Package ‘GenomelnfoDb’

March 31, 2025
Title Utilities for manipulating chromosome names, including modifying
them to follow a particular naming style

Description Contains data and functions that
define and allow translation between different chromosome
sequence naming conventions (e.g., ~chrl" versus " 1"),
including a function that attempts to place sequence names in
their natural, rather than lexicographic, order.

biocViews Genetics, DataRepresentation, Annotation, GenomeAnnotation

URL https://bioconductor.org/packages/GenomeInfoDb
Video http://youtu.be/wdEjCYSXa7w

BugReports https://github.com/Bioconductor/GenomeInfoDb/issues
Version 1.42.3

License Artistic-2.0

Encoding UTF-8

Depends R (>= 4.0.0), methods, BiocGenerics (>= 0.37.0), S4Vectors (>=
0.25.12), IRanges (>=2.13.12)

Imports stats, stats4, utils, UCSC.utils, GenomeInfoDbData

Suggests R.utils, data.table, GenomicRanges, Rsamtools,
GenomicAlignments, GenomicFeatures, BSgenome,
TxDb.Dmelanogaster. UCSC.dm3.ensGene,

BSgenome.Scerevisiae. UCSC.sacCer2, BSgenome.Celegans.UCSC.ce2,
BSgenome.Hsapiens. NCBI.GRCh38, RUnit, BiocStyle, knitr

VignetteBuilder knitr

Collate utils.R fetch_table_dump_from_Ensembl_FTP.R list_ftp_dir.R
rankSeqlevels.R NCBI-utils.R UCSC-utils.R Ensembl-utils.R
getChromInfoFromNCBI.R getChromInfoFromUCSC.R
getChromInfoFromEnsembl.R loadTaxonomyDb.R mapGenomeBuilds.R
seqinfo.R Seqinfo-class.R seqlevelsStyle.R seqlevels-wrappers.R
GenomeDescription-class.R zzz.R

git_url https://git.bioconductor.org/packages/GenomelnfoDb
git_ branch RELEASE_3_20

git_last_commit 2f182bf

git_last commit_date 2025-01-23

Repository Bioconductor 3.20

https://bioconductor.org/packages/GenomeInfoDb
https://github.com/Bioconductor/GenomeInfoDb/issues

2 GenomeDescription-class

Date/Publication 2025-03-31

Author Sonali Arora [aut],
Martin Morgan [aut],
Marc Carlson [aut],
Hervé Pages [aut, cre],
Prisca Chidimma Maduka [ctb],
Atuhurira Kirabo Kakopo [ctb],
Haleema Khan [ctb] (vignette translation from Sweave to Rmarkdown /
HTML),
Emmanuel Chigozie Elendu [ctb]

Maintainer Hervé Pages <hpages.on.github@gmail.com>

Contents
GenomeDescription-class 2
GenomelnfoDb internals L o 3
getChromInfoFromEnsembl 4
getChromInfoFromNCBI o 9
getChromInfoFromUCSC 12
loadTaxonomyDb 16
mapGenomeBuildso Lo 17
NCBI-utils. 18
rankSeqlevelso 20
seqinfo L e e e 21
Seqinfo-class 26
seqlevels-wrappers e e e e e e e 32
seqlevelsStyle L 36

Index 40

GenomeDescription-class
GenomeDescription objects

Description

A GenomeDescription object holds the meta information describing a given genome.

Constructor

Even though a constructor function is provided (GenomeDescription()), itis rarely needed GenomeDescrip-
tion objects are typically obtained by coercing a BSgenome object to GenomeDescription. This has

the effect of stripping the sequences from the object and retaining only the meta information that
describes the genome. See the Examples section below for an example.

GenomelnfoDb internals 3

Accessor methods

In the code snippets below, object or x is a GenomeDescription object.

organism(object): Return the scientific name of the organism of the genome e.g. "Homo sapiens”,
"Mus musculus”, "Caenorhabditis elegans”, etc...

commonName (object): Return the common name of the organism of the genome e.g. "Human”,
"Mouse”, "Worm", etc...

providerVersion(x): Return the name of the genome. This is typically the name of an NCBI
assembly (e.g. GRCh38.p13, WBcel235, TAIR10.1, ARS-UCD1.2, etc...) or UCSC genome
(e.g. hg38, bosTau9, galGals6, cell, etc...).

provider(x): Return the provider of this genome e.g. "UCSC", "BDGP", "FlyBase", etc...
releaseDate(x): Return the release date of this genome e.g. "Mar. 2006".

bsgenomeName (x): Uses the meta information stored in GenomeDescription object x to construct
the name of the corresponding BSgenome data package (see the available. genomes function
in the BSgenome package for details about the naming scheme used for those packages). Note
that there is no guarantee that a package with that name actually exists.

seqinfo(x) Gets information about the genome sequences. This information is returned in a Se-
qinfo object. Each part of the information can be retrieved separately with segnames(x),
seglengths(x), and isCircular(x), respectively, as described below.

segnames(x) Gets the names of the genome sequences. seqnames(x) is equivalent to seqnames (seginfo(x)).
seglengths(x) Gets the lengths of the genome sequences. seqlengths(x) is equivalent to seqlengths(seginfo(x)).

isCircular(x) Returns the circularity flags of the genome sequences. isCircular(x) is equiva-
lent to isCircular(seginfo(x)).
Author(s)
H. Pages

See Also

* The available.genomes function and the BSgenome class in the BSgenome package.

* The Seqinfo class.

Examples

library(BSgenome.Celegans.UCSC.ce2)
BSgenome.Celegans.UCSC.ce2
as(BSgenome.Celegans.UCSC.ce2, "GenomeDescription™)

GenomeInfoDb internals
GenomelnfoDb internals

Description

Symbols defined in the GenomeInfoDb package that are not intended to be used directly.

4 getChromInfoFromEnsembl

getChromInfoFromEnsembl
Get chromosome information for an Ensembl species

Description

getChromInfoFromEnsembl returns chromosome information like sequence names, lengths and
circularity flags for a given Ensembl species e.g. Human, Cow, Saccharomyces cerevisiae, etc...

Usage

getChromInfoFromEnsembl (species,
release=NA, division=NA, use.grch37=FALSE,
assembled.molecules.only=FALSE,
include.non_ref.sequences=FALSE,
include.contigs=FALSE,
include.clones=FALSE,
map.NCBI=FALSE,
recache=FALSE,
as.Seqinfo=FALSE)

Arguments

species A single string specifying the name of an Ensembl species e.g. "human”, "hsapiens”,
or "Homo sapiens”. Case is ignored.

Alternatively the name of an assembly (e.g. "GRCh38") or a taxonomy id (e.g.
9606) can be supplied.

release The Ensembl release to query e.g. 89. If set to NA (the default), the current
release is used.

division NA (the default) or one of the EnsemblGenomes martsi.e. "bacteria”, "fungi”,
"metazoa”, "plants”, or "protists”.
use.grch37 NOT TESTED YET!

TRUE or FALSE (the default).

assembled.molecules.only
NOT IMPLEMENTED YET!

include.non_ref.sequences
TODO: DOCUMENT THIS!

include.contigs
Whether or not sequences for which coord_system is set to "contig"” should
be included. They are not included by default. Note that the dataset for Human
contains more than one hundred thousands contigs!

include.clones Whether or not sequences for which coord_systemis set to "clone” should be
included. They are not included by default. Note that the dataset for Human
contains more than one hundred thousands clones!

map .NCBI TRUE or FALSE (the default).

If TRUE then NCBI chromosome information is bound to the result. This infor-
mation is retrieved from NCBI by calling getChromInfoFromNCBI on the NCBI
assembly that the Ensembl species is based on. Then the data frame returned by

getChromInfoFromEnsembl 5

recache

as.Seqginfo

Details

getChromInfoFromNCBI ("NCBI chrom info") is mapped and bound to the data
frame returned by getChromInfoFromEnsembl ("Ensembl chrom info"). This
"map and bind" operation is similar to a JOIN in SQL.

Note that not all rows in the "Ensembl chrom info" data frame are necessarily
mapped to a row in the "NCBI chrom info" data frame. For the unmapped rows
the NCBI columns in the final data frame are filled with NAs (LEFT JOIN in
SQL).

