Package ‘NanoTube’

April 1,2025
Type Package

Title An Easy Pipeline for NanoString nCounter Data Analysis
Version 1.12.0

Date 2023-05-31

Depends R (>=4.1), Biobase, ggplot2, limma

Imports fgsea, methods, reshape, stats, utils

Suggests grid, kableExtra, knitr, NanoStringDiff, pheatmap, plotly,
rlang, rmarkdown, ruv, RUVSeq, shiny, testthat, xlsx

VignetteBuilder knitr

Description NanoTube includes functions for the processing, quality control,
analysis, and visualization of NanoString nCounter data. Analysis functions
include differential analysis and gene set analysis methods, as well as
postprocessing steps to help understand the results. Additional functions
are included to enable interoperability with other Bioconductor NanoString
data analysis packages.

License GPL-3 + file LICENSE
Encoding UTF-8

LazyData false

RoxygenNote 7.2.1

biocViews Software, GeneExpression, DifferentialExpression,
QualityControl

git_url https://git.bioconductor.org/packages/NanoTube
git_branch RELEASE_3_20

git_last_commit ba6a8ce

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2025-03-31

Author Caleb Class [cre, aut] (<https://orcid.org/0000-0003-3130-3613>),
Caiden Lukan [ctb]

Maintainer Caleb Class <cclass@butler.edu>

https://orcid.org/0000-0003-3130-3613

2 deVolcano

Contents
deVolcano 2
ExamplePathways 3
ExampleResults 3
fgseaPostprocessing e 4
fgseaPostprocessingXLSX 5
fgseaToLEdge L e 6
CIM_MEAN . .+ . v o v v v e 7
groupedGSEAtoStackedReport L 7
groupFGSEA e 8
limmaToFGSEA e 9
makeDiffExprFile 11
makeFGSEAmasterTable 12
makeNanoStringSetFromEset L o o 12
nanostringPCA L 13
NanoTube 14
negativeQC L L e 14
normalize_housekeeping L 15
normalize_pos_controls e 16
nsdiff TOFGSEA o e 17
positiveQC . . L L e e e 18
processNanostringData L 19
read_cpdb_sourceDBs oL o 22
read_cpdb_tab e 22
1€ad_METZE_ICC . .« . v v v vt et e e e e e e e e e e e e e e 23
read_TICC o e e e 23
read_sampleData 24
remove_background 25
runLimmaAnalysis L. 26
untar_dirs L L e e e e e 27
unzip_dirs e e e 28

Index 29

deVolcano Draw volcano plot of differential expression results
Description
Draw a volcano plot for results of a differential expression analysis by limma.
Usage

deVolcano(limmaResults, plotContrast = NULL, y.var = c("p.value”,

"g.value"))

ExamplePathways

Arguments

limmaResults

plotContrast

y.var

Value

Result from runLimmaAnalysis.

Contrast to select for volcano plot. Should be one of the columns in the limma
coefficients matrix (for example, a sample group that was compared against the
base group, or one of the contrasts in the design matrix). If NULL (default), will
plot the first non-Intercept column from the limma coefficients matrix.

The variable to plot for the y axis, either "p.value" or "q.value" (the false dis-
covery adjusted p-value)

A volcano plot using ggplot2

Examples

data(ExampleResults) # Results from runLimmaAnalysis

deVolcano(ExampleResults, plotContrast = "Autoimmune.retinopathy”)

ExamplePathways

Example pathway database

Description

A list object containing example gene sets from WikiPathways.

Usage

data(ExamplePathways)

Format

A list object with 30 vectors of gene symbols, for 30 pathways

ExampleResults

Example results from runLimmaAnalysis

Description

Results of runLimmaAnalysis using the example data set GSE117751 (in extdata).

Usage

data(ExampleResults)

Format

An MArrayLM object from limma

4 fgseaPostprocessing

fgseaPostprocessing Postprocessing for GSEA analyses

Description

Clusters GSEA results by leading edge genes, and writes reports showing gene expression profiles
of these genes.

Usage

fgseaPostprocessing(
genesetResults,
leadingEdge,
limmaResults,
join.threshold = 0.5,
ngroups = NULL,
dist.method = "binary”,
reportDir

Arguments

genesetResults Results from pathway analysis using limmaToFGSEA.
leadingEdge Results from fgseaToLEdge
limmaResults Results from runLimmaAnalysis

join.threshold The threshold distance to join gene sets. Gene sets with a distance below this
value will be joined to a single "cluster."

ngroups The desired number of gene set groups. Either ’join.threshold’ or 'ngroups’
must be specified, *ngroups’ takes priority if both are specified.

dist.method Method for distance calculation (see options for dist()). We recommend the
“binary’ (also known as Jaccard) distance.

reportDir Directory for the GSEA reports (each comparison will be a separate txt file).
Directory will be created if it does not exist.

Value

A table of gene set analysis results, as well as reports showing differential expression of leading
edge genes.

Examples

data(”"ExamplePathways")
data("ExampleResults"”) # Results from runLimmaAnalysis

fgseaResults <- limmaToFGSEA(ExampleResults, gene.sets = ExamplePathways)

leadingEdge <- fgseaTolLEdge(fgseaResults, cutoff.type = "padj”, cutoff = 0.1)

fgseaPostprocessing(fgseaResults, leadingEdge,

fgseaPostprocessingXLSX 5

limmaResults = ExampleResults,
join.threshold = 0.5,
reportDir = "GSEAresults")

fgseaPostprocessingXLSX
Postprocessing for GSEA analyses for Excel

Description

Clusters GSEA results by leading edge genes, and writes reports showing gene expression profiles
of these genes (to Excel).

