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applyMultiSCE Apply function over multiple SingleCellExperiments

Description

A generalization of applySCE to apply a function to corresponding parts of multiple SingleCellEx-
periments, each of which have one or more alternative Experiments.

Usage

applyMultiSCE(
...,
FUN,
WHICH = NULL,
COMMON.ARGS = list(),
MAIN.ARGS = list(),
ALT.ARGS = list(),
SIMPLIFY = TRUE

)
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Arguments

... One or more SingleCellExperiment objects containing counts and size factors.
Each object should contain the same number of rows, corresponding to the same
genes in the same order.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, batch should also be
specified.
Alternatively, one or more lists of SingleCellExperiments can be provided; this
is flattened as if the objects inside were passed directly to ....

FUN Any function that accepts multiple SummarizedExperiment or SingleCellExper-
iment objects.

WHICH A character or integer vector containing the names or positions of alternative
Experiments to loop over. Defaults to all alternative Experiments that are present
in each SingleCellExperiment in ....

COMMON.ARGS Further (named) arguments to pass to all calls to FUN.

MAIN.ARGS A named list of arguments to pass to calls to FUN involving the main Experi-
ment(s) only. Alternatively NULL, in which case the function is not applied to
the main Experiment.

ALT.ARGS A named list where each entry is named after an alternative Experiment and
contains named arguments to use in FUN for that Experiment.

SIMPLIFY Logical scalar indicating whether the output should be simplified to one or more
SingleCellExperiments.

Details

This function is a generalization of applySCE whereby corresponding Experiments from ... are
passed to FUN. To illustrate, if we passed objects x, y and z in ...:

1. We first call FUN on the set of all main Experiments from ..., obtaining a result equivalent to
FUN(x, y, z) (more on the other arguments later).

2. Then we call FUN on the set of all first alternative Experiments. This is equivalent to FUN(altExp(x),
altExp(y), altExp(z)).

3. Then we call FUN on the set of all second alternative Experiments. This is equivalent to
FUN(altExp(x, 2), altExp(y, 2), altExp(z, 2)).

4. And so on.

In effect, much like applySCE is analogous to lapply, applyMultiSCE is analogous to mapply.
This allows users to easily apply the same function to all the Experiments (main and alternative) in
a list of SingleCellExperiment objects.

Arguments in COMMON.ARGS (plus some extra arguments, see below) are passed to all calls to FUN.
Arguments in MAIN.ARGS are only used in the call to FUN on the main Experiments. Arguments in
ALT.ARGS are passed to the call to FUN on the alternative Experiments of the same name. For the
last two, any arguments therein will override arguments of the same name in COMMON.ARGS.

Arguments in ... that are not SingleCellExperiments are actually treated as additional arguments
for COMMON.ARGS. This is purely intended as a user convenience, to avoid the need to write COMMON.ARGS=list()
when specifying these arguments. However, explicitly using COMMON.ARGS is the safer approach and
recommended for developers.

By default, looping is performed over alternative Experiments with names that are present across
all entries of .... Values of WHICH should be unique if any simplification of the output is desired. If
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MAIN.ARGS=NULL, the main Experiment is ignored and the function is only applied to the alternative
Experiments.

The default of SIMPLIFY=TRUE is aims to make the output easier to manipulate. If FUN returns a
SingleCellExperiment, the outputs across main and alternative Experiments are simplified into a
single SingleCellExperiment. If FUN returns a list of SingleCellExperiments of the same length, the
outputs are simplified into one list of SingleCellExperiments. This assumes that WHICH contains no
more than one reference to each alternative Experiment in x.

Value

In most cases or when SIMPLIFY=FALSE, a list is returned containing the output of FUN applied to
each corresponding Experiment across all .... If MAIN.ARGS is not NULL, the first entry corresponds
to the result generated from the main Experiments; all other results are generated according to the
entries specified in WHICH and are named accordingly.

If SIMPLIFY=TRUE and certain conditions are fulfilled, we can either return:

• A single SingleCellExperiment, if all calls to FUN return a SingleCellExperiment. Here, the
results of FUN on the main/alternative Experiments in ... are mapped to the main or alternative
Experiments of the same name in the output.

• A list of SingleCellExperiments, if all calls to FUN return a list of SingleCellExperiments of
the same length. The altExps of each output SingleCellExperiment contains the results from
the corresponding call to FUN on the alternative Experiments of the same name in ....

In both cases, the aim is to mirror the organization of Experiments in each entry of ....

Author(s)

Aaron Lun

See Also

applySCE, for the simpler version that involves only one SingleCellExperiment object.

simplifyToSCE, for the conditions required for simplification.

Examples

# Setting up some objects with alternative Experiments.
d1 <- matrix(rnbinom(50000, mu=10, size=1), ncol=100)
sce1 <- SingleCellExperiment(list(counts=d1))
sizeFactors(sce1) <- runif(ncol(d1))
altExp(sce1, "Spike") <- sce1
altExp(sce1, "Protein") <- sce1

d2 <- matrix(rnbinom(20000, mu=50, size=1), ncol=40)
sce2 <- SingleCellExperiment(list(counts=d2))
sizeFactors(sce2) <- runif(ncol(d2))
altExp(sce2, "Spike") <- sce2
altExp(sce2, "Protein") <- sce2

# Applying a function over the main and alternative experiments.
normed <- applyMultiSCE(sce1, sce2, FUN=multiBatchNorm)
normed
altExp(normed[[1]]) # contains log-normalized values
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regressed <- applyMultiSCE(normed, FUN=regressBatches)
regressed
altExp(regressed) # contains corrected expression values

rescaled <- applyMultiSCE(normed, FUN=rescaleBatches)
rescaled
altExp(rescaled) # contains corrected expression values

# We can also specify 'batch=' directly.
combined <- cbind(sce1, sce2)
batch <- rep(1:2, c(ncol(sce1), ncol(sce2)))

normed <- applyMultiSCE(combined, batch=batch, FUN=multiBatchNorm)
normed
altExp(normed) # contains log-normalized values

regressed <- applyMultiSCE(normed, batch=batch, FUN=regressBatches)
regressed
altExp(regressed) # contains corrected expression values

rescaled <- applyMultiSCE(normed, batch=batch, FUN=rescaleBatches)
rescaled
altExp(rescaled) # contains corrected expression values

batchCorrect Batch correction methods

Description

A common interface for single-cell batch correction methods.

Usage

batchCorrect(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = NULL,
PARAM

)

## S4 method for signature 'ClassicMnnParam'
batchCorrect(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
PARAM
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)

## S4 method for signature 'FastMnnParam'
batchCorrect(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
PARAM

)

## S4 method for signature 'RescaleParam'
batchCorrect(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
PARAM

)

## S4 method for signature 'RegressParam'
batchCorrect(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
PARAM

)

## S4 method for signature 'NoCorrectParam'
batchCorrect(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
PARAM

)

Arguments

... One or more matrix-like objects containing single-cell gene expression matrices.
Alternatively, one or more SingleCellExperiment objects can be supplied.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. Objects of different types can be mixed together. If a
single object is supplied, batch should also be specified.
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batch A factor specifying the batch of origin for each cell if only one batch is supplied
in .... This will be ignored if two or more batches are supplied.

restrict A list of length equal to the number of objects in .... Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

subset.row A vector specifying the subset of genes to use for correction. Defaults to NULL,
in which case all genes are used.

correct.all A logical scalar indicating whether to return corrected expression values for all
genes, even if subset.row is set. Used to ensure that the output is of the same
dimensionality as the input.

assay.type A string or integer scalar specifying the assay to use for correction. Only used
for SingleCellExperiment inputs.

PARAM A BatchelorParam object specifying the batch correction method to dispatch to,
and the parameters with which it should be run. ClassicMnnParam will dispatch
to mnnCorrect; FastMnnParam will dispatch to fastMNN; RescaleParam will
dispatch to rescaleBatches; and RegressParam will dispatch to regressBatches.

Details

Users can pass parameters to each method directly via ... or via the constructors for PARAM. While
there is no restriction on which parameters go where, we recommend only passing data-agnostic and
method-specific parameters to PARAM. Data-dependent parameters - and indeed, the data themselves
- should be passed in via .... This means that different data sets can be used without modifying
PARAM, allowing users to switch to a different algorithm by only changing PARAM.

Value

A SingleCellExperiment where the first assay contains corrected gene expression values for all
genes. Corrected values should be returned for all genes if subset.row=NULL or if correct.all=TRUE;
otherwise they should only be returned for the genes in the subset.

Cells should be reported in the same order that they are supplied. In cases with multiple batches,
the cell identities are simply concatenated from successive objects in their specified order, i.e., all
cells from the first object (in their provided order), then all cells from the second object, and so on.
For a single input object, cells should be reported in the same order as the input.

The colData slot should contain batch, a vector specifying the batch of origin for each cell.

Author(s)

Aaron Lun

See Also

BatchelorParam classes to determine dispatch.

correctExperiments, to obtain corrected values while retaining the original expression data.

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2

# Switching easily between batch correction methods.
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m.out <- batchCorrect(B1, B2, PARAM=ClassicMnnParam())
f.out <- batchCorrect(B1, B2, PARAM=FastMnnParam(d=20))
r.out <- batchCorrect(B1, B2, PARAM=RescaleParam(pseudo.count=0))
n.out <- batchCorrect(B1, B2, PARAM=NoCorrectParam())

batchelor-restrict Using restriction

Description

Using restriction

Motivation

It is possible to compute the correction using only a subset of cells in each batch, and then extrapo-
late that correction to all other cells. This may be desirable in experimental designs where a control
set of cells from the same source population were run on different batches. Any difference in the
controls must be artificial in origin and can be directly removed without making further biological
assumptions. Similarly, if certain cells are known to be of a batch-specific subpopulation, it may be
desirable to exclude them to ensure that they are not inadvertently used during the batch correction.

Setting the restrict argument

To perform restriction, users should set restrict to specify the subset of cells in each batch to be
used for correction. This should be set to a list of length equal to the number of objects passed to
the ... argument of the batch correction function. Each element of this list should be a subsetting
vector to be applied to the columns of the corresponding batch. A NULL element indicates that all the
cells from a batch should be used. In situations where one input object contains multiple batches,
restrict should simply a list containing a single subsetting vector for that object.

Correction functions that support restrict will only use the restricted subset of cells in each batch
to perform the correction. For example, fastMNN will only use the restricted cells to identify MNN
pairs and the center of the orthogonalization. However, it will apply the correction to all cells in each
batch - hence the extrapolation. This means that the output is always of the same dimensionality,
regardless of whether restrict is specified.

As a general rule, users can expect the corrected values in the restricted cells to be the same as if
the inputs were directly subsetted to only contain those cells (see Examples). This is appealing as
it demonstrates that correction only uses information from the restricted subset of cells. If batch
correction functions do not follow this rule, they will explicitly state so, e.g., in ?fastMNN.

Author(s)

Aaron Lun

See Also

rescaleBatches, regressBatches, fastMNN and mnnCorrect, as examples of batch correction
methods that support restriction.
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Examples

means <- 2^rgamma(1000, 2, 1)
A1 <- matrix(rpois(10000, lambda=means), ncol=50) # Batch 1
A2 <- matrix(rpois(10000, lambda=means*runif(1000, 0, 2)), ncol=50) # Batch 2

B1 <- log2(A1 + 1)
B2 <- log2(A2 + 1)
out <- regressBatches(B1, B2, restrict=list(1:10, 1:10))
assay(out)[,c(1:10, 50+1:10)]

# Compare to actual subsetting:
out.sub <- regressBatches(B1[,1:10], B2[,1:10])
assay(out.sub)

BatchelorParam-class BatchelorParam methods

Description

Constructors and methods for the batchelor parameter classes.

Usage

ClassicMnnParam(...)

FastMnnParam(...)

RescaleParam(...)

RegressParam(...)

NoCorrectParam(...)

Arguments

... Named arguments to pass to individual methods upon dispatch. These should
not include arguments named in the batchCorrect generic.

Details

BatchelorParam objects are intended to store method-specific parameter settings to pass to the
batchCorrect generic. These values should refer to data-agnostic parameters; parameters that
depend on data (or the data itself) should be specified directly in the batchCorrect call.

The BatchelorParam classes are all derived from SimpleList objects and have the same available
methods, e.g., [[, $. These can be used to access or modify the object after construction.

Note that the BatchelorParam class itself is not useful and should not be constructed directly. In-
stead, users should use the constructors shown above to create instances of the desired subclass.

Value

The constructors will return a BatchelorParam object of the specified subclass, containing parameter
settings for the corresponding batch correction method.
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Author(s)

Aaron Lun

See Also

batchCorrect, where the BatchelorParam objects are used for dispatch to individual methods.