The primary use case for using map.NCBI=TRUE is to map Ensembl sequence
names to NCBI sequence names.

getChromInfoFromEnsembl uses a cache mechanism so the chromosome in-
formation of a given dataset only gets downloaded once during the current R
session (note that the caching is done in memory so cached information does
NOT persist across sessions). Setting recache to TRUE forces a new download
(and recaching) of the chromosome information for the specified dataset.

TRUE or FALSE (the default). If TRUE then a Seqinfo object is returned instead
of a data frame. Note that only the name, length, and circular columns of
the data frame are used to make the Seqinfo object. All the other columns are
ignored (and lost).

COMING SOON...

Value

For getChromInfoFromEnsembl: By default, a 7-column data frame with columns:

Nk w D

name: character.

length: integer.

coord_system: factor.

synonyms: list.

toplevel: logical.

non_ref: logical.

circular: logical.

and with attribute species_info which contains details about the species that was used to obtaine
the data.

If map.NCBI is TRUE, then 7 "NCBI columns" are added to the result:

NCBI.
NCBI.

NCBI
NCBI
NCBI
NCBI
NCBI

SequenceName: character.
SequenceRole: factor.
.AssignedMolecule: factor.
.GenBankAccn: character.
.Relationship: factor.
.RefSegAccn: character.

.AssemblyUnit: factor.

Note that the names of the "NCBI columns" are those returned by getChromInfoFromNCBI but with
the NCBI. prefix added to them.

6 getChromInfoFromEnsembl

Author(s)
H. Pages

See Also

* getChromInfoFromNCBI and getChromInfoFromUCSC for getting chromosome information
for an NCBI assembly or UCSC genome.

* Seqinfo objects.

Examples

B e
A. BASIC EXAMPLES
Bt e

Internet access required!

=== Worm ===
https://uswest.ensembl.org/Caenorhabditis_elegans

celegans <- getChromInfoFromEnsembl(”"celegans”)
attr(celegans, "species_info")

getChromInfoFromEnsembl ("celegans”, as.Seqinfo=TRUE)
celegans <- getChromInfoFromEnsembl("celegans”, map.NCBI=TRUE)

=== Yeast ===
https://uswest.ensembl.org/Saccharomyces_cerevisiae

scerevisiae <- getChromInfoFromEnsembl("scerevisiae")
attr(scerevisiae, "species_info")

getChromInfoFromEnsembl("”scerevisiae”, as.Seqinfo=TRUE)
scerevisiae <- getChromInfoFromEnsembl("scerevisiae”, map.NCBI=TRUE)

Arabidopsis thaliana:

athaliana <- getChromInfoFromEnsembl("athaliana”, division="plants”,
map .NCBI=TRUE)

attr(athaliana, "species_info")

o
Temporary stuff that needs to go away...
B oo

TODO: Check all species for which an NCBI assembly is registered!
Checked so far (with current Ensembl release i.e. 99):

- celegans OK
- scerevisiae oK
- athaliana OK
- btaurus oK
- sscrofa OK
Not run:

WORK IN PROGRESS!!!

getChromInfoFromEnsembl

library(GenomeInfoDb)

.do_join <- GenomeInfoDb:::.do_join
.map_Ensembl_seqlevels_to_NCBI_seqlevels <-
GenomeInfoDb:::.map_Ensembl_seqlevels_to_NCBI_seqlevels

.map_Ensembl_seqlevels_to_NCBI_seqlevels(
paste@("ENS_", 1:26),
CharacterList(c(list(c(aa="INSDC1", bb="GNBK7"), c("INSDC2", "RefSeq3")),
rep(list(NULL), 23), list("NCBI_7"))),
paste@("NCBI_", 1:10),
paste@("GNBK", c(1:8, NA, 9)),
c(paste@("REFSEQ", c(1:7, 1, 1)), NA),
verbose=TRUE
)

map_to_NCBI <- function(Ensembl_chrom_info, NCBI_chrom_info,
special_mappings=NULL)

{

.map_Ensembl_seqlevels_to_NCBI_seqlevels(
Ensembl_chrom_info[, "name"],
Ensembl_chrom_info[, "synonyms"],
NCBI_chrom_info[, "SequenceName"],
NCBI_chrom_info[, "GenBankAccn"J,
NCBI_chrom_info[, "RefSegAccn"],
special_mappings=special_mappings,
verbose=TRUE)

3
B = m o mmmm
Human

https://uswest.ensembl.org/Homo_sapiens/
Based on GRCh38.p13 (GCA_000001405.28)

Return 944 rows

human_chrom_info <- getChromInfoFromEnsembl("hsapiens")

1 id: 131550 <- ref chromosome

CHR_HSCHR1_1_CTG3 id: 131561 <- non-ref chromosome

HSCHR1_1_CTG3 id: 131562 <- scaffold (no scaffold is non_ref)

Map to NCBI

Summary:

- 639/640 NCBI sequences are reverse-mapped.

- Restricted mapping is one-to-one.

GRCh38.p13 <- getChromInfoFromNCBI("GRCh38.p13")

L2R <- map_to_NCBI(human_chrom_info, GRCh38.p13)

The only sequence in GRCh38.p13 that cannot be mapped to Ensembl is
HG2139_PATCH (was introduced in GRCh38.p2)! Why? What's special about
this patch?

GRCh38.p13%$mapped <- tabulate(L2R, nbins=nrow(GRCh38.p13)) != oL
table(GRCh38.p13$SequenceRole, GRCh38.p13$mapped)

FALSE TRUE
assembled-molecule 0 25
alt-scaffold 0 261
unlocalized-scaffold 0 42
unplaced-scaffold 0 127
pseudo-scaffold 0 0

getChromInfoFromEnsembl

fix-patch 1 112
novel-patch o 72
human_chrom_info <- .do_join(human_chrom_info, GRCh38.p13, L2R)
table(human_chrom_info$SequenceRole, human_chrom_info$toplevel)

FALSE TRUE
assembled-molecule 0 25
alt-scaffold 261 0
unlocalized-scaffold 0 42
wunplaced-scaffold 0 127
pseudo-scaffold 0 Q
fix-patch 112 [
novel-patch 72 Q

#hsa_seqlevels <- readRDS("hsapiens_gene_ensembl_txdb_seglevels.rds")

B oo
Mouse

https://uswest.ensembl.org/Mus_musculus/

Based on GRCm38.p6 (GCA_000001635.8)

Return 258 rows
mouse_chrom_info <- getChromInfoFromEnsembl ("mmusculus”)

Map to NCBI

Summary:

- 139/239 NCBI sequences are reverse-mapped.

- Restricted mapping is NOT one-to-one: 2 Ensembl sequences (NC_005089.1
and MT) are both mapped to NCBI MT.

GRCm38.p6 <- getChromInfoFromNCBI("GRCm38.p6")

L2R <- map_to_NCBI(mouse_chrom_info, GRCm38.p6)

100 sequences in GRCm38.p6 are not mapped:

GRCm38.p6$mapped <- tabulate(L2R, nbins=nrow(GRCm38.p6)) != oL
table(GRCm38.p6%$SequenceRole, GRCm38.p6$mapped)

FALSE TRUE
assembled-molecule o 22
alt-scaffold 99 Q
unlocalized-scaffold 0 22
unplaced-scaffold o 22
pseudo-scaffold 0 0
fix-patch 1 64
novel-patch 0 9

OK so Ensembl doesn't include the alt-scaffolds for Mouse. BUT WHAT

HAPPENED TO THIS ONE fix-patch SEQUENCE (MG4237_PATCH) THAT IS NOT

MAPPED? Found it in seq_region_synonym table! It's seq_region_id=100405.
Hey but that seq_region_id is **NOT** in the seq_region table!!! THIS
VIOLATES FOREIGN KEY CONSTRAINT!!!!

mouse_chrom_info <- .do_join(mouse_chrom_info, GRCm38.p6, L2R)

Ensembl does NOT comsider NC_005089.1 (duplicate entry for MT) toplevel:
mouse_chrom_info[mouse_chrom_info$SequenceName

name length coord_system synonyms toplevel
184 NC_005089.1 16299 scaffold FALSE
201 MT 16299 chromosome NC_005089.1, chrM, AY172335.1 TRUE
SequenceName GenBankAccn RefSegAccn
184 MT AY172335.1 NC_005089.1
201 MT AY172335.1 NC_005089.1

getChromInfoFromNCBI 9

Rat
https://uswest.ensembl.org/Rattus_norvegicus/
Based on Rnor_6.0 (GCA_000001895.4)

Return 1418 rows
rat_chrom_info <- getChromInfoFromEnsembl("rnorvegicus”)

Map to NCBI

Summary:

- 955/955 NCBI sequences are reverse-mapped.

