entrez
show(sparrow: : featureIds(gsdb))

ct.gRNARankByReplicate
Visualization of Ranked gRNA Abundances by Replicate

Description

This function median scales and log2 transforms the raw gRNA count data contained in an Expres-
sionSet, and then plots the ordered expression values within each replicate. The curve colors are
assigned based on a user- specified column of the pData contained in the ExpressionSet. Optionally,
this function can plot the location of Nontargeting control guides (or any guides, really) within the
distribution.

Usage

ct.gRNARankByReplicate(
eset,
sampleKey,
annotation = NULL,
geneSymb = NULL,
lib.size = NULL

)
Arguments

eset An ExpressionSet object containing, at minimum, count data accessible by ex-
prs() and some phenoData.

sampleKey A sample key, supplied as a (possibly ordered) factor linking the samples to
experimental variables. The names attribute should exactly match those present
in eset, and the control set is assumed to be the first level.

annotation An annotation dataframe indicating the nontargeting controls in the genelD col-

umn.

ct.guideCDF 21

geneSymb The geneSymbol identifier(s) in annotation that corresponds to gRNAs to be
plotted on the curves. If the provided value is not present in the geneSymbol,
nontargeting controls will be plotted instead.

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

Value

A waterfall plot as specified, on the default device.

Author(s)

Russell Bainer

Examples

data('es"')
data('ann')

#Build the sample key

library(Biobase)

sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), 'ControlReference'))
names(sk) <- row.names(pData(es))

ct.gRNARankByReplicate(es, sk, ann, 'Target1377')

ct.guideCDF View CDFs of the ranked gRNAs or Targets present in a crispr screen

Description

This function generates a plot relating the cumulative proportion of reads in each sample of a crispr
screen to the abundance rank of the underlying guides (or Targets). The purpose of this algorithm
is to detect potential distortions in the library composition that might not be properly controlled by
sample normalization (see also: ct.stackedGuides()).

Usage

ct.guideCDF (eset, sampleKey = NULL, plotType = "gRNA", annotation = NULL)

Arguments
eset An ExpressionSet object containing, at minimum, a matrix of gRNNA abundances
extractable with the exprs() function.
sampleKey An optional sample key, supplied as an ordered factor linking the samples to

experimental variables. The names attribute should exactly match those present
in eset, and the control set is assumed to be the first level.

22 ct.inputCheck

plotType A string indicating whether the individual guides should be displayed ("gRNA’),
or if they should be aggregated into target-level estimates ('Target’) according
to the geneSymbol column in the annotation object.

annotation An optional data.frame containing an annotation object to be used to aggregate
the guides into targets. gRNAs are annotated by row, and must minimally con-
tain a column geneSymbol indicating the target elements.

Value

A CDF plot displaying the appropriate CDF curves on the default device.

Author(s)

Russell Bainer

Examples

data('es')
ct.guideCDF (es)

ct.inputCheck Check compatibility of a sample key with a supplied object

Description

For many gCrisprTools functions, a sample key must be provided that specifies sample mapping to
experimental groups. The sample key should be provided as a single, named factor whose names
exactly correspond to the ‘colnames()‘ of the ‘ExpressionSet‘ containing the count data to be pro-
cessed (or coercible as such). By convention, the first level corresponds to the control sample group.

This function checks whether the specified sample key is of the proper format and has properties
consistent with the specified object.

Usage
ct.inputCheck(sampleKey, object)

Arguments
sampleKey A named factor, where the levels indicate the experimental replicate groups
and the names match the colnames of the expression matrix contained in object.
The first level should correspond to the control samples, but obviously there is
no way to algorithmically control this.
object An ExpressionSet, EList, or matrix.
Value

A logical indicating whether the objects are compatible.

Author(s)

Russell Bainer

ct.keyCheck 23

ct.keyCheck Check compatibility of a sample key with a supplied ExpressionSet or
similar object

Description

For many gCrisprTools functions, a sample key must be provided that specifies sample mapping to
experimental groups. The sample key should be provided as a single, named factor whose names
exactly correspond to the ‘colnames()‘ of the ‘ExpressionSet‘ containing the count data to be pro-
cessed (or coercible as such). By convention, the first level corresponds to the control sample group.

This function checks whether the specified sample key is of the proper format and has properties
consistent with the specified object.

Usage

ct.keyCheck(sampleKey, object)

Arguments
sampleKey A named factor, where the levels indicate the experimental replicate groups
and the names match the colnames of the expression matrix contained in object.
The first level should correspond to the control samples, but obviously there is
no way to algorithmically control this.
object AnExpressionSet, EList, or other matrix-like object with defined ‘colnames()‘.
Value

Invisibly, a properly formatted ‘sampleKey*.

Author(s)

Russell Bainer

Examples

data('es')
library(limma)
library(Biobase)

#Build the sample key

sk <- relevel(as.factor(pData(es)$TREATMENT_NAME), 'ControlReference')
names(sk) <- row.names(pData(es))

ct.keyCheck(sk, es)

24

ct.makeContrastReport

ct.makeContrastReport Generate a Contrast report from a pooled CRISPR screen

Description

This is a function to generate an html Contrast report for a CRISPR screen, focusing on contrast-
level analyses collected from other functions in gCrisprTools. It is designed to be used ’as-is’, and
analysts interested in using different functionalities of the various functions should do that outside
of this wrapper script.

Usage

ct.makeContrastReport(

eset,

fit,
sampleKey,
results,
annotation,
comparison.id
identifier,

contrast.subset

outdir = NULL

Arguments

eset

fit
sampleKey

results

annotation

comparison.id

identifier

contrast.subset

outdir

’

colnames(eset),

An ExpressionSet object containing, at minimum, a matrix of gRNA abundances
extractable with the exprs() function and some named phenodata extractable
with pData().

A fit object for the contrast of interest, usually generated with ImFit.

A sample key, supplied as an ordered factor linking the samples to experimental
variables. The names attribute should exactly match those present in eset, and
the control set is assumed to be the first level.

A data.frame summarizing the results of the screen, returned by the function
ct.generateResults.

An annotation object for the experiment. See the man page for ct.prepareAnnotation()
for details and example format.

character with a name of the comparison.

A character string to name the report and corresponding subdirectories. If pro-
vided, the final report will be called *identifier.html” and will be located in a
directory called identifier in the outdir. If NULL, a generic name

character vector containing the sample labels to be used in the analysis; all ele-
ments must be contained in the colnames of the specified eset. including the
timestamp will be generated. Default: colnames(eset).

An optional character string indicating the directory in which to generate the
report. If NULL, a temporary directory will be automatically generated.

ct.makeQCReport 25

Value

The path to the generated html report.

Author(s)

Russell Bainer, Dariusz Ratman

Examples

data('es')
data('fit')
data('ann')
data('resultsDF')

##' #Build the sample key

library(Biobase)

sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), 'ControlReference'))
names(sk) <- row.names(pData(es))

path2report <- ct.makeContrastReport(es, fit, sk, resultsDF, ann, comparison.id = NULL, outdir ="'.")
ct.makeQCReport Generate a QC report from a pooled CRISPR screen
Description

This is a function to generate an html QC report for a CRISPR screen, focusing on experiment-level
and library-level analyses collected from other functions in gCrisprTools. It is designed to be used
’as-is’, and analysts interested in using different functionalities of the various functions should do
that outside of this wrapper script.

Usage

ct.makeQCReport(
eset,
trim,
log2.ratio,
sampleKey,
annotation,
aln,
identifier = NULL,
lib.size,
geneSymb = NULL,
outdir = NULL

Arguments

eset An ExpressionSet object containing, at minimum, a matrix of gRNA abundances
extractable with the exprs() function and some named phenodata extractable
with pData().

26 ct.makeQCReport

trim The number of gRNAs to be trimmed from the top of the distribution before
estimating the abundance range. Empirically, this usually should be equal to
about 2 to 5 percent of the guides in the library.

log2.ratio Maximum abundance of contaminant gRNAs, expressed on the log2 scale from
the top of the trimmed range of each sample. That is, log2.ratio = 4 means to
discard all gRNAs whose abundance is (1/2)"4 of the trimmed maximum.

sampleKey A sample key, supplied as an ordered factor linking the samples to experimental
variables. The names attribute should exactly match those present in eset, and
the control set is assumed to be the first level.

annotation An annotation object for the experiment. See the man page for ct.prepareAnnotation
for details and example format.

aln A numeric alignment matrix, where rows correspond to ’targets’, 'nomatch’, ’re-
jections’, and ’double_match’, and where columns correspond to experimentasl
samples. May be ‘NULL, to suppress alignment evaluation.

identifier A character string to name the report and corresponding subdirectories. If pro-
vided, the final report will be called *identifier.html’ and will be located in a
directory called identifier. If NULL, a generic name including the timestamp
will be generated.