Examples

# Specifying the number of neighbors, dimensionality.
fp <- FastMnnParam(k=20, d=10)
fp

# List-like behaviour:
fp$k
fp$k <- 10
fp$k

checkBatchConsistency Check batch inputs

Description

Utilities to check inputs into batch correction functions.

Usage

checkBatchConsistency(batches, cells.in.columns = TRUE)

checkIfSCE(batches)

checkRestrictions(batches, restrictions, cells.in.columns = TRUE)

Arguments

batches A list of batches, usually containing gene expression matrices or SingleCellEx-
periment objects.

cells.in.columns

A logical scalar specifying whether batches contain cells in the columns.

restrictions A list of length equal to batches, specifying the cells in each batch that should
be used for correction.

Details

These functions are intended for internal use and other package developers.

checkBatchConsistency will check whether the input batches are consistent with respect to the
size of the dimension containing features (i.e., not cells). It will also verify that the dimension
names are consistent, to avoid problems from variable ordering of rows/columns in the inputs.

checkRestrictions will check whether restrictions are consistent with the supplied batches,
in terms of the length and names of the two lists. It will also check that each batch contains at least
one usable cell after restriction.
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Value

checkBatchConsistency return an invisible NULL if there are no errors.

checkIfSCE will return a logical vector specifying whether each element of batches is a Single-
CellExperiment objects.

checkRestrictions will return NULL if restrictions=NULL. Otherwise, it will return a list by
taking restrictions and converting each non-NULL element into an integer subsetting vector.

Author(s)

Aaron Lun

See Also

divideIntoBatches

Examples

checkBatchConsistency(list(cbind(1:5), cbind(1:5, 2:6)))
try( # fails

checkBatchConsistency(list(cbind(1:5), cbind(1:4, 2:5)))
)

clusterMNN Cluster-based MNN

Description

Perform MNN correction based on cluster centroids, using the corrected centroid coordinates to
correct the per-cell expression values with a variable bandwidth Gaussian kernel.

Usage

clusterMNN(
...,
batch = NULL,
restrict = NULL,
clusters,
cluster.d = 50,
cos.norm = TRUE,
merge.order = NULL,
auto.merge = FALSE,
min.batch.skip = 0,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
BSPARAM = IrlbaParam(),
BNPARAM = KmknnParam(),
BPPARAM = SerialParam()

)
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Arguments

... One or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Alternatively, one or more SingleCellExperiment ob-
jects can be supplied containing a log-expression matrix in the assay.type as-
say. Each object should contain the same number of rows, corresponding to the
same genes in the same order. Objects of different types can be mixed together.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, it is assumed to contain
cells from all batches, so batch should also be specified.
Alternatively, one or more lists of matrices or SingleCellExperiments can be
provided; this is flattened as if the objects inside each list were passed directly
to ....

batch A vector or factor specifying the batch of origin for all cells when only a single
object is supplied in .... This is ignored if multiple objects are present.

restrict A list of length equal to the number of objects in .... Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

clusters A list of length equal to ... containing the assigned cluster for each cell in each
batch. Alternatively, a BlusterParam object from the bluster package, specify-
ing the clustering to be applied to each batch.

cluster.d Integer scalar indicating how many PCs should be used in clustering. Only used
if clusters is not a list. If NA, no PCA is performed and clustering is applied
directly to the (cosine-normalized) gene expression values.

cos.norm A logical scalar indicating whether cosine normalization should be performed
on the input data prior to PCA.

merge.order An integer vector containing the linear merge order of batches in .... Alterna-
tively, a list of lists representing a tree structure specifying a hierarchical merge
order.

auto.merge Logical scalar indicating whether to automatically identify the “best” merge or-
der.

min.batch.skip Numeric scalar specifying the minimum relative magnitude of the batch effect,
below which no correction will be performed at a given merge step.

subset.row A vector specifying which features to use for correction.

correct.all Logical scalar indicating whether corrected expression values should be com-
puted for genes not in subset.row. Only relevant if subset.row is not NULL.

assay.type A string or integer scalar specifying the assay containing the log-expression
values. Only used for SingleCellExperiment inputs.

BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA. Only used
if clusters is not a list.

BNPARAM A BiocNeighborParam object specifying the nearest neighbor algorithm.

BPPARAM A BiocParallelParam object specifying whether the PCA and nearest-neighbor
searches should be parallelized.

Details

These functions are motivated by the scenario where each batch has been clustered separately and
each cluster has already been annotated with some meaningful biological state. We want to identify
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which biological states match to each other across batches; this is achieved by identifying mutual
nearest neighbors based on the cluster centroids with reducedMNN.

MNN pairs are identified with k=1 to ensure that each cluster has no more than one match in another
batch. This reduces the risk of inadvertently merging together different clusters from the same
batch. By comparison, higher values of k may result in many-to-one mappings between batches
such that the correction will implicitly force different clusters together.

Using this guarantee of no-more-than-one mappings across batches, we can form meta-clusters by
identifying all components of the resulting MNN graph. Each meta-cluster can be considered to
represent some biological state (e.g., cell type), and all of its constituents are the matching clusters
within each batch.

As an extra courtesy, clusterMNN will also compute corrected values for each cell. This is done
by applying a Gaussian kernel to the correction vectors for the centroids, where the bandwidth is
proportional to the distance between that cell and the closest cluster centroid. This yields a smooth
correction function that avoids edge effects at cluster boundaries.

If clusters is set to a BlusterParam object (see the bluster package), a PCA is performed in each
batch with the specified BSPARAM. The PCs are then used in clustering with clusterRows to obtain
a list of clusters. This can be used to mimic per-cell batch correction in the absence of a priori
clusters.

Value

A SingleCellExperiment containing per-cell expression values where each row is a gene and each
column is a cell. This has the same format as the output of fastMNN but with an additional cluster
field in the colData containing the cluster identity of each cell. The metadata contains:

• merge.info, a DataFrame with the same format as the output of fastMNN. However, the pairs
and lost.var refer to the cluster centroids, not the cells.

• clusters, a DataFrame with one row for each cluster across all batches in .... This can be
row-indexed by the values in pairs to determine the identity of the clusters in each MNN pair.
An additional meta column is provided that describes the meta-cluster to which each cluster
belongs.

Author(s)

Aaron Lun

References

Lun ATL (2019). Cluster-based mutual nearest neighbors correction https://marionilab.github.
io/FurtherMNN2018/theory/clusters.html

Lun ATL (2019). A discussion of the known failure points of the fastMNN algorithm. https:
//marionilab.github.io/FurtherMNN2018/theory/failure.html

See Also

reducedMNN, which is used internally to perform the correction.

Examples

# Mocking up some data for multiple batches:
means <- matrix(rnorm(3000), ncol=3)
colnames(means) <- LETTERS[1:3]

https://marionilab.github.io/FurtherMNN2018/theory/clusters.html
https://marionilab.github.io/FurtherMNN2018/theory/clusters.html
https://marionilab.github.io/FurtherMNN2018/theory/failure.html
https://marionilab.github.io/FurtherMNN2018/theory/failure.html
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B1 <- means[,sample(LETTERS[1:3], 500, replace=TRUE)]
B1 <- B1 + rnorm(length(B1))

B2 <- means[,sample(LETTERS[1:3], 500, replace=TRUE)]
B2 <- B2 + rnorm(length(B2)) + rnorm(nrow(B2)) # batch effect.

# Applying the correction with some made-up clusters:
cluster1 <- kmeans(t(B1), centers=10)$cluster
cluster2 <- kmeans(t(B2), centers=10)$cluster
out <- clusterMNN(B1, B2, clusters=list(cluster1, cluster2))

rd <- reducedDim(out, "corrected")
plot(rd[,1], rd[,2], col=out$batch)

# Obtaining the clusters internally.
out2 <- clusterMNN(B1, B2, clusters=bluster::NNGraphParam())
rd2 <- reducedDim(out2, "corrected")
plot(rd2[,1], rd2[,2], col=out$batch)

convertPCsToSCE Convert corrected PCs to a SingleCellExperiment

Description

Convert low-dimensional corrected PCs to a SingleCellExperiment containing corrected expression
values. This is a low-level function and most users should not need to call it.

Usage

convertPCsToSCE(
corrected.df,
pc.info,
assay.name = "reconstructed",
dimred.name = "corrected"

)

Arguments

corrected.df A DataFrame containing a nested matrix of low-dimensional corrected values
and a vector of batch identities. Typically produced from reducedMNN.

pc.info A list containing PCA statistics, in particular a rotation matrix. Typically
obtained from the metadata of the output from multiBatchPCA.

assay.name String specifying the name of the assay to use to store the corrected expression
values.

dimred.name String containing the name fo the reducedDims to store the low-dimensional
corrected values. Set to NULL to avoid storing these.
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Details

The corrected expression values are obtained by simply taking the crossproduct of the corrected
PCs with the rotation matrix. This reverses the original projection to PC space while retaining the
effect of the correction. These values are best used for visualization; the low-dimensional corrected
coordinates are more efficient for per-cell operations like clustering, while the original uncorrected
expression values are safer to interpret for per-gene analyses.

Value

A SingleCellExperiment containing a LowRankMatrix with the corrected per-gene expression val-
ues. The colData contains the batch identities, the rowData contains the rotation matrix, and the
reducedDims contains the low-dimensional corrected values (if dimred.name is not NULL). All ad-
ditional metadata from corrected.df and pc.info is stored in metadata.

Author(s)

Aaron Lun

See Also

reducedMNN, to compute corrected.df; and multiBatchPCA, to compute pc.info.

fastMNN, which uses this function to obtain low-rank corrected values.

Examples

B1 <- matrix(rnorm(10000), nrow=50) # Batch 1
B2 <- matrix(rnorm(10000), nrow=50) # Batch 2

# Equivalent to fastMNN().
cB1 <- cosineNorm(B1)
cB2 <- cosineNorm(B2)
pcs <- multiBatchPCA(cB1, cB2)
mnn.out <- reducedMNN(pcs[[1]], pcs[[2]])

sce <- convertPCsToSCE(mnn.out, metadata(pcs))
sce

correctExperiments Correct SingleCellExperiment objects

Description

Apply a correction to multiple SingleCellExperiment objects, while also combining the assay data
and column metadata for easy downstream use. This augments the simpler batchCorrect function,
which returns only the corrected values.
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Usage

correctExperiments(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
PARAM = FastMnnParam(),
combine.assays = NULL,
combine.coldata = NULL,
include.rowdata = TRUE,
add.single = TRUE

)

Arguments

... One or more SingleCellExperiment objects. If multiple objects are supplied,
each object is assumed to contain all and only cells from a single batch. If a
single object is supplied, batch should also be specified.
Alternatively, one or more lists of SingleCellExperiments can be provided; this
is flattened so that it is as if the objects inside were passed directly to ....

batch A factor specifying the batch of origin for each cell if only one batch is supplied
in .... This will be ignored if two or more batches are supplied.

restrict A list of length equal to the number of objects in .... Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

subset.row A vector specifying the subset of genes to use for correction. Defaults to NULL,
in which case all genes are used.

correct.all A logical scalar indicating whether to return corrected expression values for all
genes, even if subset.row is set. Used to ensure that the output is of the same
dimensionality as the input.

assay.type A string or integer scalar specifying the assay to use for correction.
PARAM A BatchelorParam object specifying the batch correction method to dispatch to,

and the parameters with which it should be run. ClassicMnnParam will dispatch
to mnnCorrect; FastMnnParam will dispatch to fastMNN; RescaleParam will
dispatch to rescaleBatches; and RegressParam will dispatch to regressBatches.

combine.assays Character vector specifying the assays from each entry of ... to combine to-
gether without correction. By default, any named assay that is present in all
entries of ... is combined. This can be set to character(0) to avoid combin-
ing any assays.

combine.coldata

Character vector specifying the column metadata fields from each entry of ...
to combine together. By default, any column metadata field that is present in all
entries of ... is combined. This can be set to character(0) to avoid combining
any metadata.

include.rowdata

Logical scalar indicating whether the function should attempt to include rowRanges.
add.single Logical scalar indicating whether merged fields should be added to the original

SingleCellExperiment. Only relevant when a single object is provided in .... If
TRUE, combine.assays, combine.coldata and include.rowdata are ignored.
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Details

This function makes it easy to retain information from the original SingleCellExperiment objects
in the post-merge object. Operations like differential expression analyses can be easily performed
on the uncorrected expression values, while common annotation can be leveraged in cell-based
analyses like clustering.

• All assays shared across the original objects are cbinded and added to the merged object. This
can be controlled with combine.assays. Any original assay with the same name as an assay
in the output of batchCorrect will be ignored with a warning.