Usage

fgseaPostprocessingXLSX(
genesetResults,
leadingEdge,
limmaResults,
join.threshold = 0.5,
ngroups = NULL,
dist.method = "binary”,
filename

Arguments

genesetResults Results from pathway analysis using limmaToFGSEA.
leadingEdge Results from fgseaToLEdge
limmaResults Results from runLimmaAnalysis

join.threshold The threshold distance to join gene sets. Gene sets with a distance below this
value will be joined to a single "cluster.”

ngroups The desired number of gene set groups. Either ’join.threshold’ or 'ngroups’
must be specified, *ngroups’ takes priority if both are specified.

dist.method Method for distance calculation (see options for dist()). We recommend the
"binary’ (also known as Jaccard) distance.

filename File name for the output Excel file.

Value

An Excel file where the first sheet summarizes the gene set analysis results. Subsequent sheets are
reports showing differential expression statistics of leading edge genes.

6 fgseaToLEdge

Examples

data("ExamplePathways")
data("ExampleResults”) # Results from runLimmaAnalysis

fgseaResults <- limmaToFGSEA(ExampleResults, gene.sets = ExamplePathways)
leadingEdge <- fgseaTolLEdge(fgseaResults, cutoff.type = "padj”, cutoff = 0.1)
fgseaPostprocessingXLSX(fgseaResults, leadingEdge,

limmaResults = ExampleResults,

join.threshold = 0.5,
filename = "Results.xlsx")

fgseaTolLEdge Generate leading edge matrix from fgsea results.

Description

Extract leading edge genes from gene sets identified in fgsea analysis. Gene sets may be filtered by
significance or NES.

Usage

fgseaTolLEdge(
fgsea.res,
cutoff.type = c("padj"”, "pval”, "NES”, "none"),
cutoff = 0.05,
nes.abs.cutoff = TRUE

)
Arguments
fgsea.res Result from limmaToFGSEA
cutoff.type Filter gene sets by adjusted p-value (’padj’), nominal p-value ("pval’), normal-
ized enrichment score ("NES’), or include all gene sets ("none’)
cutoff Numeric cutoff for filtering (not used if cutoff.type == "none")
nes.abs.cutoff If cutoff.type == "NES", should we use extreme positive and negative values
(TRUE), or only filter in the positive or negative direction (FALSE). If TRUE,
will select gene sets with abs(NES) > cutoff. If FALSE, will select gene sets
with NES > cutoff (if cutoff >= 0) or NES < cutoff (if cutoff < 0)
Value

a list containing the leading edge matrix for each comparison

gm_mean 7

Examples

data("ExamplePathways")
data(”"ExampleResults”) # Results from runLimmaAnalysis

fgseaResults <- limmaToFGSEA(ExampleResults, gene.sets = ExamplePathways)

Generate the leading edge for pathways with padj < 0.25
leadingEdge <- fgseaTolLEdge(fgseaResults,
cutoff.type = "padj”, cutoff = 0.25)

Generate the leading edge for pathways with abs(NES) > 2
leadingEdge <- fgseaTolLEdge(fgseaResults, cutoff.type = "NES",
cutoff = 2, nes.abs.cutoff = TRUE)

gm_mean Calculate the geometric mean

Description

Calculates the geometric mean of a numeric vector

Usage

gm_mean(x, na.rm = TRUE)

Arguments
X A numeric vector
na.rm Logical (default TRUE). Should NA values be ignored in this calculation? If
FALSE, a vector containing NA values will return a geometric mean of NA.
Value

The geometric mean

Examples

gm_mean(c(1, 3, 5))

groupedGSEAtoStackedReport
Build a report from gene set enrichment results.

Description
After clustering FGSEA results by gene set similarity, this function builds a report containing the
individual gene expression profiles for genes contained in each gene set cluster.

Usage

groupedGSEAtoStackedReport(grouped.gsea, leadingEdge, de.fit, outputDir = NULL)

8 groupFGSEA

Arguments

grouped. gsea Output from groupFGSEA()
leadingEdge Leading edge analysis results used in groupFGSEA()
de.fit Differential Expression results from Limma or NanoStringDiff

outputDir Directory for output files. If NULL (default), will return the stacked report
instead of writing to a file.

Value

A stacked report containing statistics and gene expression profiles for genes contained in each clus-
ter

Examples

data(”"ExamplePathways")
data("ExampleResults"”) # Results from runLimmaAnalysis

fgseaResults <- limmaToFGSEA(ExampleResults, gene.sets = ExamplePathways,
min.set = 5, rank.by = "t")
leadingEdge <- fgseaTolLEdge(fgseaResults, cutoff.type = "padj”, cutoff = 0.1)

fgseaGrouped <- groupFGSEA(fgseaResults$Autoimmune.retinopathy,
leadingEdge$Autoimmune.retinopathy,
join.threshold = 0.5,
dist.method = "binary”)

results.AR <- groupedGSEAtoStackedReport(
fgseaGrouped,
leadingEdge = leadingEdge$Autoimmune.retinopathy,
de.fit = ExampleResults)

groupFGSEA Cluster gene set analysis results

Description

Groups the pathway analysis results (using limmaToFGSEA or nsdiff TOFGSEA) based on the en-
riched gene sets’ leading edges. If the calculated distance metric is lower than the given threshold
(i.e. the gene sets have highly overlapping leading edge genes), these gene sets will be joined to a
single gene set "cluster.” Or if 'ngroups’ is specified, gene sets will be clustered by similarity into
that number of groups.