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

geneSymb The geneSymbol identifier(s) in annotation that corresponds to gRNAs to be
plotted on the curves. Passed through to ct . gRNARankByReplicate, ct.viewControls
and ct.prepareAnnotation (as controls argument if it’s not NULL). Default
NULL.

outdir An optional character string indicating the directory in which to generate the
report. If NULL, a temporary directory will be automatically generated.
Value

The path to the generated html report.

Author(s)

Russell Bainer, Dariusz Ratman

Examples

data('es')
data('ann')
data('aln')

##' #Build the sample key

library(Biobase)

sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), 'ControlReference'))
names(sk) <- row.names(pData(es))

path2report <- ct.makeQCReport(es, trim = 1000, log2.ratio = 0.0625, sk, ann, aln, identifier = NULL, lib.size -

ct.makeReport 27

ct.makeReport Generate a full experimental report from a pooled CRISPR screen

Description

This is a function to generate an html report for a CRISPR screen, incorporating information about
a specified contrast. The report contains a combination of experiment-level and contrast-specific
analyses, largely collected from other functions in gCrisprTools. It is designed to be used ’as-
is’, and analysts interested in using different functionalities of the various functions should do that
outside of this wrapper script.

Usage

ct.makeReport(
fit,
eset,
sampleKey,
annotation,
results,
aln,
outdir = NULL,
contrast.term = NULL,
identifier = NULL

)
Arguments

fit An object of class MArrayLM containing, at minimum, a coefficents slot with
coefficients from the comparison, and a stdev.unscaled slot with the corre-
sponding standard deviation of the coefficent estimates. The row.names at-
tribute should ideally match that which is found in annotation, but this will
be checked internally.

eset An ExpressionSet object containing, at minimum, a matrix of gRNA abundances
extractable with the exprs() function and some named phenodata extractable
with pData().

sampleKey A sample key, supplied as an ordered factor linking the samples to experimental
variables. The names attribute should exactly match those present in eset, and
the control set is assumed to be the first level.

annotation An annotation object for the experiment. See the man page for ct.prepareAnnotation()
for details and example format.

results A data.frame summarizing the results of the screen, returned by the function
ct.generateResults.

aln A numeric alignment matrix, where rows correspond to ’targets’, 'nomatch’, ’re-
jections’, and ’double_match’, and where columns correspond to experimentasl
samples. Users may also pass ‘NULL* to suppress evaluation of alignment.

outdir A directory in which to generate the report; if NULL, a temporary directory will

be automatically generated. The report will be located in a subdirectory whose
name is internally generated (see below). The path to the report itself is returned
by the function.

28 ct.makeRhoNull

contrast.term A parameter passed to ct.preprocessFit in the event that the fit object con-
tains data from multiple contrasts. See that man page for further details.

identifier A character string to name the report and corresponding subdirectories. If pro-
vided, the final report will be called *identifier.html” and will be located in a
directory called identifier in the outdir. If NULL, a generic name including
the timestamp will be generated.

Value

The path to the generated html report.

Author(s)

Russell Bainer

Examples

data('fit")
data('es')

##' #Build the sample key

library(Biobase)

sk <- relevel(as.factor(pData(es)$TREATMENT_NAME), 'ControlReference')
names(sk) <- row.names(pData(es))

data('ann')

data('resultsDF')

data('aln')

path2report <- ct.makeReport(fit, es, sk, ann, resultsDF, aln, outdir = '.')

ct.makeRhoNull Make null distribution for RRAalpha tests

Description

Makes random distribution of Rho value by taking nperm random samples of n rank stats, p.

Usage
ct.makeRhoNull(n, p, nperm)

Arguments

n single integer, number of guides per gene

p numeric vector of rank statistics

nperm single integer, how many random samples to take.
Value

numeric vector of Rho values

Examples

ct.makeRhoNull(3, 1:9, 5)

ct.normalizeBySlope 29

ct.normalizeBySlope Normalize sample abundance estimates by the slope of the values in
the central range

Description

This function normalizes Crispr gRNA abundance estimates by equalizing the slopes of the middle
(logged) values of the distribution across samples. Specifically, the algorithm ranks the gRNA
abundance estimates within each sample and determines a relationship between rank change and
gRNA within a trimmed region of the distribution via a linear fit. It then adjusts each sample such
that the center of the logged abundance distribution is strictly horizontal and returns these values as
median-scaled counts in the appropriate slot of the input ExpressionObject.

Usage
ct.normalizeBySlope(ExpressionObject, trim = 0.25, lib.size = NULL, ...)
Arguments
ExpressionObject
An ExpressionSet containing, at minimum, count data accessible by exprs, or
an EList object with count data in the $E slot (usually returned by voom).
trim The proportion to be trimmed from each end of the distributionbefore perform-
ing the linear fit; algorithm defaults to 25 fit is performed on the interquartile
range.
lib.size An optional vector of size factor adjusted library size. Default: NULL means to
use sum of column counts as a lib.size.
Other arguments to be passed to ct.normalizeMedians(), if desired.
Value

A renormalized object of the same type as the provided object.

Author(s)

Russell Bainer

Examples

data('es')
data('ann')

#Build the sample key and library sizes for visualization

library(Biobase)

sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), 'ControlReference'))
names(sk) <- row.names(pData(es))

1s <- colSums(exprs(es))

es.norm <- ct.normalizeBySlope(es, lib.size= 1s)
ct.gRNARankByReplicate(es, sk, lib.size= 1s)
ct.gRNARankByReplicate(es.norm, sk, lib.size= 1s)

30 ct.normalizeFQ

ct.normalizeFQ Apply Factored Quantile Normalization to an eset

Description

This function applies quantile normalization to subsets of samples defined by a provided factor,
correcting for library size. It does this by converting raw count values to log2 counts per million
and optionally adjusting further in the usual way by dividing these values by user-specified library
size factors; then this matrix is split into groups according to the provided factor that are quantile
normalized, and then the groups are median scaled to each other before conversion back into raw
counts. This method is best used in comparisons for long timecourse screens, where groupwise
differences in growth rate cause uneven intrinsic dialation of construct distributions.

Note that this normalization strategy is not appropriate for experiments where significant distortion
of the libraries is expected as a consequence of the screening strategy (e.g., strong selection screens).

Usage

ct.normalizeFQ(eset, sets, lib.size = NULL)

Arguments
eset An ExpressionSet containing, at minimum, count data accessible by exprs.
sets A character or factor object delineating which samples should be grouped to-
gether during the normalization step. Must be the same length as the number of
columns in the provided eset, and cannot contain ‘NA‘ or ‘NULL* values.
lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.
Value

A renormalized ExpressionSet object of the same type as the provided object.

Author(s)

Russell Bainer

Examples

data('es')

#Build the sample key and library sizes for visualization
library(Biobase)

sk <- relevel(as.factor(pData(es)$TREATMENT_NAME), 'ControlReference')
names(sk) <- row.names(pData(es))

1s <- colSums(exprs(es))

es.norm <- ct.normalizeFQ(es, sets = gsub('(Death|Control)', '', pData(es)$TREATMENT_NAME), lib.size=1s)
ct.gRNARankByReplicate(es, sampleKey = sk, lib.size= 1s)
ct.gRNARankByReplicate(es.norm, sampleKey = sk, lib.size= 1s)

ct.normalizeGuides 31

ct.normalizeGuides Normalize an ExpressionSet Containing a Crispr Screen

Description

This function normalizes Crispr gRNA abundance estimates contained in an ExpressionSet object.
Currently four normalization methods are implemented: median scaling (via normalizeMedianValues),
slope-based normalization (via ct.normalizeBySlope()), scaling to the median of the nontarget-

ing control values (via ct.normalizeNTC()), factored quantile normalization (via ct.normalizeFQ()),
and spline fitting to the distribution of selected gRNAs (via ct.normalizeSpline()). Because of

the peculiarities of pooled Crispr screening data, these implementations may be more stable than the
endogenous methods used downstream by voom. See the respective man pages for further details
about specific normalization approaches.

Usage
ct.normalizeGuides(
eset,
method = c("scale”, "FQ", "slope”, "controlScale”, "controlSpline”),

annotation = NULL,
sampleKey = NULL,
lib.size = NULL,
plot.it = FALSE,

)
Arguments

eset An ExpressionSet object with integer count data extractable with exprs().

method The normalization method to use.

annotation The annotation object for the library, required for the methods employing non-
targeting controls.

sampleKey An (optional) sample key, supplied as an ordered factor linking the samples to
experimental variables. The names attribute should exactly match those present
in eset, and the control set is assumed to be the first 1evel. If ‘method‘ = ‘FQ°,
the sampleKey is taken as the ‘sets® argument (and its format requirements are
similarly relaxed; see ‘?ct.normalizeFC").

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

plot.it Logical indicating whether to plot the ranked log2 gRNA count distributions
before and after normalization.
Other parameters to be passed to the individual normalization methods.