• Any column metadata fields that are shared will also be included in the merged object. This
can be controlled with combine.coldata. If any existing field has the same name as any
colData field produced by batchCorrect, it will be ignored in favor of the latter.

• Row metadata from ... is included in the merged object if include.rowdata=TRUE. In such
cases, only non-conflicting row data fields are preserved, i.e., fields with different names or
identically named fields with the same values between objects in .... Any conflicting fields
are ignored with a warning. rowRanges are only preserved if they are identical (ignoring the
mcols) for all objects in ....

If a single SingleCellExperiment object was supplied in ..., the default behavior is to prepend
all assays, reducedDims, colData, rowData and metadata fields from the merged object into
the original (removing any original entries with names that overlap those of the merged object).
This is useful as it preserves all (non-overlapping) aspects of the original object, especially the
reduced dimensions that cannot, in general, be sensibly combined across multiple objects. Setting
add.single=FALSE will force the creation of a new SingleCellExperiment rather than prepending.

Value

A SingleCellExperiment containing the merged expression values in the first assay and a batch
column metadata field specifying the batch of origin for each cell, as described in batchCorrect.

Author(s)

Aaron Lun

See Also

batchCorrect, which does the correction inside this function.

noCorrect, for another method to combine uncorrected assay values.

Examples

sce1 <- scuttle::mockSCE()
sce1 <- scuttle::logNormCounts(sce1)
sce2 <- scuttle::mockSCE()
sce2 <- scuttle::logNormCounts(sce2)

f.out <- correctExperiments(sce1, sce2)
colData(f.out)
assayNames(f.out)
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cosineNorm Cosine normalization

Description

Perform cosine normalization on the column vectors of an expression matrix.

Usage

cosineNorm(
x,
mode = c("matrix", "all", "l2norm"),
subset.row = NULL,
BPPARAM = SerialParam()

)

Arguments

x A gene expression matrix with cells as columns and genes as rows.
mode A string specifying the output to be returned.
subset.row A vector specifying which features to use to compute the L2 norm.
BPPARAM A BiocParallelParam object specifying how parallelization is to be performed.

Only used when x is a DelayedArray object.

Details

Cosine normalization removes scaling differences between expression vectors. In the context of
batch correction, this is usually applied to remove differences between batches that are normalized
separately. For example, fastMNN uses this function on the log-expression vectors by default.

Technically, separate normalization introduces scaling differences in the normalized expression,
which should manifest as a shift in the log-transformed expression. However, in practice, single-
cell data will contain many small counts (where the log function is near-linear) or many zeroes
(which remain zero when the pseudo-count is 1). In these applications, scaling differences due to
separate normalization are better represented as scaling differences in the log-transformed values.

If applied to the raw count vectors, cosine normalization is similar to library size-related (i.e., L1)
normalization. However, we recommend using dedicated methods for computing size factors to
normalize raw count data.

While the default is to directly return the cosine-normalized matrix, it may occasionally be desirable
to obtain the L2 norm, e.g., to apply an equivalent normalization to other matrices. This can be
achieved by setting mode accordingly.

The function will return a DelayedMatrix if x is a DelayedMatrix. This aims to delay the calculation
of cosine-normalized values for very large matrices.

Value

If mode="matrix", a double-precision matrix of the same dimensions as X is returned, containing
cosine-normalized values.

If mode="l2norm", a double-precision vector is returned containing the L2 norm for each cell.

If mode="all", a named list is returned containing the fields "matrix" and "l2norm", which are as
described above.



diagnostics-cluster 19

Author(s)

Aaron Lun

See Also

mnnCorrect and fastMNN, where this function gets used.

Examples

A <- matrix(rnorm(1000), nrow=10)
str(cosineNorm(A))
str(cosineNorm(A, mode="l2norm"))

diagnostics-cluster Cluster-based correction diagnostics

Description

A variety of correction diagnostics that make use of clustering information, usually obtained by
clustering on cells from all batches in the corrected data.

Usage

clusterAbundanceTest(x, batch)

clusterAbundanceVar(x, batch, pseudo.count = 10)

Arguments

x A factor or vector specifying the assigned cluster for each cell in each batch
in the corrected data. Alternatively, a matrix or table containing the number of
cells in each cluster (row) and batch (column).

batch A factor or vector specifying the batch of origin for each cell. Ignored if x is a
matrix or table.

pseudo.count A numeric scalar containing the pseudo-count to use for the log-transformation.

Details

For clusterAbundanceTest, the null hypothesis for each cluster is that the distribution of cells
across batches is proportional to the total number of cells in each batch. We then use chisq.test
to test for deviations from the expected proportions, possibly indicative of imperfect mixing across
batches. This works best for technical replicates where the population composition should be iden-
tical across batches. However, the interpretation of the p-value loses its meaning for experiments
where there is more biological variability between batches.

For clusterAbundanceVar, we compute log-normalized abundances for each cluster using normalizeCounts.
We then compute the variance of the log-abundances across batches for each cluster. Large vari-
ances indicate that there are strong relative differences in abundance across batches, indicative of
either imperfect mixing or genuine batch-specific subpopulations. The idea is to rank clusters by
their variance to prioritize them for manual inspection to decide between these two possibilities.
We use a large pseudo.count by default to avoid spuriously large variances when the counts are
low.
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Value

For clusterAbundanceTest, a named numeric vector of p-values from applying Pearson’s chi-
squared test on each cluster.

For clusterAbundanceVar, a named numeric vector of variances of log-abundances across batches
for each cluster.

Author(s)

Aaron Lun

Examples

set.seed(1000)
means <- 2^rgamma(1000, 2, 1)
A1 <- matrix(rpois(10000, lambda=means), ncol=50) # Batch 1
A2 <- matrix(rpois(10000, lambda=means*runif(1000, 0, 2)), ncol=50) # Batch 2

B1 <- log2(A1 + 1)
B2 <- log2(A2 + 1)
out <- fastMNN(B1, B2)

cluster1 <- kmeans(t(B1), centers=10)$cluster
cluster2 <- kmeans(t(B2), centers=10)$cluster
merged.cluster <- kmeans(reducedDim(out, "corrected"), centers=10)$cluster

# Low p-values indicate unexpected differences in abundance.
clusterAbundanceTest(paste("Cluster", merged.cluster), out$batch)

# High variances indicate differences in normalized abundance.
clusterAbundanceVar(paste("Cluster", merged.cluster), out$batch)

divideIntoBatches Divide into batches

Description

Divide a single input object into multiple separate objects according to their batch of origin.

Usage

divideIntoBatches(x, batch, byrow = FALSE, restrict = NULL)

Arguments

x A matrix-like object where one dimension corresponds to cells and another rep-
resents features.

batch A factor specifying the batch to which each cell belongs.

byrow A logical scalar indicating whether rows correspond to cells.

restrict A subsetting vector specifying which cells should be used for correction.
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Details

This function is intended for internal use and other package developers. It splits a single input object
into multiple batches, allowing developers to use the same code for the scenario where batch is
supplied with a single input.

Value

A list containing:

• batches, a named list of matrix-like objects where each element corresponds to a level of
batch and contains all cells from that batch.

• reorder, an integer vector to be applied to the combined batches to recover the ordering of
cells in x.

• restricted, a named list of integer vectors specifying which cells are to be used for correc-
tion. Set to NULL if the input restrict was also NULL.

Author(s)

Aaron Lun

Examples

X <- matrix(rnorm(1000), ncol=100)
out <- divideIntoBatches(X, sample(3, 100, replace=TRUE))
names(out)

# Recovering original order.
Y <- do.call(cbind, out$batches)
Z <- Y[,out$reorder]
all.equal(Z, X) # should be TRUE.

fastMNN Fast mutual nearest neighbors correction

Description

Correct for batch effects in single-cell expression data using a fast version of the mutual nearest
neighbors (MNN) method.

Usage

fastMNN(
...,
batch = NULL,
k = 20,
prop.k = NULL,
restrict = NULL,
cos.norm = TRUE,
ndist = 3,
d = 50,



22 fastMNN

deferred = TRUE,
weights = NULL,
get.variance = FALSE,
merge.order = NULL,
auto.merge = FALSE,
min.batch.skip = 0,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
BSPARAM = IrlbaParam(),
BNPARAM = KmknnParam(),
BPPARAM = SerialParam()

)

Arguments

... One or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Alternatively, one or more SingleCellExperiment ob-
jects can be supplied containing a log-expression matrix in the assay.type as-
say. Each object should contain the same number of rows, corresponding to the
same genes in the same order. Objects of different types can be mixed together.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, it is assumed to contain
cells from all batches, so batch should also be specified.
Alternatively, one or more lists of matrices or SingleCellExperiments can be
provided; this is flattened as if the objects inside each list were passed directly
to ....

batch A vector or factor specifying the batch of origin for all cells when only a single
object is supplied in .... This is ignored if multiple objects are present.

k An integer scalar specifying the number of nearest neighbors to consider when
identifying MNNs.

prop.k A numeric scalar in (0, 1) specifying the proportion of cells in each dataset to use
for mutual nearest neighbor searching. If set, the number of nearest neighbors
used for the MNN search in each batch is redefined as max(k, prop.k*N) where
N is the number of cells in that batch.

restrict A list of length equal to the number of objects in .... Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

cos.norm A logical scalar indicating whether cosine normalization should be performed
on the input data prior to PCA.

ndist A numeric scalar specifying the threshold beyond which neighbours are to be
ignored when computing correction vectors. Each threshold is defined as a mul-
tiple of the number of median distances.

d Numeric scalar specifying the number of dimensions to use for dimensionality
reduction in multiBatchPCA. If NA, no dimensionality reduction is performed
and any matrices in ... are used as-is.

deferred Logical scalar indicating whether to defer centering/scaling, see multiBatchPCA
for details.

weights, get.variance
Further arguments to pass to multiBatchPCA.
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merge.order An integer vector containing the linear merge order of batches in .... Alterna-
tively, a list of lists representing a tree structure specifying a hierarchical merge
order.

auto.merge Logical scalar indicating whether to automatically identify the “best” merge or-
der.

min.batch.skip Numeric scalar specifying the minimum relative magnitude of the batch effect,
below which no correction will be performed at a given merge step.

subset.row A vector specifying which features to use for correction.

correct.all Logical scalar indicating whether corrected expression values should be com-
puted for genes not in subset.row. Only relevant if subset.row is not NULL.

assay.type A string or integer scalar specifying the assay containing the log-expression
values. Only used for SingleCellExperiment inputs.

BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA in multiBatchPCA.

BNPARAM A BiocNeighborParam object specifying the nearest neighbor algorithm.

BPPARAM A BiocParallelParam object specifying whether the PCA and nearest-neighbor
searches should be parallelized.

Details

This function provides a variant of the mnnCorrect function, modified for speed and more robust
performance. In particular:

• It performs a multi-sample PCA via multiBatchPCA and subsequently performs all calcu-
lations in the PC space. This reduces computational work and provides some denoising for
improved neighbour detection. As a result, though, the corrected output cannot be interpreted
on a gene level and is useful only for cell-level comparisons, e.g., clustering and visualization.

• The correction vector for each cell is directly computed from its k nearest neighbours in the
same batch. Specifically, only the k nearest neighbouring cells that also participate in MNN
pairs are used. Each MNN-participating neighbour is weighted by distance from the current
cell, using a tricube scheme with bandwidth equal to the median distance multiplied by ndist.
This ensures that the correction vector only uses information from the closest cells, improving
the fidelity of local correction.

• Issues with “kissing” are avoided with a two-step procedure that removes variation along the
batch effect vector. First, the average correction vector across all MNN pairs is computed.
Cell coordinates are adjusted such that all cells in a single batch have the same position along
this vector. The correction vectors are then recalculated with the adjusted coordinates (but the
same MNN pairs).

The default setting of cos.norm=TRUE provides some protection against differences in scaling be-
tween log-expression matrices from batches that are normalized separately (see cosineNorm for
details). However, if possible, we recommend using the output of multiBatchNorm as input to
fastMNN. This will equalize coverage on the count level before the log-transformation, which is a
more accurate rescaling than cosine normalization on the log-values.

The batch argument allows users to easily perform batch correction when all cells have already
been combined into a single object. This avoids the need to manually split the matrix or SingleCell-
Experiment object into separate objects for input into fastMNN. In this situation, the order of input
batches is defined by the order of levels in batch.
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Value

A SingleCellExperiment is returned where each row is a gene and each column is a cell. This
contains:

• A corrected matrix in the reducedDims slot, containing corrected low-dimensional coordi-
nates for each cell. This has number of columns equal to d and number of rows equal to the
total number of cells in ....

• A batch column in the colData slot, containing the batch of origin for each row (i.e., cell) in
corrected.