Usage

groupFGSEA(
gsea.res,
1.edge,
join.threshold = NULL,
ngroups = NULL,
dist.method = "binary”,
returns = c("signif"”, "all")

limmaToFGSEA

Arguments

gsea.res
1.edge
join.threshold

ngroups

dist.method

returns

Value

Results from pathway analysis for a single comparison, using limmaToFSEA.
Leading edge result from fgseaToLEdge.

The threshold distance to join gene sets. Gene sets with a distance below this
value will be joined to a single "cluster."

The desired number of gene set groups. Either ’join.threshold’ or 'ngroups’
must be specified, *ngroups’ takes priority if both are specified.

Method for distance calculation (see options for dist()). We recommend the
"binary’ (also known as Jaccard) distance.

Either "signif" or "all". This argument defines whether only significantly en-
riched gene sets are included in the output table, or if the full results are in-
cluded. Regardless of this selection, only significantly enriched gene sets are
clustered.

A data frame including the FGSEA results, plus two additional columns for the clustering results:

Cluster

best

Examples

The cluster that the gene set was assigned to. Gene sets in the same cluster have
a distance below the join.threshold.

Whether the gene set is the most enriched (by p-value) in a given cluster.

data("ExamplePathways”)
data("ExampleResults"”) # Results from runLimmaAnalysis

fgseaResults <- limmaToFGSEA(ExampleResults, gene.sets = ExamplePathways,

min.set = 5, rank.by = "t")

leadingEdge <- fgseaTolLEdge(fgseaResults, cutoff.type = "padj”,

cutoff = 0.25)

Group the results, and only returns those satisfying the cutoff specified
in leadingEdge()
groupedResults <- groupFGSEA(fgseaResults$Autoimmune.retinopathy,

leadingEdge$Autoimmune.retinopathy,
join.threshold = 0.5,
returns = "signif")

limmaToFGSEA

Run gene set enrichment analysis using DE results.

Description

Use the fgsea library to run gene set enrichment analysis from the Limma analysis results. Genes
will be ranked by their log2 fold changes or t-statistics (specified using 'rank.by’).

10 limmaToFGSEA

Usage

limmaToFGSEA(
limmaResults,
gene.sets,
sourceDB = NULL,
min.set = 1,
rank.by = c("coefficients”, "t"),
skip.first = TRUE

Arguments

limmaResults Result from runLimmaAnalysis.

gene.sets Gene set file name, in .rds (list), .gmt, or .tab format; or a list object containing
the gene sets. Gene names must be in the same form as in the ranked.list.

sourceDB Source database to include (only if using a .tab-format geneset.file from CPDB).

min.set Number of genes required to conduct analysis on a given gene set (default = 1).
If fewer than this number of genes from limmaResults are included in a gene
set, that gene set will be skipped for this analysis.

rank. by Rank genes by log2 fold changes (’coefficients’, default) or t-statistics (’t’).

skip.first Logical: Skip the first factor for gene set analysis? Frequently the first factor is
the ’Intercept’, which is generally uninteresting for GSEA (default TRUE).

Details

Limma returns matrices of coefficients and t statistics with columns for each column in the design
matrix. This function will conduct a separate enrichment analysis on each column from the relevant
matrix. Because the first column may be an "intercept" term, which is generally not relevant for
enrichment analysis, the user may want to skip analysis for that term (using skip.first = TRUE, the
default).

Value

A list containing data frames with the fgsea results for each comparison.

Examples

data("ExamplePathways")
data(”"ExampleResults”) # Results from runLimmaAnalysis

Use the default settings
fgseaResults <- limmaToFGSEA(ExampleResults, gene.sets = ExamplePathways)

Only include gene sets with at least 5 genes in the NanoString data set,

and rank genes by their "t" statistics.

fgseaResults <- limmaToFGSEA(ExampleResults, gene.sets = ExamplePathways,
min.set = 5, rank.by = "t")

makeDiffExprFile 11

makeDiffExprFile Make differential expression results file.

Description

Make a data frame or text file containing coefficients, p-, and g-values from Limma differential
expression analysis. If returns == "all", will also center the log-expression data on the median of
base.group expression, and include the expression data in the output.

Usage

makeDiffExprFile(
limmaResults,
filename = NULL,
returns = c("all”, "stats"),
skip.first = TRUE

)

Arguments

limmaResults Result from runLimmaAnalysis

filename The desired name for the output tab-delimited text file. If NULL (default) the
resulting table will be returned as an R data frame.

returns If "all" (default), will center the log-expression data on median of base.group
expression and include the expression data in the output. If "stats", will only
include the differential expression statistics.

skip.first Logical: Skip the first factor for gene set analysis? Frequently the first factor is
the *Intercept’, which is generally uninteresting for GSEA (default TRUE).

