Package ‘HDF5Array’

March 31, 2025

Title HDFS datasets as array-like objects in R

Description The HDF5Array package is an HDFS5 backend for DelayedArray objects.
It implements the HDF5Array, H5SparseMatrix, HSADMatrix, and
TENxMatrix classes, 4 convenient and memory-efficient array-like
containers for representing and manipulating either: (1) a conventional
(a.k.a. dense) HDFS5 dataset, (2) an HDF5 sparse matrix (stored in
CSR/CSC/Yale format), (3) the central matrix of an h5ad file (or any
matrix in the /layers group), or (4) a 10x Genomics sparse matrix.

All these containers are DelayedArray extensions and thus support all
operations (delayed or block-processed) supported by DelayedArray
objects.

biocViews Infrastructure, DataRepresentation, Datalmport, Sequencing,
RNASeq, Coverage, Annotation, GenomeAnnotation, SingleCell,
ImmunoOncology

URL https://bioconductor.org/packages/HDF5Array

BugReports https://github.com/Bioconductor/HDF5Array/issues
Version 1.34.0

License Artistic-2.0

Encoding UTF-8

Author Hervé Pages

Maintainer Hervé Pages <hpages.on.github@gmail.com>

Depends R (>= 3.4), methods, SparseArray (>= 1.5.42), DelayedArray (>=
0.31.8), rhdf5 (>=2.31.6)

Imports utils, stats, tools, Matrix, rhdf5filters, BiocGenerics (>=
0.51.2), S4Vectors, IRanges, S4Arrays (>=1.1.1)

LinkingTo S4Vectors (>=0.27.13), Rhdf5lib
SystemRequirements GNU make

Suggests BiocParallel, GenomicRanges, SummarizedExperiment (>=
1.15.1), h5vcData, ExperimentHub, TENxBrainData, zellkonverter,
GenomicFeatures, RUnit, SingleCellExperiment,
DelayedMatrixStats, genefilter

Collate utils.R H5File-class.R h51s.R h5utils.R
H5DSetDescriptor-class.R h5dimscales.R uaselection.R hSmread.R

hSmread_from_reshaped.R hSwriteDimnames.R hSsummarize.R
HDF5ArraySeed-class.R HDF5Array-class.R

1

https://bioconductor.org/packages/HDF5Array
https://github.com/Bioconductor/HDF5Array/issues

H5ADMatrix-class

ReshapedHDF5ArraySeed-class.R ReshapedHDF5 Array-class.R
dump-management.R writetHDF5Array.R
saveHDF5SummarizedExperiment.R H5SparseMatrixSeed-class.R
H5SparseMatrix-class.R HSADMatrixSeed-class.R
H5ADMatrix-class.R TENxMatrixSeed-class.R TENxMatrix-class.R
writeTENxMatrix.R zzz.R

git_url https://git.bioconductor.org/packages/HDF5Array
git_branch RELEASE_3_20

git_last_commit dab3921

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20
Date/Publication 2025-03-31

Contents
HSADMatrix-class e e 2
H5ADMatrixSeed-class e 4
HSFile-class o e 5
h5IS . . e 8
hSmread L e 9
hSmread_from_reshaped 12
HSSparseMatrix-class e 13
HS5SparseMatrixSeed-class o 15
hSwriteDimnames 18
HDF5-dump-management 21
HDFSArray-class e e 24
HDF5Array-internals L 28
HDF5ArraySeed-class 28
ReshapedHDFSArray-class o i 30
ReshapedHDF5ArraySeed-class i 32
saveHDF5SummarizedExperiment 33
TENxMatrix-class o 37
TENxMatrixSeed-class e 41
writetHDFSArray 42
writeTENXMatrix oo e 45

Index 48

H5ADMatrix-class h5ad central matrices (or matrices in the /layers group) as Delayed-
Matrix objects
Description

h5ad files are HDFS5 files used for on-disk representation of AnnData Python objects. At the very
minimum, they contain a central data matrix, named X, of shape #observations x #variables, and
possibly additional data matrices (stored in the HDFS group /layers) that share the shape and
dimnames of X. See https://anndata.readthedocs.io/ for more information.

https://anndata.readthedocs.io/

H5ADMatrix-class 3

The HSADMatrix class is a DelayedMatrix subclass for representing and operating on the central
matrix of an h5ad file, or any matrix in its /layers group.

All the operations available for DelayedMatrix objects work on HSADMatrix objects.

Usage

Constructor function:
H5ADMatrix(filepath, layer=NULL)

Arguments
filepath The path (as a single string) to the h5ad file.
layer NULL (the default) or the name of a matrix in the /layers group. By default (i.e.
when layer is not specified) H5ADMatrix () returns the central matrix (X).
Value

H5ADMatrix() returns an HSADMatrix object of shape #variables x #observations. Note that in
Python and HDF?5 the shape of this matrix is considered to be #observations x #variables, but in R
it is transposed. This follows the widely adopted convention of transposing HDF5 matrices when
they get loaded into R.

References

https://anndata.readthedocs.io/ for AnnData Python objects and the h5ad format.

See Also
» HDF5Array objects for representing conventional (a.k.a. dense) HDF5 datasets as DelayedAr-
ray objects.
» H5SparseMatrix objects for representing HDFS sparse matrices as DelayedMatrix objects.
* DelayedMatrix objects in the DelayedArray package.
» The HSADMatrixSeed helper class.

* readH5AD and writeH5AD in the zellkonverter package for importing/exporting an h5ad file
as/from a SingleCellExperiment object.

» SparseArray objects in the SparseArray package.

Examples

library(zellkonverter)

h5ad_file <- system.file("extdata”, "krumsiekl1.h5ad",
package="zellkonverter")

X <- H5ADMatrix(h5ad_file)

X

class(X) # H5ADMatrix
is(X, "DelayedMatrix”) # TRUE

class(seed(X)) # Dense_H5ADMatrixSeed
dim(X)

path(X)
is_sparse(X) # FALSE

https://anndata.readthedocs.io/

4 H5ADMatrixSeed-class

Use coercion to load the full dataset into memory:
as.matrix(X) # as ordinary array (usually not recommended)

Not run:
Works only if H5ADMatrix object is sparse!
as(X, "dgCMatrix") # as dgCMatrix
as(X, "SparseArray") # as SparseArray object (most efficient)
SparseArray (X) # equivalent to 'as(X, "SparseArray")'

End(Not run)

H5ADMatrixSeed-class H5ADMatrixSeed objects

Description
H5ADMatrixSeed is a low-level helper class used to represent a pointer to the central matrix stored
of an h5ad file, or to one of the matrices in the /layers group.

Itis a virtual class with three concrete subclasses: Dense_ HSADMatrixSeed, CSC_HS5ADMatrixSeed,
and CSR_H5ADMatrixSeed:

¢ The Dense_ HSADMatrixSeed class is used when the matrix is stored as a conventional HDF5
dataset in the h5ad file. It is a direct entension of the HDF5ArraySeed class.

¢ The CSC_H5ADMatrixSeed or CSR_HS5ADMatrixSeed classes is used when the matrix is
stored in the Compressed Sparse Column or Compressed Sparse Row format in the h5ad file.
CSC_H5ADMatrixSeed is a direct entension of CSC_HS5SparseMatrixSeed, and CSR_HS5ADMatrixSeed
a direct entension of CSR_HS5SparseMatrixSeed.

Note that an HSADMatrixSeed derivative is not intended to be used directly. Most end users will
typically create and manipulate a higher-level HSADMatrix object instead. See ?H5ADMatrix for
more information.

Usage
Constructor function:
H5ADMatrixSeed(filepath, layer=NULL)

Arguments

filepath, layer See ?H5ADMatrix for a description of these arguments.

Details

Dense_HS5ADMatrixSeed objects support the same limited set of methods as HDF5ArraySeed ob-
jects, and CSC_H5ADMatrixSeed and CSR_HS5ADMatrixSeed objects support the same limited
set of methods as H5SparseMatrixSeed objects. See ?HDF5ArraySeed and ?H5SparseMatrixSeed
for the details.

Value

H5ADMatrixSeed() returns an HSADMatrixSeed derivative (Dense_ HSADMatrixSeed or CSC_H5ADMatrixSeed
or CSR_H5ADMatrixSeed) of shape #variables x #observations.

H5File-class 5

H5ADMatrixSeed vs HSADMatrix objects

In order to have access to the full set of operations that are available for DelayedMatrix objects,
an HSADMatrixSeed derivative first needs to be wrapped in a DelayedMatrix object, typically by
calling the DelayedArray() constructor on it.

This is what the H5ADMatrix () constructor function does.

Note that the result of this wrapping is an HSADMatrix object, which is just an HSADMatrixSeed
derivative wrapped in a DelayedMatrix object.

References

https://anndata.readthedocs.io/ for AnnData Python objects and the h5ad format.

See Also

* H5ADMatrix objects.
* HDF5ArraySeed and H5SparseMatrixSeed objects.

* readH5AD and writeH5AD in the zellkonverter package for importing/exporting an h5ad file
as/from a SingleCellExperiment object.

Examples

library(zellkonverter)

h5ad_file <- system.file("extdata”, "krumsiekl1.h5ad",
package="zellkonverter")

seed <- H5ADMatrixSeed(h5ad_file)

seed

path(seed)

dim(seed)

is_sparse(seed)

DelayedArray(seed)
stopifnot(class(DelayedArray(seed)) == "H5ADMatrix")
H5File-class H5File objects
Description

The HS5File class provides a formal representation of an HDFS5 file (local or remote).

Usage

Constructor function:
H5File(filepath, s3=FALSE, s3credentials=NULL, .no_rhdf5_h5id=FALSE)

https://anndata.readthedocs.io/

6 H5File-class

Arguments
filepath A single string specifying the path or URL to an HDFS5 file.
s3 TRUE or FALSE. Should the filepath argument be treated as the URL to a file

stored in an Amazon S3 bucket, rather than the path to a local file?

s3credentials A list of length 3, providing the credentials for accessing files stored in a private
Amazon S3 bucket. See ?H5Pset_fapl_ros3 in the rhdf5 package for more
information.

.no_rhdf5_h5id For internal use only. Don’t use.

Details
IMPORTANT NOTE ABOUT H5File OBJECTS AND PARALLEL EVALUATION

The short story is that H5File objects cannot be used in the context of parallel evaluation at the
moment.

Here is why:
H5File objects contain an identifier to an open connection to the HDFS file. This identifier becomes
invalid in the 2 following situations:
 After serialization/deserialization, that is, after loading a serialized H5File object with readRDS ()
or load().

* In the context of parallel evaluation, when using the SnowParam parallelization backend. This
is because, unlike the MulticoreParam backend which used a system fork, the SnowParam
backend uses serialization/deserialization to transmit the object to the workers.

In both cases, the connection to the file is lost and any attempt to read data from the H5File object
will fail. Note that the above also happens to any H5File object that got serialized indirectly i.e. as
part of a bigger object. For example, if an HDF5Array object was constructed from an H5File ob-
ject, then it contains the H5File object and therefore blockApply(. .., BPPARAM=SnowParam(4))
cannot be used on it.

Furthermore, even if sometimes an HS5File object seems to work fine with the MulticoreParam
parallelization backend, this is highly unreliable and must be avoided.

Value

An H5File object.

See Also
» H5Pset_fapl_ros3 in the rhdf5 package for detailed information about how to pass your S3
credentials to the s3credentials argument.

» The HDF5Array class for representing and operating on a conventional (a.k.a. dense) HDF5
dataset.

* The H5SparseMatrix class for representing and operating on an HDFS5 sparse matrix.

* The HSADMatrix class for representing and operating on the central matrix of an h5ad file,
or any matrix in its /layers group.

» The TENxMatrix class for representing and operating on a 10x Genomics dataset.

* The h5mread function in this package (HDF5Array) that is used internally by HDF5Array,
TENxMatrix, and HSADMatrix objects, for (almost) all their data reading needs.

¢ h51s to list the content of an HDF5 file.
* bplapply, MulticoreParam, and SnowParam, in the BiocParallel package.

H5File-class

Examples

Bt e
A. BASIC USAGE
B = m e

With a local file:

toy_h5 <- system.file("extdata”, "toy.h5", package="HDF5Array")
h5filel <- H5File(toy_h5)

h51s(h5filel)

path(h5filel)

h5mread(h5filel, "M2", list(1:10, 1:6))
get_h5mread_returned_type(h5filel, "M2")

With a file stored in an Amazon S3 bucket:
if (Sys.info()[["sysname”]] != "Darwin") {
public_S3_url <-
"https://rhdf5-public.s3.eu-central-1.amazonaws.com/rhdf5ex_t_float_3d.h5"
h5file2 <- H5File(public_S3_url, s3=TRUE)
h51s(h5file2)

h5mread(h5file2, "a1")
get_hbmread_returned_type(h5file2, "al1")

e
B. HS5File OBJECTS AND PARALLEL EVALUATION
T e e
H5File objects cannot be used in the context of parallel evaluation
at the moment!

library(BiocParallel)

FUN1 <- function(i, h5file, name)
sum(HDF5Array: :h5mread(h5file, name, list(i, NULL)))

FUN2 <- function(i, h5file, name)
sum(HDF5Array: :h5mread(h5file, name, list(i, NULL, NULL)))

With the SnowParam parallelization backend, the H5File object
does NOT work on the workers:

Not run:

ERROR!

res1 <- bplapply(1:150, FUN1, h5filel, "M2", BPPARAM=SnowParam(3))
ERROR!

res2 <- bplapply(1:5, FUN2, h5file2, "al"”, BPPARAM=SnowParam(3))

End(Not run)

With the MulticoreParam parallelization backend, the H5File object
might seem to work on the workers. However this is highly unreliable
and must be avoided:
Not run:
if (.Platform$0S.type != "windows") {
UNRELIABLE!
res1 <- bplapply(1:150, FUN1, h5filel, "M2", BPPARAM=MulticoreParam(3))

8 hS5lIs

UNRELIABLE!
res2 <- bplapply(1:5, FUN2, h5file2, "al", BPPARAM=MulticoreParam(3))

}

End(Not run)

h51s A wrapper to rhdf5::h5ls() that works on H5File objects

Description

Like rhdf5: :h51s(), but works on an H5File object.