• A rotation column the rowData slot, containing the rotation matrix used for the PCA. This
has d columns and number of rows equal to the number of genes to report (see the “Choice of
genes” section).

• A reconstructed matrix in the assays slot, containing the low-rank reconstruction of the
expression matrix. This can be interpreted as per-gene corrected log-expression values (af-
ter cosine normalization, if cos.norm=TRUE) but should not be used for quantitative analy-
ses. This has number of rows equal to the number of input genes if subset.row=NULL or
correct.all=TRUE, otherwise each row corresponds to a gene in subset.row.

Cells in the output object are always ordered in the same manner as supplied in .... For a single
input object, cells will be reported in the same order as they are arranged in that object. In cases
with multiple input objects, the cell identities are simply concatenated from successive objects, i.e.,
all cells from the first object (in their provided order), then all cells from the second object, and so
on. This is true regardless of the value of merge.order and auto.merge, which only affects the
internal merge order of the batches.

Additionally, the metadata of the output object contains:

• merge.info, a DataFrame of diagnostic information about each merge step. See the “Merge
diagnostics” section for more details.

• pca.info, a list of metadata produced by multiBatchPCA, such as the variance explained
when get.variance=TRUE.

Controlling the merge order

By default, batches are merged in the user-supplied order in ..., i.e., the first batch is merged with
the second batch, the third batch is merged with the combined first-second batch, the fourth batch
is merged with the combined first-second-third batch and so on. We refer to this approach as a
progressive merge. When batch is supplied for a single object in ..., the ordering of batches in a
progressive merge is determined by the ordering of factor levels in batch.

If merge.order is an integer vector, it is treated as an ordering permutation with which to perform a
progressive merge. For example, if merge.order=c(4,1,3,2), batches 4 and 1 in ... are merged
first; batch 3 is merged with the combined 4+1 batch; and then batch 2 is merged with the combined
4+1+3 batch. This is often more convenient than changing the order manually in ..., which would
alter the order of batches in the output corrected matrix.

If merge.order is a character vector, it is treated as an ordering permutation for named batches. If
merge.order is a factor, it is coerced into a character vector and also treated as a permutation of
names.

If merge.order is a nested list, it is treated as a tree that specifies a hierarchical merge. Each
element of the list should either be a string or integer scalar, corresponding to a leaf node that
specifies a batch; or another list, corresponding to an internal node that should contain at least two
children; or an integer or character vector of length 2 or more, again corresponding to an internal
node.
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• For example, list(list(1,2), list(3,4)) indicates that batch 1 should be merged with
batch 2; batch 3 should be merged with batch 4; and that, finally, the combined batches 1+2
and 3+4 should be merged.

• More than two children per node are supported and will result in a progressive merge within
that node. For example, list(list(1,2,3), list(4,5,6)) will merge batch 1 with 2, then
1+2 with 3; batch 4 with 5, and then 4+5 with 6; and finally, 1+2+3 with 4+5+6.

• The same approach can be used for integer or character vectors, e.g., list(1:3, 4:6) has the
same effect as above.

Note that, while batches can be specified by name (character) or index (integer), users cannot use
both in the same tree. Factors can be provided and are coerced to character vectors.

The merge order may occasionally be important as it determines the number of MNN pairs avail-
able at each merge step. MNN pairs results in greater stability of the batch vectors and increased
likelihood of identifying shared subpopulations, which are important to the precision and accuracy
of the MNN-based correction, respectively.

• In a progressive merge, the reference increases in size at each step, ensuring that more cells
are available to identify MNN pairs in later merges. We suggest setting the largest, most
heterogeneous batch as the first reference, which favors detection of sufficient MNN pairs be-
tween the first and other batches. Conversely, if two small batches without shared populations
are supplied first, the wrong MNN pairs will be detected and the result of the merge will be
incorrect.

• A merge tree is useful for merging together batches that are known to be more closely related
(e.g., replicates) before attempting difficult merges involving more dissimilar batches. The
idea is to increase the number of cells and thus MNN pairs prior to merging batches with few
shared subpopulations. By comparison, performing the more difficult merges first is more
likely to introduce errors whereby distinct subpopulations are incorrectly placed together,
which is propagated to later steps as the initial merge is used as a reference for subsequent
merges.

• If auto.merge=TRUE, merge steps are chosen to maximize the number of MNN pairs at each
step. The aim is to improve the stability of the correction by first merging more similar batches
with more MNN pairs. This can be somewhat time-consuming as MNN pairs need to be
iteratively recomputed for all possible batch pairings.

The order of cells in the output is never affected by the setting of merge.order. It depends only on
the order of objects in ... and the order of cells within each object.

Choice of genes

All genes are used with the default setting of subset.row=NULL. Users can set subset.row to
subset the inputs to highly variable genes or marker genes. This improves the quality of the PCA
and identification of MNN pairs by reducing the noise from irrelevant genes. Users should not
be too restrictive with subsetting, as high dimensionality is required to satisfy the orthogonality
assumption in MNN detection.

By default, only the selected genes are used to compute rotation vectors and a low-rank corrected
expression matrix. However, setting correct.all=TRUE will return rotation vectors spanning all
genes in the supplied input data. This ensures that corrected values are returned in reconstructed
for all input genes, e.g., in correctExperiments. Note that this setting will not alter the corrected
low-dimension coordinates, nor the rotation values for the selected genes.

If d=NA, any gene not in subset.row will have reconstructed values of zero when correct.all=TRUE.
Without a PCA, we cannot easily extrapolate the correction to other genes.
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Using restriction

See ?"batchelor-restrict" for a description of the restrict argument. Specifically, fastMNN
will only use the restricted subset of cells in each batch to identify MNN pairs and the center of the
orthogonalization. It will then extrapolate the correction to all cells in each batch.

Note that all cells are used to perform the PCA, regardless of whether restrict is set. This is gen-
erally desirable in applications where restrict is useful. For example, constructing the projection
vectors with only control cells will not guarantee resolution of unique non-control populations in
each batch.

However, this also means that the corrected values for the restricted cells will differ from the output
when the inputs are directly subsetted to only contain the restricted cells. If this is not desirable,
users can perform the PCA manually and apply reducedMNN instead.

Merge diagnostics

We can consider fastMNN’s operation in terms of pairwise merge steps. Each merge step involves
two mutually exclusive sets of cells, a “left” set and “right” set. Each set may consist of cells from
different batches if those batches were merged in a previous step. The merge will then create a new
set of cells that combines the left and right sets. Iteratively repeating this process with the newly
formed sets will eventually merge all batches together.

The output metadata contains merge.info, a DataFrame where each row corresponds to a merge
step. It contains the following fields:

• left, a List of integer or character vectors. Each vector specifies the batches in the left set at
a given merge step.

• right, a similar List of integer or character vectors. Each vector specifies the batches in the
right set at a given merge step.

• pairs, a List of DataFrames specifying which pairs of cells were identified as MNNs at each
step. In each DataFrame, each row corresponds to a single MNN pair and specifies the paired
cells that were in the left and right sets, respectively. Note that the indices refer to those paired
cells in the output ordering of cells, i.e., users can identify the paired cells at each step by
column-indexing the output of the fastMNN function.

• batch.size, a numeric vector specifying the relative magnitude of the batch effect at each
merge, see “Orthogonalization details”.

• skipped, a logical vector indicating whether the correction was skipped if the magnitude of
the batch effect was below min.batch.skip.

• lost.var, a numeric matrix specifying the percentage of variance lost due to orthogonaliza-
tion at each merge step. This is reported separately for each batch (columns, ordered according
to the input order, not the merge order).

Specifying the number of neighbors

The threshold to define nearest neighbors is defined by k, which is passed to findMutualNN to
identify MNN pairs. The size of k can be roughly interpreted as the anticipated minimum size of
a shared subpopulation in each batch. If a batch has fewer than k cells of a shared subpopulation,
there is an increased risk that its counterparts in other batches will form incorrect MNN pairs.

From the perspective of the algorithm, larger values allow for more MNN pairs to be obtained,
which improves the stability of the correction vectors. Larger values also increase robustness against
non-orthogonality, by ignoring a certain level of biological variation when identifying pairs. This
can be used to avoid the kissing problem where MNN pairs are only detected on the “surface” of
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the distribution. However, values of k should not be too large, as this would result in MNN pairs
being inappropriately identified between biologically distinct populations.

In practice, increasing k will generally result in more aggressive merging as the algorithm is more
generous in matching subpopulations across batches. We suggest starting with the default k and
increasing it if one is confident that the same cell types are not adequately merged across batches.
This is better than starting with a large k as incorrect merging is much harder to diagnose than
insufficient merging.

An additional consideration is that the effect of any given k will vary with the number of cells in
each batch. With more cells, a larger k may be preferable to achieve better merging in the presence
of non-orthogonality. We can achieve this by setting prop.k, e.g., prop.k=0.05 will set k to 5%
of the number of cells in each batch. This allows the choice of k to adapt to the size of each
batch at each merge step and handles asymmetry in batch sizes (via the k1 and k2 arguments in
findMutualNN).

Orthogonalization details

fastMNN will compute the percentage of variance that is lost from each batch during orthogonal-
ization at each merge step. This represents the variance in each batch that is parallel to the average
correction vectors (and hence removed during orthogonalization) at each merge step. Large propor-
tions suggest that there is biological structure that is parallel to the batch effect, corresponding to
violations of the assumption that the batch effect is orthogonal to the biological subspace. A rule of
thumb is that more than 10% of lost variance is cause for closer examination, though this is highly
dependent on the context, e.g., a large lost proportion may be fine if the population structure is still
approximately preserved while a small lost proportion may be unacceptable if an important rare
subpopulation can no longer be distinguished.

In rare cases, orthogonalization may cause problems in the absence of a batch effect, resulting in
large losses of variance. To avoid this, fastMNN will not perform any correction if the relative
magnitude of the batch effect is less than min.batch.skip. The relative magnitude is defined as
the L2 norm of the average correction vector divided by the root-mean-square of the L2 norms of
the per-MNN pair correction vectors. This will be large when the per-pair vectors are all pointing
in the same direction, and small when the per-pair vectors point in random directions due to the
absence of a consistent batch effect. If a large loss of variance is observed along with a small batch
effect in a given merge step, users can set min.batch.skip to simply skip correction in that step.

Author(s)

Aaron Lun

References

Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018). Batch effects in single-cell RNA-sequencing
data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36(5):421

Lun ATL (2018). Further MNN algorithm development. https://MarioniLab.github.io/FurtherMNN2018/
theory/description.html

See Also

cosineNorm and multiBatchPCA, to obtain the values to be corrected.

reducedMNN, for a version of the function that operates in low-dimensional space.

mnnCorrect, for the “classic” version of the MNN correction algorithm.

clusterMNN, for the cluster-based version of this approach.

https://MarioniLab.github.io/FurtherMNN2018/theory/description.html
https://MarioniLab.github.io/FurtherMNN2018/theory/description.html
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multiModalMNN from the mumosa package, which extends this to data in the altExps.

mnnDeltaVariance, to obtain further per-gene diagnostics on the behavior of the correction.

Examples

B1 <- matrix(rnorm(10000, -1), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000, 1), ncol=50) # Batch 2
out <- fastMNN(B1, B2)

# Corrected values for use in clustering, etc.
str(reducedDim(out))

# Extracting corrected expression values for gene 10.
summary(assay(out)[10,])

intersectRows Take the intersection of rows across batches

Description

Subset multiple batches so that they have the same number and order of rows.

Usage

intersectRows(..., subset.row = NULL, keep.all = FALSE)

Arguments

... One or more matrix-like objects containing single-cell gene expression matrices.
Alternatively, one or more SingleCellExperiment objects can be supplied.

subset.row A vector specifying the subset of genes to retain. Defaults to NULL, in which
case all genes are retained.

keep.all Logical scalar indicating whether the data should actually be subsetted to subset.row.
If FALSE, subset.row is checked but not used.

Details

If any entry of ... contains no row names or if the intersection is empty, an error is raised.

If all entries of ... already have the same row names in the same order, this function is a no-op. In
such cases, subset.row can be a character, integer or logical vector.

If entries of ... do not have identical row names, subset.row can only be a character vector. Any
other type will lead to an error as the interpretation of the subset is not well defined.

Setting keep.all=TRUE option gives the same result as having subset.row=NULL in the first place.
However, it is still useful for checking that subset.row is a character vector. This ensures that
downstream applications can safely use subset.row in conjunction with, e.g., correct.all=TRUE
for fastMNN.