- Reverse mapping is one-to-many: 2 Ensembl sequences (NC_001665.2 and MT)
are mapped to NCBI MT.

Rnor_6.0 <- getChromInfoFromNCBI("Rnor_6.0")

L2R <- map_to_NCBI(rat_chrom_info, Rnor_6.0)

rat_chrom_info <- .do_join(rat_chrom_info, Rnor_6.0, L2R)

Ensembl does NOT comsider NC_001665.2 (duplicate entry for MT) toplevel:
rat_chrom_info[rat_chrom_info$SequenceName

name length coord_system synonyms toplevel
1417 NC_001665.2 16313 scaffold FALSE
1418 MT 16313 chromosome NC_001665.2, AY172581.1, chrM TRUE
SequenceName GenBankAccn RefSegAccn
1417 MT AY172581.1 NC_001665.2
1418 MT AY172581.1 NC_001665.2

table(rat_chrom_info$SequenceRole, rat_chrom_info$toplevel)

FALSE TRUE
assembled-molecule 1 23
alt-scaffold (] 0
unlocalized-scaffold 0 354
unplaced-scaffold @ 578
pseudo-scaffold 0 0
fix-patch 0 0
novel-patch 0 0

End(Not run)

getChromInfoFromNCBI Get chromosome information for an NCBI assembly

Description

getChromInfoFromNCBI returns chromosome information like sequence names, lengths and circu-
larity flags for a given NCBI assembly e.g. for GRCh38, ARS-UCD1.2, R64, etc...

Note that getChromInfoFromNCBI behaves slightly differently depending on whether the assembly
is registered in the GenomeInfoDb package or not. See below for the details.

Use registered_NCBI_assemblies to list all the NCBI assemblies currently registered in the
GenomelnfoDb package.
Usage

getChromInfoFromNCBI (assembly,
assembled.molecules.only=FALSE,

10 getChromInfoFromNCBI

assembly.units=NULL,
recache=FALSE,
as.Seqinfo=FALSE)

registered_NCBI_assemblies(organism=NA)

Arguments

assembly A single string specifying the name of an NCBI assembly (e.g. "GRCh38").
Alternatively, an assembly accession (GenBank or RefSeq) can be supplied (e.g.
"GCF_000001405.12").

assembled.molecules.only
If FALSE (the default) then chromosome information is returned for all the se-
quences in the assembly (unless assembly.units is specified, see below), that
is, for all the chromosomes, plasmids, and scaffolds.

If TRUE then chromosome information is returned only for the assembled molecules.
These are the chromosomes (including the mitochondrial chromosome) and plas-
mids only. No scaffolds.

assembly.units If NULL (the default) then chromosome information is returned for all the se-
quences in the assembly (unless assembled.molecules.only is set to TRUE,
see above), that is, for all the chromosomes, plasmids, and scaffolds.

assembly.units can be set to a character vector containing the names of As-
sembly Units (e.g. "non-nuclear”) in which case chromosome information is
returned only for the sequences that belong to these Assembly Units.

recache getChromInfoFromNCBI uses a cache mechanism so the chromosome informa-
tion of a given assembly only gets downloaded once during the current R ses-
sion (note that the caching is done in memory so cached information does NOT
persist across sessions). Setting recache to TRUE forces a new download (and
recaching) of the chromosome information for the specified assembly.

as.Seqginfo TRUE or FALSE (the default). If TRUE then a Seqinfo object is returned instead of a
data frame. Note that only the SequenceName, SequencelLength, and circular
columns of the data frame are used to make the Seqinfo object. All the other
columns are ignored (and lost).

organism When organism is specified, registered_NCBI_assemblies() will only re-
turn the subset of assemblies that are registered for that organism. organism
must be specified as a single string and will be used to perform a search (with
grep()) onthe "organism” column of the data frame returned by registered_NCBI_assemblies()
The search is case-insensitive.

Details

registered vs unregistered NCBI assemblies:
» All NCBI assemblies can be looked up by assembly accession (GenBank or RefSeq) but only
registered assemblies can also be looked up by assembly name.
* For registered assemblies, the returned circularity flags are guaranteed to be accurate. For

unregistered assemblies, a heuristic is used to determine the circular sequences.

Please contact the maintainer of the GenomeInfoDb package to request registration of additional
assemblies.

getChromInfoFromNCBI 11

Value
For getChromInfoFromNCBI: By default, a 10-column data frame with columns:

. SequenceName: character.
. SequenceRole: factor.

. AssignedMolecule: factor.
. GenBankAccn: character.

. Relationship: factor.

. RefSeqgAccn: character.

. AssemblyUnit: factor.

0 N AN L AW =

. SequencelLength: integer. Note that this column **can** contain NAs! For example this
is the case in assembly Amel_HAv3.1 where the length of sequence MT is missing or in
assembly Release 5 where the length of sequence Un is missing.

9. UCSCStyleName: character.
10. circular: logical.

For registered_NCBI_assemblies: A data frame summarizing all the NCBI assemblies currently
registered in the GenomeInfoDb package.

Author(s)

H. Pages

See Also

* getChromInfoFromUCSC for getting chromosome information for a UCSC genome.
* getChromInfoFromEnsembl for getting chromosome information for an Ensembl species.

* Seqinfo objects.

Examples

All registered NCBI assemblies for Triticum aestivum (bread wheat):
registered_NCBI_assemblies("tri")[1:4]

All registered NCBI assemblies for Homo sapiens:
registered_NCBI_assemblies("homo")[1:4]

Internet access required!

getChromInfoFromNCBI (”"GRCh37")

getChromInfoFromNCBI("GRCh37", as.Seqinfo=TRUE)
getChromInfoFromNCBI("GRCh37", assembled.molecules.only=TRUE)

The GRCh38.p14 assembly only adds "patch sequences” to the GRCh38

assembly:

GRCh38 <- getChromInfoFromNCBI("GRCh38")

table (GRCh38%$SequenceRole)

GRCh38.p14 <- getChromInfoFromNCBI("GRCh38.p14")
table(GRCh38.p14$SequenceRole) # 254 patch sequences (164 fix + 90 novel)

All registered NCBI assemblies for Arabidopsis thaliana:
registered_NCBI_assemblies("arabi”)[1:4]
getChromInfoFromNCBI("TAIR10.1")

12 getChromInfoFromUCSC

getChromInfoFromNCBI("TAIR10.1", assembly.units="non-nuclear")

Sanity checks:

idx <- match(GRCh38%$SequenceName, GRCh38.pl14$SequenceName)
stopifnot(!anyNA(idx))

tmp1 <- GRCh38.pl14[idx, 1

rownames(tmp1) <- NULL

tmp2 <- GRCh38.p14[-idx, 1]

stopifnot(

identical (tmp1[, -(5:7)1, GRCh38[, -(5:7)1),

identical (tmp2, GRCh38.p14[GRCh38.p14$AssemblyUnit == "PATCHES", 1)
)

getChromInfoFromUCSC Get chromosome information for a UCSC genome

Description

getChromInfoFromUCSC returns chromosome information like sequence names, lengths and circu-
larity flags for a given UCSC genome e.g. for hg19, panTro6, sacCer3, etc...

Note that getChromInfoFromUCSC behaves slightly differently depending on whether a genome is
registered in the GenomeInfoDb package or not. See below for the details.

Use registered_UCSC_genomes to list all the UCSC genomes currently registered in the Genome-
InfoDDb package.

Usage

getChromInfoFromUCSC(genome,
assembled.molecules.only=FALSE,
map .NCBI=FALSE,
add.ensembl.col=FALSE,
goldenPath.url=getOption("UCSC.goldenPath.url”),
recache=FALSE,
as.Seqinfo=FALSE)

registered_UCSC_genomes (organism=NA)

Arguments

genome A single string specifying the name of a UCSC genome e.g. "panTro6”, "mm39",
"sacCer3"”, etc...

assembled.molecules.only
If FALSE (the default) then chromosome information is returned for all the se-
quences in the genome, that is, for all the chromosomes, plasmids, and scaffolds.