Usage

h51s(file, recursive=TRUE, all=FALSE, datasetinfo=TRUE,
index_type=h5default("H5_INDEX"), order=h5default("H5_ITER"),
s3=FALSE, s3credentials=NULL, native=FALSE)

Arguments

file, recursive, all, datasetinfo, index_type, order, s3, s3credentials,

native
See ?rhdf5: :h51s in the rhdf5 package for a description of these arguments.
Note that the only difference with rhdf5: :h51s() is that, with HDF5Array: :h51s(),
file can be an H5File object.
Value

See ?rhdf5: :h51s in the rhdf5 package.

See Also

* h51s in the rhdf5 package.
» H5File objects.

Examples

toy_h5 <- system.file("extdata”, "toy.h5", package="HDF5Array")
h51s(toy_h5)

h5file <- H5File(toy_h5)
h51s(h5file)

See '?HS5File' for more examples.

h5mread

h5mread

An alternative to rhdf5: :h5read

Description

An efficient and flexible alternative to rhdf5: :h5read().

Usage

h5mread(filepath, name, starts=NULL, counts=NULL, noreduce=FALSE,
as.vector=NA, as.integer=FALSE, as.sparse=FALSE,
method=0L, use.H5Dread_chunk=FALSE)

get_h5mread_returned_type(filepath, name, as.integer=FALSE)

Arguments

filepath

name

starts, counts

noreduce

as.vector

The path (as a single string) to the HDF5 file where the dataset to read from is
located, or an H5File object.

Note that you must create and use an H5File object if the HDFS file to access is
stored in an Amazon S3 bucket. See ?H5F1ile for how to do this.

Also please note that H5File objects must NOT be used in the context of parallel
evaluation at the moment.

The name of the dataset in the HDF? file.

starts and counts are used to specify the array selection. Each argument can
be either NULL or a list with one list element per dimension in the dataset.

If starts and counts are both NULL, then the entire dataset is read.

If starts is a list, each list element in it must be a vector of valid positive
indices along the corresponding dimension in the dataset. An empty vector
(integer(@)) is accepted and indicates an empty selection along that dimen-
sion. A NULL is accepted and indicates a full selection along the dimension so
has the same meaning as a missing subscript when subsetting an array-like ob-
ject with [. (Note that for [a NULL subscript indicates an empty selection.)
Each list element in counts must be NULL or a vector of non-negative integers of
the same length as the corresponding list element in starts. Each value in the
vector indicates how many positions to select starting from the associated start
value. A NULL indicates that a single position is selected for each value along
the corresponding dimension.

If counts is NULL, then each index in each starts list element indicates a sin-
gle position selection along the corresponding dimension. Note that in this
case the starts argument is equivalent to the index argument of h5read and
extract_array (with the caveat that h5read doesn’t accept empty selections).

Finally note that when counts is not NULL then the selection described by starts
and counts must be strictly ascending along each dimension.

TODO

Should the data be returned in a vector instead of an array? By default (i.e.
when set to NA), the data is returned in an ordinary array when reading from
a multidimensional dataset, and in an ordinary vector when reading from a 1D
dataset. You can override this by setting as.vector to TRUE or FALSE.

10 h5mread

as.integer TODO

as.sparse TODO

method TODO

use.H5Dread_chunk

TODO

Details

DETAILS COMING SOON...
Value

h5mread () returns an ordinary array or vector if as. sparse is FALSE (the default), and a COO_SparseArray
object if as. sparse is TRUE.

get_hbSmread_returned_type() returns the type of the array or vector that will be returned by
h5mread(). Equivalent to (but more efficient than):

typeof (hbmread(filepath, name, rep(list(integer(@)), ndim)))

where ndim is the number of dimensions (a.k.a. rank in HDF5 jargon) of the dataset.

See Also

» HS5File objects.

* h5read in the rhdfS package.

* extract_array in the S4Arrays package.

* COO_SparseArray objects in the SparseArray package.

* The TENxBrainData dataset (in the TENxBrainData package).

* h5mread_from_reshaped to read data from a virtually reshaped HDF5 dataset.

Examples

Bt — oo
BASIC USAGE

B —m o
mo <- matrix((runif(600) - 0.5) x 10, ncol=12)

MO <- writeHDF5Array(m@, name="M@")

m <- h5mread(path(M0@), "M@")
stopifnot(identical(m@, m))

m <- h5mread(path(M@), "M@", starts=list(NULL, c(3, 12:8)))
stopifnot(identical(mo[, c(3, 12:8)]1, m))

m <- h5mread(path(M@), "M@", starts=list(integer(@), c(3, 12:8)))
stopifnot(identical (m@[NULL , c(3, 12:8)]1, m))

m <- h5mread(path(M@), "M@", starts=list(1:5, NULL), as.integer=TRUE)
storage.mode(m@) <- "integer"

stopifnot(identical(mo[1:5, 1, m))

ad <- array(1:350, c(10, 5, 7))

h5mread

AQ <- writeHDF5Array(a@, filepath=path(M@), name="A0")
h51s(path(AQ))

a <- h5mread(path(A@), "A@", starts=list(c(2, 7), NULL, 6),
counts=list(c(4, 2), NULL, NULL))
stopifnot(identical(a@[c(2:5, 7:8), , 6, drop=FALSE], a))

Load the data in a sparse array representation:

ml <- matrix(c(5:-2, rep.int(c(0OL, 99L), 11)), ncol=6)
M1 <- writeHDF5Array(m1, name="M1", chunkdim=c(3L, 2L))

index <- list(5:3, NULL)

m <- hb5mread(path(M1), "M1", starts=index)

coo <- h5mread(path(M1), "M1", starts=index, as.sparse=TRUE)
class(coo) # COO_SparseArray object (see ?CO0_SparseArray)
as(coo, "dgCMatrix")

stopifnot(identical(m, as.array(coo)))

e
PERFORMANCE
e
library(ExperimentHub)

hub <- ExperimentHub()

With the "sparse” TENxBrainData dataset
B —m e
fname@® <- hub[["EH1039"]]

h51s(fname@) # all datasets are 1D datasets

index <- list(77 x sample(34088679, 5000, replace=TRUE))
hbmread() is about 4x faster than h5read():
system.time(a <- h5mread(fname@, "mm10/data”, index))
system.time(b <- h5read(fname@, "mm10@/data”, index=index))
stopifnot(identical(a, as.vector(b)))

index <- list(sample(1306127, 7500, replace=TRUE))

hbmread() is about 20x faster than h5read():

system.time(a <- h5mread(fname@, "mm10@/barcodes”, index))
system.time(b <- h5read(fname@, "mm10@/barcodes”, index=index))
stopifnot(identical(a, as.vector(b)))

With the "dense” TENxBrainData dataset
#H# -
fnamel <- hub[["EH1040"]]

h51s(fnamel) # "counts” is a 2D dataset

set.seed(33)

index <- list(sample(27998, 300), sample(1306127, 450))
hbmread() is about 2x faster than h5read():
system.time(a <- h5mread(fnamel, "counts”, index))
system.time(b <- h5read(fnamel, "counts”, index=index))
stopifnot(identical(a, b))

Alternatively 'as.sparse=TRUE' can be used to reduce memory usage:
system.time(coo <- h5mread(fnamel, "counts”, index, as.sparse=TRUE))
stopifnot(identical(a, as.array(coo)))

12

h5mread_from_reshaped

The bigger the selection, the greater the speedup between
h5read() and hbmread():

Not run:

index <- list(sample(27998, 1000), sample(1306127, 1000))
hSmread() about 4x faster than h5read() (12s vs 48s):
system.time(a <- h5mread(fnamel, "counts"”, index))
system.time(b <- h5read(fnamel, "counts"”, index=index))
stopifnot(identical(a, b))

With 'as.sparse=TRUE' (about the same speed as with 'as.sparse=FALSE'):
system.time(coo <- h5mread(fnamel, "counts”, index, as.sparse=TRUE))
stopifnot(identical(a, as.array(coo)))

End(Not run)

h5mread_from_reshaped Read data from a virtually reshaped HDF5 dataset

Description

An h5mread wrapper that reads data from a virtually reshaped HDF5 dataset.

Usage

h5mread_from_reshaped(filepath, name, dim, starts, noreduce=FALSE,

Arguments

filepath

name

dim

starts

as.integer=FALSE, method=0L)

The path (as a single string) to the HDFS5 file where the dataset to read from is
located, or an H5File object.

Note that you must create and use an H5File object if the HDFS5 file to access is
stored in an Amazon S3 bucket. See ?H5File for how to do this.

Also please note that H5File objects must NOT be used in the context of parallel
evaluation at the moment.

The name of the dataset in the HDFS file.

A vector of dimensions that describes the virtual reshaping i.e. the reshaping
that is virtually applied upfront to the HDF5 dataset to read from.

Note that the HDF5 dataset is treated as read-only so never gets effectively re-
shaped, that is, the dataset dimensions encoded in the HDF?5 file are not mmod-
ified.

Also please note that arbitrary reshapings are not supported. Only reshapings
that reduce the number of dimensions by collapsing a group of consecutive di-
mensions into a single dimension are supported. For example, reshaping a 10
x 3 x 5 x 1000 array as a 10 x 15 x 1000 array or as a 150 x 1000 matrix is
supported.

A multidimensional subsetting index with respect to the reshaped dataset, that
is, a list with one list element per dimension in the reshaped dataset.

Each list element in starts must be a vector of valid positive indices along the
corresponding dimension in the reshaped dataset. An empty vector (integer(0))

H5SparseMatrix-class 13

is accepted and indicates an empty selection along that dimension. A NULL is ac-
cepted and indicates a full selection along the dimension so has the same mean-
ing as a missing subscript when subsetting an array-like object with [. (Note
that for [a NULL subscript indicates an empty selection.)

noreduce, as.integer, method
See ?h5mread for a description of these arguments.

Value

An array.

See Also
» HS5File objects.

e hbmread.

Examples

B oo
BASIC USAGE

B = m o mmmmm
al <- array(1:350, c(10, 5, 7))

A1 <- writeHDF5Array(al, name="A1")

Collapse the first 2 dimensions:

h5mread_from_reshaped(path(A1), "A1", dim=c(50, 7),
starts=1ist(8:11, NULL))

h5mread_from_reshaped(path(A1), "A1", dim=c(50, 7),
starts=1ist(8:11, NULL))

Collapse the last 2 dimensions:
h5mread_from_reshaped(path(A1), "A1", dim=c(10, 35),
starts=list(NULL, 3:11))

a2 <- array(1:150000 + 0.1*runif(150000), c(10, 3, 5, 1000))
A2 <- writeHDF5Array(a2, name="A2")

Collapse the 2nd and 3rd dimensions:
h5mread_from_reshaped(path(A2), "A2", dim=c(10, 15, 1000),
starts=list(NULL, 8:11, 999:1000))

Collapse the first 3 dimensions:
h5mread_from_reshaped(path(A2), "A2", dim=c(150, 1000),
starts=1ist(71:110, 999:1000))

H5SparseMatrix-class HDF5 sparse matrices as DelayedMatrix objects

Description

The H5SparseMatrix class is a DelayedMatrix subclass for representing and operating on an HDF5
sparse matrix stored in CSR/CSC/Yale format.

All the operations available for DelayedMatrix objects work on H5SparseMatrix objects.

14 H5SparseMatrix-class

Usage

Constructor function:
H5SparseMatrix(filepath, group)

Arguments
filepath The path (as a single string) to the HDFS5 file (. h5 or .h5ad) where the sparse
matrix is located.
group The name of the group in the HDFS5 file where the sparse matrix is stored.
Value

An H5SparseMatrix object.

See Also
* HDF5Array objects for representing conventional (a.k.a. dense) HDFS datasets as Delayed Ar-
ray objects.

* H5ADMatrix objects for representing hSad central matrices (or matrices in the /layers group)
as DelayedMatrix objects.

* TENxMatrix objects for representing 10x Genomics datasets as DelayedMatrix objects.
* DelayedMatrix objects in the DelayedArray package.

* The H5SparseMatrixSeed helper class.

¢ h51s to list the content of an HDFS5 file (. h5 or .h5ad).

» SparseArray objects in the SparseArray package.

Examples

library(zellkonverter)

h5ad_file <- system.file("extdata”, "example_anndata.h5ad"”,
package="zellkonverter")

rhdf5: :h51ls(h5ad_file)

M <- H5SparseMatrix(h5ad_file, "/obsp/connectivities"”)
M

class(M) # H5SparseMatrix
is(M, "DelayedMatrix”) # TRUE

seed(M)
class(seed(M)) # CSC_H5SparseMatrixSeed

dim(M)
path(M)
is_sparse(M) # TRUE

Use coercion to load the full dataset into memory:

as.matrix(M) # as ordinary array (usually not recommended)
as(M, "dgCMatrix") # as dgCMatrix

as(M, "SparseArray"”) # as SparseArray object (most efficient)
SparseArray (M) # equivalent to 'as(M, "SparseArray")'

H5SparseMatrixSeed-class 15

H5SparseMatrixSeed-class
H5SparseMatrixSeed objects

Description

H5SparseMatrixSeed is a low-level helper class for representing a pointer to a sparse matrix stored
in an HDFS file and compressed using the CSC or CSR layout.

It is a virtual class with two concrete subclasses: CSC_HS5SparseMatrixSeed for the Compressed
Sparse Column layout, and CSR_H5SparseMatrixSeed for the Compressed Sparse Row layout. The
former is used by 10x Genomics (e.g. "1.3 Million Brain Cell Dataset"). h5ad files can use one or
the other layout to store a sparse matrix.

Note that an H5SparseMatrixSeed derivative is not intended to be used directly. Most end users will
typically create and manipulate a higher-level HSSparseMatrix object instead. See ?H5SparseMatrix
for more information.