Value

A renormalized ExpressionSet. If specified, the sample level counts will be scaled so as to maintain
the validity of the specified 1ib.size values.

32 ct.normalizeMedians

Author(s)

Russell Bainer

See Also

ct.normalizeMedians, ct.normalizeBySlope, ct.normalizeNTC, ct.normalizeSpline

Examples

data('es')
data('ann')

#Build the sample key as needed

library(Biobase)

sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), 'ControlReference'))
names(sk) <- row.names(pData(es))

es.norm <- ct.normalizeGuides(es, 'scale', annotation = ann, sampleKey = sk, plot.it = TRUE)

es.norm <- ct.normalizeGuides(es, 'slope', annotation = ann, sampleKey = sk, plot.it = TRUE)

es.norm <- ct.normalizeGuides(es, 'controlScale', annotation = ann, sampleKey = sk, plot.it = TRUE, geneSymb =
es.norm <- ct.normalizeGuides(es, 'controlSpline', annotation = ann, sampleKey = sk, plot.it = TRUE, geneSymb =

ct.normalizeMedians Normalize sample abundance estimates by median gRNA counts

Description

This function normalizes Crispr gRNA abundance estimates by equalizing the median gRNA abun-
dance values after correcting for library size. It does this by converting raw count values to log2
counts per million and optionally adjusting further in the usual way by dividing these values by
user-specified library size factors. THis method should be more stable than the endogenous scaling
functions used in voom in th especific case of Crispr screens or other cases where the median number
of observed counts may be low.

Usage

ct.normalizeMedians(eset, lib.size = NULL)

Arguments
eset An ExpressionSet containing, at minimum, count data accessible by exprs.
lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.
Value

A renormalized ExpressionSet object of the same type as the provided object.

ct.normalizeNTC 33

Author(s)

Russell Bainer

Examples

data('es')

#Build the sample key and library sizes for visualization

library(Biobase)

sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), 'ControlReference'))
names(sk) <- row.names(pData(es))

1s <- colSums(exprs(es))

es.norm <- ct.normalizeMedians(es, lib.size= 1s)
ct.gRNARankByReplicate(es, sampleKey = sk, lib.size= 1s)
ct.gRNARankByReplicate(es.norm, sampleKey = sk, lib.size= 1s)

ct.normalizeNTC Normalize sample abundance estimates by the median values of non-
targeting control guides

Description

This function normalizes Crispr gRNA abundance estimates by equalizing the median abundances
of the nontargeting gRNAs within each sample. The normalized values are returned as normalized
counts in the ’exprs’ slot of the input eset. Note that this method may be unstable if the screening
library contains relatively few nontargeting gRNAs.

Usage

ct.normalizeNTC(eset, annotation, lib.size = NULL, geneSymb = NULL)

Arguments
eset An ExpressionSet object containing, at minimum, count data accessible by exprs.
annotation An annotation dataframe indicating the nontargeting controls in the genelD col-
umn.
lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.
geneSymb The geneSymbol identifier in annotation that corresponds to nontargeting gR-
NAs. If absent, ct.gRNARankByReplicate will attempt to infer nontarget-
ing guides by searching for 'no_gid' or NA in the appropriate columns via
ct.prepareAnnotation().
Value

A normalized eset.

34 ct.normalizeSpline

Author(s)

Russell Bainer

Examples

data('es')
data('ann')

#Build the sample key and library sizes for visualization

library(Biobase)

sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), 'ControlReference'))
names(sk) <- row.names(pData(es))

1s <- colSums(exprs(es))

es.norm <- ct.normalizeNTC(es, ann, lib.size = ls, geneSymb = 'NoTarget')

ct.gRNARankByReplicate(es, sk, lib.size = 1s)
ct.gRNARankByReplicate(es.norm, sk, lib.size = 1s)

ct.normalizeSpline Normalize sample abundance estimates by a spline fit to specific
shared elements

Description

This function normalizes Crispr gRNA abundance estimates by fiting a smoothed spline to a subset
of the gRNAs within each sample and then equalizing these curves across the experiment. Specifi-
cally, the algorithm ranks the gRNA abundance estimates within each sample and uses a smoothed
spline to determine a relationship between the ranks of the "anchor" guides and their abundance
estimates. It then adjusts the spline trends from each sample to the mean of all of the sample spline
fits in a manner analogous to quantile normalization, interpolating the gRNA abundance values be-
tween the anchor points; these values are returned as normalized counts in the ’exprs’ slot of the
input eset.

Usage

ct.normalizeSpline(eset, annotation, geneSymb = NULL, lib.size = NULL)

Arguments

eset An ExpressionSet object containing, at minimum, count data accessible by exprs.

annotation An annotation dataframe indicating the nontargeting controls in the genelD col-
umn.

geneSymb The geneSymbol identifier(s) in annotation that corresponds to the "anchor”
gRNAs. If absent, the method will attempt to infer nontargeting guides by
searching for 'no_gid' or NA in the appropriate columns.

lib.size An optional vector of voom-appropriate library size adjustment factors, usually

calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

ct.numcores 35

Value

A normalized eset.

Author(s)

Russell Bainer

Examples

data('es')
data('ann')

#Build the sample key and library sizes for visualization
library(Biobase)

sk <- (relevel(as.factor(pData(es)$TREATMENT_NAME), 'ControlReference'))
names(sk) <- row.names(pData(es))

1s <- colSums(exprs(es))

es.norm <- ct.normalizeSpline(es, ann, 'NoTarget', lib.size = 1s)
ct.gRNARankByReplicate(es, sk, lib.size = 1s)
ct.gRNARankByReplicate(es.norm, sk, lib.size = 1s)

ct.numcores Checks and Possibly Sets the Number of Cores to be Used in Parallel
Processing

Description

This function determines the number of cores that the user is expecting to use during parallel pro-
cessing operations, and if absent, sets the mc. cores option to the maximum value. Users who do
not wish to use all available cores during parallel processing should do so by invoking options()
from the command line prior to analysis.

Usage

ct.numcores()

Value

Nothing, but invisibly sets options(mc.cores) if currently NULL.

Author(s)

Russell Bainer, Pete Haverty

36 ct.parseGeneSymbol

ct.parseGeneSymbol Parse ‘geneSymbol* values to construct an alternative annotation list

Description

This is an accessory function to ‘ct.expandAnnotation()‘ function, which enables users to expand
annotation objects to accomodate reagent libraries where reagents are expected to impact a set of
known targets. See documentation for that function for additional details.

Often, libraries that contain multiply-targeting reagents are annotated using a structured format that
can be decomposed by regex matching. This function takes in an annotation object containing
an ‘ID‘ column indicating the reagent ID and a ‘geneSymbol‘ column containing the target map-
pings, and parses the target mappings according to a known annotation format. Currently supported
formats are ’cellecta’ (e.g., "TARGET_P1P2P3’ indicating multiple promoters associated with a
known target), and "underscore’, where different targets are concatenated using the underscore sep-
arator (e.g., "TARGET1_TARGET2_TARGET3").

Returns an ‘alt.annotation‘-type list of character vectors encoding the target mappings for each

reagent.
Usage
ct.parseGeneSymbol (ann, format = c("cellecta”, "underscore"))
Arguments
ann A data. frame containing reagent-level information encoded as rows. The ‘ID*
column should correspond to the individual reagent identifiers, and the ’geneSym-
bol” column should contain target annotation strings to be parsed (both are co-
erced to strings). Does not, strictly speaking, need to be a proper annotation
object, but one of those will work.
format Format of the geneSymbol column strings.
Value

A named ‘alt.annotation ‘-type list of character vectors encoding the target mappings for each reagent

Author(s)

Russell Bainer

Examples

fakeann <- data.frame('ID' = LETTERS[1:4], 'geneSymbol' =c('T1_P1', 'T1_P1P2', 'T1_P2P1', 'T1_P2'))
ct.parseGeneSymbol (fakeann, 'cellecta')
ct.parseGeneSymbol (fakeann, 'underscore')

ct.PRC 37

ct.PRC Generate a Precision-Recall Curve from a CRISPR screen

Description

Given a set of targets of interest, this function generates a Precision Recall curve from the results of
a CRISPR screen. Specifically, it orders the target elements in the screen in the specified direction,
and then plots the recall rate (proportion of true targets identified) against the precision (proportion
of identified targets that are true targets).

Note that ranking statistics in CRISPR screens are (usually) permutation-based, and so some gran-
ularity in the rankings is expected. This function does a little extra work to ensure that hits are
counted as soon as the requisite value of the ranking statistic is reached regardless of where the
gene is located within the block of equally-significant genes. Functionally, this means that the
drawn curve is somewhat anticonservative in cases where the gene ranks are not well differentiated.