Value

A list containing the row-subsetted contents of ..., each of which have the same number and order
of rows.
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Author(s)

Aaron Lun

Examples

X <- rbind(A=c(1,2), B=c(3,4))
Y <- rbind(a=c(1,2), B=c(3,4))
intersectRows(X, Y) # Only B is retained.

# Error is raised when no genes are retained:
X <- rbind(A=c(1,2), B=c(3,4))
Y <- rbind(a=c(1,2), b=c(3,4))
try(intersectRows(X, Y))

# Error is raised for non-character subset.row
# when row names are not identical:
X <- rbind(A=c(1,2), B=c(3,4), C=c(5,6))
Y <- rbind(a=c(1,2), B=c(3,4), C=c(5,6))
intersectRows(X, Y)
intersectRows(X, Y, subset.row="B")
try(intersectRows(X, Y, subset.row=1))

# Setting keep.all=TRUE only checks but does not apply subset.row.
intersectRows(X, Y, subset.row="B", keep.all=TRUE)
try(intersectRows(X, Y, subset.row=1, keep.all=TRUE))

mnnCorrect Mutual nearest neighbors correction

Description

Correct for batch effects in single-cell expression data using the mutual nearest neighbors method.

Usage

mnnCorrect(
...,
batch = NULL,
restrict = NULL,
k = 20,
prop.k = NULL,
sigma = 0.1,
cos.norm.in = TRUE,
cos.norm.out = TRUE,
svd.dim = 0L,
var.adj = TRUE,
subset.row = NULL,
correct.all = FALSE,
merge.order = NULL,
auto.merge = FALSE,
assay.type = "logcounts",
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BSPARAM = ExactParam(),
BNPARAM = KmknnParam(),
BPPARAM = SerialParam()

)

Arguments

... One or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Alternatively, one or more SingleCellExperiment ob-
jects can be supplied containing a log-expression matrix in the assay.type as-
say. Each object should contain the same number of rows, corresponding to the
same genes in the same order. Objects of different types can be mixed together.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, it is assumed to contain
cells from all batches, so batch should also be specified.
Alternatively, one or more lists of matrices or SingleCellExperiments can be
provided; this is flattened as if the objects inside each list were passed directly
to ....

batch A vector or factor specifying the batch of origin for all cells when only a single
object is supplied in .... This is ignored if multiple objects are present.

restrict A list of length equal to the number of objects in .... Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

k An integer scalar specifying the number of nearest neighbors to consider when
identifying MNNs.

prop.k A numeric scalar in (0, 1) specifying the proportion of cells in each dataset to use
for mutual nearest neighbor searching. If set, the number of nearest neighbors
used for the MNN search in each batch is redefined as max(k, prop.k*N) where
N is the number of cells in that batch.

sigma A numeric scalar specifying the bandwidth of the Gaussian smoothing kernel
used to compute the correction vector for each cell.

cos.norm.in A logical scalar indicating whether cosine normalization should be performed
on the input data prior to calculating distances between cells.

cos.norm.out A logical scalar indicating whether cosine normalization should be performed
prior to computing corrected expression values.

svd.dim An integer scalar specifying the number of dimensions to use for summarizing
biological substructure within each batch.

var.adj A logical scalar indicating whether variance adjustment should be performed on
the correction vectors.

subset.row A vector specifying which features to use for correction.

correct.all A logical scalar specifying whether correction should be applied to all genes,
even if only a subset is used for the MNN calculations.

merge.order An integer vector containing the linear merge order of batches in .... Alterna-
tively, a list of lists representing a tree structure specifying a hierarchical merge
order.

auto.merge Logical scalar indicating whether to automatically identify the “best” merge or-
der.

assay.type A string or integer scalar specifying the assay containing the log-expression
values. Only used for SingleCellExperiment inputs.
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BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA in multiBatchPCA.

BNPARAM A BiocNeighborParam object specifying the nearest neighbor algorithm.

BPPARAM A BiocParallelParam object specifying whether the PCA and nearest-neighbor
searches should be parallelized.

Details

This function is designed for batch correction of single-cell RNA-seq data where the batches are
partially confounded with biological conditions of interest. It does so by identifying pairs of mutual
nearest neighbors (MNN) in the high-dimensional log-expression space. Each MNN pair represents
cells in different batches that are of the same cell type/state, assuming that batch effects are mostly
orthogonal to the biological manifold. Correction vectors are calculated from the pairs of MNNs and
corrected (log-)expression values are returned for use in clustering and dimensionality reduction.

For each MNN pair, a pairwise correction vector is computed based on the difference in the log-
expression profiles. The correction vector for each cell is computed by applying a Gaussian smooth-
ing kernel with bandwidth sigma is the pairwise vectors. This stabilizes the vectors across many
MNN pairs and extends the correction to those cells that do not have MNNs. The choice of sigma
determines the extent of smoothing - a value of 0.1 is used by default, corresponding to 10% of the
radius of the space after cosine normalization.

Value

A SingleCellExperiment object containing the corrected assay. This contains corrected expression
values for each gene (row) in each cell (column) in each batch. A batch field is present in the
column data, specifying the batch of origin for each cell.

Cells in the output object are always ordered in the same manner as supplied in .... For a single
input object, cells will be reported in the same order as they are arranged in that object. In cases
with multiple input objects, the cell identities are simply concatenated from successive objects, i.e.,
all cells from the first object (in their provided order), then all cells from the second object, and so
on.

The metadata of the SingleCellExperiment contains merge.info, a DataFrame where each row
corresponds to a merge step. See “Merge diagnostics” for more information.

Choosing the gene set

All genes are used with the default setting of subset.row=NULL. Users can set subset.row to
subset the inputs to highly variable genes or marker genes. This may provide more meaningful
identification of MNN pairs by reducing the noise from irrelevant genes. Note that users should
not be too restrictive with subsetting, as high dimensionality is required to satisfy the orthogonality
assumption in MNN detection.

If subset.row is specified and correct.all=TRUE, corrected values are returned for all genes.
This is possible as subset.row is only used to identify the MNN pairs and other cell-based distance
calculations. Correction vectors between MNN pairs can then be computed in for all genes in the
supplied matrices. Note that setting correct.all=TRUE will not alter the corrected expression
values for the subsetted genes.

Expected type of input data

The input expression values should generally be log-transformed, e.g., log-counts, see logNormCounts
for details. They should also be normalized within each data set to remove cell-specific biases
in capture efficiency and sequencing depth. Users may also consider using the multiBatchNorm
functino to mitigate the effect of differences in sequencing depth between batches.
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By default, a further cosine normalization step is performed on the supplied expression data to
eliminate gross scaling differences between data sets.

• When cos.norm.in=TRUE, cosine normalization is performed on the matrix of expression
values used to compute distances between cells. This can be turned off when there are no
scaling differences between data sets.

• When cos.norm.out=TRUE, cosine normalization is performed on the matrix of values used
to calculate correction vectors (and on which those vectors are applied). This can be turned
off to obtain corrected values on the log-scale, similar to the input data.

The cosine normalization is achieved using the cosineNorm function.

Further options

The function depends on a shared biological manifold, i.e., one or more cell types/states being
present in multiple batches. If this is not true, MNNs may be incorrectly identified, resulting in
over-correction and removal of interesting biology. Some protection can be provided by removing
components of the correction vectors that are parallel to the biological subspaces in each batch.
The biological subspace in each batch is identified with a SVD on the expression matrix to obtain
svd.dim dimensions. (By default, this option is turned off by setting svd.dim=0.)

If var.adj=TRUE, the function will adjust the correction vector to equalize the variances of the
two data sets along the batch effect vector. In particular, it avoids “kissing” effects whereby MNN
pairs are identified between the surfaces of point clouds from different batches. Naive correction
would then bring only the surfaces into contact, rather than fully merging the clouds together. The
adjustment ensures that the cells from the two batches are properly intermingled after correction.
This is done by identifying each cell’s position on the correction vector, identifying corresponding
quantiles between batches, and scaling the correction vector to ensure that the quantiles are matched
after correction.

See ?"batchelor-restrict" for a description of the restrict argument. Specifically, mnnCorrect
will only use the restricted subset of cells in each batch to identify MNN pairs (and to perform vari-
ance adjustment, if var.adj=TRUE), and then apply the correction to all cells in each batch.

Merge diagnostics

Each merge step combines two mutually exclusive sets of cells, a “left” set and “right” set. The
metadata thus contains the following fields:

• left, a List of integer or character vectors. Each vector specifies the batches in the left set at
a given merge step.

• right, a similar List of integer or character vectors. Each vector specifies the batches in the
right set at a given merge step.

• pairs, a List of DataFrames specifying which pairs of cells were identified as MNNs at each
step. In each DataFrame, each row corresponds to a single MNN pair and specifies the paired
cells that were in the left and right sets, respectively. Note that the indices refer to those paired
cells in the output ordering of cells, i.e., users can identify the paired cells at each step by
column-indexing the output of the mnnCorrect function.

Specifying the number of neighbors

The threshold to define nearest neighbors is defined by k, which is passed to findMutualNN to
identify MNN pairs. The size of k can be roughly interpreted as the anticipated minimum size of
a shared subpopulation in each batch. If a batch has fewer than k cells of a shared subpopulation,
there is an increased risk that its counterparts in other batches will form incorrect MNN pairs.
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From the perspective of the algorithm, larger values allow for more MNN pairs to be obtained,
which improves the stability of the correction vectors. Larger values also increase robustness against
non-orthogonality, by ignoring a certain level of biological variation when identifying pairs. This
can be used to avoid the kissing problem where MNN pairs are only detected on the “surface” of
the distribution. However, values of k should not be too large, as this would result in MNN pairs
being inappropriately identified between biologically distinct populations.

In practice, increasing k will generally result in more aggressive merging as the algorithm is more
generous in matching subpopulations across batches. We suggest starting with the default k and
increasing it if one is confident that the same cell types are not adequately merged across batches.
This is better than starting with a large k as incorrect merging is much harder to diagnose than
insufficient merging.

An additional consideration is that the effect of any given k will vary with the number of cells in
each batch. With more cells, a larger k may be preferable to achieve better merging in the presence
of non-orthogonality. We can achieve this by setting prop.k, e.g., prop.k=0.05 will set k to 5%
of the number of cells in each batch. This allows the choice of k to adapt to the size of each
batch at each merge step and handles asymmetry in batch sizes (via the k1 and k2 arguments in
findMutualNN).

Controlling the merge order

By default, batches are merged in the user-supplied order in ..., i.e., the first batch is merged with
the second batch, the third batch is merged with the combined first-second batch, the fourth batch
is merged with the combined first-second-third batch and so on. We refer to this approach as a
progressive merge. When batch is supplied for a single object in ..., the ordering of batches in a
progressive merge is determined by the ordering of factor levels in batch.

If merge.order is an integer vector, it is treated as an ordering permutation with which to perform a
progressive merge. For example, if merge.order=c(4,1,3,2), batches 4 and 1 in ... are merged
first; batch 3 is merged with the combined 4+1 batch; and then batch 2 is merged with the combined
4+1+3 batch. This is often more convenient than changing the order manually in ..., which would
alter the order of batches in the output corrected matrix.

If merge.order is a character vector, it is treated as an ordering permutation for named batches. If
merge.order is a factor, it is coerced into a character vector and also treated as a permutation of
names.

If merge.order is a nested list, it is treated as a tree that specifies a hierarchical merge. Each
element of the list should either be a string or integer scalar, corresponding to a leaf node that
specifies a batch; or another list, corresponding to an internal node that should contain at least two
children; or an integer or character vector of length 2 or more, again corresponding to an internal
node.

• For example, list(list(1,2), list(3,4)) indicates that batch 1 should be merged with
batch 2; batch 3 should be merged with batch 4; and that, finally, the combined batches 1+2
and 3+4 should be merged.

• More than two children per node are supported and will result in a progressive merge within
that node. For example, list(list(1,2,3), list(4,5,6)) will merge batch 1 with 2, then
1+2 with 3; batch 4 with 5, and then 4+5 with 6; and finally, 1+2+3 with 4+5+6.

• The same approach can be used for integer or character vectors, e.g., list(1:3, 4:6) has the
same effect as above.

Note that, while batches can be specified by name (character) or index (integer), users cannot use
both in the same tree. Factors can be provided and are coerced to character vectors.



34 mnnCorrect

The merge order may occasionally be important as it determines the number of MNN pairs avail-
able at each merge step. MNN pairs results in greater stability of the batch vectors and increased
likelihood of identifying shared subpopulations, which are important to the precision and accuracy
of the MNN-based correction, respectively.

• In a progressive merge, the reference increases in size at each step, ensuring that more cells
are available to identify MNN pairs in later merges. We suggest setting the largest, most
heterogeneous batch as the first reference, which favors detection of sufficient MNN pairs be-
tween the first and other batches. Conversely, if two small batches without shared populations
are supplied first, the wrong MNN pairs will be detected and the result of the merge will be
incorrect.