If TRUE then chromosome information is returned only for the assembled molecules.
These are the chromosomes (including the mitochondrial chromosome) and plas-
mids only. No scaffolds.

Note that assembled.molecules.only=TRUE is supported only for registered
genomes. When used on an unregistered genome, assembled.molecules.only

is ignored with a warning.

getChromInfoFromUCSC 13

map.NCBI TRUE or FALSE (the default).

If TRUE then NCBI chromosome information is bound to the result. This infor-
mation is retrieved from NCBI by calling getChromInfoFromNCBI on the NCBI
assembly that the UCSC genome is based on. Then the data frame returned by
getChromInfoFromNCBI ("NCBI chrom info") is mapped and bound to the data
frame returned by getChromInfoFromUCSC ("UCSC chrom info"). This "map
and bind" operation is similar to a JOIN in SQL.

Note that not all rows in the "UCSC chrom info" data frame are necessarily
mapped to a row in the "NCBI chrom info" data frame. For example chrM in
hg19 has no corresponding sequence in the GRCh37 assembly (the mitochon-
drial chromosome was omitted from GRCh37). For the unmapped rows the
NCBI columns in the final data frame are filled with NAs (LEFT JOIN in SQL).
The primary use case for using map.NCBI=TRUE is to map UCSC sequence
names to NCBI sequence names. This is only supported for registered UCSC
genomes based on an NCBI assembly!
add.ensembl.col

TRUE or FALSE (the default). Whether or not the Ensembl sequence names should
be added to the result (in column ensembl).

goldenPath.url A single string specifying the URL to the UCSC goldenPath location where the
chromosome sizes are expected to be found.

recache getChromInfoFromUCSC uses a cache mechanism so the chromosome sizes of a
given genome only get downloaded once during the current R session (note that
the caching is done in memory so cached information does NOT persist across
sessions). Setting recache to TRUE forces a new download (and recaching) of
the chromosome sizes for the specified genome.

as.Seqginfo TRUE or FALSE (the default). If TRUE then a Seqinfo object is returned instead of
a data frame. Note that only the chrom, size, and circular columns of the data
frame are used to make the Seqinfo object. All the other columns are ignored
(and lost).

organism When organism is specified, registered_UCSC_genomes() will only return
the subset of genomes that are registered for that organism. organism must be
specified as a single string and will be used to perform a search (with grep()) on
the "organism” column of the data frame returned by registered_UCSC_genomes().
The search is case-insensitive.

Details
% Registered vs unregistered UCSC genomes *

* For registered genomes, the returned data frame contains information about which sequences
are assembled molecules and which are not, and the assembled.molecules.only argument is
supported. For unregistered genomes, this information is missing, and the assembled.molecules.only
argument is ignored with a warning.

* For registered genomes, the returned circularity flags are guaranteed to be accurate. For un-
registered genomes, a heuristic is used to determine the circular sequences.

* For registered genomes, special care is taken to make sure that the sequences are returned in
a sensible order. For unregistered genomes, a heuristic is used to return the sequences in a
sensible order.

Please contact the maintainer of the GenomeInfoDb package to request registration of additional
genomes.

14 getChromInfoFromUCSC

% Offline mode *

getChromInfoFromUCSC() supports an "offline mode" when called with assembled.molecules.only=TRUE,
but only for a selection of registered genomes. The "offline mode" works thanks to a collection of
tab-delimited files stored in the package, that contain the "assembled molecules info" for the sup-

ported genomes. This makes calls like:

getChromInfoFromUCSC("hg38", assembled.molecules.only=TRUE)

fast and reliable i.e. the call will always work, even when offline!

See README.TXT in GenomelnfoDb/inst/extdata/assembled_molecules_db/UCSC/ for more in-
formation.

Note that calling getChromInfoFromUCSC() with assembled.molecules.only=FALSE (the de-
fault), or with recache=TRUE, will trigger retrieval of the chromosome info from UCSC, and will
issue a warning if this info no longer matches the "assembled molecules info" stored in the package.

Please contact the maintainer of the GenomeInfoDb package to request genome additions to the
"offline mode".

Value

For getChromInfoFromUCSC: By default, a 4-column data frame with columns:

1. chrom: character.
2. size: integer.
3. assembled: logical.

4. circular: logical.
If map.NCBI is TRUE, then 7 "NCBI columns" are added to the result:

* NCBI.SequenceName: character.
¢ NCBI.SequenceRole: factor.

* NCBI.AssignedMolecule: factor.
* NCBI.GenBankAccn: character.

¢ NCBI.Relationship: factor.

NCBI.RefSeqgAccn: character.
¢ NCBI.AssemblyUnit: factor.

Note that the names of the "NCBI columns" are those returned by getChromInfoFromNCBI but with
the NCBI. prefix added to them.

If add.ensembl . col is TRUE, the column ensembl is added to the result.

For registered_UCSC_genomes: A data frame summarizing all the UCSC genomes currently reg-
istered in the GenomelInfoDb package.

Author(s)

H. Pages

getChromInfoFromUCSC 15

See Also

e getChromInfoFromNCBI for getting chromosome information for an NCBI assembly.
* getChromInfoFromEnsembl for getting chromosome information for an Ensembl species.
* Seqinfo objects.

* The getBSgenome convenience utility in the BSgenome package for getting a BSgenome
object from an installed BSgenome data package.

Examples
B m o
A. BASIC EXAMPLES
B m o
--- Internet access required! ---

getChromInfoFromUCSC("hg19")

getChromInfoFromUCSC("hg19"”, as.Seqinfo=TRUE)

Map the hg38 sequences to their corresponding sequences in

the GRCh38.p13 assembly:

getChromInfoFromUCSC("hg38", map.NCBI=TRUE)[c(1, 5)]

Note that some NCBI-based UCSC genomes contain sequences that
are not mapped. For example this is the case for chrM in hg19:
hg19 <- getChromInfoFromUCSC("hg19"”, map.NCBI=TRUE)
hg19[is.na(hg19$NCBI.SequenceName),]

Map the hgl19 sequences to the Ensembl sequence names:
getChromInfoFromUCSC("hg19"”, add.ensembl.col=TRUE)

--- No internet access required! (offline mode) ---
getChromInfoFromUCSC("hg19", assembled.molecules.only=TRUE)
getChromInfoFromUCSC("panTro6”, assembled.molecules.only=TRUE)
getChromInfoFromUCSC("bosTau9”, assembled.molecules.only=TRUE)

--- List of UCSC genomes currently registered in the package ---
registered_UCSC_genomes()

All registered UCSC genomes for Felis catus (domestic cat):
registered_UCSC_genomes(organism = "Felis catus")

All registered UCSC genomes for Homo sapiens:
registered_UCSC_genomes("homo")

B m o
B. USING getChromInfoFromUCSC() TO SET UCSC SEQUENCE NAMES ON THE

GRCh38 GENOME

B m o

Load the BSgenome.Hsapiens.NCBI.GRCh38 package:

16 loadTaxonomyDb

library(BSgenome)
genome <- getBSgenome("GRCh38") # this loads the

BSgenome.Hsapiens.NCBI.GRCh38 package
genome

Get the chromosome info for the hg38 genome:

hg38_chrom_info <- getChromInfoFromUCSC("hg38", map.NCBI=TRUE)

nchi2ucsc <- setNames(hg38_chrom_info$chrom,
hg38_chrom_info$NCBI. SequenceName)

Set the UCSC sequence names on 'genome':
seqlevels(genome) <- ncbi2ucsc[seqlevels(genome)]
genome

Sanity check: check that the sequence lengths in 'genome' are the same
as in 'hg38_chrom_info':

m <- match(seglevels(genome), hg38_chrom_info$chrom)

stopifnot(identical (unname(seqlengths(genome)), hg38_chrom_info$size[m]))

loadTaxonomyDb Return a data.frame that lists the known taxonomy IDs and their cor-
responding organisms.