Usage
ct.PRC(
summaryDF,
target.list,
direction = c("enrich”, "deplete”),
plot.it = TRUE
)
Arguments
summaryDF A dataframe summarizing the results of the screen, returned by the function
ct.generateResults.
target.list A character vector containing the names of the targets to be tested; by default
these are assumed to be ‘genelD‘s, but specifying ‘collapse=geneSymbol‘ en-
ables setting on ‘geneSymbol‘ by passing that value through to ‘ct.simpleResult*.
direction Direction by which to order target signals (‘enrich’ or ‘deplete®).
plot.it Logical value indicating whether to plot the curves.
Value

A list containing the the x and y coordinates of the curve.

Author(s)

Russell Bainer

Examples

data('resultsDF')

data('essential.genes') #Note that this is an artificial example.
pr <- ct.PRC(resultsDF, essential.genes, 'enrich')

str(pr)

38

ct.prepareAnnotation

ct.prepareAnnotation Check and optionally subset an annotation file for use in a Crispr
Screen

Description

This function processes a supplied annotation object for use in a pooled screening experiment.
Originally this was processed into something special, but now it essentially returns the original
annotation object in which the geneSymbol column has been factorized. This is primarily used
internally during a call to the ct.generateResults() function. Also performs some minor func-
tionality checking, and ensures that the reagent identifiers are present as an ‘ID‘ column (if absent,
the row.names are used).

Valid annotations contain both ‘genelD‘ and ‘geneSymbol‘ columns. This is because there is of-
ten a distinction between the official gene that is being targeted and a coherent set of gRNAs that
make up a testing cohort. For example, multiple sets of guides may target distinct promoters, exons,
or other entities that are expected to produce distinct biological phenomena related to the gene that
should be interpreted separately. For this reason, the ‘genelD* column encodes the official gene des-
ignation (typically an ensembl or entrez gene identifier) while the ‘geneSymbol‘ column contains
a human-readable descriptor of the gRNA target (such as a gene symbol or promoter name). This
mapping can be further expanded to incorporate mapping ambiguity via the ‘ct.expandAnnotation()*
function.

Usage

ct.prepareAnnotation(ann, object = NULL, controls = TRUE, throw.error = TRUE)

Arguments
ann A data.frame containing an annotation object with gRNA-level information
encoded as rows. The row.names attribute should correspond to the individ-
ual gRNAs, and it should at minimum contain columns named ’genelD’ and
"geneSymbol’ indicating the corresponding gRNA target gene ID and symbol,
respectively.
object If supplied, an object with row.names to be used to subset the supplied annota-
tion frame for downstream analysis.
controls The name of a value in the geneSymbol column of ann that corresponds to non-
targeting control gRNAs. May also be supplied as a logical value, in which case
the function will try to identify and format nontargeting guides.
throw.error Logical indicating whether to throw an error when controls is TRUE but no
nontargeting gRNAs are detected.
Value

A new annotation data frame, usually with nontargeting controls and NA values reformatted to
NoTarget (and genelD set to 'no_gid'), and the ’geneSymbol’ column of ann factorized. If sup-
plied with an object, the gRNAs not present in the object will be omitted.

Author(s)

Russell Bainer

ct.preprocessFit 39

Examples

data('ann')

data('es')

es <- ct.filterReads(es)

newann <- ct.prepareAnnotation(ann, es)

ct.preprocessFit Preprocess a "MArrayLM’ model fit object to include only one con-
trast.

Description
This function preprocesses a fit object returned from eBayes to include only the values relevant to
the modelTerm specified.

Usage

ct.preprocessFit(fit, modelTerm)

Arguments

fit An object of class MArrayLM to be processed.

modelTerm The model coefficient to be isolated for downstream analyses.
Value

A MArrayLM object for downstream processing.

Author(s)

Russell Bainer

Examples

#lLoad and preprocess data
data('es')
library(Biobase)
library(limma)

#Make a multi-level contrast

design <- model.matrix(~ @ + TREATMENT_NAME, pData(es))

colnames(design) <- gsub('TREATMENT_NAME', '', colnames(design))

contrasts <- makeContrasts((ControlExpansion - ControlReference), (DeathExpansion - ControlExpansion), levels

#Make a multi-level fit object

vm <- voom(exprs(es), design)

fit <- ImFit(vm, design)

fit <- contrasts.fit(fit, contrasts)
fit <- eBayes(fit)

#And trim it
fit2 <- ct.preprocessFit(fit, modelTerm = '(DeathExpansion - ControlExpansion)')

40 ct.rankSimple

ncol (fit)
ncol (fit2)

ct.rankSimple Rank Signals in a Simplified Pooled Screen Result Object

Description

This function takes in a supplied results data.frame, optionally transforms it into a ‘simplifiedResult’,
and returns the ranks of the target-level signals.

Usage

ct.rankSimple(df, top = c("enrich”, "deplete”))

Arguments
df A results data.frame, in either raw or simplified form. Will be converted to
simplified form if necessary.
top Determines the directionality of the ranking. ‘enrich‘ defines ranks from the
most enriched to the most depleted target; ‘deplete does the opposite
Value

A numeric vector of ranks, with length equal to the number of rows in the simplified data.frame.

Author(s)

Russell Bainer

Examples

data('resultsDF')

df.simple <- ct.simpleResult(resultsDF)

sr <- ct.rankSimple(resultsDF)

all((df.simples$best.p[sr == 1] == @), (df.simple$direction[sr == 1] == 'enrich'))

sr <- ct.rankSimple(resultsDF, 'deplete')
all((df.simples$best.p[sr == 1] == @), (df.simple$direction[sr == 1] == 'deplete'))

ct.rawCountDensities 41

ct.rawCountDensities Visualization of Raw gRNA Count Densities

Description

This function plots the per-sample densities of raw gRNA read counts on the logl0 scale. The
curve colors are assigned based on a user- specified sampleKey. This function is primarily useful to
determine whether libraries are undersequenced (low mean raw gRNA counts), contaminated (many
low-abundance gRNAs present), or if PCR artifacts may be present (subset of extremely abundant
guides, multiple gRNA distribution modes). In most well-executed experiments the majority of
gRNAs will form a tight distribution around some reasonably high average read count (hundreds
of reads), at least among the control samples. Excessively low raw count values can compromise
normalization steps and subsequent estimation of gRNA levels, especially in screens in which most
gRNAs have minimal effects on cell viability.

Usage

ct.rawCountDensities(eset, sampleKey = NULL, lib.size = NULL)

Arguments
eset An ExpressionSet object containing, at minimum, count data accessible by ex-
prs() and some phenoData.
sampleKey A sample key, supplied as a (possibly ordered) factor linking the samples to
experimental variables. The names attribute should exactly match those present
in eset, and the control set is assumed to be the first level.
lib.size Optional named vector of library sizes (total reads within the library) to enable
normalization
Value

A density plot as specified on the default device.

Author(s)

Russell Bainer

Examples

data('es"')

#Build the sample key

library(Biobase)

sk <- relevel(as.factor(pData(es)$TREATMENT_NAME), 'ControlReference')
names(sk) <- row.names(pData(es))

ct.rawCountDensities(es, sk)

42 ct.resultCheck

ct.regularizeContrasts
Regularize Two Screening Results Objects

Description

This function prepares multiple ‘gCrisprTools* results dataframes for comparison. Specifically, it
checks that all provided data frames are valid result objects, converts each to the target-wise ‘sim-
pleResult* format, removes signals that are not shared by all objects, places their rows in identical
order, and then returns the simplified dataframes as a list.

This function is largely meant to be used by other gCrisprtools functions, although there are occa-
sions when an analyst may want to call it directly. Often, it is useful to pass the ‘collapse‘ argument
to ‘ct.simpleresult()‘ in cases where libraries and technologies differ between screens.

Usage

ct.regularizeContrasts(dflist, collapse = c("geneSymbol”, "genelD"))

Arguments
dflist A list of results dataframes. Names will be preserved.
collapse Column of the provided resultsDFs on which to collapse values; should be
‘geneSymbol‘ or ‘genelD°.
Value

A list of the in-register ‘simpleResult‘ objects, with length and names identical to ‘dflist°.

Examples

data('resultsDF")
lapply(ct.regularizeContrasts(list('df1' = resultsDF[1:300,], 'df2' = resultsDF[200:400,]1)), nrow)

ct.resultCheck Determine whether a supplied object contains the results of a Pooled
Screen

Description

Many gCrisprTools functions operate on a data. frame of results generated by a CRISPR screen.
This function takes in a supplied object and returns a logical indicating whether the object can be
treated as one of these data.frames for the purposes of downstream analyses. This is largely used
internally, but can be useful if a user needs to build a result object for some reason.

Usage

ct.resultCheck(summaryDF)

ct.ROC 43

Arguments
summaryDF A data.frame, usually returned by ct.generateResults. if you need to gen-
erate one of these by hand for some reason, see the example resultsDF object
loaded in the example below.
Value

A logical indicating whether the object is of the appropriate format.