Usage

--- Constructor function ---

H5SparseMatrixSeed(filepath, group, subdata=NULL,
dim=NULL, sparse.layout=NULL)

--- Accessors -—-------------

S4 method for signature 'H5SparseMatrixSeed'
path(object)

S4 method for signature 'H5SparseMatrixSeed'
dim(x)

S4 method for signature 'H5SparseMatrixSeed'
dimnames(x)

S4 method for signature 'CSC_H5SparseMatrixSeed'

chunkdim(x)

S4 method for signature 'CSR_H5SparseMatrixSeed’
chunkdim(x)

--- Data extraction --------

S4 method for signature 'H5SparseMatrixSeed'
extract_array(x, index)

S4 method for signature 'CSC_H5SparseMatrixSeed'
extract_sparse_array(x, index)
S4 method for signature 'CSR_H5SparseMatrixSeed'
extract_sparse_array(x, index)

S4 method for signature 'H5SparseMatrixSeed'

16 H5SparseMatrixSeed-class

read_sparse_block(x, viewport)

S4 method for signature 'CSC_H5SparseMatrixSeed'
extractNonzeroDataByCol(x, j)
S4 method for signature 'CSR_H5SparseMatrixSeed'
extractNonzeroDataByRow(x, i)

--- Other methods ----------

S4 method for signature 'H5SparseMatrixSeed'
is_sparse(x)

S4 method for signature 'H5SparseMatrixSeed'
nzcount(x)

Arguments

filepath, group See ?H5SparseMatrix for a description of these arguments.

subdata Experimental. Don’t use!

dim, sparse.layout
The H5SparseMatrixSeed() constructor should be able to automatically detect
the dimensions and layout of the sparse matrix stored in the HDFS5 file, so the
user shouldn’t need to specify these arguments.

See Details section below for some rare situations where the user might need to
specify them.

object, x An H5SparseMatrixSeed derivative.

index See ?extract_array in the S4Arrays package.

viewport See ?read_block in the S4Arrays package.

A An integer vector containing valid column indices.

i An integer vector containing valid row indices.
Details

*** Layout in R vs physical layout ***

The implementation of CSC_H5SparseMatrixSeed and CSR_HS5SparseMatrixSeed objects follows
the usual convention of transposing the matrix stored in the HDF5 file when loading it into R. This
means that a CSC_H5SparseMatrixSeed object represents a sparse matrix stored physically in the
CSR layout (Compressed Sparse Row) at the HDFS level, and a CSR_HS5SparseMatrixSeed object
represents a sparse matrix stored physically in the CSC layout (Compressed Sparse Column) at the
HDFS5 level.

% Automatic detection of the dimensions and layout *

The H5SparseMatrixSeed() constructor should be able to automatically detect the dimensions and
layout of the sparse matrix stored in the HDF5 file. However, in some rare situations, the user might
want to bypass the detection mechanism, or they might be dealing with a sparse matrix stored in an
HDFS5 group that doesn’t provide this information (e.g. the group only contains the data, indices,
and indptr components). In which case, they can supply the dim and sparse.layout arguments:

* dim must be an integer vector of length 2.

e sparse.layout must be "CSC" or "CSR".

H5SparseMatrixSeed-class 17

Note that both values must describe the dimensions and layout of the R object that will be returned,
that is, after transposition from the physical layout used at the HDFS level. Also be aware that the
supplied values will take precedence over whatever the HDFS5 file says, which means that bad things
will happen if they don’t reflect the actual dimensions and layout of the sparse matrix. Use these
arguments only if you know what you are doing!

H5SparseMatrixSeed object vs H5SparseMatrix object ***

Note that H5SparseMatrixSeed derivatives support a very limited set of methods:

* path(): Returns the path to the HDFS5 file where the sparse matrix is located.
e dim(), dimnames().

e extract_array(), is_sparse(), extract_sparse_array(), read_sparse_block(), chunkdim():
These generics are defined and documented in other packages e.g. in S4Arrays for extract_array()
and is_sparse(), in SparseArray for extract_sparse_array(), and in DelayedArray for
read_sparse_block() and chunkdim().

* nzcount(): Returns the number of nonzero values in the object.

* extractNonzeroDataByCol(): Works on CSC_HS5SparseMatrixSeed objects only. Returns
a NumericList or IntegerList object parallel to j, that is, with one list element per column
index in j. The row indices of the values are not returned. Furthermore, the values within a
given list element can be returned in **any order**. In particular, do NOT assume that they
are ordered by ascending row index.

* extractNonzeroDataByRow(): Works on CSR_HS5SparseMatrixSeed objects only. Returns
a NumericList or IntegerList object parallel to i, that is, with one list element per row index
in i. The column indices of the values are not returned. Furthermore, the values within a
given list element can be returned in **any order**. In particular, do NOT assume that they
are ordered by ascending column index.

In order to have access to the full set of operations that are available for DelayedMatrix objects, an
HS5SparseMatrixSeed derivative would first need to be wrapped in a DelayedMatrix object, typically
by calling the DelayedArray() constructor on it.

Value
H5SparseMatrixSeed() returns an H5SparseMatrixSeed derivative (CSC_HS5SparseMatrixSeed or
CSR_H5SparseMatrixSeed object).

References
https://en.wikipedia.org/wiki/Sparse_matrix for a description of the CSR/CSC/Yale for-
mat (section "Compressed sparse row (CSR, CRS or Yale format)").

See Also

» H5SparseMatrix objects.
¢ h51s to list the content of an HDFS5 file (. h5 or .h5ad).

Examples

showClass("H5SparseMatrixSeed")

https://en.wikipedia.org/wiki/Sparse_matrix

18 h5writeDimnames

h5writeDimnames Write/read the dimnames of an HDFS5 dataset

Description

h5writeDimnames and h5readDimnames can be used to write/read the dimnames of an HDF5
dataset to/from the HDFS5 file.

Note that h5writeDimnames is used internally by writeHDF5Array(x, ..., with.dimnames=TRUE)
to write the dimnames of x to the HDF? file together with the array data.

set_h5dimnames and get_h5dimnames are low-level utilities that can be used to attach existing
HDFS5 datasets along the dimensions of a given HDFS5 dataset, or to retrieve the names of the HDF5
datasets that are attached along the dimensions of a given HDF5 dataset.

Usage

h5writeDimnames(dimnames, filepath, name, group=NA, h5dimnames=NULL)
h5readDimnames(filepath, name, as.character=FALSE)

set_h5dimnames(filepath, name, h5dimnames, dry.run=FALSE)
get_h5dimnames(filepath, name)

Arguments

dimnames The dimnames to write to the HDF5 file. Must be supplied as a list (possibly
named) with one list element per dimension in the HDFS5 dataset specified via
the name argument. Each list element in dimnames must be an atomic vector or
a NULL. When not a NULL, its length must equal the extent of the corresponding
dimension in the HDF5 dataset.

filepath For h5writeDimnames and h5readDimnames: The path (as a single string) to
the HDFS file where the dimnames should be written to or read from.
For set_h5dimnames and get_h5dimnames: The path (as a single string) to the
HDFS5 file where to set or get the h5dimnames.

name For h5writeDimnames and h5readDimnames: The name of the dataset in the
HDFS5 file for which the dimnames should be written or read.
For set_h5dimnames and get_h5dimnames: The name of the dataset in the
HDFS5 file for which to set or get the ASdimnames.

group NA (the default) or the name of the HDF5 group where to write the dimnames.
If set to NA then the group name is automatically generated from name. If set to
the empty string ("") then no group will be used.
Except when group is set to the empty string, the names in h5dimnames (see
below) must be relative to the group.

h5dimnames For h5writeDimnames: NULL (the default) or a character vector containing the
names of the HDFS datasets (one per list element in dimnames) where to write
the dimnames. Names associated with NULL list elements in dimnames are ig-
nored and should typically be NAs.
If set to NULL then the names are automatically set to numbers indicating the
associated dimensions (" 1" for the first dimension, "2" for the second, etc...)
For set_h5dimnames: A character vector containing the names of the HDF5
datasets to attach as dimnames of the dataset specified in name. The vector must

h5writeDimnames 19

have one element per dimension in dataset name. NAs are allowed and indicate
dimensions along which nothing should be attached.

as.character Even though the dimnames of an HDF5 dataset are usually stored as datasets
of type "character” (H5 datatype "HS5T_STRING") in the HDFS5 file, this is
not a requirement. By default h5readDimnames will return them as-is. Set
as.character to TRUE to make sure that they are returned as character vectors.
See example below.

dry.run When set to TRUE, set_h5dimnames doesn’t make any change to the HDFS file
but will still raise errors if the operation cannot be done.

Value

h5writeDimnames and set_h5dimnames return nothing.

h5readDimnames returns a list (possibly named) with one list element per dimension in HDF5
dataset name and containing its dimnames retrieved from the file.

get_h5dimnames returns a character vector containing the names of the HDF5 datasets that are
currently set as the dimnames of the dataset specified in name. The vector has one element per
dimension in dataset name. NAs in the vector indicate dimensions along which nothing is set.

See Also
* writeHDF5Array for a high-level function to write an array-like object and its dimnames to
an HDFS file.

* h5write in the rhdf5 package that h5writeDimnames uses internally to write the dimnames
to the HDFS file.

* h5mread in this package (HDF5Array) that hSreadDimnames uses internally to read the dim-
names from the HDF?5 file.

e h51s to list the content of an HDF5 file.
» HDF5Array objects.

Examples

B oo
BASIC EXAMPLE

B = m o mmmmm
library(rhdf5) # for h5write()

mo <- matrix(1:60, ncol=5)
colnames(m@) <- LETTERS[1:5]

h5file <- tempfile(fileext=".h5")
h5write(m@, h5file, "M@") # h5write() ignores the dimnames
h51s(h5file)

h5writeDimnames(dimnames(m@), h5file, "M@")
h51s(h5file)

get_h5dimnames(h5file, "M@")
h5readDimnames (h5file, "M@")

Reconstruct 'm@' from HDF5 file:
ml <- h5mread(h5file, "M0@")

20

h5writeDimnames

dimnames(m1) <- h5readDimnames(h5file, "M@")
stopifnot(identical(m@, m1))

Create an HDF5Array object that points to HDF5 dataset Mo:
HDF5Array(h5file, "M@")

Sanity checks:
stopifnot(identical (dimnames(m@), h5readDimnames(h5file, "M@")))
stopifnot(identical (dimnames(m@), dimnames(HDF5Array(h5file, "M@"))))

e G e
SHARED DIMNAMES

#H# -
If a collection of HDF5 datasets share the same dimnames, the

dimnames only need to be written once in the HDF5 file. Then they

can be attached to the individual datasets with set_h5dimnames():

h5write(array(runif(240), c(12, 5:4)), h5file, "A1")
set_h5dimnames(h5file, "A1", get_h5dimnames(h5file, "M@"))
get_h5dimnames(h5file, "A1")

h5readDimnames (h5file, "A1")

HDF5Array(h5file, "A1")

h5write(matrix(sample(letters, 60, replace=TRUE), ncol=5), h5file, "A2")
set_h5dimnames(h5file, "A2", get_h5dimnames(h5file, "M@"))
get_h5dimnames(h5file, "A2")

h5readDimnames (h5file, "A2")

HDF5Array(h5file, "A2")

Sanity checks:
stopifnot(identical (dimnames(m@), h5readDimnames(h5file, "A1")[1:21))
stopifnot(identical(dimnames(m@), h5readDimnames(h5file, "A2")))

R
USE h5writeDimnames() AFTER A CALL TO writeHDF5Array()
e
After calling writeHDF5Array(x, ..., with.dimnames=FALSE) the

dimnames on 'x' can still be written to the HDF5 file by doing the
following:

1. Write 'm@' to the HDF5 file and ignore the dimnames (for now):
writeHDF5Array(m@, h5file, "M2", with.dimnames=FALSE)

2. Use h5writeDimnames() to write 'dimnames(m@)' to the file and
#i# associate them with the "M2" dataset:
h5writeDimnames(dimnames(m@), h5file, "M2")

3. Use the HDF5Array() constructor to make an HDF5Array object that
#it points to the "M2" dataset:
HDF5Array(h5file, "M2")

Note that at step 2. you can use the extra arguments of
hbwriteDimnames() to take full control of where the dimnames
should be stored in the file:
writeHDF5Array(me, h5file, "M3", with.dimnames=FALSE)
h5writeDimnames(dimnames(m@), h5file, "M3",
group="a_secret_place”, h5dimnames=c(”NA", "M3_dim2"))

HDF5-dump-management 21

h51s(h5file)

h5readDimnames() and HDF5Array() still "find” the dimnames:
h5readDimnames (h5file, "M3")

HDF5Array(h5file, "M3")

Sanity checks:
stopifnot(identical (dimnames(m@), h5readDimnames(h5file, "M3")))
stopifnot(identical(dimnames(m@), dimnames(HDF5Array(h5file, "M3"))))

-
STORE THE DIMNAMES AS NON-CHARACTER TYPES

-
writeHDF5Array(mo, h5file, "M4", with.dimnames=FALSE)

dimnames <- 1ist(1001:1012, as.raw(11:15))

h5writeDimnames(dimnames, h5file, "M4")

h51s(h5file)

h5readDimnames (h5file, "M4")
h5readDimnames (h5file, "M4", as.character=TRUE)

Sanity checks:
stopifnot(identical (dimnames, h5readDimnames(h5file, "M4")))
dimnames(m@) <- dimnames
stopifnot(identical(
dimnames(m@),
h5readDimnames(h5file, "M4", as.character=TRUE)
)

HDF5-dump-management HDF5 dump management

Description

A set of utilities to control the location and physical properties of automatically created HDF5
datasets.