Description

NCBI maintains a collection of unique taxonomy IDs and pairs these with associated genus and
species designations. This function returns the set of pre-processed values that we use to check that
something is a valid Taxonomy ID (or organism).

Usage

loadTaxonomyDb ()

Value

A data frame with 1 row per genus/species designation and three columns. The Ist column is the
taxonomy ID. The second columns is the genus and the third is the species name.

Author(s)

Marc Carlson

Examples

get the data

taxdb <- loadTaxonomyDb()

tail(taxdb)

which can then be searched etc.
taxdb[grepl('yoelii', taxdb$species),]

mapGenomeBuilds 17

mapGenomeBuilds Mapping between UCSC and Ensembl Genome Builds

Description

genomeBuilds lists the available genomes for a given species while mapGenomeBuilds maps be-
tween UCSC and Ensemble genome builds.

Usage
genomeBuilds(organism, style = c("UCSC"”, "Ensembl"))

mapGenomeBuilds(genome, style = c("UCSC", "Ensembl"))

listOrganisms()
Arguments
organism A character vector of common names or organism
genome A character vector of genomes equivalent to UCSC version or Ensembl Assem-
blies
style A single value equivalent to "UCSC" or "Ensembl" specifying the output genome
Details

genomeBuilds lists the currently available genomes for a given list of organisms. The genomes
can be shown as "UCSC" or "Ensembl" IDs determined by style. organism must be specified as
a character vector and match common names (i.e "Dog", "Mouse") or organism name (i.e "Homo
sapiens"”, "Mus musculus") . A list of available organisms can be shown using 1istOrganisms().

mapGenomeBuilds provides a mapping between "UCSC" builds and "Ensembl" builds. genome
must be specified as a character vector and match either a"UCSC" ID or an "Ensembl" Id. genomeBuilds
can be used to get a list of available build Ids for a given organism. NA’s may be present in the out-

put. This would occur when the current genome build removed a previously defined genome for an
organism.

In both functions, if style is not specified, "UCSC" is used as default.

Value
A data.frame of builds for a given organism or genome in the specified style. If style == "UCSC",
ucsclD, ucscDate and ensemblID are given. If style == "Ensembl”, ensemblID, ensemblVersion,

ensemblDate, and ucscID are given. The opposing ID is given so that it is possible to distinguish
between many-to-one mappings.
Author(s)

Valerie Obenchain <Valerie.Obenchain@roswellpark.org>and Lori Shepherd <Lori.Shepherd@roswellpark.org:

References

UCSC genome builds https://genome.ucsc.edu/FAQ/FAQreleases.html Ensembl genome builds
http://useast.ensembl.org/info/website/archives/assembly.html

https://genome.ucsc.edu/FAQ/FAQreleases.html
http://useast.ensembl.org/info/website/archives/assembly.html

18 NCBI-utils

Examples

listOrganisms()

genomeBuilds("mouse”)
genomeBuilds(c("Mouse”, "dog"”, "human"), style="Ensembl”)

mapGenomeBuilds(c("”canFam3"”, "GRCm38", "mm9"))
mapGenomeBuilds(c(”canFam3”, "GRCm38", "mm9"), style="Ensembl")

NCBI-utils Utility functions to access NCBI resources

Description

Low-level utility functions to access NCBI resources. Not intended to be used directly by the end
user.

Usage

find_NCBI_assembly_ftp_dir(assembly_accession, assembly_name=NA)

fetch_assembly_report(assembly_accession, assembly_name=NA,
AssemblyUnits=NULL)

Arguments

assembly_accession
A single string containing either a GenBank assembly accession (e.g. "GCA_000001405.15")
or a RefSeq assembly accession (e.g. "GCF_000001405.26").

Alternatively, for fetch_assembly_report(), the assembly_accession argu-
ment can be set to the URL to the assembly report (a.k.a. "Full sequence re-
port").

assembly_name A single string or NA.

AssemblyUnits By default, all the assembly units are included in the data frame returned by
fetch_assembly_report(). To include only a subset of assembly units, pass
a character vector containing the names of the assembly units to include to the
AssemblyUnits argument.

Value

For find_NCBI_assembly_ftp_dir(): A length-2 character vector:

* The 1st element in the vector is the URL to the FTP dir, without the trailing slash.

* The 2nd element in the vector is the prefix used in the names of most of the files in the FTP
dir.

For fetch_assembly_report(): A data frame with 1 row per sequence in the assembly and 10
columns:

1. SequenceName

NCBI-utils 19

. SequenceRole

. AssignedMolecule

. AssignedMoleculeLocationOrType
. GenBankAccn

. Relationship

. RefSeqAccn

. AssemblyUnit

. SequenceLength

S O 0 N N L B W

—

. UCSCStyleName

Note

fetch_assembly_report is the workhorse behind higher-level and more user-friendly getChromInfoFromNCBI.

Author(s)

H. Pages

See Also

getChromInfoFromNCBI for a higher-level and more user-friendly version of fetch_assembly_report.

Examples

ftp_dir <- find_NCBI_assembly_ftp_dir("GCA_000001405.15")
ftp_dir

url <- ftp_dir[[1]] # URL to the FTP dir
prefix <- ftp_dir[[2]] # prefix used in names of most files

list_ftp_dir(url)
assembly_report_url <- paste@(url, "/", prefix, "_assembly_report.txt")

To fetch the assembly report for assembly GCA_000001405.15, you can
call fetch_assembly_report() on the assembly accession or directly
on the URL to the assembly report:

assembly_report <- fetch_assembly_report(”"GCA_000001405.15")
dim(assembly_report)

head(assembly_report)

Sanity check:
assembly_report2 <- fetch_assembly_report(assembly_report_url)
stopifnot(identical (assembly_report, assembly_report2))

20 rankSeqlevels

rankSeqlevels Assign sequence IDs to sequence names

Description

rankSeqlevels assigns a unique ID to each unique sequence name in the input vector. The returned
IDs span 1:N where N is the number of unique sequence names in the input vector.

orderSeqlevels is similar to rankSeqlevels except that the returned vector contains the order
instead of the rank.

Usage

rankSeqlevels(segnames, X.is.sexchrom=NA)
orderSeqlevels(segnames, X.is.sexchrom=NA)

Arguments

seqgnames A character vector or factor containing sequence names.

X.is.sexchrom A logical indicating whether X refers to the sexual chromosome or to chromo-
some with Roman Numeral X. If NA, rankSeqglevels does its best to "guess".

Value

An integer vector of the same length as seqnames that tries to reflect the “natural” order of seq-
names, e.g.,chr1, chr2, chr3, ...

The values in the returned vector span 1:N where N is the number of unique sequence names in the
input vector.

Author(s)

H. Pages for rankSeqlevels, orderSeqlevels added by Sonali Arora

See Also

* sortSeqlevels for sorting the sequence levels of an object in "natural” order.

Examples

library(BSgenome.Scerevisiae.UCSC. sacCer2)
rankSeqglevels(segnames(Scerevisiae))
rankSeqlevels(segnames(Scerevisiae)[c(1:5,5:1)1)

newchr <- paste@("chr",c(1:3,6:15,4:5,16:22))
newchr

orderSeqglevels(newchr)

rankSeqglevels(newchr)

seqinfo 21

seqinfo Accessing/modifying sequence information

Description

A set of generic functions for getting/setting/modifying the sequence information stored in an ob-
ject.

Usage

seginfo(x)
seginfo(x,
new20ld=NULL,
pruning.mode=c("error", "coarse", "fine", "tidy")) <- value

segnames (x)
segnames(x) <- value

seqlevels(x)
seqlevels(x,
pruning.mode=c("error”, "coarse", "fine"”, "tidy")) <- value
sortSeqlevels(x, X.is.sexchrom=NA)
seglevelsInUse(x)
seqlevels@(x)

seqlengths(x)
seqlengths(x) <- value

isCircular(x)
isCircular(x) <- value

genome (x)
genome(x) <- value

Arguments
X Any object containing sequence information i.e. with a seqinfo() component.
new2old The new20ld argument allows the user to rename, drop, add and/or reorder the

"sequence levels" in x.

new2old can be NULL or an integer vector with one element per entry in Seqinfo
object value (i.e. new2old and value must have the same length) describing
how the "new" sequence levels should be mapped to the "old" sequence levels,
that is, how the entries in value should be mapped to the entries in seqinfo(x).
The values in new20ld must be >= 1 and <= length(seginfo(x)). NAs are al-
lowed and indicate sequence levels that are being added. Old sequence levels
that are not represented in new2old will be dropped, but this will fail if those
levels are in use (e.g. if x is a GRanges object with ranges defined on those
sequence levels) unless a pruning mode is specified via the pruning.mode argu-
ment (see below).