Value

A table of differential expression results

Examples

data(”"ExampleResults”) # Results from runLimmaAnalysis

Include expression data in the results table
deResults <- makeDiffExprFile(ExampleResults, returns = "all")

Only include statistics, and save to a .txt file

makeDiffExprFile(ExampleResults, file = "DE.txt",
returns = "stats")

12 makeNanoStringSetFromEset

makeFGSEAmasterTable Make master table of all GSEA results

Description

This function clusters GSEA results by leading edge similarity, and then combines to a data frame
or text file.

Usage

makeFGSEAmasterTable(
genesetResults,
leadingEdge,
join.threshold = 0.5,
ngroups = NULL,
dist.method = "binary”,
filename = NULL

Arguments

genesetResults Results from pathway analysis using limmaToFGSEA.
leadingEdge Results from fgseaToLEdge

join.threshold The threshold distance to join gene sets. Gene sets with a distance below this
value will be joined to a single "cluster."

ngroups The desired number of gene set groups. Either ’join.threshold’ or 'ngroups’
must be specified, *ngroups’ takes priority if both are specified.

dist.method Method for distance calculation (see options for dist()). We recommend the
"binary’ (also known as Jaccard) distance.

filename File name for the output text file. If NULL (default), data will be returned as an
R data frame.

Value

A table of GSEA results, clustered by similarity of leading edge.

makeNanoStringSetFromEset
Convert NanoString ExpressionSet to NanoStringSet

Description
Convert ExpressionSet from processNanoStringData to a NanoStringSet for use with the NanoS-
tringDiff package.

Usage

makeNanoStringSetFromEset(eset, designs = NULL)

nanostringPCA

Arguments

eset

designs

Value

13

NanoString data ExpressionSet, from processNanostringData

Design matrix. If NULL, will look for "groups" column in pData(eset).

A NanoStringSet for NanoStringDiff

Examples

Example data

example_data <- system.file("extdata”, "GSE117751_RAW", package = "NanoTube")
sample_data <- system.file("extdata”, "GSE117751_sample_data.csv”,
package = "NanoTube")

Load data without normalization
dat <- processNanostringData(nsFiles = example_data,

sampleTab = sample_data, groupCol = "Sample_Diagnosis”,
normalization = "none”)

Convert to NanoStringSet
dat.ns <- makeNanoStringSetFromEset(dat)

nanostringPCA

Plot PCA

Description

Conduct principal components analysis and plot the results, using either ggplot2 or plotly.

Usage
nanostringPCA(
ns,
pcl =1,
pc2 = 2,
interactive.plot = FALSE,
exclude.zeros = TRUE,
codeclass.retain = "endogenous”
)
Arguments
ns Processed NanoString data
pcl Principal component to plot on x-axis (default 1)
pc2 Principal component to plot on y-axis (default 2)

interactive.plot

exclude.zeros

Plot using plotly? Default FALSE (in which case ggplot2 is used)

Exclude genes that are not detected in all samples (default TRUE)

14 negativeQC

codeclass.retain
The CodeClasses to retain for principal components analysis.Generally we’re
interested in endogenous genes, so we keep "endogenous"” only by default. Oth-
ers can be included by entering a character vector for this option. Alternatively,

non

all targets can be retained by setting this option to ".

Value

A list containing:

pca The PCA object
plt The PCA plot
Examples

example_data <- system.file("extdata”, "GSE117751_RAW", package = "NanoTube")
sample_data <- system.file("extdata”, "GSE117751_sample_data.csv",
package = "NanoTube")

Process and normalize data first
dat <- processNanostringData(example_data,
sampleTab = sample_data,
groupCol = "Sample_Diagnosis”,
normalization = "nSolver”,
bgType = "t.test"”, bgPval = 0.01)

Interactive PCA using plotly
nanostringPCA(dat, interactive.plot = TRUE)$plt

Static plot using ggplot2, for the 3rd and 4th PC's.
nanostringPCA(dat, pcl = 3, pc2 = 4, interactive.plot = FALSE)$plt

NanoTube NanoTube

Description

A package for NanoString nCounter gene expression data processing, analysis, and visualization.

negativeQC Calculate negative control statistics

Description
Provide a table the negative control statistics, and plot the counts of negative control genes in each
sample.

Usage

negativeQC(ns, interactive.plot = FALSE)

normalize_housekeeping 15

Arguments

ns NanoString data, processed by ‘processNanostringData‘ with output.format set
to ’list’ and "nSolver’ normalization.

interactive.plot
Generate an interactive plot using plotly? Only recommended for fewer than 20
samples (default FALSE)

Value

A list object containing:

tab The table of negative control statistics, including the mean & standard devia-
tion of negative control genes, calculated background threshold, and number of
endogenous genes below that threshold

plt An object containing the negative control plots.

Examples

example_data <- system.file("extdata”, "GSE117751_RAW", package = "NanoTube")
sample_data <- system.file("extdata”, "GSE117751_sample_data.csv”,
package = "NanoTube")

Process and normalize data first

dat <- processNanostringData(example_data,
sampleTab = sample_data,
groupCol = "Sample_Diagnosis”,
normalization = "nSolver”,
bgType = "threshold”,
bgThreshold = 2, bgProportion = 0.5,
output.format = "list")

negQC <- negativeQC(dat, interactive.plot = FALSE)
View negative QC table & plot

head(negQC$tab)
negQCsplt

normalize_housekeeping
Housekeeping gene normalization

Description

Scale endogenous and housekeeping genes by the geometric mean of housekeeping genes. This
should be conducted after positive control normalization and background correction. This step is
conducted within processNanostringData, when normalization is set to "nCounter".