Author(s)

Russell Bainer

Examples

data('resultsDF")
ct.resultCheck(resultsDF)

ct.ROC Generate a Receiver-Operator Characteristic (ROC) Curve from a
CRISPR screen

Description

Given a set of targets of interest, this function generates a ROC curve and associated statistics from
the results of a CRISPR screen. Specifically, it orders the elements targeted in the screen in the
specified direction, and then plots the cumulative proportion of positive hits on the y-axis. The
corresponding vectors and Area Under the Curve (AUC) statistic are returned as a list.

Note that ranking statistics in CRISPR screens are (usually) permutation-based, and so some gran-
ularity is expected. This function does a little extra work to ensure that hits are counted as soon as
the requisite value of the ranking statistic is reached regardless of where the gene is located within
the block of equally-significant genes. Functionally, this means that the drawn curve is somewhat
anticonservative in cases where the gene ranks are not well differentiated.

Usage

ct.ROC(
summaryDF,
target.list,
direction = c("enrich”, "deplete”),
condense = TRUE,
plot.it = TRUE,

)
Arguments
summaryDF A dataframe summarizing the results of the screen, returned by the function
ct.generateResults.
target.list A character vector containing the names of the targets to be tested. Only targets

contained in the geneSymbol column of the provided summaryDF are considered.

44 ct.RRAalpha

direction Direction by which to order target signals (‘enrich’ or ‘deplete®).

condense Logical indicating whether the returned x and y coordinates should be ’con-
densed’, returning only the points at which the detected proportion of target.list
changes. If set to FALSE, the returned x and y vectors will explicitly indicate
the curve value at every position (useful for performing curve arithmetic down-
stream).

plot.it Logical value indicating whether to plot the curves.

Additional parameters for ‘ct.simpleResult()*

Value

A list containing the the x and y coordinates of the curve, and the AUC statistic (invisibly).

Author(s)

Russell Bainer

Examples

data('resultsDF")
data('essential.genes') #Note that this is an artificial example.

roc <- ct.ROC(resultsDF, essential.genes, direction = 'deplete')
str(roc)
ct.RRAalpha Aggregation of P-value Ranks using a Beta Distribution and Alpha
Cutoff
Description

This function is called internally as a single instance of the beta aggregation step in RRAa. Users
should not interact with it directly. The expected input is a set of rank statistics, and a paired alpha
argument defining which values to consider in downstream analyses (see below).

As of gCrisprTools 2.0, this function does not consider ‘row.names‘ associated with the provided
values, and the p-values are expected to be provided in register with the provided ‘g.key*‘ object.

Usage
ct.RRAalpha(p, g.key, shuffle = FALSE)

Arguments
p A single column matrix of rank statistics.
g.key data.frame with guide and gene names
shuffle Logical indicating whether to shuffle the rank statistics prior to calculating the
rho statistics (useful for permutation).
Value

Nothing, or a named list of target-level P-values, which are treated as a rho statistic in the permuta-
tion step.

ct.RRAalphaBatch 45

Author(s)

Russell Bainer

Examples

data('fit')
data('ann')
geneScores <- ct.RRAalpha(fit$p.value, ann, shuffle = FALSE)

ct.RRAalphaBatch Create Batches of Null Permutations for a Crispr Screen

Description

This is a wrapper function to partition batches of calls to ct.RRAalpha() for multicore processing.
It is called internally as a single instance of the beta aggregation step in RRAa. Users should not
interact with it directly.

Usage

ct.RRAalphaBatch(

p,

g.key,
result.environment,
batch.size = 100,
permutation.seed = NULL

)
Arguments
p A single column matrix of rank statistics, with row.names indicating the gRNA
labels.
g.key data.frame with guide and gene names

result.environment

The target environment containing the quasi-global variables incremented dur-
ing the permutations in the child functions.

batch.size Number of iterations to deploy to each daughter process.
permutation.seed
numeric seed for permutation reproducibility. Default is NULL, in which case no
seed is set.
Value
An integer vector indicating the number of iterations in which each gene’s score was better than
those indicated in result.environment$obs.

Author(s)

Russell Bainer

46 ct.RRAaPvals

ct.RRAaPvals gRNA signal aggregation via RRAa

Description

This is a wrapper function implementing the RRAalpha p-value aggregation algorithm. Takes in a
set of gRNA rank scores (formatted as a single-column numeric matrix with row.names indicating
the guide names) and a list object of gRNA annotations (names are the gene targets, and each ele-
ment of the list contains a vector of the corresponding guide names). The rank scores are converted
to gene-level statistics that are thenm transformed into empirical p-values by permutation.

Usage

ct.RRAaPvals(p, g.key, permute, permutation.seed = NULL, multi.core = NULL)

Arguments
p A single column matrix of ranking scores, with row.names indicating the gRNA
labels
g.key An annotation data frame of gRNAs, minimally containing a factorized ’geneSym-
bol’ column indicating the target names. This is typically generated by calling
the ct.buildKeyFromAnnotation() function.
permute Number of permutations to be used during empirical p-value estimation.

permutation.seed
numeric seed for permutation reproducibility. Default: NULL means to not set
any seed.

multi.core Deprecated, does nothing

Value

A named list of target-level empirical P-values.

Author(s)

Russell Bainer

Examples

data('fit')
data('ann')
genePvals <- ct.RRAaPvals(fit$p.value, ann, permute = 100)

ct.scatter 47

ct.scatter Compare Two CRISPR Screen Contrasts via a Scatter Plot

Description

This is a function for comparing the results of two screening experiments. Given two summaryDF,
the function places them in register with one another, generates a simplified scatter plot where
enrichment or depletion in each contrast is represented by the associated "signed" log10 (*P*/*Q*)-
value (where enriched signals are represented in the positive direction and depleted signals are
shown in the negative direction), and returns an invisible ‘data.frame‘ containing the target X-axis
and Y-axis coordinates and corresponding quadrant.

This is a target-level analysis, and some minor simplifications are introduced to screen signals
for the sake of clarity. Principal among these is the decision to collapse gene signals to a single
directional enrichment statistic. Target-level signals are typically aggregates of many guide-level
signals, it is formally possible for targets to be both significantly enriched and significantly depleted
within a single screen contrast as a result of substantially divergent reagent activity. This behavior
is uncommon, however, and so targets are represented by selecting the direction of enrichment or
depletion associated with the most significant (*P*/*Q*)-value. This directionality is then encoded
into the X-axis and Y-axis position of the target as the sign of the signal as described above.

Usage

ct.scatter(
dflist,
targets = c("geneSymbol”, "geneID"),
statistic = c("best.p”, "best.q"),
cutoff = 0.05,
plot.it = TRUE

)
Arguments
dflist A (named) list of results dataframes, of length 2. See ct.generateResults.
targets Column of the provided summaryDF to consider. Must be geneID or geneSymbol.
statistic Statistic to plot on each axis (after -log10 transformation). Must be ’p’, ’q’, or
’rho’.
cutoff significance cutoff used to define the significance quadrants (cannot be exactly
Z€ero).
plot.it Logical indicating whether to compose the plot on the default device.
Value

Invisibly, a list of length 4 containing the genes passing significance for the respective quadrants.

Author(s)

Russell Bainer

48 ct.seas

Examples

data('resultsDF')
scat <- ct.scatter(list('FirstResult' = resultsDF[100:2100,], 'SecondResult' = resultsDF[1:2000,]1))
head(scat)

ct.seas Geneset Enrichment within a CRISPR screen using ‘sparrow

Description

This function is a wrapper for the ‘sparrow::seas()‘ function, which identifies differentially en-
riched/depleted ontological categories within the hits identified by a pooled screening experiment,
given a provided ‘GenseSetDb()‘ object and a list of results objects created by ‘ct.generateResults()‘.
By default testing is performed using ‘fgsea‘ and a hypergeometric test (‘sparrow::ora()‘), and re-
sults are returned as a ‘SparrowResult* object.

This function will attempt to coerce them into inputs appropriate for the above analyses via ‘ct.seasPrep()°,
after checking the relevant parameters within the provided ‘GeneSetDb°‘. This is generally easier

than going through the individual steps yourself, especially when the user is minimally postprocess-

ing the contrast results in question.

Sometimes, it can be useful to directly indicate the set of targets to be included in an enrichment
analysis (e.g., if you wish to expand or contract the set of active targets based on signal validation or
other secondary information about the experiment). To accomodate this use case, users may include
a logical column in the provided result object(s) indicating which elements should be included
among the positive signals exposed to the test.

Note that many pooled libraries specifically target biased sets of genes, often focusing on genes
involved in a particular pathway or encoding proteins with a shared biological property. Conse-
quently, the enrichment results returned by this function represent the disproportionate enrichment
or depletion of targets annotated to pathways *within the context of the screen*, and may or may not
be informative of the underlying biology in question. This means that pathways not targeted by a
library will obviously never be enriched a positive target set regardless of their biological relevance,
and pathways enriched within a focused library screen are similarly expected to partially reflect the
composition of the library and other confounding issues (e.g., number of targets within a pathway).
Analysts should therefore use this function with care. For example, it might be unsurprising to
detect pathways related to histone modification within a screen employing a crispr library primarily
targeting epigenetic regulators.