If new201d=NULL, then sequence levels can only be added to the existing ones,
that is, value must have at least as many entries as seqinfo(x) (i.e. length(values)

seqinfo

>= length(seqinfo(x))) and also seqlevels(values)[seq_len(length(seglevels(x)))]
must be identical to seqlevels(x).

Note that most of the times it’s easier to proceed in 2 steps:

1. First align the seqlevels on the left (seqlevels(x)) with the seqlevels on
the right.

2. Then call seqinfo(x) <- value. Because seqlevels(x) and seqlevels(value)
now are identical, there’s no need to specify new2old.

This 2-step approach will typically look like this:

seqlevels(x) <- seqlevels(value) # align seqlevels
seqinfo(x) <- seqginfo(value) # guaranteed to work

Or, if x has seqlevels not in value, it will look like this:

seqlevels(x, pruning.mode="coarse") <- seqlevels(value)
seqinfo(x) <- seqginfo(value) # guaranteed to work

The pruning.mode argument will control what happens to x when some of its
seqlevels get droppped. See below for more information.

pruning.mode When some of the seqlevels to drop from x are in use (i.e. have ranges on
them), the ranges on these sequences need to be removed before the seqlevels
can be dropped. We call this pruning. The pruning.mode argument controls
how to prune x. Four pruning modes are currently defined: "error”, "coarse”,
"fine", and "tidy". "error” is the default. In this mode, no pruning is done

and an error is raised. The other pruning modes do the following:

* "coarse"”: Remove the elements in x where the seqlevels to drop are in
use. Typically reduces the length of x. Note that if x is a list-like ob-
ject (e.g. GRangesList, GAlignmentPairs, or GAlignmentsList), then any
list element in x where at least one of the sequence levels to drop is in
use is fully removed. In other words, when pruning.mode="coarse", the
seqlevels setter will keep or remove full list elements and not try to change
their content. This guarantees that the exact ranges (and their order) inside
the individual list elements are preserved. This can be a desirable property
when the list elements represent compound features like exons grouped
by transcript (stored in a GRangesList object as returned by exonsBy(,
by="tx")), or paired-end or fusion reads, etc...

e "fine": Supported on list-like objects only. Removes the ranges that are
on the sequences to drop. This removal is done within each list element
of the original object x and doesn’t affect its length or the order of its list
elements. In other words, the pruned object is guaranteed to be parallel to
the original object.

e "tidy": Like the "fine" pruning above but also removes the list elements
that become empty as the result of the pruning. Note that this pruning mode
is particularly well suited on a GRangesList object that contains transcripts
grouped by gene, as returned by transcriptsBy(, by="gene"). Finally
note that, as a convenience, this pruning mode is supported on non list-
like objects (e.g. GRanges or GAlignments objects) and, in this case, is
equivalent to the "coarse” mode.

See the "B. DROP SEQLEVELS FROM A LIST-LIKE OBJECT" section in the
examples below for an extensive illustration of these pruning modes.

seqinfo 23

value Typically a Seqinfo object for the seqinfo setter.
Either a named or unnamed character vector for the seqlevels setter.
A vector containing the sequence information to store for the other setters.

X.is.sexchrom A logical indicating whether X refers to the sexual chromosome or to chromo-
some with Roman Numeral X. If NA, sortSeqlevels does its best to "guess".

It all revolves around Seqinfo objects

The Seqinfo class plays a central role for the functions described in this man page because:

1. All these functions (except seqinfo, seqlevelsInUse, and seqlevels®) work on a Seqinfo
object.

2. For classes that implement it, the seqinfo getter should return a Seqinfo object.

3. Default seqlevels, seqlengths, isCircular, and genome getters and setters are provided.
By default, seqlevels(x) does seqlevels(seqinfo(x)), seqlengths(x) does seqlengths(seqinfo(x)),
isCircular(x) does isCircular(seqinfo(x)), and genome (x) does genome (seqinfo(x)).
So any class with a seqinfo getter will have all the above getters work out-of-the-box. If, in
addition, the class defines a seqinfo setter, then all the corresponding setters will also work
out-of-the-box.

Examples of containers that have a seqinfo getter and setter:

 the GRanges and GRangesList classes in the GenomicRanges package;
¢ the SummarizedExperiment class in the SummarizedExperiment package;

* the GAlignments, GAlignmentPairs, and GAlignmentsList classes in the GenomicAlign-
ments package;

¢ the TxDb class in the GenomicFeatures package;
* the BSgenome class in the BSgenome package;
* and more...

Note

The full list of methods defined for a given generic function can be seen with e.g. showMethods("seqinfo”)

or showMethods ("segnames™) (for the getters), and showMethods ("seqinfo<-") or showMethods("segnames<-")
(for the setters a.k.a. replacement methods). Please be aware that this shows only methods defined

in packages that are currently attached.

The GenomicRanges package defines seqinfo and seqinfo<- methods for these low-level data
types: List and IntegerRangesList. Those objects do not have the means to formally store sequence
information. Thus, the wrappers simply store the Seqinfo object within metadata(x). Initially, the
metadata is empty, so there is some effort to generate a reasonable default Seqinfo. The names of
any List are taken as the seqnames, and the universe of IntegerRangesList is taken as the genome.

Author(s)
H. Pages

See Also

» The seqlevelsStyle generic getter and setter for conveniently renaming the seqlevels of an
object according to a given naming convention (e.g. NCBI or UCSC).
* Seqinfo objects.

* GRanges and GRangesList objects in the GenomicRanges package.

24 seqinfo

* SummarizedExperiment objects in the SummarizedExperiment package.

* GAlignments, GAlignmentPairs, and GAlignmentsList objects in the GenomicAlignments
package.

» TxDb objects in the GenomicFeatures package.
* BSgenome objects in the BSgenome package.
* seqlevels-wrappers for convenience wrappers to the seqlevels getter and setter.

¢ rankSeqlevels, on which sortSeqlevels is based.

Examples

A. BASIC USAGE OF THE seqlevels() GETTER AND SETTER

#H -
Operations between 2 or more objects containing genomic ranges (e.g.
finding overlaps, comparing, or matching) only make sense if the

operands have the same seqlevels. So before performing such

operations, it is often necessary to adjust the seqglevels in

the operands so that they all have the same seqlevels. This is

typically done with the seqlevels() setter. The setter can be used
to rename, drop, add and/or reorder seqglevels of an object. The

examples below show how to mofify the seqlevels of a GRanges object
but the same would apply to any object containing sequence

information (i.e. with a seqinfo() component).
library(GenomicRanges)

gr <- GRanges(rep(c(”"chr2”, "chr3", "chrM"), 2), IRanges(1:6, 10))

Add new seqglevels:

seqlevels(gr) <- c("chr1”, seqlevels(gr), "chr4")
seqlevels(gr)

seqlevelsInUse(gr)

Reorder existing seqlevels:
seqlevels(gr) <- rev(seqglevels(gr))
seqlevels(gr)

Drop all unused seqglevels:
seqlevels(gr) <- seqlevelsInUse(gr)

Drop some seqlevels in use:
seqlevels(gr, pruning.mode="coarse") <- setdiff(seqlevels(gr), "chr3")
gr

Rename, add, and reorder the seqlevels all at once:
seqlevels(gr) <- c("chr1”, chr2="chr2", chrM="Mitochondrion")

seqlevels(gr)

B oo
B. DROP SEQLEVELS FROM A LIST-LIKE OBJECT

B = m o mmm

grlo <- GRangesList(A=GRanges("chr2", IRanges(3:2, 5)),
B=GRanges(c("chr2", "chrMT"), IRanges(7:6, 15)),
C=GRanges(c("chrY", "chrMT"), IRanges(17:16, 25)),
D=GRanges())

seqinfo

grlo
grll <- grlo
seqlevels(grll, pruning.mode="coarse") <- c("chr2", "chr5")

grll # grlo[[2]] was fully removed! (even if it had a range on chr2)