Usage

normalize_housekeeping(dat, genes = NULL, logfile = "")

16 normalize_pos_controls

Arguments
dat NanoString data, including expression matrix and gene dictionary.
genes List of housekeeping genes to use for normalization. If NULL (default), will
use all genes marked as "Housekeeping" in codeset.
logfile Optional name of logfile to print messages, warnings or errors.
Value

NanoString data, with expression matrix now normalized by housekeeping gene expression.

Examples

example_data <- system.file("extdata”, "GSE117751_RAW", package = "NanoTube")

Load data, positive control normalization, and background filtering
dat <- read_merge_rcc(list.files(example_data, full.names = TRUE))
dat <- normalize_pos_controls(dat)

dat <- remove_background(dat, mode = "t.test"”, pval = 0.05)

Normalize by genes marked "Housekeeping” in RCC files
dat <- normalize_housekeeping(dat)

Normalize by specified housekeeping genes (gene symbol or accession)
dat <- normalize_housekeeping(dat,
genes = c("TUBB", "TBP", "POLR2A", "GUSB", "SDHA"))

normalize_pos_controls
Positive control gene normalization

Description

Scale genes by the geometric mean of positive control genes. This step is conducted within pro-
cessNanostringData, when normalization is set to "nCounter".

Usage
normalize_pos_controls(dat, logfile = "")
Arguments
dat NanoString data, including expression matrix and gene dictionary.
logfile Optional name of logfile to print messages, warnings or errors.
Value

NanoString data, with expression matrix now normalized by positive control gene expression.

nsdiff ToFGSEA 17

Examples
example_data <- system.file("extdata”, "GSE117751_RAW", package = "NanoTube")
dat <- read_merge_rcc(list.files(example_data, full.names = TRUE))
Positive controls are identified in the RCC files, and used to

normalize the data
dat <- normalize_pos_controls(dat)

nsdiffToFGSEA Run gene set enrichment analysis using DE results.

Description
Use the fgsea library to run gene set enrichment analysis from the NanoStringDiff analysis results.
Genes will be ranked by their log2 fold changes.

Usage
nsdiffToFGSEA(deResults, gene.sets, sourceDB = NULL, min.set = 1)

Arguments
deResults Result from NanoStringDiff::glm.LRT.
gene.sets Gene set file name, in .rds (list), .gmt, or .tab format; or a list object containing
the gene sets. Gene names must be in the same form as in the ranked.list.
sourceDB Source database to include, only if using a .tab-format geneset.file from CPDB.
min.set Number of genes required to conduct analysis on a given gene set (default = 1).
If fewer than this number of genes from limmaResults are included in a gene
set, that gene set will be skipped for this analysis.
Value

A list containing data frames with the fgsea results.

Examples

example_data <- system.file("extdata”, "GSE117751_RAW", package = "NanoTube")
sample_data <- system.file("extdata”, "GSE117751_sample_data.csv”,
package = "NanoTube")

datNoNorm <- processNanostringData(nsFiles = example_data,
sampleTab = sample_data,
groupCol = "Sample_Diagnosis”,
normalization = "none")

Convert to NanoString Set, retaining 2 samples per group for this example
(will run faster, but still pretty slow)
nsDiffSet <- makeNanoStringSetFromEset(datNoNorm[,c(1,2,15,16,29,30)])

18 positiveQC

Run NanoStringDiff analysis

nsDiffSet <- NanoStringDiff::estNormalizationFactors(nsDiffSet)

result <- NanoStringDiff::glm.LRT(nsDiffSet,
design.full = as.matrix(pData(nsDiffSet)),
contrast = c(1, -1, @))
#contrast: Autoimmune retinopathy vs. None

FGSEA with example pathways, only for pathways with at least 5 genes

analyzed in NanoString experiment

data("ExamplePathways")

fgseaResult <- nsdiffToFGSEA(result, gene.sets = ExamplePathways,
min.set = 5)

positiveQC Calculate positive control statistics

Description
Calculate the linearity and scale factors of positive control genes, and plot the expected vs. observed
counts for each sample.

Usage

positiveQC(ns, samples = NULL, expected = NULL)

Arguments
ns NanoString data, processed by ‘processNanostringData‘ with normalization set
to “none’ or with output.format set to ’list’.
samples A subset of samples to analyze (either a vector of sample names, or column
indexes). If NULL (default), will include all samples.
expected The expected values of each positive control gene, as a numeric vector. These
are frequently provided by NanoString in the "Name’ field of the genes, in which
case those values will be read automatically and this option can be left as NULL
(the default).
Value

A list object containing:
tab The table of positive control statistics, included the positive scale factor and the
R-squared value for the expected vs. measured counts

plt An object containing the positive control plots. This gets cumbersome if there
are lots of samples.

processNanostringData 19

Examples

example_data <- system.file("extdata"”, "GSE117751_RAW", package = "NanoTube")
sample_data <- system.file("extdata”,

"GSE117751_sample_data.csv"”,

package = "NanoTube")

Process data first. Must be output as a "list” or without normalization to
obtain positive control statistics
dat <- processNanostringData(example_data,

sampleTab = sample_data,

groupCol = "Sample_Diagnosis”,

normalization = "nSolver”,

bgType = "t.test”,

bgPVal = 0.01,

output.format = "list")

Generate positive QC metrics for all samples
posQC <- positiveQC(dat)

View positive QC table & plot
head(posQC$tab)
posQC$plt

Plot for only the first three samples
posQC <- positiveQC(dat, samples = 1:3)
posQC$plt

processNanostringData Process NanoString nCounter gene expression data.