Usage
ct.seas(dflist, gdb, active = "replicated”, ...)
Arguments
dflist A result object created by ‘ct.generateResults(), or a named list containing
many of them; will be passed as a list to ‘ct.seasPrep()‘ with the associated
‘...c arguments.
gdb A ‘GenseSetDb* object containing annotations for the targets specified in ‘re-
sult®.
active Name of a column in the supplied result(s) that should be used to indicate ac-

tive/selected targets.

Additional arguments to pass to ‘ct.seasPrep()‘ or ‘sparrow::seas()‘.

ct.seasPrep 49

Value

A named list of ‘SparrowResults* objects.

Author(s)

Steve Lianoglou for seas; Russell Bainer for GeneSetDb processing and wrapping functions.

Examples

data('resultsDF')
gdb <- sparrow::getMSigGeneSetDb(collection = 'h', species = 'human', id.type = 'entrez')
ct.seas(list('longer' = resultsDF, 'shorter' = resultsDF[1:10000,]), gdb)

ct.seasPrep Prepare one or more resultsDF objects for analysis via Sparrow.

Description

Take in a list of results objects and return an equivalently-named list of input ‘data.frames* appropri-
ate for ‘sparrow::seas()‘. By construction, the relevant target unit is extracted from the ‘geneSym-
bol* column of the provided results objects, which may. Note that the genewise ‘@logFC* slot in
the returned object will contain the appropriately-signed Z transformation of the P-value assigned
to the target. In most applications this is arguably more interpretable than e.g., the median gRNA
log2 fold change.

Usage

ct.seasPrep(
dflist,
collapse.on = c("genelID", "geneSymbol"),
cutoff = 0.1,
statistic = c("best.q", "best.p"),
regularize = FALSE,

gdb = NULL,
active = "replicated”
)
Arguments
dflist A list of gCrisprTools results ‘data.frames® to be formatted.
collapse.on Should targets be annotated as ‘geneSymbol‘s or ‘genelD‘s (default)?
cutoff Numeric maximum value of ‘statistic‘ to define significance.
statistic Should cutoffs be calculated based on FDR (‘best.q‘) or P-value (‘best.p‘)?
regularize Logical indicating whether to regularize the result objects in ‘dflist‘ (e.g., use
intersection set of all targets), or keep as-is.
gdb Optionally, a ‘GeneSetDb* object to enable proper registration of the output. If

provided, the collapsing features in the provided ‘simpleDF‘s must be present in
the ‘gsd@db$feature_id* slot. Note that a GREAT-style ‘GeneSetDb* that has
been conformed via ‘ct. GREATdb()‘ will use ‘genelD‘s as the ‘feature_id*.

50 ct.signalSummary

active Optionally, the name of a logical column present in the provided result that will
be used to define significant signals. This is set to ‘replicated* by default to If
a valid column name is provided, this overrides the specification of ‘cutoff* and
‘statistic’.
Value

A list of ‘data.frames* formatted for evaluation with ‘sparrow::seas()".

Examples

data(resultsDF)
ct.seasPrep(list('longer' = resultsDF, 'shorter' =resultsDF[1:10000,]), collapse.on = 'geneSymbol')

ct.signalSummary Generate a Figure Summarizing Overall Signal for One or More Tar-
gets

Description

Given one or more targets of interest, this function generates a summary image contextualizing the
corresponding signals within the provided contrast. This takes the form of an annotated ranking
curve of target-level signals, supplemented with horizontal Q-value cutoffs and an inset volcano
plot of gRNA behavior.

Limited annotation is provided for the specified targets using the following logic:

- If a character vector is provided, up to five targets are annotated; longer lists are highlighted
without specifying individual elements. - If a list is provided, the ‘names‘ element is used as the
annotation. This is similarly constrained to a total of 5 annotated elements.

Usage
ct.signalSummary(summaryDF, targets, callout = FALSE, ...)
Arguments
summaryDF A dataframe summarizing the results of the screen, returned by the function
ct.generateResults.
targets A list or character vector containing the names of the targets to be displayed.
Only targets contained in the column specified by the ‘collapse‘ parameter to
‘ct.simpleResult()‘ will be displayed; default is ‘geneSymbol°. Plotting priority
(e.g., the points to plot last in the case of overlapping signals) is given to earlier
elements in the list.
callout Logical indicating whether lines should be plotted indicating individual gene
sets to augment the point highlighting.
Additional optional arguments to ‘ct.simpleResult()*
Value

A summary plot on the current device.

ct.simpleResult 51

Author(s)

Russell Bainer

Examples

data('resultsDF')
ct.signalSummary(resultsDF, list('CandidateA' = 'Target229', 'Pathway3' = resultsDF$geneSymbol[c(42,116,1138

ct.simpleResult Convert a verbose results DF object to a gene-level result object

Description

Convenience function to reduce a full results object to a gene-level object that retains minimal
statistics (or alternatively, check that a provided simple result object is valid).

Usage

ct.simpleResult(summaryDF, collapse = c("geneSymbol”, "genelD"))

Arguments
summaryDF A data. frame, usually returned by ct.generateResults. if you need to gen-
erate one of these by hand for some reason, see the example resultsDF object
loaded in the example below.
collapse Column of the provided resultsDF on which to collapse values; in most cases
this should be ‘geneSymbol‘ or ‘genelD*.
Value

A gene-level ‘data.frame®, with guide-level information omitted

Author(s)

Russell Bainer

Examples

data('resultsDF')
ct.simpleResult(resultsDF)

52 ct.stackGuides

ct.softlLog Log10 transform empirical P-values with a pseudocount

Description
This function -log10 transforms empirical P-values by adding a pseudocount of 1/2 the minimum
nonzero value.

Usage

ct.softlLog(x)

Arguments

X numeric vector.

Value

-log10-transformed version of X.

Examples

ct.softLog(runif(20))

ct.stackGuides View a stacked representation of the most variable targets or individ-
ual guides within an experiment, as a percentage of the total aligned
reads
Description

This function identifies the gRNAs or targets that change the most from sample to sample within an
experiment as a percentage of the entire library. It then plots the abundance of the top nguides as a
stacked barplot for all samples in the experiment. The purpose of this algorithm is to detect potential
distortions in the library composition that might not be properly controlled by sample normalization,
and so the most variable entites are defined by calculating the percent of aligned reads that they
contribute to each sample, and then ranking each entity by the range of these percentages across all
samples. Consequently, gRNAs or Targets that are highly abundant in at least one condition will be
are more likely to be identified.

Usage

ct.stackGuides(
eset,
sampleKey = NULL,
nguides = 20,
plotType = "gRNA",
annotation = NULL,
ylimit = NULL,
subset = NULL

ct.targetSetEnrichment 53

Arguments

eset An ExpressionSet object containing, at minimum, a matrix of gRNNA abundances
extractable with the exprs() function, and a metadata object containing a col-
umn named SAMPLE_LABEL containing unique identifers for each sample. The
colnames should be syntactically

sampleKey An optional sample key, supplied as an ordered factor linking the samples to
experimental variables. The names attribute should exactly match those present
in eset, and the control set is assumed to be the first level.

nguides The number of guides (or targets) to display.

plotType A string indicating whether the individual guides should be displayed ("’gRNA’),
or if they should be aggregated into target-level estimates ("Target’) according
to the geneSymbol column in the annotation object.

annotation An optional data.frame containing an annotation object to be used to aggregate
the guides into targets. gRNAs are annotated by row, and must minimally con-
tain a column geneSymbol indicating the target elements.

ylimit An optional numeric vector of length 2 specifying the y limits for the plot, useful
in comparin across studies.

subset An optional character vector containing the sample labels to be used in the anal-
ysis; all elements must be contained in the colnames of the specified eset.

Value

A stacked barplot displaying the appropriate entities on the default device.

Author(s)

Russell Bainer

Examples

data('es')
data('ann')
ct.stackGuides(es, nguides = 20, plotType = 'Target', annotation = ann, ylimit = NULL, subset = NULL)

ct.targetSetEnrichment
Run a (limited) Pathway Enrichment Analysis on the results of a Crispr
experiment.

Description

This function enables some limited geneset enrichment-type analysis of data derived from a pooled
Crispr screen using the PANTHER pathway database. Specifically, it identifies the set of targets
significantly enriched or depleted in a summaryDF object returned from ct.generateResults and
compares that set to the remaining targets in the screening library using a hypergeometric test.