If what is desired is to remove the 2nd range in grl@[[2]] only (i.e.
the chrMT:6-15 range), or, more generally speaking, to remove the

ranges within each list element that are located on the seqlevels to
drop, then use pruning.mode="fine" or pruning.mode="tidy":

grl2 <- grlo

seqlevels(grl2, pruning.mode="fine") <- c("chr2", "chr5")

grl2 # grle[[2]] not removed, but chrMT:6-15 range removed from it

Like pruning.mode="fine" but also removes grlo[[3]].
grl3 <- grlo

seqlevels(grl3, pruning.mode="tidy") <- c("chr2", "chr5")
grl3

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

Pruning mode "coarse” is particularly well suited on a GRangesList
object that contains exons grouped by transcript:

ex_by_tx <- exonsBy(txdb, by="tx")

seglevels(ex_by_tx)

seqlevels(ex_by_tx, pruning.mode="coarse") <- "chr2L"
seqlevels(ex_by_tx)

Pruning mode "tidy" is particularly well suited on a GRangesList
object that contains transcripts grouped by gene:

tx_by_gene <- transcriptsBy(txdb, by="gene")

seqlevels(tx_by_gene)

seqlevels(tx_by_gene, pruning.mode="tidy") <- "chr2L"
seqlevels(tx_by_gene)

e
C. RENAME THE SEQLEVELS OF A TxDb OBJECT
Bt e

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
seqlevels(txdb)

seqlevels(txdb) <- sub("chr”", "", seqlevels(txdb))
seqlevels(txdb)

seqlevels(txdb) <- paste@("CH", seqlevels(txdb))
seqlevels(txdb)

seqlevels(txdb)[seqlevels(txdb) == "CHM"] <- "M"
seqlevels(txdb)

Restore original seqlevels:
seqlevels(txdb) <- seqlevels@(txdb)
seqlevels(txdb)

B o
D. SORT SEQLEVELS IN "NATURAL" ORDER

25

26

sortSeqlevels(c("11", "Y", "1", "10", "9", "M, "2"))

seqlevels <- c("chrXI”, "chrY", "chrl", "chrX", "chrIX", "chrM”, "chrII")
sortSeqlevels(seglevels)

sortSeqlevels(seqlevels, X.is.sexchrom=TRUE)

sortSeqlevels(seglevels, X.is.sexchrom=FALSE)

seqlevels <- c("chr2RHet"”, "chr4", "chrUextra”, "chrYHet",
"chrM", "chrXHet"”, "chr2LHet", "chru”,
"chr3L"”, "chr3rR", "chr2R", "chrX")
sortSeqglevels(seqlevels)

gr <- GRanges()
seqlevels(gr) <- seqglevels

sortSeqlevels(gr)

B m o
E. SUBSET OBJECTS BY SEQLEVELS

B m

tx <- transcripts(txdb)
seqlevels(tx)

Drop 'M', keep all others.
seqlevels(tx, pruning.mode="coarse") <- seqlevels(tx)[seqlevels(tx) != "M"]
seqlevels(tx)

Drop all except 'ch3L' and 'ch3R'.
seqlevels(tx, pruning.mode="coarse") <- c("ch3L", "ch3R")
seqlevels(tx)

Bt e
F. FINDING METHODS
e

showMethods ("seqinfo”)
showMethods ("seqinfo<-")

showMethods ("segnames™)
showMethods ("segnames<-")

showMethods ("seqlevels")
showMethods ("seqlevels<-")

if (interactive()) {
library(GenomicRanges)
?°GRanges-class”

}

Seqinfo-class

Seqginfo-class Seqinfo objects

Seqinfo-class 27

Description

A Seqinfo object is used to store basic information about a set of genomic sequences, typically
chromosomes (but not necessarily).

Details

A Seqinfo object has one entry per sequence. Each entry contains the following information about
the sequence:

* The sequence name (a.k.a. the seglevel) e.g. "chr1”.
* The sequence length.

* The sequence circularity flag. This is a logical indicating whether the sequence is circular
(TRUE) or linear (FALSE).

* Which genome the sequence belongs to e.g. "hg19".

All entries must contain at least the sequence name. The other information is optional. In addition,
the segnames in a given Seqinfo object must be unique, that is, the object is not allowed to have two
entries with the same sequence name. In other words, the sequence name is used as the primary key
of a Seqinfo object.

Note that Seqinfo objects are usually not used as standalone objects but are instead typically found
inside higher level objects like GRanges or TxDb objects. These higher level objects will generally
provide a seqinfo() accessor for getting/setting their Seqinfo component.

Constructor

Seginfo(segnames, seqlengths=NA, isCircular=NA, genome=NA): Create a Seqinfo object and
populate it with the supplied data.
One special form of calling the Seqinfo() constructor is to specify only the genome argument
and set it to the name of an NCBI assembly (e.g. Seqinfo(genome="GRCh38.p13")) or UCSC
genome (e.g. Seqinfo(genome="hg38")), in which case the sequence information is fetched
from NCBI or UCSC. See Examples section below for some examples.

Accessor methods

In the code snippets below, x is a Seqinfo object.

length(x): Return the number of sequences in x.

seqnames(x), seqnames(x) <- value: Get/set the names of the sequences in x. Those names
must be non-NA, non-empty and unique. They are also called the sequence levels or the keys
of the Seqinfo object.
Note that, in general, the end user should not try to alter the sequence levels with seqnames (x)
<- value. The recommended way to do this is with seqlevels(x) <- value as described
below.

names(x), names(x) <- value: Same as segnames(x) and segnames(x) <- value.

seglevels(x): Same as seqgnames(x).

seglevels(x) <- value: Can be used to rename, drop, add and/or reorder the sequence levels.
value must be either a named or unnamed character vector. When value has names, the

names only serve the purpose of mapping the new sequence levels to the old ones. Otherwise
(i.e. when value is unnamed) this mapping is implicitly inferred from the following rules:

(1) If the number of new and old levels are the same, and if the positional mapping between
the new and old levels shows that some or all of the levels are being renamed, and if the levels

28 Seqinfo-class

that are being renamed are renamed with levels that didn’t exist before (i.e. are not present in
the old levels), then seqlevels(x) <- value will just rename the sequence levels. Note that
in that case the result is the same as with segnames(x) <- value but it’s still recommended
to use seqlevels(x) <- value as it is safer.

(2) Otherwise (i.e. if the conditions for (1) are not satisfied) seqlevels(x) <- value will
consider that the sequence levels are not being renamed and will just perform x <- x[value].

See below for some examples.
seqlengths(x), seqlengths(x) <- value: Get/set the length for each sequence in x.
isCircular(x), isCircular(x) <- value: Get/set the circularity flag for each sequence in x.

genome (x), genome(x) <- value: Get/set the genome identifier or assembly name for each se-
quence in X.

Subsetting

In the code snippets below, x is a Seqinfo object.

x[iJ: A Seqinfo object can be subsetted only by name i.e. i must be a character vector. This is a
convenient way to drop/add/reorder the entries in a Seqinfo object.

See below for some examples.

Coercion

In the code snippets below, x is a Seqinfo object.

as.data.frame(x): Turns x into a data frame.

Combining Seqinfo objects

Note that we provide no c() or rbind() methods for Seqinfo objects. Here is why:

c() (like rbind()) is expected to follow an "appending semantic", that is, c(x, y) is expected to
form a new object by appending the entries in y to the entries in x, thus resulting in an object with
length(x) + length(y) entries. The problem with such operation is that it won’t be very useful in
general, because it will tend to break the constraint that the seqnames of a Seqinfo object must be
unique (primary key).

So instead, a merge() method is provided, with a more useful semantic. merge(x, y) does the
following:

« If an entry in Seqinfo object x has the same seqname as an entry in Seqinfo object y, then the 2
entries are fusioned together to produce a single entry in the result. This fusion only happens
if the 2 entries contain compatible information.

* If 2 entries cannot be fusioned because they contain incompatible information (e.g. different
seqlengths or different circularity flags), then merge(x, y) fails with an informative error of
why x and y could not be merged.

We also implement an update () method for Seqinfo objects.