Usage

setHDF5DumpDir(dir)
setHDF5DumpFile(filepath)
setHDF5DumpName (name)
setHDF5DumpChunkLength(length=1000000L)
setHDF5DumpChunkShape (shape="scale")
setHDF5DumpCompressionLevel (level=6L)

getHDF5DumpDir ()
getHDF5DumpFile()
getHDF5DumpName (for . use=FALSE)
getHDF5DumpChunkLength()
getHDF5DumpChunkShape ()
getHDF5DumpCompressionLevel ()

1sHDF5DumpFile()

22 HDFS5-dump-management

showHDF5DumpLog ()

For developers:

getHDF5DumpChunkDim(dim)

appendDatasetCreationToHDF5DumpLog(filepath, name, dim, type,
chunkdim, level)

Arguments

dir The path (as a single string) to the current HDF5 dump directory, that is, to
the (new or existing) directory where HDF5 dump files with automatic names
will be created. This is ignored if the user specified an HDF5 dump file with
setHDF5DumpFile. If dir is missing, then the HDF5 dump directory is set back
to its default value i.e. to some directory under tempdir () (call getHDF5DumpDir ()
to get the exact path).

filepath For setHDF5DumpFile: The path (as a single string) to the current HDF5 dump
file, that is, to the (new or existing) HDFS5 file where the next automatic HDF5
datasets will be written. If filepath is missing, then a new file with an au-
tomatic name will be created (in getHDF5DumpDir()) and used for each new
dataset.
For appendDatasetCreationToHDF5DumpLog: See the Note TO DEVELOP-
ERS below.

name For setHDF5DumpName: The name of the next automatic HDF5 dataset to be
written to the current HDFS5 dump file.
For appendDatasetCreationToHDF5DumpLog: See the Note TO DEVELOP-
ERS below.

length The maximum length of the physical chunks of the next automatic HDF5 dataset
to be written to the current HDF5 dump file.

shape A string specifying the shape of the physical chunks of the next automatic HDF5
dataset to be written to the current HDFS5 dump file. See makeCappedVolumeBox
in the DelayedArray package for a description of the supported shapes.

level For setHDF5DumpCompressionLevel: The compression level to use for writing
automatic HDF5 datasets to disk. See the 1level argumentin ?rhdf5: :h5createDataset
(in the rhdf5 package) for more information about this.
For appendDatasetCreationToHDF5DumpLog: See the Note TO DEVELOP-
ERS below.

for.use Whether the returned dataset name is for use by the caller or not. See below for
the details.

dim The dimensions of the HDF5 dataset to be written to disk, that is, an integer
vector of length one or more giving the maximal indices in each dimension. See
the dims argument in ?rhdf5: :h5createDataset (in the rhdfS package) for
more information about this.

type The type (a.k.a. storage mode) of the data to be written to disk. Can be obtained
with type() on an array-like object (which is equivalent to storage.mode () or
typeof () on an ordinary array). This is typically what an application writing
datasets to the HDF5 dump should pass to the storage.mode argument of its
call to rhdf5: :h5createDataset. See the Note TO DEVELOPERS below for
more information.

chunkdim The dimensions of the chunks.

HDF5-dump-management 23

Details

Calling getHDF5DumpFile() and getHDF5DumpName () with no argument should be informative
only i.e. it’s a mean for the user to know where the next automatic HDF5 dataset will be written.
Since a given file/name combination can be used only once, the user should be careful to not use that
combination to explicitely create an HDFS5 dataset because that would get in the way of the creation
of the next automatic HDF5 dataset. See the Note TO DEVELOPERS below if you actually need
to use this file/name combination.

1sHDF5DumpFile() is a just convenience wrapper for h51s(getHDF5DumpFile()).

Value

getHDF5DumpDir returns the absolute path to the directory where HDF5 dump files with automatic
names will be created. Only meaningful if the user did NOT specify an HDF5 dump file with
setHDF5DumpFile.

getHDF5DumpFile returns the absolute path to the HDFS5 file where the next automatic HDF5
dataset will be written.

getHDF5DumpName returns the name of the next automatic HDF5 dataset.

getHDF5DumpCompressionLevel returns the compression level currently used for writing auto-
matic HDF5 datasets to disk.

showHDF5DumpLog returns the dump log in an invisible data frame.

getHDF5DumpChunkDim returns the dimensions of the physical chunks that will be used to write the
dataset to disk.

Note

TO DEVELOPERS:
If your application needs to write its own dataset to the HDF5 dump then it should:

1. Get a file/dataset name combination by calling getHDF5DumpFile () and getHDF5DumpName (for.use=TRUE).

2. [OPTIONAL] Call getHDF5DumpChunkDim(dim) to get reasonable chunk dimensions to use
for writing the dataset to disk. Or choose your own chunk dimensions.

3. Add an entry to the dump log by calling appendDatasetCreationToHDF5DumplLog. Typically,
this should be done right after creating the dataset (e.g. with rhdf5: :h5createDataset) and
before starting to write the dataset to disk. The values passed to appendDatasetCreationToHDF5DumpLog
via the filepath, name, dim, type, chunkdim, and level arguments should be those that were
passed to rhdf5: :h5createDataset via the file, dataset, dims, storage.mode, chunk,
and level arguments, respectively. Note that appendDatasetCreationToHDF5DumpLog uses
a lock mechanism so is safe to use in the context of parallel execution.

This is actually what the coercion method to HDF5Array does internally.

See Also

* writeHDF5Array for writing an array-like object to an HDFS5 file.
HDF5Array objects.
The h51s function on which 1sHDF5DumpFile is based.

makeCappedVolumeBox in the DelayedArray package.

type in the DelayedArray package.

24

Examples

getHDF5DumpDir ()
getHDF5DumpFile()

Use setHDF5DumpFile() to change the current HDF5 dump file.

If the specified file exists, then it must be in HDF5 format or
an error will be raised. If it doesn't exist, then it will be
created.

#setHDF5DumpFile("path/to/some/HDF5/file")

1sHDF5DumpFile ()

a <- array(1:600, c(150, 4))
A <- as(a, "HDF5Array")
1sHDF5DumpFile()

A

b <- array(runif(6000), c(4, 2, 150))
B <- as(b, "HDF5Array")
1sHDF5DumpFile ()

B

C <- (log(2 x A +0.88) -5)"3xtBL, 1, D
as(C, "HDF5Array"”) # realize C on disk
1sHDF5DumpFile ()

Matrix multiplication is not delayed: the output matrix is realized
block by block. The current "realization backend” controls where

realization happens e.g. in memory if set to NULL or in an HDF5 file
if set to "HDF5Array”. See '?realize' in the DelayedArray package for
more information about "realization backends”.
setAutoRealizationBackend("HDF5Array”)

m <- matrix(runif(20), nrow=4)

P <= C %*% m

1sHDF5DumpFile ()

See all the HDF5 datasets created in the current session so far:
showHDF5DumpLog ()

Wrap the call in suppressMessages() if you are only interested in the
data frame version of the dump log:

dump_log <- suppressMessages(showHDF5DumpLog())

dump_log

HDF5Array-class

HDF5Array-class HDF5 datasets as DelayedArray objects

Description

The HDF5Array class is a DelayedArray subclass for representing and operating
(a.k.a. dense) HDF5 dataset.

on a conventional

All the operations available for DelayedArray objects work on HDF5Array objects.

HDF5Array-class 25

Usage

Constructor function:
HDF5Array(filepath, name, as.sparse=FALSE, type=NA)

Arguments

filepath The path (as a single string or HSFile object) to the HDFS5 file (. h5 or .h5ad)
where the dataset is located.

Note that you must create and use an H5File object if the HDFS5 file to access is
stored in an Amazon S3 bucket. See ?H5File for how to do this.

Also please note that H5File objects must NOT be used in the context of parallel
evaluation at the moment.
name The name of the dataset in the HDFS file.

as.sparse Whether the HDF5 dataset should be flagged as sparse or not, that is, whether
it should be considered sparse (and treated as such) or not. Note that HDF5
doesn’t natively support sparse storage at the moment so HDF5 datasets cannot
be stored in a sparse format, only in a dense one. However a dataset stored in
a dense format can still contain a lot of zeros. Using as. sparse=TRUE on such
dataset will enable some optimizations that can lead to a lower memory footprint
(and possibly better performance) when operating on the HDF5Array.
IMPORTANT NOTE: If the dataset is in the 10x Genomics format (i.e. if it uses
the HDF5-based sparse matrix representation from 10x Genomics), you should
use the TENxMatrix() constructor instead of the HDF5Array () constructor.

type By default the type of the returned object is inferred from the HS datatype of the
HDFS5 dataset. This can be overridden by specifying the type argument. The
specified type must be an R atomic type (e.g. "integer”) or "list".

Value

An HDF5Array (or HDF5Matrix) object. (Note that HDF5Matrix extends HDF5Array.)

Note

The "1.3 Million Brain Cell Dataset" and other datasets published by 10x Genomics use an HDF5-
based sparse matrix representation instead of the conventional (a.k.a. dense) HDF5 representation.

If your dataset uses the conventional (a.k.a. dense) HDF5 representation, use the HDF5Array ()
constructor documented here.

But if your dataset uses the HDFS5 sparse matrix representation from 10x Genomics, use the TENxMatrix ()
constructor instead.

See Also
» H5File objects.

» H5SparseMatrix objects for representing HDFS sparse matrices as DelayedMatrix objects.

* H5ADMatrix objects for representing hSad central matrices (or matrices in the /layers group)
as DelayedMatrix objects.

* TENxMatrix objects for representing 10x Genomics datasets as DelayedMatrix objects.

* ReshapedHDF5Array objects for representing HDFS datasets as DelayedArray objects with a
user-supplied upfront virtual reshaping.

26

HDF5Array-class

* DelayedArray objects in the DelayedArray package.
* writeHDF5Array for writing an array-like object to an HDFS5 file.

» HDF5-dump-management for controlling the location and physical properties of automatically
created HDF5 datasets.

* saveHDF5SummarizedExperiment and loadHDF5SummarizedExperiment in this package (the
HDF5Array package) for saving/loading an HDF5-based SummarizedExperiment object to/from
disk.

* The HDF5ArraySeed helper class.
¢ h51s to list the content of an HDF5 file (. h5 or . h5ad).

Examples

e
A. CONSTRUCTION
HHE = e

With a local file:
toy_h5 <- system.file("extdata”, "toy.h5", package="HDF5Array")
h51s(toy_h5)

HDF5Array(toy_h5, "M2")
HDF5Array(toy_h5, "M2", type="integer")
HDF5Array(toy_h5, "M2", type="complex")

With a file stored in an Amazon S3 bucket:
if (Sys.info()[["sysname"]] != "Darwin”) {
public_S3_url <-
"https://rhdf5-public.s3.eu-central-1.amazonaws.com/rhdf5ex_t_float_3d.h5"
h5file <- H5File(public_S3_url, s3=TRUE)
h51s(h5file)

HDF5Array(h5file, "al")

B. BASIC MANIPULATION
e

library(h5vcData)

tally_file <- system.file("extdata”, "example.tally.hfs5",
package="h5vcData")

h51ls(tally_file)

Pick up "Coverages"” dataset for Human chromosome 16:
name <- "/ExampleStudy/16/Coverages”

cvg <- HDF5Array(tally_file, name)

cvg

is(cvg, "DelayedArray") # TRUE
seed(cvg)

path(cvg)
chunkdim(cvg)

The data in the dataset looks sparse. In this case it is recommended
to set 'as.sparse' to TRUE when constructing the HDF5Array object.

HDF5Array-class

This will make block processing (used in operations like sum()) more
memory efficient and likely faster:

cvgd <- HDF5Array(tally_file, name, as.sparse=TRUE)

is_sparse(cvgd) # TRUE

Note that we can also flag the HDF5Array object as sparse after
creation:

is_sparse(cvg) <- TRUE

cvg # same as 'cvgo'

dim/dimnames:
dim(cvgo)

dimnames(cvgo)
dimnames(cvgd) <- list(paste@(”s", 1:6), c("+", "="), NULL)
dimnames(cvgd)

Bt e
C. SLICING (A.K.A. SUBSETTING)
e

cvgl <- cvgd[, , 29000001:29000007]
cvgl

dim(cvgl)

as.array(cvgl)

stopifnot(identical(dim(as.array(cvgl)), dim(cvgl)))
stopifnot(identical(dimnames(as.array(cvgl)), dimnames(cvgl)))

cvg2 <- cvgo[, "+", 29000001:29000007]
cvg2
as.matrix(cvg2)

B e
D. SummarizedExperiment OBJECTS WITH DELAYED ASSAYS
Bt e

DelayedArray objects can be used inside a SummarizedExperiment object
to hold the assay data and to delay operations on them.

library(SummarizedExperiment)

pcvg <- cvgd[, 1, 1 # coverage on plus strand
mcvg <- cvgd[, 2, 1 # coverage on minus strand

nrow(pcvg) # nb of samples
ncol(pcvg) # length of Human chromosome 16

The convention for a SummarizedExperiment object is to have 1 column
per sample so first we need to transpose 'pcvg' and 'mcvg':

pcvg <= t(pcvg)

mcvg <- t(mcvg)

se <- SummarizedExperiment(list(pcvg=pcvg, mcvg=mcvg))

se

stopifnot(validObject(se, complete=TRUE))

27

28

HDF5ArraySeed-class

A GPos object can be used to represent the genomic positions along
the dataset:

gpos <- GPos(GRanges("16", IRanges(1, nrow(se))))

gpos

rowRanges(se) <- gpos

se

stopifnot(validObject(se))

assays(se)$pcvg

assays(se)$mcvg

HDF5Array-internals HDF5Array internals

Description

Internal utilities defined in the HDF5Array package. These functions are not intended to be used
directly.

HDF5ArraySeed-class HDF5ArraySeed objects

Description

HDF5ArraySeed is a low-level helper class for representing a pointer to an HDFS dataset.

Note that an HDF5ArraySeed object is not intended to be used directly. Most end users will typ-
ically create and manipulate a higher-level HDF5Array object instead. See ?HDF5Array for more
information.

Usage

--- Constructor function ---
HDF5ArraySeed(filepath, name, as.sparse=FALSE, type=NA)
--- Accessors —-—-—---—-----=--

S4 method for signature 'HDF5ArraySeed’
path(object)

S4 replacement method for signature 'HDF5ArraySeed’
path(object) <- value

S4 method for signature 'HDF5ArraySeed’
dim(x)

S4 method for signature 'HDF5ArraySeed’
dimnames(x)

S4 method for signature 'HDF5ArraySeed’

HDF5ArraySeed-class 29

type(x)

S4 method for signature 'HDF5ArraySeed'
is_sparse(x)

S4 replacement method for signature 'HDF5ArraySeed’
is_sparse(x) <- value

S4 method for signature 'HDF5ArraySeed’
chunkdim(x)

--- Data extraction -------—-

S4 method for signature 'HDF5ArraySeed’
extract_array(x, index)

S4 method for signature 'HDF5ArraySeed’
extract_sparse_array(x, index)

Arguments

filepath, name, as. sparse, type
See ?HDF5Array for a description of these arguments.

object, x An HDF5ArraySeed object or derivative.

value For the path() setter: The new path (as a single string) to the HDFS5 file where
the dataset is located.