Note that many Crispr gRNA libraries specifically target biased sets of genes, often focusing on
genes involved in a particular pathway or encoding proteins with a shared biological property. Con-
sequently, the enrichment results returned by this function represent the pathways containing genes
disproportionately targeted *within the context of the screen*, and may or may not be informative

54

ct.targetSetEnrichment

of the underlying biology in question. This means that pathways not targeted by a Crispr library will
obviously never be enriched within the positive target set regardless of their biological relevance,
and pathways enriched within a focused library screen are similarly expected to partially reflect the
composition of the library and other confounding issues (e.g., number of targets within a pathway).
Analysts should therefore use this function with care. For example, it might be unsurprising to
detect pathways related to histone modification within a screen employing a crispr library targeting
epigenetic regulators.

This is a function that invokes the PANTHER.db Bioconductor library to extract a list of pathway
mappings to be used in gene set enrichment tests. Specifically, the function returns a named list of
pathways, where each element contains Entrez IDs. Users should not generally call this function
directly as it is invoked internally by the higher-level ct.PantherPathwayEnrichment () function.

This function takes in a resultsDF and a vector of targets (contained in the geneID column of
resultsDF) and determines whether the specified targets are enriched within the set of all signif-
icantly altered targets. It does this by iteratively testing whether targets are more likely to be
among the set of enriched or depleted targets at various significance thresholds using a hypergeo-
metric test. Note that the returned Hypergeometric P-values are not corrected for multiple testing.

Returns a list detailing the targets used in the tests, and tables indicating the results of the hyper-
geometric test at various significance thresholds.

Usage
ct.targetSetEnrichment(
summaryDF,
targets,
enrich = TRUE,
ignore = "NoTarget”,
)
Arguments
summaryDF A dataframe summarizing the results of the screen, returned by the function
ct.generateResults. Internally coerced via ‘ct.simpleResult()‘.
targets A character vector containing the names of the targets to be tested; by default
these are assumed to be ‘genelD‘s, but specifying ‘collapse=geneSymbol‘ en-
ables setting on ‘geneSymbol‘ by passing that value through to ‘ct.simpleResult’.
enrich Logical indicating whether to consider guides that are enriched (default) or de-
pleted within the screen.
ignore Optionally, a character vector containing elements of the summaryDF that should

be ignored in the analysis (e.g., unassignable or nonfunctional targets, such as
nontargeting controls). By default, this function omits targets with geneSymbol
’NoTarget’.

e Additional parameters to pass to ‘ct.simpleResult’.

pvalue.cutoff A gene-level p-value cutoff defining targets of interest within the screen. Note
that this is a nominal p-value cutoff to preserve end-user flexibility.

organism The species of the cell line used in the screen; currently only human’ or "'mouse’
are supported.

db.cut Minimum number of genes annotated to a given to a pathway within the screen
in order to consider it in the enrichment test.

species The species of the cells used in the screen. Currently only human’ or “mouse’
are supported.

ct.topTargets 55

Value
A dataframe of enriched pathways.
A named list of pathways from PANTHER. db.

A named list containing the tested target set and tables detailing the hypergeometric test results
using various P-value and Q-value thresholds.

Author(s)

Russell Bainer, Steve Lianoglou
Russell Bainer, Steve Lianoglou.

Russell Bainer

Examples

data(resultsDF)
tar <- sample(unique(resultsDF$geneSymbol), 20)
res <- ct.targetSetEnrichment(resultsDF, tar)

ct.topTargets Display the log2 fold change estimates and associated standard devi-
ations of the guides targeting the top candidates in a crispr screen

Description

This is a function for displaying candidates from a crispr screen, using the information summa-
rized in the corresponding fit and the output from ct.generateResults(). The fold change
and standard deviation estimates for each gRNA associated with each target (extracted from the
coefficients and stdev.unscaled slot of fit) are plotted on the y axis. Targets are selected on
the basis of their gene-level enrichment or depletion P-values; in the case of ties, they are ranked on
the basis of their corresponding Rho statistics.

Usage

ct.topTargets(
fit,
summaryDF,
annotation,
targets = 10,
enrich = TRUE,
contrast.term = NULL

)
Arguments
fit An object of class MArrayLM containing, at minimum, a coefficents slot with
coefficients from the comparison, and a stdev.unscaled slot with the corre-
sponding standard deviation of the coefficent estimates. The row.names at-
tribute should ideally match that which is found in annotation.
summaryDF A data.frame summarizing the results of the screen, returned by the function

ct.generateResults.

56

ct.upSet

annotation An annotation object for the experiment. gRNAs are annotated by row, and must
minimally contain a column geneSymbol.

targets Either the number of top targets to display, or a list of geneSymbols contained
in the geneSymbol slot of the annotation object.

enrich Logical indicating whether to display guides that are enriched (default) or de-
pleted within the screen. If a vector of geneSymbols is specified, this controls
the left-tO-right ordering of the corresponding gRNAs.

contrast.term If a fit object with multiple coefficients is passed in, a string indiating the coef-
ficient of interest.

Value

An image on the default device indicating each gRNA’s log2 fold change and the unscaled standard
deviation of the effect estimate, derived from the MArrayLM object.

Author(s)

Russell Bainer

Examples

data('fit')
data('resultsDF')
data('ann')

ct.topTargets(fit, resultsDF, ann)

ct.upSet Consolidate shared signals across many contrasts in an UpSet Plot

Description

This function takes in a named list of ‘results® dataframes produced by ‘ct.generateResults()‘ or
similar, harmonizes them, and identifies overlaps between them using the logic implemented in
‘ct.compareContrasts()‘. It then uses the overlaps of these sets to compose an UpSet plot summa-
rizing shared overlaps of the provided contrasts. These overlaps can be specified with some detail
via arguments passed to the ‘ct.compareContrasts()‘ function; see documentation for more details.

Note that the UpSet plot is constructed to respect signal directionality, and by default constructs
overlaps conditionally, but in a *bidirectional* manner. That is, a signal is considered observed in
two (or more) contrasts regardless of the contrast from which the stringent signal is observed, so
a signal replicated in three contrasts is interpreted as a target for which the evidence crosses the
stringent threshold in one or more of the contrasts and passes the lax contrast in the others.

Note that multiple important parameters are passed directly to ‘ct.compareContrasts()* if not speci-
fied in the command. Users are advised to study the corresponding manual page to better understand
their options regarding contrast thresholding, orientation, etc.

Usage

ct.upSet(dflist, add.stats = TRUE, nperm = 10000, ...)

ct.viewControls 57

Arguments
dflist a named list of (possibly simplified) ‘resultsDf*s.
add.stats Logical indicating whether the significance of set overlaps should be included
in the visualization.
nperm Number of permutations for P-value generation. Ignored if ‘add.stats‘ is ‘FALSE".
Other named arguments to ‘ComplexHeatmap::UpSet()‘, ‘ct.compareContrasts*,
or ‘ct.simpleResult()*.
Value

An UpSet plot on the current device. Silently, a combination matrix appropriate for plotting that
plot, containing useful information about the observed intersections.

Author(s)

Russell Bainer

Examples

data('resultsDF")
sets <- ct.upSet(list('first' = resultsDF, 'second' = resultsDF[1:5000,]))

ct.viewControls View nontargeting guides within an experiment

Description

This function tries to identify, and then plot the abundance of, the full set of non-targeting controls
from an ExpressionSet object. Ideally, the user will supply a geneSymbol present in the appropriate
annotation file that uniquely identifies the nontargeting gRNAs. Absent this, the the function will
search for common identifier used by nontargeting controls (genelD ’no_gid’, or geneSymbol NA).

Usage

ct.viewControls(
eset,
annotation,
sampleKey,
geneSymb = NULL,
normalize = TRUE,
lib.size = NULL

)
Arguments
eset An ExpressionSet object containing, at minimum, a matrix of gRNNA abundances
extractable with the exprs function.
annotation An annotation data.frame for the experiment. gRNAs are annotated by row, and

must minimally contain columns geneSymbol and genelD.

58

sampleKey

geneSymb

normalize

lib.size

Value

ct.viewGuides

A sample key, supplied as an ordered factor linking the samples to experimental
variables. The names attribute should exactly match those present in eset, and
the control condition is assumed to be the first level.

The geneSymbol identifier in annotation that corresponds to nontargeting gR-
NAs. If absent, ct.ViewControls will attempt to infer nontargeting guides by
searching for 'no_gid"' or NA in the appropriate columns.

Logical indicating whether to attempt to normalize the data in the eset by DE-
Seq size factors present in the metadata. If TRUE, then the metadata must contain
a column containing these factors, named sizeFactor.crispr-gRNA.

An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

An image of nontargeting control gRNA abundances on the default device.