Description

This function reads in a zip file or folder containing multiple .rcc files (or a txt/csv file containing
raw count data), and then optionally conducts positive control normalization, background correc-
tion, and housekeeping normalization.

Usage

processNanostringData(
nsFiles,
sampleTab = NULL,
idCol = NULL,
groupCol = NULL,
replicateCol = NULL,
normalization = c(”nSolver”, "RUVIII"”, "RUVg"”, "none"),
bgType = c("threshold”, "t.test”, "none"),
bgThreshold = 2,
bgProportion = 0.5,
bgPVal = 0.001,
bgSubtract = FALSE,
n.unwanted = NULL,
RUVg.drop = 0,

20 processNanostringData

housekeeping = NULL,
skip.housekeeping = FALSE,
includeQC = FALSE,
sampIds = NULL,

output.format = c("ExpressionSet”, "list"),
logfile = ""
)
Arguments
nsFiles file path (or zip file) containing the .rcc files, or multiple directories in a character
vector, or a single text/csv file containing the combined counts, or .rcc files in a
character vector.
sampleTab .txt (tab-delimited) or .csv (comma-delimited) file containing sample data table
(optional, default NULL)
idCol the column name of the sample identifiers in the sample table, which should
correspond to the column names in the count table (default NULL: will assume
the first column contains the sample identifiers)
groupCol the column name of the group identifiers in the sample table.

replicateCol the column name of the technical replicate identifiers (default NULL). Multiple
replicates of the same sample will have the same value in this column. Repli-
cates are used to improve normalization performance in the "RUVIII" method;
otherwise they are averaged.

normalization If "nSolver" (default), continues with background, positive control, and house-
keeping control normalization steps to return a NanoStringSet of normalized
data. If "RUVIII", runs RUV normalization using controls, housekeeping genes
and technical replicates. If "RUVg", runs RUV normalization using housekeep-
ing genes. If "none", returns a NanoStringSet with the raw counts, suitable for
running NanoStringDiff.

bgType (Only if normalization is not "none") Type of background correction to use:
"threshold" sets a threshold for N standard deviations above the mean of negative
controls. "t.test" conducts a one-sided t test for each gene against all negative
controls. "none" to skip background removal

bgThreshold If bgType=="threshold", number of sd’s above the mean to set as threshold for
background correction.

bgProportion If bgType=="threshold", proportion of samples that a gene must be above thresh-
old to be included in analysis.

bgPVval If bgType=="t.test", p-value threshold to use for gene to be included in analysis.

bgSubtract Should calculated background levels be subtracted from reported expressions?
If TRUE, will subtract mean+numSD*sd of the negative controls from the en-
dogenous genes, and then set negative values to zero (default FALSE)

n.unwanted The number of unwanted factors to use (for RUVIII or RUVg normalization
only). If NULL (default), the maximum possible value will be identified and
used.

RUVg.drop The number of singular values to drop for RUVg normalization (see RUVSeq::RUVg)

housekeeping vector of genes (symbols or accession) to use for housekeeping correction ("nCounter”
or "RUVg" normalization). If NULL, will use genes listed as "Housekeeping"
under CodeClass.

processNanostringData 21

skip.housekeeping
Skip housekeeping normalization? (default FALSE)

includeQC Should we include the QC from the .rcc files? This can cause errors, particularly
when reading in files from multiple experiments.

sampIds a vector of sample identifiers, important if there are technical replicates. Cur-
rently, this function averages technical replicates. samplds will be extracted
from the replicateCol in the sampleTab, if provided.

output.format If "list", will return the normalized (optional) and raw expression data, as well
as various QC and relevant information tables. If "ExpressionSet" (default), will
convert to an n*p ExpressionSet, with n rows representing genes and p columns
representing samples. ExpressionSet objects are required for some steps, such
as runLimmaAnalysis.

logfile a filename for the logfile (optional). If blank, will print warnings to screen.

Value

An list or ExpressionSet containing the raw and/or normalized counts, dictionary, and sample info
if provided

Examples

example_data <- system.file("extdata”, "GSE117751_RAW", package = "NanoTube")
sample_data <- system.file("extdata”, "GSE117751_sample_data.csv”,
package = "NanoTube")

Process NanoString data from RCC files present in example_data folder.
Use standard nCounter normalization, removing genes that do

pass a t test against negative control genes with p < 0.05. Return the
result as an "ExpressionSet”.

dat <- processNanostringData(nsFiles = example_data,
sampleTab = sample_data,

groupCol = "Sample_Diagnosis”,
normalization = "nSolver”,

bgType = "t.test"”, bgPval = 0.01,
output.format = "ExpressionSet")

Load NanoString data from a csv file (from NanoString's RCC Collector tool,

na

for example). Skip normalization by setting 'normalization = "none"'.