For the is_sparse() setter: TRUE or FALSE.

index See ?extract_array in the S4Arrays package.

Details

The HDF5ArraySeed class has one direct subclass: Dense_ HSADMatrixSeed. See ?Dense_H5ADMatrixSeed
for more information.

Note that the implementation of HDF5ArraySeed objects follows the widely adopted convention of
transposing HDF5 matrices when they get loaded into R.

Finally note that an HDF5ArraySeed object supports a very limited set of methods:

* path(): Returns the path to the HDFS5 file where the dataset is located.
e dim(), dimnames ().

e type(), extract_array(), is_sparse(), extract_sparse_array(), chunkdim(): These
generics are defined and documented in other packages e.g. in S4Arrays for extract_array()
and is_sparse(), in SparseArray for extract_sparse_array(), and in DelayedArray for
chunkdim().

Value

HDF5ArraySeed() returns an HDF5ArraySeed object.

30 ReshapedHDF5Array-class

HDF5ArraySeed vs HDF5Array objects

In order to have access to the full set of operations that are available for DelayedArray objects, an
HDF5ArraySeed object first needs to be wrapped in a DelayedArray object, typically by calling the
DelayedArray() constructor on it.

This is what the HDF5Array () constructor function does.

Note that the result of this wrapping is an HDF5Array object, which is just an HDF5ArraySeed
object wrapped in a DelayedArray object.

See Also

HDF5Array objects.
* type, extract_array, and is_sparse, in the the S4Arrays package.

* extract_sparse_array in the SparseArray package.

chunkdim in the DelayedArray package.

h51s to list the content of an HDFS5 file.

Examples

library(h5vcData)

tally_file <- system.file("extdata”, "example.tally.hfs5",
package="h5vcData")

h51s(tally_file)

name <- "/ExampleStudy/16/Coverages” # name of the dataset of interest
seed1 <- HDF5ArraySeed(tally_file, name)

seed]

path(seed1)

dim(seed1)

chunkdim(seed1)

seed2 <- HDF5ArraySeed(tally_file, name, as.sparse=TRUE)
seed?2

Alternatively:
is_sparse(seedl) <- TRUE
seedl # same as 'seed2'

DelayedArray(seed1)
stopifnot(class(DelayedArray(seedl1)) == "HDF5Array")

ReshapedHDF5Array-class
Virtually reshaped HDF5 datasets as DelayedArray objects

Description

The ReshapedHDF5Array class is a DelayedArray subclass for representing an HDF5 dataset with
a user-supplied upfront virtual reshaping.

All the operations available for DelayedArray objects work on ReshapedHDF5Array objects.

ReshapedHDF5Array-class 31

Usage

Constructor function:
ReshapedHDF5Array(filepath, name, dim, type=NA)

Arguments

filepath, name, type
See ?HDF5Array for a description of these arguments.

dim A vector of dimensions that describes the virtual reshaping i.e. the reshaping that
is virtually applied upfront to the HDF5 dataset when the ReshapedHDF5Array
object gets constructed.

Note that the HDF5 dataset is treated as read-only so is not effectively reshaped,
that is, the dataset dimensions encoded in the HDFS5 file are not mmodified.
Also please note that arbitrary reshapings are not supported. Only reshapings
that reduce the number of dimensions by collapsing a group of consecutive di-
mensions into a single dimension are supported. For example, reshaping a 10
x 3 x 5 x 1000 array as a 10 x 15 x 1000 array or as a 150 x 1000 matrix is
supported.

Value

A ReshapedHDF5Array (or ReshapedHDFS5Matrix) object. (Note that ReshapedHDFS5Matrix ex-
tends ReshapedHDF5Array.)

See Also

» HDF5Array objects for representing HDFS datasets as DelayedArray objects without upfront
virtual reshaping.

* DelayedArray objects in the Delayed Array package.
* writeHDF5Array for writing an array-like object to an HDFS5 file.

* saveHDF5SummarizedExperiment and loadHDF5SummarizedExperiment in this package (the
HDF5Array package) for saving/loading an HDF5-based SummarizedExperiment object to/from
disk.

* The ReshapedHDF5ArraySeed helper class.
* h51s to list the content of an HDFS file.

Examples

library(h5vcData)

tally_file <- system.file("extdata”, "example.tally.hfs5",
package="h5vcData")

h51ls(tally_file)

Pick up "Coverages"” dataset for Human chromosome 16 and collapse its

first 2 dimensions:

cvg <- ReshapedHDF5Array(tally_file, "/ExampleStudy/16/Coverages”,
dim=c(12, 90354753))

cvg

is(cvg, "DelayedArray”) # TRUE
seed(cvg)
path(cvg)

32 ReshapedHDF5ArraySeed-class

dim(cvg)
chunkdim(cvg)

ReshapedHDF5ArraySeed-class
ReshapedHDF5ArraySeed objects

Description

ReshapedHDF5ArraySeed is a low-level helper class for representing a pointer to a virtually re-
shaped HDF5 dataset.

ReshapedHDF5ArraySeed objects are not intended to be used directly. Most end users should
create and manipulate ReshapedHDF5Array objects instead. See ?ReshapedHDF5Array for more
information.

Usage

Constructor function:
ReshapedHDF5ArraySeed(filepath, name, dim, type=NA)

Arguments

filepath, name, dim, type
See ?ReshapedHDF5Array for a description of these arguments.

Details

No operation can be performed directly on a ReshapedHDF5ArraySeed object. It first needs to be
wrapped in a DelayedArray object. The result of this wrapping is a ReshapedHDF5Array object (a
ReshapedHDFS5 Array object is just a ReshapedHDF5ArraySeed object wrapped in a Delayed Array
object).

Value

A ReshapedHDF5ArraySeed object.

See Also

* ReshapedHDF5Array objects.
¢ h51s to list the content of an HDFS5 file.

Examples

library(h5vcData)

tally_file <- system.file("extdata”, "example.tally.hfs5",
package="h5vcData")

h51s(tally_file)

Collapse the first 2 dimensions:

seed <- ReshapedHDF5ArraySeed(tally_file, "/ExampleStudy/16/Coverages”,
dim=c(12, 90354753))

seed

saveHDF5SummarizedExperiment 33

path(seed)
dim(seed)
chunkdim(seed)

saveHDF5SummarizedExperiment

Save/load an HDF5-based SummarizedExperiment object

Description

saveHDF5SummarizedExperiment and loadHDF5SummarizedExperiment can be used to save/load
an HDF5-based SummarizedExperiment object to/from disk.

NOTE: These functions use functionalities from the SummarizedExperiment package internally
and so require this package to be installed.

Usage

saveHDF5SummarizedExperiment (x, dir="my_h5_se", prefix="", replace=FALSE,

chunkdim=NULL, level=NULL, as.sparse=NA,
verbose=NA)

loadHDF5SummarizedExperiment (dir="my_h5_se", prefix="")

quickResaveHDF5SummarizedExperiment(x, verbose=FALSE)

Arguments

X

dir

prefix

replace

chunkdim, level

as.sparse

A SummarizedExperiment object or derivative.

For quickResaveHDF5SummarizedExperiment the object must have been pre-
viously saved with saveHDF5SummarizedExperiment (and has been possibly
modified since then).

The path (as a single string) to the directory where to save the HDF5-based
SummarizedExperiment object or to load it from.

When saving, the directory will be created if it doesn’t already exist. If the
directory already exists and no prefix is specified and replace is set to TRUE,
then it’s replaced with an empty directory.

An optional prefix to add to the names of the files created inside dir. Allows
saving more than one object in the same directory.

When no prefix is specified, should a pre-existing directory be replaced with a
new empty one? The content of the pre-existing directory will be lost!

The dimensions of the chunks and the compression level to use for writing the
assay data to disk.

Passed to the internal calls to writeHDF5Array. See ?writeHDF5Array for more
information.

Whether the assay data should be flagged as sparse or not. If set to NA (the
default), then the specific as. sparse value to use for each assay is determined
by calling is_sparse() on them.

Passed to the internal calls to writeHDF5Array. See ?writeHDF5Array for more
information and an IMPORTANT NOTE.

34 saveHDF5SummarizedExperiment
verbose Set to TRUE to make the function display progress.
In the case of saveHDF5SummarizedExperiment(), verbose is set to NA by de-
fault, in which case verbosity is controlled by DelayedArray: : :get_verbose_block_processing(.
Setting verbose to TRUE or FALSE overrides this.
Details

saveHDF5SummarizedExperiment(): Creates the directory specified thru the dir argument and
populates it with the HDF5 datasets (one per assay in x) plus a serialized version of x that
contains pointers to these datasets. This directory provides a self-contained HDF5-based rep-
resentation of x that can then be loaded back in R with 1oadHDF5SummarizedExperiment.
Note that this directory is relocatable i.e. it can be moved (or copied) to a different place,
on the same or a different computer, before calling 1oadHDF5SummarizedExperiment on it.
For convenient sharing with collaborators, it is suggested to turn it into a tarball (with Unix
command tar), or zip file, before the transfer.

Please keep in mind that saveHDF5SummarizedExperiment and loadHDF5SummarizedExperiment

don’t know how to produce/read tarballs or zip files at the moment, so the process of packag-
ing/extracting the tarball or zip file is entirely the user responsibility. This is typically done
from outside R.

Finally please note that, depending on the size of the data to write to disk and the perfor-
mance of the disk, saveHDF5SummarizedExperiment can take a long time to complete. Use
verbose=TRUE to see its progress.

loadHDF5SummarizedExperiment (): Typically very fast, even if the assay data is big, because all
the assays in the returned object are HDF5Array objects pointing to the on-disk HDF5 datasets
located in dir. HDF5Array objects are typically light-weight in memory.

quickResaveHDF5SummarizedExperiment(): Preserves the HDFS5 file and datasets that the as-

says in x are already pointing to (and which were created by an earlier call to saveHDF5SummarizedExperiment).

All it does is re-serialize x on top of the .rds file that is associated with this HDFS5 file (and

which was created by an earlier call to saveHDF5SummarizedExperiment or quickResaveHDF5SummarizedExperi

Because the delayed operations possibly carried by the assays in x are not realized, this is very
fast.

Value

saveHDF5SummarizedExperiment returns an invisible SummarizedExperiment object that is the
same as what loadHDF5SummarizedExperiment will return when loading back the object. All the
assays in the object are HDF5Array objects pointing to datasets in the HDF5 file saved in dir.

Difference between saveHDFS5SummarizedExperiment() and saveRDS()

Roughly speaking, saveRDS() only serializes the part of an object that resides in memory (the
reality is a little bit more nuanced, but discussing the full details is not important here, and would
only distract us). For most objects in R, that’s the whole object, so saveRDS() does the job.

However some objects are pointing to on-disk data. For example: a TxDb object (the TxDb class
is implemented and documented in the GenomicFeatures package) points to an SQLite db; an
HDF5Array object points to a dataset in an HDFS5 file; a SummarizedExperiment derivative can
have one or more of its assays that point to datasets (one per assay) in an HDFS file. These objects
have 2 parts: one part is in memory, and one part is on disk. The 1st part is sometimes called the
object shell and is generally thin (i.e. it has a small memory footprint). The 2nd part is the data
and is typically big. The object shell and data are linked together via some kind of pointer stored
in the shell (e.g. an SQLite connection, or a path to a file, etc...). Note that this is a one way link
in the sense that the object shell "knows" where to find the on-disk data but the on-disk data knows

saveHDF5SummarizedExperiment 35

nothing about the object shell (and is completely agnostic about what kind of object shell could be
pointing to it). Furthermore, at any given time on a given system, there could be more than one
object shell pointing to the same on-disk data. These object shells could exist in the same R session
or in sessions in other languages (e.g. Python). These various sessions could be run by the same or
by different users.

Using saveRDS() on such object will only serialize the shell part so will produce a small . rds file
that contains the serialized object shell but not the object data.

This is problematic because:

1. If you later unserialize the object (with readRDS()) on the same system where you origi-
nally serialized it, it is possible that you will get back an object that is fully functional and
semantically equivalent to the original object. But here is the catch: this will be the case
ONLY if the data is still at the original location and has not been modified (i.e. nobody
wrote or altered the data in the SQLite db or HDF5 file in the mean time), and if the serial-
ization/unserialization cycle didn’t break the link between the object shell and the data (this
serialization/unserialization cycle is known to break open SQLite connections).

2. After serialization the object shell and data are stored in separate files (in the new .rds file
for the shell, still in the original SQLite or HDFS5 file for the data), typically in very different
places on the file system. But these 2 files are not relocatable, that is, moving or copying them
to another system or sending them to collaborators will typically break the link between them.
Concretely this means that the object obtained by using readRDS() on the destination system
will be broken.

saveHDF5SummarizedExperiment () addresses these issues by saving the object shell and assay
data in a folder that is relocatable.

Note that it only works on SummarizedExperiment derivatives. What it does exactly is (1) write all
the assay data to an HDFS5 file, and (2) serialize the object shell, which in this case is everything
in the object that is not the assay data. The 2 files (HDF5 and . rds) are written to the directory
specified by the user. The resulting directory contains a full representation of the object and is
relocatable, that is, it can be moved or copied to another place on the system, or to another system
(possibly after making a tarball of it), where 1loadHDF5SummarizedExperiment () can then be used
to load the object back in R.

Note

The files created by saveHDF5SummarizedExperiment in the user-specified directory dir should
not be renamed.

The user-specified directory created by saveHDF5SummarizedExperiment is relocatable i.e. it can
be renamed and/or moved around, but not the individual files in it.