Author(s)

Russell Bainer

Examples

data('es')
data('ann')

#Build the sample key

library(Biobase)

sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), 'ControlReference'))
names(sk) <- row.names(pData(es))

ct.viewControls(es, ann, sk, geneSymb = NULL, normalize

FALSE)

ct.viewControls(es, ann, sk, geneSymb = NULL, normalize = TRUE)

ct.viewGuides

Generate a Plot of individual gRNA Pair Data in a Crispr Screen

Description

This function generates a visualization of the effect estimates from a MArrayLM model result for all
of the individual guides targeting a particular element, specified somewhere in the library annotation
file. The estimated effect size and variance is plotted relative to zero for the specified contrast, with
the color of the dot indicating the relative scale of the of the guide intercept within the model
framework, with warmer colors indicating lowly expressed guides. For comparison, the density of
gRNA fold change estimates is privided in a pane on the right, with white lines indicating the exact
levels of the individual guides.

dir.writable

Usage

ct.viewGuides(
gene,
fit,
ann,

59

type = "geneSymbol”,

contrast.term
ylims = NULL

Arguments

gene

fit

ann

type
contrast.term

ylims

Value

= NULL,

the name of the target element of interest, contained within the 'type’ column of
the annotation file.

An object of class MArrayLM containing, at minimum, an ’Amean’ slot con-
taining the guide level abundances, a ’coefficients’ slot containing the effect
estimates for each guide, and an ’stdev.unscaled’ slot giving the coefficient stan-
dard Deviations.

A data.frame object containing the gRNA annotations. At mimimum, it should
have a column with the name specified by the type argument, containing the
element targeted by each guide.

A character string indicating the column in ann containing the target of interest.

If a fit object with multiple coefficients is passed in, a string indiating the coef-
ficient of interest.

An optional numeric vector of length 2 indicating the extremes of the y-axis
scale.

An image summarizing gRNA behavior within the specifed gene on the default device.

Author(s)

Russell Bainer

Examples

data('fit")
data('ann')

ct.viewGuides('Target1633', fit, ann)

dir.writable

Checks that the directory provided is writable by the current user

Description

This works by testing to put a temporary file into an already existing directory

Usage

dir.writable(path)

60 essential.genes

Arguments

path The path to a directory to check.

Value

logical, TRUE if path is writable by the current user, otherise FALSE

Author(s)

Steve Lianoglou

es ExpressionSet of count data from a Crispr screen with strong selection

Description

Expressionset of raw counts from a screen in mouse cells performed at Genentech, Inc. All sample,
gRNA, and Gene information has been anonymized and randomized.

Source

Genentech, Inc.

See Also

Please see ‘vignettes/Crispr_example_workflow.R’ for details.

Examples
data('es')
print(es)
essential.genes Artificial list of "essential’ genes in the example Crispr screen included
for plotting purposes
Description

Example gene list, designed to demonstrate functions using gene lists. All sample, gRNA, and Gene
information has been anonymized and randomized.

Source

Russell Bainer

See Also

Please see ‘vignettes/Crispr_example_workflow.R’ for details.

Examples

data('essential.genes')
essential.genes

fit 61

fit Precalculated contrast fit from a Crispr screen

Description

A precalculated fit object (class MArrayLM) comparing the death and control expansion arms of a
crispr screen performed at Genentech, Inc. All sample, gRNA, and Gene information has been
anonymized and randomized.

Source

Genentech, Inc.

See Also

Please see ‘vignettes/Crispr_example_workflow.R’ for model details.

Examples

data('fit")
show(fit)

initOutDir Initializes the output directory

Description

If outdir is NULL, then no directory is checked/created. This also implies that creating plots is not
possible.

Usage

initOutDir(outdir)
Arguments

outdir character vector pointing to a directory to check/create
Value

TRUE if the output directory was created, otherwise FALSE (it might already exist).

Author(s)

Steve Lianoglou, Russell Bainer

62 resultsDF

renderReport Internal wrapper to generate html markdown reports from existing
templates

Description

Internal wrapper to generate html markdown reports from existing templates

Usage

renderReport(reportNameBase, templateName, rmdParamList, outdir = NULL)

Arguments

reportNameBase character - name of the report’s file.

templateName character - name of the rmarkdown template file in the standard location. Passed
through to template argument of the draf't.

rmdParamList list of named report parameters. Passed through to params argument of the
render.

outdir An optional character string indicating the directory in which to generate the
report. If NULL, a temporary directory will be automatically generated.

Value

character with a path to html report in the temporary directory.

resultsDF Precalculated gene-level summary of a crispr screen

Description

A precalculated summary Dataframe comparing the death and control expansion arms of the pro-
vided example Crispr screen (using 8 cores, seed = 2). All sample, gRNA, and Gene information
has been anonymized and randomized.

Source

Genentech, Inc.

See Also

Please see ‘vignettes/Crispr_example_workflow.R’ for model details.

Examples

data('resultsDF')
head(resultsDF)

Index

* internal

appendDateAndExt, 4
ct.alphaBeta, 5
ct.drawColorLegend, 12
ct.drawFlat, 13
ct.ecdf, 13
ct.exprsColor, 15
ct.numcores, 35
ct.preprocessFit, 39
ct.RRAalpha, 44
ct.RRAalphaBatch, 45
ct.RRAaPvals, 46
ct.targetSetEnrichment, 53
dir.writable, 59
initOutDir, 61
renderReport, 62

aln, 3
ann, 4
appendDateAndExt, 4

calcNormFactors, 17, 21, 26, 30-34, 58
ct.
.alphaBeta, 5
ct.
ct.
ct.
ct.
ct.
ct.
ct.
ct.
ct.
ct.
ct.
ct.
ct.
ct.

ct

ct.
.gRNARankByReplicate, 20, 26

ct

ct.
ct.
ct.

alignmentChart, 5

applyAlpha, 6
buildSE, 7

CAT, 8
compareContrasts, 9
contrastBarchart, 10
DirectionalTests, 11
drawColorLegend, 12
drawFlat, 13

ecdf, 13
expandAnnotation, 14
exprsColor, 15
filterReads, 15
GCbias, 16

generateResults, 9, 11,17, 24,27, 37,

43,47, 50, 54, 55
GREATdb, 19

guideCDF, 21
inputCheck, 22
keyCheck, 23

ct.makeContrastReport, 24
ct.makeQCReport, 25
ct.makeReport, 27
ct.makeRhoNull, 28
ct.normalizeBySlope, 29, 32
ct.normalizeFQ, 30
ct.normalizeGuides, 31
ct.normalizeMedians, 32, 32
ct.normalizeNTC, 32, 33
ct.normalizeSpline, 32, 34
ct.numcores, 35
ct.parseGeneSymbol, 36
ct.PRC, 37
ct.prepareAnnotation, 26, 38
ct.preprocessFit, 39
ct.rankSimple, 40
ct.rawCountDensities, 41
ct.regularizeContrasts, 9, 42
ct.resultCheck, 42
ct.ROC, 43

ct.RRAalpha, 44
ct.RRAalphaBatch, 45
ct.RRAaPvals, 18, 46
ct.scatter, 47

ct.seas, 48

ct.seasPrep, 49
ct.signalSummary, 50
ct.simpleResult, 51
ct.softLog, 52
ct.stackGuides, 52
ct.targetSetEnrichment, 53
ct.topTargets, 55
ct.upSet, 56
ct.viewControls, 26, 57
ct.viewGuides, 58

dir.writable, 59
draft, 62

es, 60
essential.genes, 60

fit, 61

gCrisprTools-package, 3

64

initOutDir, 61
PANTHER. db, 54

render, 62
renderReport, 62
resultsDF, 62

voom, 29, 31

INDEX

	gCrisprTools-package
	aln
	ann
	appendDateAndExt
	ct.alignmentChart
	ct.alphaBeta
	ct.applyAlpha
	ct.buildSE
	ct.CAT
	ct.compareContrasts
	ct.contrastBarchart
	ct.DirectionalTests
	ct.drawColorLegend
	ct.drawFlat
	ct.ecdf
	ct.expandAnnotation
	ct.exprsColor
	ct.filterReads
	ct.GCbias
	ct.generateResults
	ct.GREATdb
	ct.gRNARankByReplicate
	ct.guideCDF
	ct.inputCheck
	ct.keyCheck
	ct.makeContrastReport
	ct.makeQCReport
	ct.makeReport
	ct.makeRhoNull
	ct.normalizeBySlope
	ct.normalizeFQ
	ct.normalizeGuides
	ct.normalizeMedians
	ct.normalizeNTC
	ct.normalizeSpline
	ct.numcores
	ct.parseGeneSymbol
	ct.PRC
	ct.prepareAnnotation
	ct.preprocessFit
	ct.rankSimple
	ct.rawCountDensities
	ct.regularizeContrasts
	ct.resultCheck
	ct.ROC
	ct.RRAalpha
	ct.RRAalphaBatch
	ct.RRAaPvals
	ct.scatter
	ct.seas
	ct.seasPrep
	ct.signalSummary
	ct.simpleResult
	ct.softLog
	ct.stackGuides
	ct.targetSetEnrichment
	ct.topTargets
	ct.upSet
	ct.viewControls
	ct.viewGuides
	dir.writable
	es
	essential.genes
	fit
	initOutDir
	renderReport
	resultsDF
	Index