csv_data <- system.file("extdata”, "GSE117751_expression_matrix.csv”,
package = "NanoTube")
dat <- processNanostringData(nsFile = csv_data,
sampleTab = sample_data,
idCol = "GEO_Accession”,
groupCol = "Sample_Diagnosis”,
normalization = "none")

Load NanoString data from RCC files, using a threshold background level for
removing low-expressed genes. Also, specify which genes to use for

housekeeping normalization. Save the result in "list” format (useful for

some QC functions) instead of an "ExpressionSet”.

dat <- processNanostringData(nsFiles = example_data,
sampleTab = sample_data,

22 read_cpdb_tab

groupCol = "Sample_Diagnosis”,

normalization = "nSolver”,

bgType = "threshold”,

bgThreshold = 2, bgProportion = 0.5,

housekeeping = c("TUBB", "TBP", "POLR2A",
"GUSB", "SDHA"),

output.format = "list")

read_cpdb_sourceDBs Identify source databases from a .tab file

Description
Read in a .tab file from the Consensus Pathway Database (CPDB), and identify the source databases
present.

Usage

read_cpdb_sourceDBs(file)

Arguments

file The filename

Value

A table of the source databases, with the number of gene sets from each one.

read_cpdb_tab Read .tab file.

Description

Read in a .tab file from the Consensus Pathway Database (CPDB)

Usage

read_cpdb_tab(file, sourceDB = NULL)

Arguments
file The filename
sourceDB The source database to use. If NULL (default), retains gene sets from all source
databases
Value

A list object, containing a character vector of genes for each gene set.

read_merge_rcc 23

read_merge_rcc Merge multiple .rcc files

Description

Read in multiple .rcc files named in the fileList and merge the expression data. This step is con-
ducted within processNanostringData.

Usage

read_merge_rcc(fileList, includeQC = FALSE, logfile = "")
Arguments

filelList a character vector of .rcc file names

includeQC include merged QC data (from the "Lane Attributes” part of file) in the output?

Default FALSE

logfile a filename for the logfile (optional). If blank, will print warnings to screen.

Value

A list object including:

exprs The expression matrix

dict The gene dictionary

qc QC metrics included in the .rcc files, if includeQC == TRUE
Examples

example_data <- system.file("extdata”, "GSE117751_RAW", package = "NanoTube")

dat <- read_merge_rcc(list.files(example_data, full.names = TRUE))

read_rcc Read .rcc file

Description

This function reads in a single .rcc file and splits into expression, sample data, and qc components.

Usage

read_rcc(file)

Arguments

file file name

24 read_sampleData

Value

list containing expression data, sample attributes, and basic qc from the .rcc file.

Examples
example_data <- system.file("extdata”, "GSE117751_RAW", package = "NanoTube")
First file only

single_file <- list.files(example_data, full.names = TRUE)[1]
single_dat <- read_rcc(single_file)

read_sampleData Read in a sample data table.

Description

Read in a .txt or .csv file containing sample names, group identifiers, replicate identifiers, and any
other sample data. Sample names must be in the first column and must correspond with sample
names in the count data file(s).

Usage

read_sampleData(dat, file.name, idCol = NULL, groupCol, replicateCol = NULL)

Arguments
dat expression data, read in by read_merge_rcc or read.delim
file.name the path/name of the .txt or .csv file
idCol the column name of the sample identifiers in the sample table, which should
correspond to the column names in the count table (default NULL: will assume
the first column contains the sample identifiers).
groupCol the column name of the group identifiers.

replicateCol the column name of the replicate identifiers (default NULL). Multiple replicates
of the same sample will have the same value in this column.
Value

The list with the expression data, now combined with the sample information

Examples

example_data <- system.file("extdata”, "GSE117751_RAW", package = "NanoTube")
sample_info <- system.file("extdata”, "GSE117751_sample_data.csv",
package = "NanoTube")

dat <- read_merge_rcc(list.files(example_data, full.names = TRUE))
Merge expression data with sample info

dat <- read_sampleData(dat, file.name = sample_info,
groupCol = "Sample_Diagnosis")

remove_background

25

remove_background Assess background expression

Description

Compare endogenous gene expression data against negative control genes and remove data for genes
that fail the comparison. This step is conducted within processNanostringData, when normalization
is set to "nCounter".

Usage

remove_background(

dat,

mode = c("threshold”, "t.test"),

numSD,

proportionReq,

pval,

subtract = FALSE

Arguments

dat

mode

numSD

proportionReq

pval

subtract

Value

Positive control-scaled NanoString data

Either "threshold" (default) or "t.test". If "threshold", requires proportionReq
of samples to have expression numSD standard deviations among the mean of
negative control genes. If "t.test", each gene will be compared with all negative
control genes in a one-sided two-sample t-test.

Number of standard deviations above mean of negative control genes to used
as background threshold for each sample: mean(negative_controls) + numSD *
sd(negative_controls). Required if mode == "threshold" or subtract == TRUE

Required proportion of sample expressions exceeding the sample background
threshold to include gene in further analysis. Required if mode == "threshold"
or subtract == TRUE

p-value (from one-sided t-test) threshold to declare gene expression above back-
ground expression level. Genes with p-values above this level are removed from
further analysis. Required if mode == "t.test"

Should calculated background levels be subtracted from reported expressions?
If TRUE, will subtract mean+numSD*sd of the negative controls from the en-
dogenous genes, and then set negative values to zero (default FALSE).