Author(s)

Hervé Pages

See Also

* SummarizedExperiment and RangedSummarizedExperiment objects in the SummarizedEx-
periment package.

* The writeHDF5Array function which saveHDF5SummarizedExperiment uses internally to
write the assay data to disk.

e base::saveRDS

36 saveHDF5SummarizedExperiment
Examples

e e
saveHDF5SummarizedExperiment() / loadHDF5SummarizedExperiment()
e
library(SummarizedExperiment)

nrow <- 200

ncol <- 6

counts <- matrix(as.integer(runif(nrow * ncol, 1, 1e4)), nrow)

colData <- DataFrame(Treatment=rep(c(”"ChIP"”, "Input"), 3),
row.names=LETTERS[1:6])

se@ <- SummarizedExperiment(assays=list(counts=counts), colData=colData)

sed

Save 'se@' as an HDF5-based SummarizedExperiment object:
dir <- tempfile("h5_se0@_")

h5_se@ <- saveHDF5SummarizedExperiment(se@, dir)
list.files(dir)

h5_se®
assay(h5_se@, withDimnames=FALSE) # HDF5Matrix object

h5_sedb <- loadHDF5SummarizedExperiment(dir)
h5_sedb
assay(h5_se@b, withDimnames=FALSE) # HDF5Matrix object

Sanity checks:

stopifnot(is(assay(h5_se@, withDimnames=FALSE), "HDF5Matrix"))
stopifnot(identical(assay(se@), as.matrix(assay(h5_se®))))
stopifnot(is(assay(h5_se@b, withDimnames=FALSE), "HDF5Matrix"))
stopifnot(identical (assay(se@), as.matrix(assay(h5_se0b))))

B o
More sanity checks
B m oo

Make a copy of directory 'dir':

somedir <- tempfile("somedir")
dir.create(somedir)

file.copy(dir, somedir, recursive=TRUE)

dir2 <- list.files(somedir, full.names=TRUE)

'dir2' contains a copy of 'dir'. Call loadHDF5SummarizedExperiment()
on it.
h5_se@c <- loadHDF5SummarizedExperiment(dir2)

stopifnot(is(assay(h5_se@dc, withDimnames=FALSE), "HDF5Matrix"))
stopifnot(identical (assay(se@), as.matrix(assay(h5_se@c))))

B m o o
Using a prefix
B m o o

sel <- se0@[51:100,]
saveHDF5SummarizedExperiment(sel, dir, prefix="xx_")
list.files(dir)

TENxMatrix-class 37

loadHDF5SummarizedExperiment(dir, prefix="xx_")

e
quickResaveHDF5SummarizedExperiment()
B — oo

se2 <- loadHDF5SummarizedExperiment(dir, prefix="xx_")

se2 <- se2[1:14,]

assayl <- assay(se2, withDimnames=FALSE)

assays(se2, withDimnames=FALSE) <- c(assays(se2), list(score=assay1/100))
rowRanges(se2) <- GRanges("chr1”, IRanges(1:14, width=5))

rownames(se2) <- letters[1:14]

se2

This will replace saved 'sel'!
quickResaveHDF5SummarizedExperiment (se2, verbose=TRUE)
list.files(dir)

loadHDF5SummarizedExperiment(dir, prefix="xx_")

TENxMatrix-class 10x Genomics datasets as DelayedMatrix objects

Description

A 10x Genomics dataset like the "1.3 Million Brain Cell Dataset" is an HDF5 sparse matrix stored
in CSR/CSC/Yale format ("Compressed Sparse Row").

The TENxMatrix class is a DelayedMatrix subclass for representing and operating on this kind of
dataset.

All the operations available for DelayedMatrix objects work on TENxMatrix objects.

Usage

Constructor function:
TENxMatrix(filepath, group="matrix")

Arguments
filepath The path (as a single string) to the HDF5 file where the 10x Genomics dataset is
located.
group The name of the group in the HDFS file containing the 10x Genomics data.
Details

In addition to all the methods defined for DelayedMatrix objects, TENxMatrix objects support the
following specialized methods: nzcount () and extractNonzeroDataByCol (). See ?H5SparseMatrixSeed
for more information about what these methods do.

Value

TENxMatrix() returns a TENxMatrix object.

38

Note

TENxMatrix-class

If your dataset uses the HDF5 sparse matrix representation from 10x Genomics, use the TENxMatrix()
constructor documented here.

But if your dataset uses the conventional (a.k.a. dense) HDF5 representation, use the HDF5Array ()
constructor instead.

See Also

HDF5 Array objects for representing conventional (a.k.a. dense) HDFS datasets as Delayed Ar-
ray objects.

DelayedMatrix objects in the DelayedArray package.

writeTENxMatrix for writing a matrix-like object as an HDF5-based sparse matrix.
The TENxBrainData dataset (in the TENxBrainData package).

detectCores from the parallel package.

setAutoBPPARAM and setAutoBlockSize in the DelayedArray package.
colAutoGrid and blockApply in the DelayedArray package.

The TENxMatrixSeed helper class.

h51s to list the content of an HDF? file.

NumericList and IntegerList objects in the IRanges package.

SparseArray objects in the SparseArray package.

Examples

--

SIMPLE TENxMatrix EXAMPLE

--

sm <-

M <-
M

Matrix::rsparsematrix(10, 7, density=0.3)
writeTENxMatrix(sm)

class(M) # TENxMatrix

is(M,

"DelayedMatrix”) # TRUE

seed(M)
class(seed(M)) # TENxMatrixSeed

rhdf5::h51ls(path(M))

is_sparse(M) # TRUE

Use coercion to load the full dataset into memory:

as.matrix(M) # as ordinary array (usually not recommended)
as(M, "dgCMatrix") # as dgCMatrix (brings back 'sm')

as(M, "SparseArray"”) # as SparseArray object (most efficient)
SparseArray (M) # equivalent to 'as(M, "SparseArray")'

e

THE "1.3 Million Brain Cell Dataset” AS A DelayedMatrix OBJECT

--

TENxMatrix-class

The 1.3 Million Brain Cell Dataset from 10x Genomics is available
via ExperimentHub:

library(ExperimentHub)

hub <- ExperimentHub()
query(hub, "TENxBrainData")
fname <- hub[["EH1039"]]

#i#

'fname' is an HDF5 file. Use h51s() to list its content:

h51s(fname)

The 1.3 Million Brain Cell Dataset is represented by the "mm10"
group. We point the TENxMatrix() constructor to this group to
create a TENxMatrix object representing the dataset:

oneM <- TENxMatrix(fname, group="mm10")

oneM

is(oneM, "DelayedMatrix”) # TRUE

seed(oneM)

path(oneM)

nzcount(oneM) # nb of nonzero values in the dataset

Some examples of delayed operations:
oneM != 0
oneM”"2

#i#

SOME EXAMPLES OF ROW/COL SUMMARIZATION

#it

In order to reduce computation times, we'll use only the first
25000 columns of the 1.3 Million Brain Cell Dataset:
oneM25k <- oneM[, 1:25000]

#it

mechanism behind the scene that can be controlled via global
settings. 2 important settings that can have a strong impact on

performance are the automatic number of workers and automatic block

size, controlled by setAutoBPPARAM() and setAutoBlockSize()
respectively.

Row/col summarization methods like rowSums() use a block-processing

library(BiocParallel)
if (.Platform$0S.type != "windows") {

On a modern Linux laptop with 8 cores (as reported by

parallel::detectCores()) and 16 Gb of RAM, reasonably good

performance is achieved by setting the automatic number of workers
to 5 or 6 and the automatic block size between 300 Mb and 400 Mb:
workers <- 5

block_size <- 3e8 # 300 Mb

setAutoBPPARAM(MulticoreParam(workers))

} else {

MulticoreParam() is not supported on Windows so we use SnowParam()
on this platform. Also we reduce the block size to 200 Mb on

32-bit Windows to avoid memory allocation problems (they tend to
be common there because a process cannot use more than 3 Gb of

memory).

workers <- 4

setAutoBPPARAM(SnowParam(workers))

39

40

TENxMatrix-class

block_size <- if (.Platform$r_arch == "i386") 2e8 else 3e8

3
setAutoBlockSize(block_size)

We're ready to compute the library sizes, number of genes expressed
per cell, and average expression across cells:
system.time(lib_sizes <- colSums(oneM25k))

system.time(n_exprs <- colSums(oneM25k != @))

system.time(ave_exprs <- rowMeans(oneM25k))

Note that the 3 computations above load the data in oneM25k 3 times
in memory. This can be avoided by computing the 3 summarizations in
a single pass with blockApply(). First we define the function that
we're going to apply to each block of data:
FUN <- function(block)

list(colSums(block), colSums(block != @), rowSums(block))

Then we call blockApply() to apply FUN() to each block. The blocks
are defined by the grid passed to the 'grid' argument. In this case
we supply a grid made with colAutoGrid() to generate blocks of full
columns (see ?colAutoGrid for more information):
system. time({

block_results <- blockApply(oneM25k, FUN, grid=colAutoGrid(oneM25k),

verbose=TRUE)

»

'block_results' is a list with 1 list element per block in

colAutoGrid(oneM25k). Each list element is the result that was

obtained by applying FUN() on the block so is itself a list of

length 3.

Let's combine the results:

lib_sizes2 <- unlist(lapply(block_results, “[[*, 1L))

n_exprs2 <- unlist(lapply(block_results, “[[~, 2L))

block_rowsums <- unlist(lapply(block_results, “[[*, 3L), use.names=FALSE)
tot_exprs <- rowSums(matrix(block_rowsums, nrow=nrow(oneM25k)))
ave_exprs2 <- setNames(tot_exprs / ncol(oneM25k), rownames(oneM25k))

Sanity checks:
stopifnot(all.equal(lib_sizes, lib_sizes2))
stopifnot(all.equal(n_exprs, n_exprs2))
stopifnot(all.equal(ave_exprs, ave_exprs2))

Turn off parallel evaluation and reset automatic block size to factory
settings:

setAutoBPPARAM()

setAutoBlockSize()

B o
extractNonzeroDataByCol()
s

extractNonzeroDataByCol() provides a convenient and very efficient
way to extract the nonzero data in a compact form:
nonzeros <- extractNonzeroDataByCol(oneM, 1:25000) # takes < 5 sec.

The data is returned as an IntegerList object with one list element
per column and no row indices associated to the values in the object.

TENxMatrixSeed-class 41

Furthermore, the values within a given list element can be returned
in any order:
nonzeros

names(nonzeros) <- colnames(oneM25k)

This can be used to compute some simple summaries like the library
sizes and the number of genes expressed per cell. For these use
cases, it is a lot more efficient than using colSums(oneM25k) and
colSums(oneM25k != 0):

lib_sizes3 <- sum(nonzeros)

n_exprs3 <- lengths(nonzeros)

Sanity checks:
stopifnot(all.equal(lib_sizes, lib_sizes3))
stopifnot(all.equal(n_exprs, n_exprs3))

TENxMatrixSeed-class TENxMatrixSeed objects

Description

TENxMatrixSeed is a low-level helper class that is a direct extension of the H5SparseMatrixSeed
class. It is used to represent a pointer to an HDF5 sparse matrix that is stored in the CSR/CSC/Yale
format ("Compressed Sparse Row") and follows the 10x Genomics convention for storing the di-
mensions of the matrix.

Note that a TENxMatrixSeed object is not intended to be used directly. Most end users will typi-
cally create and manipulate a higher-level TENxMatrix object instead. See ?TENxMatrix for more
information.

Usage
Constructor function:
TENxMatrixSeed(filepath, group="matrix")

Arguments

filepath, group See ?TENxMatrix for a description of these arguments.

Details
A TENxMatrixSeed object supports the same limited set of methods as an H5SparseMatrixSeed
object. See ?H5SparseMatrixSeed for the details.

Value

TENxMatrixSeed() returns a TENxMatrixSeed object.

42 writeHDF5Array

TENxMatrixSeed vs TENxMatrix objects

In order to have access to the full set of operations that are available for DelayedMatrix objects, a
TENxMatrixSeed object first needs to be wrapped in a DelayedMatrix object, typically by calling
the DelayedArray () constructor on it.

This is what the TENxMatrix() constructor function does.

Note that the result of this wrapping is a TENxMatrix object, which is just a TENxMatrixSeed
object wrapped in a DelayedMatrix object.

See Also

* TENxMatrix objects.

» H5SparseMatrixSeed objects.

* The TENxBrainData dataset (in the TENxBrainData package).
* h51s to list the content of an HDFS file.

Examples

The 1.3 Million Brain Cell Dataset from 10x Genomics is available
via ExperimentHub:

library(ExperimentHub)

hub <- ExperimentHub()

query(hub, "TENxBrainData")

fname <- hub[["EH1039"]]

'fname' is an HDF5 file. Use h51s() to list its content:
h51s(fname)

The 1.3 Million Brain Cell Dataset is represented by the "mm1@"
group. We point the TENxMatrixSeed() constructor to this group
to create a TENxMatrixSeed object representing the dataset:
seed <- TENxMatrixSeed(fname, group="mm10")

seed

path(seed)

dim(seed)

is_sparse(seed)

sparsity(seed)

DelayedArray(seed)
stopifnot(class(DelayedArray(seed)) == "TENxMatrix")

writeHDF5Array Write an array-like object to an HDF5 file

Description

A function for writing an array-like object to an HDFS5 file.

Usage

writeHDF5Array(x, filepath=NULL, name=NULL,
H5type=NULL, chunkdim=NULL, level=NULL, as.sparse=NA,
with.dimnames=TRUE, verbose=NA)

writetHDF5Array 43

Arguments

X The array-like object to write to an HDFS5 file.

If x is a DelayedArray object, writeHDF5Array realizes it on disk, that is, all the
delayed operations carried by the object are executed while the object is written
to disk. See "On-disk realization of a DelayedArray object as an HDF5 dataset”
section below for more information.

filepath NULL or the path (as a single string) to the (new or existing) HDF5 file where to
write the dataset. If NULL, then the dataset will be written to the current HDF5
dump file i.e. to the file whose path is getHDF5DumpFile.

name NULL or the name of the HDF5 dataset to write. If NULL, then the name returned
by getHDF5DumpName will be used.