• A merge tree is useful for merging together batches that are known to be more closely related
(e.g., replicates) before attempting difficult merges involving more dissimilar batches. The
idea is to increase the number of cells and thus MNN pairs prior to merging batches with few
shared subpopulations. By comparison, performing the more difficult merges first is more
likely to introduce errors whereby distinct subpopulations are incorrectly placed together,
which is propagated to later steps as the initial merge is used as a reference for subsequent
merges.

• If auto.merge=TRUE, merge steps are chosen to maximize the number of MNN pairs at each
step. The aim is to improve the stability of the correction by first merging more similar batches
with more MNN pairs. This can be somewhat time-consuming as MNN pairs need to be
iteratively recomputed for all possible batch pairings.

The order of cells in the output is never affected by the setting of merge.order. It depends only on
the order of objects in ... and the order of cells within each object.

Author(s)

Laleh Haghverdi, with modifications by Aaron Lun

References

Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018). Batch effects in single-cell RNA-sequencing
data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36(5):421

See Also

fastMNN for a faster equivalent.

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2
out <- mnnCorrect(B1, B2) # corrected values
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mnnDeltaVariance Computes the variance of the paired MNN deltas

Description

Computes the variance of the paired MNN deltas

Usage

mnnDeltaVariance(
...,
pairs,
cos.norm = FALSE,
subset.row = NULL,
compute.all = FALSE,
assay.type = "logcounts",
BPPARAM = SerialParam(),
trend.args = list()

)

Arguments

... One or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Alternatively, one or more SingleCellExperiment ob-
jects can be supplied containing a log-expression matrix in the assay.type as-
say. Each object should contain the same number of rows, corresponding to the
same genes in the same order. Objects of different types can be mixed together.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, it is assumed to contain
cells from all batches, so batch should also be specified.
Alternatively, one or more lists of matrices or SingleCellExperiments can be
provided; this is flattened as if the objects inside each list were passed directly
to ....

pairs A DataFrame or list of DataFrames containing MNN pairing information. Each
row of each DataFrame specifies an MNN pair; each DataFrame should have
two columns containing the column indices of paired cells. This is typically
produced by fastMNN, see that documentation for more information.

cos.norm A logical scalar indicating whether cosine normalization should be performed
on the expression values.

subset.row A vector specifying which genes to use for the calculation. This is typically the
same as the subset.row passed to fastMNN, if any.

compute.all Logical scalar indicating whether statistics should be returned for all genes when
subset.row is specified, see DEtails.

assay.type A string or integer scalar specifying the assay containing the log-expression
values. Only used for SingleCellExperiment inputs.

BPPARAM A BiocParallelParam object specifying whether the calculations should be par-
allelized.

trend.args Named list of further arguments to pass to fitTrendVar from the scran pack-
age.
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Details

The “MNN delta” is defined as the difference in the uncorrected expression values of MNN-paired
cells. We compute the variance of these values across all pairs for each gene; genes with highly
variable deltas are strongly affected by the correction beyond a simple shift. By looking through the
top genes, we may conclude that the correction did something unusual if, e.g., we find important
markers in the top set. Conversely, if key genes do not have unusually high variances in their
delta, we may gain some confidence in the reliability of the correction - at least with respect to the
behavior of those genes.

We compute the variance of the deltas rather than using their magnitude, as a shift in expression
space is not particularly concerning (and is, in fact, par for the course for batch correction). Rather,
we are interested in identifying non-linear changes that might be indicative of correction errors,
e.g., inappropriate merging of two different subpopulations. This would manifest as high variances
for the relevant marker genes. Of course, whether or not this is actually an error can be a subjective
decision - loss of some biological heterogeneity is often an acceptable cost for flexible correction.

To eliminate the mean-variance relationship, we fit a trend to the variances across all genes with
respect to the mean log-expression in each MNN pair. We then define an adjusted variance based
on the residuals of the fitted curve; this is a more appropriate measure to use for ranking affected
genes, as it ensures that genes are not highly ranked due to their abundance alone. Fitting is done
using the fitTrendVar function from the scran package - further arguments can be passed via
trend.args.

If a list is passed to pairs, each entry of the list is assumed to correspond to a merge step. The
variance and trend fitting is done separately for each merge step, and the results are combined by
computing the average variance across all steps. This avoids considering the variance of the deltas
across merge steps, which is not particularly concerning, e.g., if different batches require different
translations.

Value

A DataFrame with one row per gene in ... (or as specified by subset.row), containing the follow-
ing columns:

• mean, the mean of the mean log-expressions across all MNN pairs. This may contain repeated
contributions from the same cell if it is involved in many MNN pairs.

• total, the total variance of the deltas across all MNN pairs.

• trend, the fitted values of the trend in total with respect to mean.

• adjusted, the adjusted variance, i.e., the residuals of the fitted trend.

The metadata contains the trend fitting statistics returned by fitTrendVar.

If pairs is a list of length greater than 1, the returned DataFrame will also contain per.block, a
nested DataFrames of nested DataFrames. Each one of these contains statistics for the individual
merge steps and has the same structure as that described above.

Improving consistency with fastMNN

If cos.norm=TRUE, cosine normalization is performed on each cell in ... with cosineNorm. This
mimics what is done inside fastMNN for greater consistency with that function’s internal calcula-
tions. Some further scaling is performed so that the magnitude of the normalized values is mostly
unaffected.

If subset.row is specified, variances are only computed for the requested subset of genes, most
typically the set of highly variable genes used in fastMNN. This also implies that the normalization
and trend fitting is limited to the specified subset. However, if compute.all=TRUE, the scaling
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factor and fitted trend are extrapolated to compute adjusted variances for all other genes. This is
useful for picking up genes outside of the subset used in the correction.

In most applications, it is not necessary to have strict consistency with the internal values computed
by fastMNN. Nonetheless, it may be helpful for diagnostics in more difficult situations.

Author(s)

Aaron Lun

See Also

fastMNN and related functions, to obtain the MNN pairs in the first place.

Examples

means <- 2^rexp(200) * 10
B1 <- matrix(rpois(10000, means), ncol=50) # Batch 1
B2 <- matrix(rpois(10000, means), ncol=50) # Batch 2

# Spiking in some population structure. Each batch is split into two halves
# corresponding to 2 subpopulations. These populations match up across batches
# but the group in batch 1 also upregulates the first gene.
B1[1:2,1:25] <- B1[1:2,1:25] * 50
B2[2,1:25] <- B2[2,1:25] * 50

# Quick log-transformation and correction. We'll omit the multiBatchNorm as the
# sequencing depth is the same across batches anyway.
library(scuttle)
B1 <- normalizeCounts(B1)
B2 <- normalizeCounts(B2)
out <- fastMNN(B1, B2)

# First gene should have high variance of deltas, as the upregulation in B1 is
# removed to enable the alignment of subpopulations across batches.
mnnDeltaVariance(B1, B2, pairs=metadata(out)$merge.info$pairs[[1]])

multiBatchNorm Per-batch scaling normalization

Description

Perform scaling normalization within each batch to provide comparable results to the lowest-coverage
batch.

Usage

multiBatchNorm(
...,
batch = NULL,
norm.args = list(),
min.mean = 1,
subset.row = NULL,
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normalize.all = FALSE,
preserve.single = TRUE,
assay.type = "counts",
BPPARAM = SerialParam()

)

Arguments

... One or more SingleCellExperiment objects containing counts and size factors.
Each object should contain the same number of rows, corresponding to the same
genes in the same order.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, batch should also be
specified.
Alternatively, one or more lists of SingleCellExperiments can be provided; this
is flattened as if the objects inside were passed directly to ....

batch A factor specifying the batch of origin for all cells when only a single object is
supplied in .... This is ignored if multiple objects are present.

norm.args A named list of further arguments to pass to logNormCounts.
min.mean A numeric scalar specifying the minimum (library size-adjusted) average count

of genes to be used for normalization.
subset.row A vector specifying which features to use for normalization.
normalize.all A logical scalar indicating whether normalized values should be returned for all

genes.
preserve.single

A logical scalar indicating whether to combine the results into a single matrix if
only one object was supplied in ....

assay.type A string specifying which assay values contains the counts.
BPPARAM A BiocParallelParam object specifying whether calculations should be paral-

lelized.

Details

When performing integrative analyses of multiple batches, it is often the case that different batches
have large differences in sequencing depth. This function removes systematic differences in cov-
erage across batches to simplify downstream comparisons. It does so by resaling the size factors
using median-based normalization on the ratio of the average counts between batches. This is
roughly equivalent to the between-cluster normalization described by Lun et al. (2016).

This function will adjust the size factors so that counts in high-coverage batches are scaled down-
wards to match the coverage of the most shallow batch. The logNormCounts function will then add
the same pseudo-count to all batches before log-transformation. By scaling downwards, we favour
stronger squeezing of log-fold changes from the pseudo-count, mitigating any technical differences
in variance between batches. Of course, genuine biological differences will also be shrunk, but this
is less of an issue for upregulated genes with large counts.

Only genes with library size-adjusted average counts greater than min.mean will be used for com-
puting the rescaling factors. This improves precision and avoids problems with discreteness. By
default, we use min.mean=1, which is usually satisfactory but may need to be lowered for very
sparse datasets.

Users can also set subset.row to restrict the set of genes used for computing the rescaling fac-
tors. By default, normalized values will only be returned for genes specified in the subset. Setting
normalize.all=TRUE will return normalized values for all genes.
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Value

A list of SingleCellExperiment objects with normalized log-expression values in the "logcounts"
assay (depending on values in norm.args). Each object contains cells from a single batch.

If preserve.single=TRUE and ... contains only one SingleCellExperiment, that object is returned
with an additional "logcounts" assay containing normalized log-expression values. The order of
cells is not changed.

Comparison to other normalization strategies

For comparison, imagine if we ran logNormCounts separately in each batch prior to correction.
Size factors will be computed within each batch, and batch-specific application in logNormCounts
will not account for scaling differences between batches. In contrast, multiBatchNorm will rescale
the size factors so that they are comparable across batches. This removes at least one difference
between batches to facilitate easier correction.

cosineNorm performs a similar role of equalizing the scale of expression values across batches.
However, the advantage of multiBatchNorm is that its output is more easily interpreted - the nor-
malized values remain on the log-scale and differences can still be interpreted (roughly) as log-fold
changes. The output can then be fed into downstream analysis procedures (e.g., HVG detection) in
the same manner as typical log-normalized values from logNormCounts.

Author(s)

Aaron Lun

References

Lun ATL (2018). Further MNN algorithm development. https://MarioniLab.github.io/FurtherMNN2018/
theory/description.html

See Also

mnnCorrect and fastMNN, for methods that can benefit from rescaling.

logNormCounts for the calculation of log-transformed normalized expression values.

applyMultiSCE, to apply this function over the altExps in x.

Examples

d1 <- matrix(rnbinom(50000, mu=10, size=1), ncol=100)
sce1 <- SingleCellExperiment(list(counts=d1))
sizeFactors(sce1) <- runif(ncol(d1))

d2 <- matrix(rnbinom(20000, mu=50, size=1), ncol=40)
sce2 <- SingleCellExperiment(list(counts=d2))
sizeFactors(sce2) <- runif(ncol(d2))

out <- multiBatchNorm(sce1, sce2)
summary(sizeFactors(out[[1]]))
summary(sizeFactors(out[[2]]))

https://MarioniLab.github.io/FurtherMNN2018/theory/description.html
https://MarioniLab.github.io/FurtherMNN2018/theory/description.html
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multiBatchPCA Multi-batch PCA

Description

Perform a principal components analysis across multiple gene expression matrices to project all
cells to a common low-dimensional space.

Usage

multiBatchPCA(
...,
batch = NULL,
d = 50,
subset.row = NULL,
weights = NULL,
get.all.genes = FALSE,
get.variance = FALSE,
preserve.single = FALSE,
assay.type = "logcounts",
BSPARAM = IrlbaParam(),
deferred = TRUE,
BPPARAM = SerialParam()

)

Arguments

... Two or more matrices containing expression values (usually log-normalized).
Each matrix is assumed to represent one batch and should contain the same
number of rows, corresponding to the same genes in the same order.
Alternatively, two or more SingleCellExperiment objects containing these ma-
trices. Note the same restrictions described above for gene expression matrix
inputs.
Alternatively, one matrix or SingleCellExperiment can be supplied containing
cells from all batches. This requires batch to also be specified.
Alternatively, one or more lists of matrices or SingleCellExperiments can be
provided; this is flattened as if the objects inside were passed directly to ....

batch A factor specifying the batch identity of each cell in the input data. Ignored if
... contains more than one argument.

d An integer scalar specifying the number of dimensions to keep from the PCA.
Alternatively NA, in which case the PCA step is omitted entirely - see details
below.

subset.row A vector specifying which features to use for correction.

weights Numeric vector, logical scalar or list specifying the weighting scheme to use,
see below for details.

get.all.genes A logical scalar indicating whether the reported rotation vectors should include
genes that are excluded by a non-NULL value of subset.row.

get.variance A logical scalar indicating whether to return the (weighted) variance explained
by each PC.
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preserve.single

A logical scalar indicating whether to combine the results into a single matrix if
only one object was supplied in ....

assay.type A string or integer scalar specifying the assay containing the expression values,
if SingleCellExperiment objects are present in ....

BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA, see runSVD
for details.

deferred A logical scalar used to overwrite the deferred status of BSPARAM for greater
speed. Set to NULL to use the supplied status in BSPARAM directly.

BPPARAM A BiocParallelParam object specifying whether the SVD should be parallelized.

Details

This function is roughly equivalent to cbinding all matrices in ... and performing PCA on the
merged matrix. The main difference is that each sample is forced to contribute equally to the
identification of the rotation vectors. Specifically, the mean vector used for centering is defined as
the grand mean of the mean vectors within each batch. Each batch’s contribution to the gene-gene
covariance matrix is also divided by the number of cells in that batch.

Our approach is to effectively weight the cells in each batch to mimic the situation where all batches
have the same number of cells. This ensures that the low-dimensional space can distinguish sub-
populations in smaller batches. Otherwise, batches with a large number of cells would dominate
the PCA, i.e., the definition of the mean vector and covariance matrix. This may reduce resolution
of unique subpopulations in smaller batches that differ in a different dimension to the subspace of
the larger batches.

It is usually recommended to set subset.row to a subset of interesting features (e.g., highly variable
genes). This reduces computational time and eliminates uninteresting noise that could interfere
with identification of the most relevant axes of variation. Setting get.all.genes=TRUE will report
rotation vectors that span all genes, even when only a subset of genes are used for the PCA. This is
done by projecting all non-used genes into the low-dimensional “cell space” defined by the first d
components.

Value

A List of numeric matrices is returned where each matrix corresponds to a batch and contains the
first d PCs (columns) for all cells in the batch (rows).

If preserve.single=TRUE and ... contains a single object, the List will only contain a single
matrix. This contains the first d PCs (columns) for all cells in the same order as supplied in the
single input object.

The metadata contains rotation, a matrix of rotation vectors, which can be used to construct a
low-rank approximation of the input matrices. This has number of rows equal to the number of
genes after any subsetting, except if get.all.genes=TRUE, where the number of rows is equal to
the genes before subsetting.

If get.variance=TRUE, the metadata will also contain var.explained, a numeric vector contain-
ing the weighted variance explained by each of d PCs; and var.total, the total variance across all
components after weighting.

Tuning the weighting

By default, weights=NULL or TRUE will use the default weights, i.e., the reciprocal of the number
of cells in each batch. This equalizes the contribution of batches with different numbers of cells as
described above.
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If weights=FALSE, no weighting is performed. This means that larger batches will drive the PCA,
which may be desirable when dealing with technical replicates where there is no concern about
unique subpopulations in smaller batches.

If weights is a numeric vector, it is expected to be of the same length (and, if named, have the
same names) as the entries in .... Each entry of the vector is used to scale the default weight of the
corresponding batch. This allows users to fine-tune the contribution of each batch in situations with
multiple levels of heterogeneity. For example, consider merging data from multiple donors where
each donor contains a variable number of batches. In such cases, it may be more appropriate to
ensure that each donor has equal weight, rather than each batch. This is done by assigning a value
of weights to each replicate that is inversely proportional to the number of batches for the same
donor - see Examples.

Alternatively, weights can be a list representing a tree-like structure, identical to the tree control-
ling the merge order in fastMNN. Here, weights are scaled so that each partition in the tree yields
subtrees with identical scaled weights (summed across each subtree’s children). This allows us to
easily adjust the weighting scheme for hierarchical batch structures like the replicate-study scenario
described above.

Performing the PCA

Most of the parameters related to the PCA are controlled by BSPARAM, which determines the choice
and parameterization of SVD algorithms. The default is to use IrlbaParam though RandomParam
is often faster (at the cost of some accuracy). Most choices of BSPARAM will interactly sanely with
BPPARAM to achieve parallelization during the PCA itself.

With the default deferred=TRUE, the per-gene centering and per-cell scaling will be deferred during
matrix multiplication in approximate SVD algorithms. This is much faster when the input matrices
are sparse, as deferred operations avoids loss of sparsity at the cost of numerical precision. If
deferred=NULL, the use of deferred scaling is determined by the setting within BSPARAM itself - see
?bsdeferred for details.

If d=NA, no PCA is performed. Instead, the centered matrices are transposed and returned directly,
while the rotation matrix is set to an identity matrix. This allows developers to easily switch between
PCA-based approximations versus the underlying dataset in their functions by simply changing d.
(In some settings, one can even interpret d=NA as the maximum d, as Euclidean distance calculations
between cells will be identical to a full-rank PC matrix.) Note that, in this mode, no projection will
be done with get.all.genes=TRUE; rather, genes not in subset.row will simply have rotation
values of zero. If get.variance=TRUE, the weighted variances of the individual genes are returned.

Author(s)

Aaron Lun

See Also

runSVD

Examples

d1 <- matrix(rnorm(5000), ncol=100)
d1[1:10,1:10] <- d1[1:10,1:10] + 2 # unique population in d1
d2 <- matrix(rnorm(2000), ncol=40)
d2[11:20,1:10] <- d2[11:20,1:10] + 2 # unique population in d2

# PCA defaults to IRLBA, so we need to set the seed.
set.seed(10)
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out <- multiBatchPCA(d1, d2, d=10)

# Examining results.
xlim <- range(c(out[[1]][,1], out[[2]][,1]))
ylim <- range(c(out[[1]][,2], out[[2]][,2]))
plot(out[[1]][,1], out[[1]][,2], col="red", xlim=xlim, ylim=ylim)
points(out[[2]][,1], out[[2]][,2], col="blue")

# Using the weighting scheme, assuming that 'd2' and 'd3'
# are replicates and should contribute the same combined
# weight as 'd1'.
d3 <- d2 + 5
set.seed(10)
out <- multiBatchPCA(d1, d2, d3, d=10, weights=c(1, 0.5, 0.5))

set.seed(10)
alt <- multiBatchPCA(d1, d2, d3, d=10, weights=list(1, list(2, 3)))
stopifnot(all.equal(out, alt)) # As they are the same.

noCorrect No correction

Description

Provides a no-correction method that has the same interface as the correction functions. This allows
users to easily swap function calls to examine the effect of correction.

Usage

noCorrect(
...,
batch = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts"

)

Arguments

... One or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Alternatively, one or more SingleCellExperiment ob-
jects can be supplied containing a log-expression matrix in the assay.type as-
say. Each object should contain the same number of rows, corresponding to the
same genes in the same order. Objects of different types can be mixed together.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, it is assumed to contain
cells from all batches, so batch should also be specified.
Alternatively, one or more lists of matrices or SingleCellExperiments can be
provided; this is flattened as if the objects inside each list were passed directly
to ....

batch A vector or factor specifying the batch of origin for all cells when only a single
object is supplied in .... This is ignored if multiple objects are present.
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subset.row A vector specifying which features to use for correction.

correct.all Logical scalar indicating whether corrected expression values should be com-
puted for genes not in subset.row. Only relevant if subset.row is not NULL.

assay.type A string or integer scalar specifying the assay containing the log-expression
values. Only used for SingleCellExperiment inputs.

Details

This function is effectively equivalent to cbinding the matrices together without any correction.
The aim is to provide a consistent interface that allows users to simply combine batches without
additional operations. This is often desirable as a negative control to see if the transformation
is actually beneficial. It also allows for convenient downstream analyses that are based on the
uncorrected data, e.g., differential expression.

Setting correct.all=TRUE is equivalent to forcing subset.row=NULL, given that no correction is
being performed anyway.

In the case of a single object in ..., batch has no effect beyond being stored in the colData of the
output.

Value

A SingleCellExperiment is returned where each row is a gene and each column is a cell. This
contains:

• A merged matrix in the assays slot, containing the merged expression values from all ele-
ments of ....

• A batch column in the colData slot, containing the batch of origin for each row (i.e., cell) in
corrected.

Author(s)

Aaron Lun

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2
out <- noCorrect(B1, B2)

# Same as combining the expression values.
stopifnot(all(assay(out)==cbind(B1, B2)))

# Specifies which cell came from which batch:
str(out$batch)
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quickCorrect Quickly perform batch correction

Description

Quickly perform batch correction by intersecting the gene features, normalizing and log-transforming,
modelling per-gene variances and identifying highly variable genes, and then applying the correc-
tion algorithm of choice.

Usage

quickCorrect(
...,
batch = NULL,
restrict = NULL,
correct.all = TRUE,
assay.type = "counts",
PARAM = FastMnnParam(),
multi.norm.args = list(),
precomputed = NULL,
model.var.args = list(),
hvg.args = list(n = 5000)

)

Arguments

... One or more matrix-like objects containing single-cell gene expression matrices.
Alternatively, one or more SingleCellExperiment objects can be supplied.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. Objects of different types can be mixed together. If a
single object is supplied, batch should also be specified.

batch A factor specifying the batch of origin for each cell if only one batch is supplied
in .... This will be ignored if two or more batches are supplied.

restrict A list of length equal to the number of objects in .... Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

correct.all A logical scalar indicating whether to return corrected expression values for all
genes, even if subset.row is set. Used to ensure that the output is of the same
dimensionality as the input.

assay.type A string or integer scalar specifying the assay to use for correction. Only used
for SingleCellExperiment inputs.

PARAM A BatchelorParam object specifying the batch correction method to dispatch to,
and the parameters with which it should be run. ClassicMnnParam will dispatch
to mnnCorrect; FastMnnParam will dispatch to fastMNN; RescaleParam will
dispatch to rescaleBatches; and RegressParam will dispatch to regressBatches.

multi.norm.args

Named list of further arguments to pass to multiBatchNorm.
precomputed List of DataFrames containing precomputed variance modelling results. This

should be a list of the same length as the number of entries in ..., and each
should have the same row names as the corresponding entry of ....
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model.var.args Named list of further arguments to pass to modelGeneVar.

hvg.args Named list of further arguments to pass to getTopHVGs. By default, we take the
top 5000 genes with the highest variances.

Details

This function wraps the sequence of typical steps required to obtain corrected expression values.’

1. Intersecting each batch to the universe of common features with intersectRows.

2. Applying normalization and log-transformation to the batches with multiBatchNorm.

3. Modelling the per-gene variance with modelGeneVar. If precomputed is supplied, the pre-
computed results are used instead.

4. Identifying highly variable genes with getTopHVGs. These genes will be used in the correc-
tion, though corrected values for all genes can be returned by setting correct.all=TRUE.

5. Applying the batch correction algorithm of choice with batchCorrect, as specified by PARAM.

The default of correct.all=TRUE differs from that of other functions. This is because the subset-
ting to HVGs is done internally here, and we avoid surprises by returning results for all genes in the
input object(s). In contrast, the other functions require explicit subsetting via subset.row= and it
is expected that users will set correct.all= if all genes are desired.

Value

A list containing:

• dec, a DataFrame containing the combined variance modelling results across all batches.

• hvgs, a character vector of the genes selected to use in the correction.

• corrected, a SingleCellExperiment containing the corrected values across all cells in all
batches.

Author(s)

Aaron Lun

See Also

intersectRows, for the intersection to obtain a universe of genes.

multiBatchNorm, to perform the normalization.

modelGeneVar and getTopHVGs, to identify the top HVGs for use in correction.

batchCorrect, to dispatch to the desired correction algorithm.