NanoString data, with genes removed that fail the comparison test against negative control genes.
Expression levels are updated for all genes if subtract == TRUE.

Examples

example_data <- system.file("extdata"”, "GSE117751_RAW", package = "NanoTube")

Load data and positive control normalization

26 runLimmaAnalysis

dat <- read_merge_rcc(list.files(example_data, full.names = TRUE))
dat <- normalize_pos_controls(dat)

Remove endogenous genes that fail to reject the null hypothesis
in a one-sided t test against negative control genes with p < 0.05.
dat <- remove_background(dat, mode = "t.test"”, pval = 0.05)

Remove endogenous genes where fewer than 25% of samples have an expression
2 standard deviations above the average negative control gene. Also,
subtract this background level (mean + 2xsd) from endogenous genes.
dat <- remove_background(dat, mode = "threshold”,
numSD = 2, proportionReq = @.25, subtract = TRUE)

runLimmaAnalysis Conduct differential expression analysis

Description

Use Limma to conduct a simple differential expression analysis. All groups are compared against
the base.group, and empirical Bayes method is used to identify significantly differentially expressed
genes. Alternatively, a design matrix can be supplied, as explained in limma::limmaUsersGuide()

Usage

runLimmaAnalysis(
dat,
groups = NULL,
base.group = NULL,
design = NULL,

codeclass.retain = "endogenous”,
)
Arguments

dat NanoString data ExpressionSet, from processNanostringData

groups character vector, in same order as the samples in dat. NULL if already included
in *dat’

base.group the group against which other groups are compared (must be one of the levels in
“groups’). Will use the first group if NULL.

design a design matrix for Limma analysis (default NULL, will do analysis based on

provided ’group’ data)

codeclass.retain
The CodeClasses to retain for Limma analysis. Generally we’re interested in
endogenous genes, so we keep "endogenous" only by default. Others can be
included by entering a character vector for this option (see limmaResults3 ex-

non

ample). Alternatively, all targets can be retained by setting this option to ".".

Optional arguments to be passed to limma::lmFit

Value

The fit Limma object

untar_dirs

Examples

example_data <- system.file("extdata”, "GSE117751_RAW", package = "NanoTube")
sample_info <- system.file("extdata”, "GSE117751_sample_data.csv”,
package = "NanoTube")

dat <- processNanostringData(nsFiles = example_data,
sampleTab = sample_info,
groupCol = "Sample_Diagnosis")

Compare the two diseases against healthy controls ("None")
limmaResults <- runLimmaAnalysis(dat, base.group = "None")

You can also supply a design matrix
Generate fake batch labels
batch <- rep(c(@, 1), times = ncol(dat) / 2)

Reorder groups ("None” first)
group <- factor(dat$groups, levels = c("None”, "Autoimmune retinopathy”,
"Retinitis pigmentosa”))

Design matrix including sample group and batch
design <- model.matrix(~group + batch)

Analyze data
limmaResults2 <- runLimmaAnalysis(dat, design = design)

Run Limma analysis including endogenous xand* housekeeping genes.
limmaResults3 <- runLimmaAnalysis(dat, design = design,
codeclass.retain = c("endogenous”, "housekeeping”))

untar_dirs Untar

Description

Untars provided list of directories (analogous to unzip_dirs)

Usage

untar_dirs(fileDirs)

Arguments

fileDirs character list of tar files

Value

Names of now-untarred directories

28

unzip_dirs

unzip_dirs Unzip

Description

Unzips provided list of directories

Usage

unzip_dirs(fileDirs)

Arguments

fileDirs character list of zip files

Value

Names of now-unzipped directories

Index

x datasets
ExamplePathways, 3
ExampleResults, 3

deVolcano, 2

ExamplePathways, 3
ExampleResults, 3

fgseaPostprocessing, 4
fgseaPostprocessingXLSX, 5
fgseaTolLEdge, 6

gm_mean, 7
groupedGSEAtoStackedReport, 7
groupFGSEA, 8

limmaToFGSEA, 9

makeDiffExprFile, 11
makeFGSEAmasterTable, 12
makeNanoStringSetFromEset, 12

nanostringPCA, 13
NanoTube, 14

negativeQC, 14
normalize_housekeeping, 15
normalize_pos_controls, 16
nsdiffToFGSEA, 17

positiveQC, 18
processNanostringData, 19

read_cpdb_sourceDBs, 22
read_cpdb_tab, 22
read_merge_rcc, 23
read_rcc, 23
read_sampleData, 24
remove_background, 25
runLimmaAnalysis, 26

untar_dirs, 27
unzip_dirs, 28

29

	deVolcano
	ExamplePathways
	ExampleResults
	fgseaPostprocessing
	fgseaPostprocessingXLSX
	fgseaToLEdge
	gm_mean
	groupedGSEAtoStackedReport
	groupFGSEA
	limmaToFGSEA
	makeDiffExprFile
	makeFGSEAmasterTable
	makeNanoStringSetFromEset
	nanostringPCA
	NanoTube
	negativeQC
	normalize_housekeeping
	normalize_pos_controls
	nsdiffToFGSEA
	positiveQC
	processNanostringData
	read_cpdb_sourceDBs
	read_cpdb_tab
	read_merge_rcc
	read_rcc
	read_sampleData
	remove_background
	runLimmaAnalysis
	untar_dirs
	unzip_dirs
	Index