H5type The HS5 datatype to use for the HDF5 dataset to be written to the HDF5 file
is automatically inferred from the type of x (type(x)). Advanced users can
override this by specifying the HS datatype they want via the H5type argument.

See rhdf5: :h5const("H5T") for a list of available H5 datatypes. See Refer-
ences section below for the link to the HDF Group’s Support Portal where HS
predefined datatypes are documented.

A typical use case is to use a datatype that is smaller than the automatic one
in order to reduce the size of the dataset on disk. For example you could
use "HS5T_IEEE_F32LE" when type(x) is "double” and you don’t care about
preserving the precision of 64-bit floating-point numbers (the automatic HS
datatype used for "double” is "HS5T_IEEE_F64LE"). Another example is to
use "H5T_STD_U16LE" when x contains small non-negative integer values like
counts (the automatic H5 datatype used for "integer"” is "H5T_STD_I32LE").

chunkdim The dimensions of the chunks to use for writing the data to disk. By default (i.e.
when chunkdim is set to NULL), getHDF5DumpChunkDim(dim(x)) will be used.
See ?getHDF5DumpChunkDim for more information.

Set chunkdim to O to write unchunked data (a.k.a. contiguous data).

level The compression level to use for writing the data to disk. By default, getHDF5DumpCompressionLeve
will be used. See ?getHDF5DumpCompressionLevel for more information.

as.sparse Whether the data in the returned HDF5Array object should be flagged as sparse
or not. If set to NA (the default), then is_sparse(x) is used.

IMPORTANT NOTE: This only controls the as.sparse flag of the returned
HDF5Array object. See man page of the HDF5Array() constructor for more
information. In particular this does NOT affect how the data will be laid out in
the HDF5 file in any way (HDF5 doesn’t natively support sparse storage at the
moment). In other words, the data will always be stored in a dense format, even
when as. sparse is set to TRUE.

with.dimnames Whether the dimnames on x should also be written to the HDFS file or not. TRUE
by default.

Note that h5writeDimnames is used internally to write the dimnames to disk.
Setting with.dimnames to FALSE and calling h5writeDimnames is another way
to write the dimnames on x to disk that gives more control. See ?h5writeDimnames
for more information.

verbose Whether block processing progress should be displayed or not. If set to NA (the
default), verbosity is controlled by DelayedArray: : :get_verbose_block_processing().
Setting verbose to TRUE or FALSE overrides this.

44 writeHDF5Array

Details

Please note that, depending on the size of the data to write to disk and the performance of the disk,
writeHDF5Array() can take a long time to complete. Use verbose=TRUE to see its progress.

Use setHDF5DumpFile and setHDF5DumpName to control the location of automatically created
HDF5 datasets.

Use setHDF5DumpChunkLength, setHDF5DumpChunkShape, and setHDF5DumpCompressionLevel,
to control the physical properties of automatically created HDF5 datasets.
Value

An HDF5Array object pointing to the newly written HDF5 dataset on disk.

On-disk realization of a DelayedArray object as an HDFS dataset

When passed a DelayedArray object, writeHDF5Array realizes it on disk, that is, all the delayed
operations carried by the object are executed on-the-fly while the object is written to disk. This uses
a block-processing strategy so that the full object is not realized at once in memory. Instead the
object is processed block by block i.e. the blocks are realized in memory and written to disk one at

a time.

In other words, writeHDF5Array(x, ...) is semantically equivalent to writeHDF5Array(as.array(x),
...), except that as.array(x) is not called because this would realize the full object at once in
memory.

See ?DelayedArray for general information about DelayedArray objects.

References

Documentation of the HS predefined datatypes on the HDF Group’s Support Portal: https://
portal.hdfgroup.org/display/HDF5/Predefined+Datatypes

See Also
* HDF5Array objects.

* h5writeDimnames for writing the dimnames of an HDF5 dataset to disk.

* saveHDF5SummarizedExperiment and loadHDF5SummarizedExperiment in this package (the
HDFS5Array package) for saving/loading an HDF5-based SummarizedExperiment object to/from
disk.

» HDF5-dump-management to control the location and physical properties of automatically cre-
ated HDFS datasets.

¢ h51s to list the content of an HDFS file.

Examples

WRITE AN ORDINARY ARRAY TO AN HDF5 FILE
HH -
mo <- matrix(runif (364, min=-1), nrow=26,

dimnames=list(letters, LETTERS[1:14]))

h5file <- tempfile(fileext=".h5")
M1 <- writeHDF5Array(m@, h5file, name="M1", chunkdim=c(5, 5))
M1

https://portal.hdfgroup.org/display/HDF5/Predefined+Datatypes
https://portal.hdfgroup.org/display/HDF5/Predefined+Datatypes

write TENxMatrix 45

chunkdim(M1)

By default, writeHDF5Array() writes the dimnames to the HDF5 file:
dimnames(M1) # same as 'dimnames(m@)'’

Use 'with.dimnames=FALSE' to not write the dimnames to the file:
M1b <- writeHDF5Array(m@, h5file, name="M1b", with.dimnames=FALSE)
dimnames(M1b) # no dimnames

With sparse data:

sm <- rsparsematrix(20, 8, density=0.1)

M2 <- writeHDF5Array(sm, h5file, name="M2", chunkdim=c(5, 5))
M2

is_sparse(M2) # TRUE

#H -
WRITE A DelayedArray OBJECT TO AN HDF5 FILE

-——————————
M3 <- log(t(DelayedArray(mo)) + 1)

M3 <- writeHDF5Array(M3, h5file, name="M3", chunkdim=c(5, 5))

M3

chunkdim(M3)

library(h5vcData)

tally_file <- system.file("extdata”, "example.tally.hfs5",
package="h5vcData")

h51s(tally_file)

cvgd <- HDF5Array(tally_file, "/ExampleStudy/16/Coverages”)

cvgl <- cvgdl[, , 29000001:29000007]

writeHDF5Array(cvgl, h5file, "cvgl”)
h51s(h5file)

writeTENxMatrix Write a matrix-like object as an HDF5-based sparse matrix

Description

The 1.3 Million Brain Cell Dataset and other datasets published by 10x Genomics use an HDF5-
based sparse matrix representation instead of the conventional (a.k.a. dense) HDF5 representation.

writeTENxMatrix writes a matrix-like object to this format.

IMPORTANT NOTE: Only use writeTENxMatrix if the matrix-like object to write is sparse, that
is, if most of its elements are zero. Using writeTENxMatrix on dense data is very inefficient! In
this case, you should use writeHDF5Array instead.

Usage

writeTENxMatrix(x, filepath=NULL, group=NULL, level=NULL, verbose=NA)

46 write TENxMatrix

Arguments

X The matrix-like object to write to an HDFS5 file.

The object to write should typically be sparse, that is, most of its elements should
be zero.

If x is a DelayedMatrix object, writeTENxMatrix realizes it on disk, that is,
all the delayed operations carried by the object are executed while the object is
written to disk.

filepath NULL or the path (as a single string) to the (new or existing) HDFS5 file where to
write the data. If NULL, then the data will be written to the current HDF5 dump
file i.e. to the file whose path is getHDF5DumpFile.

group NULL or the name of the HDF5 group where to write the data. If NULL, then the
name returned by getHDF5DumpName will be used.

level The compression level to use for writing the data to disk. By default, getHDF5DumpCompressionLeve
will be used. See ?getHDF5DumpCompressionLevel for more information.

verbose Whether block processing progress should be displayed or not. If set to NA (the
default), verbosity is controlled by DelayedArray: : :get_verbose_block_processing().
Setting verbose to TRUE or FALSE overrides this.

Details

Please note that, depending on the size of the data to write to disk and the performance of the disk,
writeTENxMatrix can take a long time to complete. Use verbose=TRUE to see its progress.

Use setHDF5DumpFile and setHDF5DumpName to control the location of automatically created
HDF5 datasets.

Value

A TENxMatrix object pointing to the newly written HDF5 data on disk.

See Also

TENxMatrix objects.
The TENxBrainData dataset (in the TENxBrainData package).

HDF5-dump-management to control the location and physical properties of automatically cre-
ated HDF5 datasets.

h51s to list the content of an HDFS5 file.

Examples

A SIMPLE EXAMPLE
#H -
mo <- matrix(@L, nrow=25, ncol=12,
dimnames=list(letters[1:25], LETTERS[1:12]))
mo[cbind(2:24, c(12:1, 2:12))]1 <- 100L + sample(55L, 23, replace=TRUE)
out_file <- tempfile()
MO <- writeTENxMatrix(m@, out_file, group="mo")
Mo
sparsity(Mo)

path(M@) # same as 'out_file'

write TENxMatrix 47

Use h51ls() to list the content of this HDF5 file:
h51s(path(M@))

B — oo
USING THE "1.3 Million Brain Cell Dataset”
B m o

The 1.3 Million Brain Cell Dataset from 10x Genomics is available via
ExperimentHub:

library(ExperimentHub)

hub <- ExperimentHub()

query(hub, "TENxBrainData")

fname <- hub[["EH1039"]]

oneM <- TENxMatrix(fname, group="mm10") # see ?TENxMatrix for the details
oneM

Note that the following transformation preserves sparsity:
M2 <- log(oneM + 1) # delayed
M2 # a DelayedMatrix instance

In order to reduce computation times, we'll write only the first

5000 columns of M2 to disk:

out_file <- tempfile()

M3 <- writeTENxMatrix(M2[, 1:5000], out_file, group="mm1@", verbose=TRUE)
M3 # a TENxMatrix instance

Index

* classes
H5ADMatrix-class, 2
H5ADMatrixSeed-class, 4
H5File-class, 5
H5SparseMatrix-class, 13
H5SparseMatrixSeed-class, 15
HDF5Array-class, 24
HDF5ArraySeed-class, 28
ReshapedHDF5Array-class, 30
ReshapedHDF5ArraySeed-class, 32
TENxMatrix-class, 37
TENxMatrixSeed-class, 41

* internal
HDF5Array-internals, 28

+ methods
H5ADMatrix-class, 2
H5ADMatrixSeed-class, 4
H5File-class, 5
H5SparseMatrix-class, 13
H5SparseMatrixSeed-class, 15
HDF5Array-class, 24
HDF5ArraySeed-class, 28
ReshapedHDF5Array-class, 30
ReshapedHDF5ArraySeed-class, 32
TENxMatrix-class, 37
TENxMatrixSeed-class, 41
writeHDF5Array, 42
writeTENxMatrix, 45

+ utilities
h51s, 8
h5mread, 9
h5mread_from_reshaped, 12
h5writeDimnames, 18
HDF5-dump-management, 21

appendDatasetCreationToHDF5DumpLog
(HDF5-dump-management), 21

blockApply, 6, 38
bplapply, 6

character_OR_H5File (H5File-class), 5
character_OR_H5File-class
(H5File-class), 5

48

check_and_delete_files
(HDF5Array-internals), 28
chunkdim, /7, 29, 30
chunkdim,CSC_H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 15
chunkdim,CSR_H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 15
chunkdim,HDF5ArraySeed-method
(HDF5ArraySeed-class), 28
chunkdim,HDF5RealizationSink-method
(writeHDF5Array), 42
chunkdim,ReshapedHDF5ArraySeed-method
(ReshapedHDF5ArraySeed-class),
32
chunkdim, TENxRealizationSink-method
(writeTENxMatrix), 45
class:character_OR_H5File
(H5File-class), 5
class:CSC_H5ADMatrixSeed
(H5ADMatrixSeed-class), 4
class:CSC_H5SparseMatrixSeed
(H5SparseMatrixSeed-class), 15
class:CSR_H5ADMatrixSeed
(H5ADMatrixSeed-class), 4
class:CSR_H5SparseMatrixSeed
(H5SparseMatrixSeed-class), 15
class:Dense_H5ADMatrixSeed
(H5ADMatrixSeed-class), 4
class:H5ADMatrix (H5ADMatrix-class), 2
class:H5ADMatrixSeed
(H5ADMatrixSeed-class), 4
class:H5DSetDescriptor (H5File-class), 5
class:H5File (H5File-class), 5
class:H5FilelD (H5File-class), 5
class:H5SparseMatrix
(H5SparseMatrix-class), 13
class:H5SparseMatrixSeed
(H5SparseMatrixSeed-class), 15
class:HDF5Array (HDF5Array-class), 24
class:HDF5ArraySeed
(HDF5ArraySeed-class), 28
class:HDF5Matrix (HDF5Array-class), 24
class:HDF5RealizationSink

INDEX 49

(writeHDF5Array), 42 (writeTENxMatrix), 45
class:ReshapedHDF5Array coerce, TENxRealizationSink, TENxMatrixSeed-method
(ReshapedHDF5Array-class), 30 (writeTENxMatrix), 45
class:ReshapedHDF5ArraySeed colAutoGrid, 38
(ReshapedHDF5ArraySeed-class), COO_SparseArray, 10
32 create_dir (HDF5Array-internals), 28
class:ReshapedHDF5Matrix CSC_H5ADMatrixSeed
(ReshapedHDF5Array-class), 30 (H5ADMatrixSeed-class), 4
class:TENxMatrix (TENxMatrix-class), 37 CSC_H5ADMatrixSeed-class
class:TENxMatrixSeed (H5ADMatrixSeed-class), 4
(TENxMatrixSeed-class), 41 CSC_H5SparseMatrixSeed, 4
class:TENxRealizationSink CSC_H5SparseMatrixSeed
(writeTENxMatrix), 45 (H5SparseMatrixSeed-class), 15
close, TENxRealizationSink-method CSC_H5SparseMatrixSeed-class
(writeTENxMatrix), 45 (H5SparseMatrixSeed-class), 15
close.H5File (H5File-class), 5 CSR_H5ADMatrixSeed
close.H5FilelID (H5File-class), 5 (H5ADMatrixSeed-class), 4
coerce,ANY,HDF5Array-method CSR_H5ADMatrixSeed-class
(writeHDF5Array), 42 (H5ADMatrixSeed-class), 4
coerce, ANY, HDF5Matrix-method CSR_H5SparseMatrixSeed, 4
(HDF5Array-class), 24 CSR_H5SparseMatrixSeed
coerce, ANY,ReshapedHDF5Matrix-method (HSSparngatrixSeed—class),15
(ReshapedHDF5Array-class), 30 CSR_H5SparseMatrixSeed-class

coerce, ANY, TENxMatrix-method (HSSparseMatrixSeed-class), 15

(writeTENxMatrix), 45 DelayedArray. 3,5, 14, 17, 24-26, 30-32. 38,
coerce,DelayedArray,HDF5Array-method 4244