Examples

d1 <- matrix(rnbinom(50000, mu=10, size=1), ncol=100)
sce1 <- SingleCellExperiment(list(counts=d1))
sizeFactors(sce1) <- runif(ncol(d1))
rownames(sce1) <- paste0("GENE", 1:500)

d2 <- matrix(rnbinom(20000, mu=50, size=1), ncol=40)
sce2 <- SingleCellExperiment(list(counts=d2))
sizeFactors(sce2) <- runif(ncol(d2))
rownames(sce2) <- paste0("GENE", 201:700)
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# Fire and forget:
set.seed(1000)
output <- quickCorrect(sce1, sce2)
output$corrected

reducedMNN MNN correction in reduced dimensions

Description

MNN correction in reduced dimensions

Usage

reducedMNN(
...,
batch = NULL,
k = 20,
prop.k = NULL,
restrict = NULL,
ndist = 3,
merge.order = NULL,
auto.merge = FALSE,
min.batch.skip = 0,
BNPARAM = KmknnParam(),
BPPARAM = SerialParam()

)

Arguments

... One or more matrices of low-dimensional representations where rows are cells
and columns are dimensions. Each object should contain the same number of
columns, corresponding to the same dimensions. These should have been gen-
erated by a single call to multiBatchPCA.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, batch should also be
specified.
Alternatively, any number of lists of such objects. this is flattened as if the
objects inside each list were passed directly to ....

batch A vector or factor specifying the batch of origin for all cells when only a single
object is supplied in .... This is ignored if multiple objects are present.

k An integer scalar specifying the number of nearest neighbors to consider when
identifying MNNs.

prop.k A numeric scalar in (0, 1) specifying the proportion of cells in each dataset to use
for mutual nearest neighbor searching. If set, the number of nearest neighbors
used for the MNN search in each batch is redefined as max(k, prop.k*N) where
N is the number of cells in that batch.
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restrict A list of length equal to the number of objects in .... Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

ndist A numeric scalar specifying the threshold beyond which neighbours are to be
ignored when computing correction vectors. Each threshold is defined as a mul-
tiple of the number of median distances.

merge.order An integer vector containing the linear merge order of batches in .... Alterna-
tively, a list of lists representing a tree structure specifying a hierarchical merge
order.

auto.merge Logical scalar indicating whether to automatically identify the “best” merge or-
der.

min.batch.skip Numeric scalar specifying the minimum relative magnitude of the batch effect,
below which no correction will be performed at a given merge step.

BNPARAM A BiocNeighborParam object specifying the nearest neighbor algorithm.

BPPARAM A BiocParallelParam object specifying whether the PCA and nearest-neighbor
searches should be parallelized.

Details

reducedMNN performs the same operations as fastMNN but assumes that the PCA has already been
performed. This is useful as the PCA (via multiBatchPCA) is often the most time-consuming step.
By performing the PCA once, reducedMNN allows the MNN correction to be quickly repeated with
different parameters.

reducedMNN operates on the same principles as fastMNN, so users are referred to the documentation
for the latter for more details on the effect of each of the arguments. Obviously, any arguments
pertaining to gene-based steps in fastMNN are not relevant here.

Note that multiBatchPCA will not perform cosine-normalization, so it is the responsibility of the
user to cosine-normalize each batch beforehand with cosineNorm to recapitulate results of fastMNN
with cos.norm=TRUE. In addition, multiBatchPCA must be run on all samples at once, to ensure
that all cells are projected to the same low-dimensional space.

Value

A DataFrame is returned where each row corresponds to a cell, containing:

• corrected, the matrix of corrected low-dimensional coordinates for each cell.

• batch, the Rle specifying the batch of origin for each row.

Cells in the output object are always ordered in the same manner as supplied in .... The metadata
on this object is the same as that in the output of fastMNN.

Author(s)

Aaron Lun

See Also

multiBatchPCA, to obtain the values to be corrected.

fastMNN, for the version that operates on gene-expression values.

clusterMNN, for an application on cluster centroids.
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Examples

B1 <- matrix(rnorm(10000), nrow=50) # Batch 1
B2 <- matrix(rnorm(10000), nrow=50) # Batch 2

# Corrected values equivalent to fastMNN().
cB1 <- cosineNorm(B1)
cB2 <- cosineNorm(B2)
pcs <- multiBatchPCA(cB1, cB2)
mnn.out <- reducedMNN(pcs[[1]], pcs[[2]])

mnn.out

reexports Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

BiocNeighbors findMutualNN

regressBatches Regress out batch effects

Description

Fit a linear model to each gene regress out uninteresting factors of variation, returning a matrix of
residuals.

Usage

regressBatches(
...,
batch = NULL,
design = NULL,
keep = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
d = NA,
deferred = TRUE,
assay.type = "logcounts",
BSPARAM = IrlbaParam(),
BPPARAM = SerialParam()

)
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Arguments

... One or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Alternatively, one or more SingleCellExperiment ob-
jects can be supplied containing a log-expression matrix in the assay.type as-
say. Each object should contain the same number of rows, corresponding to the
same genes in the same order. Objects of different types can be mixed together.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, it is assumed to contain
cells from all batches, so batch should also be specified.
Alternatively, one or more lists of matrices or SingleCellExperiments can be
provided; this is flattened as if the objects inside each list were passed directly
to ....

batch A vector or factor specifying the batch of origin for all cells when only a single
object is supplied in .... This is ignored if multiple objects are present.

design A numeric design matrix with number of rows equal to the total number of cells,
specifying the experimental factors to remove. Each row corresponds to a cell
in the order supplied in ....

keep Integer vector specifying the coefficients of design to not regress out, see the
ResidualMatrix constructor for more details.

restrict A list of length equal to the number of objects in .... Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

subset.row A vector specifying which features to use for correction.

correct.all Logical scalar indicating whether corrected expression values should be com-
puted for genes not in subset.row. Only relevant if subset.row is not NULL.

d Numeric scalar specifying the number of dimensions to use for PCA via multiBatchPCA.
If NA, no PCA is performed.

deferred Logical scalar indicating whether to defer centering/scaling, see multiBatchPCA
for details.

assay.type A string or integer scalar specifying the assay containing the log-expression
values. Only used for SingleCellExperiment inputs.

BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA in multiBatchPCA.

BPPARAM A BiocParallelParam object specifying whether the PCA should be parallelized.

Details

This function fits a linear model to the log-expression values for each gene and returns the residuals.
By default, the model is parameterized as a one-way layout with the batch of origin, so the residuals
represent the expression values after correcting for the batch effect. The novelty of this function is
that it returns a ResidualMatrix in as the "corrected" assay. This avoids explicitly computing the
residuals, which would result in a loss of sparsity or similar problems. Rather, residuals are either
computed as needed or are never explicitly computed at all (e.g., during matrix multiplication). This
means that regressBatches is faster and lighter than naive regression or even rescaleBatches.

More complex designs should be explicitly specified with the design argument, e.g., to regress out a
covariate. This can be any full-column-rank matrix that is typically constructed with model.matrix.
If design is specified with a single object in ..., batch is ignored. If design is specified with mul-
tiple objects, regression is applied to the matrix obtained by cbinding all of those objects together;
this means that the first few rows of design correspond to the cells from the first object, then the
next rows correspond to the second object and so on.
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Like rescaleBatches, this function assumes that the batch effect is orthogonal to the interesting
factors of variation. For example, each batch is assumed to have the same composition of cell types.
The same reasoning applies to any uninteresting factors specified in design, including continuous
variables. For example, if one were to use this function to regress out cell cycle, the assumption is
that all cell types are similarly distributed across cell cycle phases. If this is not true, the correction
will not only be incomplete but can introduce spurious differences.

See ?"batchelor-restrict" for a description of the restrict argument. Specifically, this func-
tion will compute the model coefficients using only the specified subset of cells. The regression
will then be applied to all cells in each batch.

If set, the d option will perform a PCA via multiBatchPCA. This is provided for convenience as
efficiently executing a PCA on a ResidualMatrix is not always intuitive. (Specifically, BiocSin-
gularParam objects must be set up with deferred=TRUE for best performance.) The arguments
BSPARAM, deferred and BPPARAM only have an effect when d is set to a non-NA value.

All genes are used with the default setting of subset.row=NULL. If a subset of genes is specified,
residuals are only returned for that subset. Similarly, if d is set, only the genes in the subset are
used to perform the PCA. If additionally correct.all=TRUE, residuals are returned for all genes
but only the subset is used for the PCA.

Value

A SingleCellExperiment object containing the corrected assay. This contains the computed resid-
uals for each gene (row) in each cell (column) in each batch. A batch field is present in the column
data, specifying the batch of origin for each cell.

Cells in the output object are always ordered in the same manner as supplied in .... For a single
input object, cells will be reported in the same order as they are arranged in that object. In cases
with multiple input objects, the cell identities are simply concatenated from successive objects, i.e.,
all cells from the first object (in their provided order), then all cells from the second object, and so
on.

If d is not NA, a PCA is performed on the residual matrix via multiBatchPCA, and an additional
corrected field is present in the reducedDims of the output object.

Author(s)

Aaron Lun

See Also

rescaleBatches, for another approach to regressing out the batch effect.

The ResidualMatrix class, for the class of the residual matrix.

applyMultiSCE, to apply this across multiple altExps.

Examples

means <- 2^rgamma(1000, 2, 1)
A1 <- matrix(rpois(10000, lambda=means), ncol=50) # Batch 1
A2 <- matrix(rpois(10000, lambda=means*runif(1000, 0, 2)), ncol=50) # Batch 2

B1 <- log2(A1 + 1)
B2 <- log2(A2 + 1)
out <- regressBatches(B1, B2)
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rescaleBatches Scale counts across batches

Description

Scale counts so that the average count within each batch is the same for each gene.

Usage

rescaleBatches(
...,
batch = NULL,
restrict = NULL,
log.base = 2,
pseudo.count = 1,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts"

)

Arguments

... One or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Alternatively, one or more SingleCellExperiment ob-
jects can be supplied containing a log-expression matrix in the assay.type as-
say. Each object should contain the same number of rows, corresponding to the
same genes in the same order. Objects of different types can be mixed together.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, it is assumed to contain
cells from all batches, so batch should also be specified.
Alternatively, one or more lists of matrices or SingleCellExperiments can be
provided; this is flattened as if the objects inside each list were passed directly
to ....

batch A vector or factor specifying the batch of origin for all cells when only a single
object is supplied in .... This is ignored if multiple objects are present.

restrict A list of length equal to the number of objects in .... Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

log.base A numeric scalar specifying the base of the log-transformation.

pseudo.count A numeric scalar specifying the pseudo-count used for the log-transformation.

subset.row A vector specifying which features to use for correction.

correct.all Logical scalar indicating whether corrected expression values should be com-
puted for genes not in subset.row. Only relevant if subset.row is not NULL.

assay.type A string or integer scalar specifying the assay containing the log-expression
values. Only used for SingleCellExperiment inputs.
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Details

This function assumes that the log-expression values were computed by a log-transformation of
normalized count data, plus a pseudo-count. It reverses the log-transformation and scales the un-
derlying counts in each batch so that the average (normalized) count is equal across batches. The
assumption here is that each batch contains the same population composition. Thus, any scaling
difference between batches is technical and must be removed.

This function is approximately equivalent to centering in log-expression space, the simplest ap-
plication of linear regression methods for batch correction. However, by scaling the raw counts,
it avoids loss of sparsity that would otherwise result from centering. It also mitigates issues with
artificial differences in variance due to log-transformation. This is done by always downscaling to
the lowest average expression for each gene such that differences in variance are dampened by the
addition of the pseudo-count.

Use of rescaleBatches assumes that the uninteresting factors described in design are orthogonal
to the interesting factors of variation. For example, each batch is assumed to have the same compo-
sition of cell types. If this is not true, the correction will not only be incomplete but may introduce
spurious differences.

The output values are always re-log-transformed with the same log.base and pseudo.count.
These can be used directly in place of the input values for downstream operations.

All genes are used with the default setting of subset.row=NULL. Users can set subset.row to
subset the inputs, though this is purely for convenience as each gene is processed independently of
other genes.

See ?"batchelor-restrict" for a description of the restrict argument. Specifically, the func-
tion will compute the scaling differences using only the specified subset of cells, and then apply the
re-scaling to all cells in each batch.

Value

A SingleCellExperiment object containing the corrected assay. This contains corrected log-
expression values for each gene (row) in each cell (column) in each batch. A batch field is present
in the column data, specifying the batch of origin for each cell.

Cells in the output object are always ordered in the same manner as supplied in .... For a single
input object, cells will be reported in the same order as they are arranged in that object. In cases
with multiple input objects, the cell identities are simply concatenated from successive objects, i.e.,
all cells from the first object (in their provided order), then all cells from the second object, and so
on.

Author(s)

Aaron Lun

See Also

regressBatches, for a residual calculation based on a fitted linear model.

applyMultiSCE, to apply this function over multiple altExps.

Examples

means <- 2^rgamma(1000, 2, 1)
A1 <- matrix(rpois(10000, lambda=means), ncol=50) # Batch 1
A2 <- matrix(rpois(10000, lambda=means*runif(1000, 0, 2)), ncol=50) # Batch 2



54 rescaleBatches

B1 <- log2(A1 + 1)
B2 <- log2(A2 + 1)
out <- rescaleBatches(B1, B2)
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