(writeHDF5Array), 42 . DelayedArray,H5ADMatrixSeed-method
coerce,DelayedArray, TENxMatrix-method (H5ADMatrix-class), 2

(writeTENxMatrix), 45 DelayedArray,H5SparseMatrixSeed-method

coerce,DelayedMatrix,HDF5Matrix-method (H5SparseMatrix-class), 13
(wr1teHDF55rray),42) DelayedArray,HDF5ArraySeed-method
coerce,DelayedMatrix, TENxMatrix-method (HDF5Array-class), 24
(writeTENxMatrix), 45 DelayedArray,ReshapedHDF5ArraySeed-method
coerce,H5File,H5IdComponent-method (ReshapedHDF5Array-class), 30
(HSFile-class), 5 DelayedArray, TENxMatrixSeed-method
coerce,HDF5Array ,HDF5Matrix-method (TENxMatrix-class), 37
(HDFSArray-class), 24 DelayedMatrix, 3, 5, 13, 14, 17, 25, 37, 38,
coerce,HDF5Matrix, HDF5Array-method 42,46
(HDF5Array-class), 24 Dense_H5ADMatrixSeed, 29
coerce,HDF5RealizationSink,DelayedArray-methogense H5ADMatrixSeed
(writeHDF5Array), 42 (H5ADMatrixSeed-class), 4
coerce ,HDF5RealizationSink,HDF5Array-method pense H5ADMatrixSeed-class
(writeHDF5Array), 42 (H5ADMatrixSeed-class), 4
coerce,HDF5RealizationSink, HDF5ArraySeed-methgéstroy_H5DSetDescriptor
(writeHDF5Array), 42 (H5File-class), 5
coerce,ReshapedHDF5Array, ReshapedHDF5Matrix-mgébedtCores, 38
(ReshapedHDF5Array-class), 30 dim,H5SparseMatrixSeed-method
coerce,ReshapedHDF5Matrix, ReshapedHDF5Array-method (H5SparseMatrixSeed-class), 15
(ReshapedHDF5Array-class), 30 dim,HDF5ArraySeed-method
coerce, TENxRealizationSink,DelayedArray-method (HDF5ArraySeed-class), 28
(writeTENxMatrix), 45 dim,ReshapedHDF5ArraySeed-method

coerce,TENxRealizationSink, TENxMatrix-method (ReshapedHDF5ArraySeed-class),

50

32
dimnames,Dense_H5ADMatrixSeed-method
(H5ADMatrixSeed-class), 4
dimnames,H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 15
dimnames,HDF5ArraySeed-method
(HDF5ArraySeed-class), 28
dimnames,HDF5RealizationSink-method
(writeHDF5Array), 42
dimnames, TENxRealizationSink-method
(writeTENxMatrix), 45
dump-management (HDF5-dump-management),
21

extract_array, 9, 10, 16, 17, 29, 30

extract_array,H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 15

extract_array,HDF5ArraySeed-method
(HDF5ArraySeed-class), 28

extract_array,ReshapedHDF5ArraySeed-method

(ReshapedHDF5ArraySeed-class),
32
extract_sparse_array, 17,29, 30

INDEX

getHDF5DumpChunkLength
(HDF5-dump-management), 21

getHDF5DumpChunkShape
(HDF5-dump-management), 21

getHDF5DumpCompressionLevel, 43, 46

getHDF5DumpCompressionLevel
(HDF5-dump-management), 21

getHDF5DumpDir (HDF5-dump-management),
21

getHDF5DumpFile, 43, 46

getHDF5DumpFile (HDF5-dump-management),
21

getHDF5DumpName, 43, 46

getHDF5DumpName (HDF5-dump-management),
21

H5ADMatrix, 4-6, 14, 25

H5ADMatrix (H5ADMatrix-class), 2
H5ADMatrix-class, 2

H5ADMatrixSeed, 3

H5ADMatrixSeed (H5ADMatrixSeed-class), 4
H5ADMatrixSeed-class, 4
h5createDataset, 22

extract_sparse_array, CSC_H5SparseMatrixSeed-mdiBoetDescriptor (H5File-class), 5

(H5SparseMatrixSeed-class), 15

H5DSetDescriptor-class (H5File-class), 5

extract_sparse_array,CSR_H5SparseMatrixSeed-mdkhbbe, 810, 12, 13,25

(H5SparseMatrixSeed-class), 15

extract_sparse_array,HDF5ArraySeed-method

(HDF5ArraySeed-class), 28
extractNonzeroDataByCol
(H5SparseMatrixSeed-class), 15

H5File (H5File-class), 5

H5File-class, 5

H5FileID (H5File-class), 5
H5FileID-class (H5File-class), 5

h51s, 6, 8,8, 14, 17, 19, 23, 26, 30-32, 38, 42,

extractNonzeroDataByCol, CSC_H5SparseMatrixSeed-method#4, 46

(H5SparseMatrixSeed-class), 15

extractNonzeroDataByCol,H5ADMatrix-method

(H5ADMatrix-class), 2

h5mread, 6,9, 12, 13, 19
h5mread_from_reshaped, 10, 12
H5Pset_fapl_ros3, 6

extractNonzeroDataByCol,H5SparseMatrix-methodh5read, 9, 10

(H5SparseMatrix-class), 13

extractNonzeroDataByCol, TENxMatrix-method

(TENxMatrix-class), 37
extractNonzeroDataByRow
(H5SparseMatrixSeed-class), 15

h5readDimnames (h5writeDimnames), 18

H5SparseMatrix, 3, 6, 15-17, 25

H5SparseMatrix (H5SparseMatrix-class),
13

H5SparseMatrix-class, 13

extractNonzeroDataByRow,CSR_H5SparseMatrixSeedsmeanseMatrixSeed, 4, 5, 14, 37,41, 42

(H5SparseMatrixSeed-class), 15

extractNonzeroDataByRow,H5ADMatrix-method

(H5ADMatrix-class), 2

H5SparseMatrixSeed
(H5SparseMatrixSeed-class), 15
H5SparseMatrixSeed-class, 15

extractNonzeroDataByRow,H5SparseMatrix-methodh5write, /9

(H5SparseMatrix-class), 13

get_h5dimnames (h5writeDimnames), 18
get_hbmread_returned_type (h5mread), 9
getHDF5DumpChunkDim, 43
getHDF5DumpChunkDim
(HDF5-dump-management), 21

h5writeDimnames, 18, 43, 44

HDF5-dump-management, 21, 26, 44, 46

HDF5Array, 3, 6, 14, 19, 23, 28-31, 34, 38, 43,
44

HDF5Array (HDF5Array-class), 24

HDF5Array-class, 24

HDF5Array-internals, 28

INDEX

HDF5ArraySeed, 4, 5, 26

HDF5ArraySeed (HDF5ArraySeed-class), 28

HDF5ArraySeed-class, 28

HDF5Matrix (HDF5Array-class), 24

HDF5Matrix-class (HDF5Array-class), 24

HDF5RealizationSink (writeHDF5Array), 42

HDF5RealizationSink-class
(writeHDF5Array), 42

IntegerlList, 17, 38
is_sparse, 17, 29, 30
is_sparse,H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 15
is_sparse,HDF5ArraySeed-method
(HDF5ArraySeed-class), 28
is_sparse,HDF5RealizationSink-method
(writeHDF5Array), 42
is_sparse<-,HDF5Array-method
(HDF5Array-class), 24
is_sparse<-,HDF5ArraySeed-method
(HDF5ArraySeed-class), 28

load, 6

loadHDF5SummarizedExperiment, 26, 31, 44

loadHDF5SummarizedExperiment
(saveHDF5SummarizedExperiment),
33

1sHDF5DumpFile (HDF5-dump-management),
21

makeCappedVolumeBox, 22, 23
matrixClass,HDF5Array-method
(HDF5Array-class), 24
matrixClass,ReshapedHDF5Array-method
(ReshapedHDF5Array-class), 30
MulticoreParam, 6

NumericlList, /7, 38
nzcount,H5ADMatrix-method
(H5ADMatrix-class), 2
nzcount,H5SparseMatrix-method
(H5SparseMatrix-class), 13
nzcount,H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 15
nzcount, TENxMatrix-method
(TENxMatrix-class), 37

51

path,H5File-method (H5File-class), 5
path,H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 15
path,HDF5ArraySeed-method
(HDF5ArraySeed-class), 28
path<-,H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 15
path<-,HDF5ArraySeed-method
(HDF5ArraySeed-class), 28

quickResaveHDF5SummarizedExperiment
(saveHDF5SummarizedExperiment),
33

RangedSummarizedExperiment, 35
read_block, 16
read_sparse_block, 17
read_sparse_block,H5ADMatrix-method
(H5ADMatrix-class), 2
read_sparse_block,H5SparseMatrix-method
(H5SparseMatrix-class), 13
read_sparse_block,H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 15
read_sparse_block, TENxMatrix-method
(TENxMatrix-class), 37
readH5AD, 3, 5
readRDS, 6
replace_dir (HDF5Array-internals), 28
ReshapedHDF5Array, 25, 32
ReshapedHDF5Array
(ReshapedHDF5Array-class), 30
ReshapedHDF5Array-class, 30
ReshapedHDF5ArraySeed, 37
ReshapedHDF5ArraySeed
(ReshapedHDF5ArraySeed-class),
32
ReshapedHDF5ArraySeed-class, 32
ReshapedHDF5Matrix
(ReshapedHDF5Array-class), 30
ReshapedHDF5Matrix-class
(ReshapedHDF5Array-class), 30
restore_absolute_assay2h5_links
(HDF5Array-internals), 28

saveHDF5SummarizedExperiment, 26, 31, 33,
44
saveRDS, 35

OLD_extract_sparse_array,H5SparseMatrixSeed-med¢ho5dimnames (h5writeDimnames), 18

(H5SparseMatrixSeed-class), 15

setAutoBlockSize, 38

OLD_extract_sparse_array,HDF5ArraySeed-methodsetAutoBPPARAM, 38

(HDF5ArraySeed-class), 28
open.H5File (H5File-class), 5
open.H5FilelD (H5File-class), 5

setHDF5DumpChunkLength, 44
setHDF5DumpChunkLength
(HDF5-dump-management), 21

52

setHDF5DumpChunkShape, 44

setHDF5DumpChunkShape
(HDF5-dump-management), 21

setHDF5DumpCompressionLevel, 44

setHDF5DumpCompressionLevel
(HDF5-dump-management), 21

setHDF5DumpDir (HDF5-dump-management),
21

setHDF5DumpFile, 44, 46

setHDF5DumpFile (HDF5-dump-management),
21

setHDF5DumpName, 44, 46

setHDF5DumpName (HDF5-dump-management),
21

shorten_assay2h5_links
(HDF5Array-internals), 28

show,H5DSetDescriptor-method
(H5File-class), 5

show,H5File-method (H5File-class), 5

show,H5FileID-method (H5File-class), 5

show,H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 15

showHDF5DumpLog (HDF5-dump-management),
21

SingleCellExperiment, 3, 5

SnowParam, 6

SparseArray, 3, 14, 38

stop_if_bad_dir (HDF5Array-internals),
28

SummarizedExperiment, 26, 31, 33-35, 44

t,CSC_H5ADMatrixSeed-method
(HS5ADMatrixSeed-class), 4
t,CSC_H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 15
t,CSR_H5ADMatrixSeed-method
(H5ADMatrixSeed-class), 4
t,CSR_H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 15
t.CSC_H5ADMatrixSeed
(H5ADMatrixSeed-class), 4
t.CSC_H5SparseMatrixSeed
(H5SparseMatrixSeed-class), 15
t.CSR_H5ADMatrixSeed
(HS5ADMatrixSeed-class), 4
t.CSR_H5SparseMatrixSeed
(H5SparseMatrixSeed-class), 15
TENxBrainData, 10, 38, 42, 46
TENxMatrix, 6, 14, 25,41, 42, 46
TENxMatrix (TENxMatrix-class), 37
TENxMatrix-class, 37
TENxMatrixSeed, 38

INDEX

TENxMatrixSeed (TENxMatrixSeed-class),
41

TENxMatrixSeed-class, 41

TENxRealizationSink (writeTENxMatrix),
45

TENxRealizationSink-class
(writeTENxMatrix), 45

TxDb, 34

type, 22, 23, 25, 30

type,HDF5ArraySeed-method
(HDF5ArraySeed-class), 28

type,HDF5RealizationSink-method
(writeHDF5Array), 42

type, TENxRealizationSink-method
(writeTENxMatrix), 45

updateObject,HDF5ArraySeed-method
(HDF5ArraySeed-class), 28

validate_HDF5ArraySeed_dataset_geometry
(HDF5Array-internals), 28

write_block,HDF5RealizationSink-method
(writeHDF5Array), 42

write_block, TENxRealizationSink-method
(writeTENxMatrix), 45

write_h5_assays (HDF5Array-internals),
28

writeH5AD, 3, 5

writeHDF5Array, I8, 19, 23, 26, 31, 33, 35,
42,45

writeTENxMatrix, 38, 45

	H5ADMatrix-class
	H5ADMatrixSeed-class
	H5File-class
	h5ls
	h5mread
	h5mread_from_reshaped
	H5SparseMatrix-class
	H5SparseMatrixSeed-class
	h5writeDimnames
	HDF5-dump-management
	HDF5Array-class
	HDF5Array-internals
	HDF5ArraySeed-class
	ReshapedHDF5Array-class
	ReshapedHDF5ArraySeed-class
	saveHDF5SummarizedExperiment
	TENxMatrix-class
	TENxMatrixSeed-class
	writeHDF5Array
	writeTENxMatrix
	Index