See below for the details.
In the code snippet below, x, y, object, and value, are Seqinfo objects.
merge(x, y, ...): Merge x and y into a single Seqinfo object where the keys (i.e. the seqnames)

are union(segnames(x), segnames(y)). If an entry in y has the same key as an entry in x,
and if the two entries contain compatible information (NA values are treated as wildcards i.e.

Seqinfo-class 29

they’re compatible with anything), then the two entries are merged into a single entry in the
result. If they cannot be merged (because they contain different seqlengths, and/or circularity
flags, and/or genome identifiers), then an error is raised. In addition to check for incompati-
ble sequence information, merge(x, y) also compares segnames(x) with seqnames(y) and
issues a warning if each of them has names not in the other. The purpose of these checks is
to try to detect situations where the user might be combining or comparing objects that use
different underlying genomes.

Note that merge() can take more than two Seqinfo objects, in which case the objects are
merged from left to right e.g.

merge(x1, x2, x3, x4)
is equivalent to

merge (merge(merge(x1, x2), x3), x4)

intersect(x, y): Finds the intersection between two Seqinfo objects by merging them and sub-

setting for the intersection of their sequence names. This makes it easy to avoid warnings
about each objects not being a subset of the other one during overlap operations.

update(object, value): Update the entries in Seqinfo object object with the corresponding en-

tries in Seqinfo object value. Note that the seqnames in value must be a subset of the seq-
names in object.

A convenience wrapper, checkCompatibleSeqinfo(), is provided for checking whether 2 objects
have compatible Seqinfo components or not. checkCompatibleSeqginfo(x, y) is equivalent to
merge(seginfo(x), seqinfo(y)) so will work on any objects x and y that support seqinfo().

Author(s)

H. Pages

See Also

The seqinfo getter and setter.

The getChromInfoFromNCBI and getChromInfoFromUCSC utility functions that are used be-
hind the scene to generate a Seqinfo object for a given assembly/genome (see examples be-
low).

Examples

A

--

One special form of calling the 'Seqinfo()' constructor is to specify
only the 'genome' argument and set it to the name of an NCBI assembly
or UCSC genome, in which case the sequence information is fetched

from NCBI or UCSC ('getChromInfoFromNCBI()' or 'getChromInfoFromUCSC()"'
are used behind the scene for this so internet access is required).

if (interactive()) {

#i#
#it

NCBI assemblies (see '?registered_NCBI_assemblies' for the list of
NCBI assemblies that are currently supported):

Seqinfo(genome="GRCh38")
Seqinfo(genome="GRCh38.p13")
Seginfo(genome="Amel_HAv3.1")

30

#it
#it
#it

#it
#it
#it
X

#it
le
se
na
se
se
is
ge

##
su

it
x[

##
XX
se
XX
se
XX
se
XX
se
XX

Seqinfo-class

Seginfo(genome="WBcel235")
Seginfo(genome="TAIR10.1")

UCSC genomes (see '?registered_UCSC_genomes' for the list of UCSC
genomes that are currently supported):
Seqginfo(genome="hg38")
Seginfo(genome="mm10")
Seginfo(genome="rn6")
Seqinfo(genome="bosTau9")
Seginfo(genome="canFam3")
Seginfo(genome="musFuri1")
Seqinfo(genome="galGal6")
Seginfo(genome="dm6")
Seginfo(genome="cel1")
Seqinfo(genome="sacCer3")

B. BASIC MANIPULATION OF A Seqginfo OBJECT

Note that all the arguments (except 'genome') must have the
same length. 'genome' can be of length 1, whatever the lengths
of the other arguments are.
<- Seqinfo(segnames=c("chr1”, "chr2", "chr3", "chrM"),
seglengths=c(100, 200, NA, 15),
isCircular=c(NA, FALSE, FALSE, TRUE),
genome="sasquatch")

Accessors:
ngth(x)
gnames (x)
mes (x)
glevels(x)
glengths(x)
Circular(x)
nome (x)

Get a compact summary:
mmary (x)

Subset by names:
c("chrY”, "chr3”, "chr1")]

Rename, drop, add and/or reorder the sequence levels:
<- X

glevels(xx) <- sub(”chr"”, "ch”, seqlevels(xx)) # rename
glevels(xx) <- rev(seglevels(xx)) # reorder

glevels(xx) <- c("ch1", "ch2", "chY") # drop/add/reorder

glevels(xx) <- c(chY="Y", ch1="1", "22") # rename/reorder/drop/add

Seqinfo-class 31

C. COMBINING 2 Seqinfo OBJECTS
B e

y <- Seqinfo(segnames=c("chr3”, "chr4", "chrM"),
seglengths=c(300, NA, 15))

This issues a warning:
merge(x, y) # the entries for chr3 and chrM contain information merged

(]

from the corresponding entries in 'x' and 'y'

To get rid of the above warning, either use suppressWarnings() or
set the genome on 'y':

suppressWarnings(merge(x, y))

genome(y) <- genome(x)

merge(x, y)

Note that, strictly speaking, merging 2 Seqinfo objects is not
a commutative operation:

merge(y, Xx)

More precisely: In general, 'zl <- merge(x, y)' is not identical
to 'z2 <- merge(y, x)'. However 'z1' and 'z2' are guaranteed to
contain the same information but with their entries possibly in
different order.

This contradicts what 'x' says about circularity of chr3 and chrM:
yy <=y
isCircular(yy)Lc("chr3”, "chrM")] <- c(TRUE, FALSE)

We say that 'x' and 'yy' are incompatible Seqinfo objects.
yy
if (interactive()) {

merge(x, yy) # raises an error

}

Sanity checks:

stopifnot(identical(x, merge(x, Seqinfo())))
stopifnot(identical(x, merge(Seqinfo(), x)))
stopifnot(identical(x, merge(x, x)))

z <- Seqginfo(segnames=c("chrM", "chr2", "chr3"),
seqlengths=c(25, NA, 300),
genome="chupacabra")

update(x, z)

if (interactive()) {
update(z, x) # not allowed
update(x, y) # not allowed
3

32 seqlevels-wrappers

The seqnames in the 2nd argument can always be forced to be a subset
of the seqgnames in the 1st argument with:
update(x, y[intersect(segnames(x), seqnames(y))]) # replace entries

Note that the above is not the same as:
merge(x, y)[segnames(x)] # fusion entries

The former is guaranteed to work, whatever the Seqinfo objects 'x

and 'y'. The latter requires 'x' and 'y' to be compatible.

Sanity checks:

stopifnot(identical(x, update(x, Seginfo())))
stopifnot(identical(x, update(x, x)))
stopifnot(identical(z, update(x, z)[segnames(z)1))

B m o
D. checkCompatibleSeqinfo()

B m
A simple convenience wrapper to check that 2 objects have compatible
Seqinfo components.

library(GenomicRanges)
gr1 <- GRanges("chr3:15-25", seqinfo=x)
gr2 <- GRanges("chr3:105-115", seqinfo=y)
if (interactive()) {
checkCompatibleSeqginfo(grl, gr2) # raises an error

}

seglevels-wrappers Convenience wrappers to the seqlevels() getter and setter

Description

Keep, drop or rename seqlevels in objects with a Seqinfo class.

Usage
keepSeqlevels(x, value, pruning.mode=c("error", "coarse", "fine", "tidy"))
dropSeqlevels(x, value, pruning.mode=c("error”, "coarse", "fine", "tidy"))
renameSeqglevels(x, value)
restoreSeqlevels(x)

standardChromosomes(x, species=NULL)
keepStandardChromosomes(x, species=NULL,

pruning.mode=c("error", "coarse", "fine", "tidy"))
Arguments
X Any object having a Seqinfo class in which the seqlevels will be kept, dropped
or renamed.
value A named or unnamed character vector.

Names are ignored by keepSeqlevels and dropSeqglevels. Only the values in
the character vector dictate which seqlevels to keep or drop.

seqlevels-wrappers 33

In the case of renameSeqlevels, the names are used to map new sequence levels
to the old (names correspond to the old levels). When value is unnamed, the
replacement vector must the same length and in the same order as the original
seqlevels(x).

pruning.mode See ?seqinfo for a description of the pruning modes.

species The genus and species of the organism. Supported species can be seen with
names(genomeStyles()).

Details

Matching and overlap operations on range objects often require that the seqlevels match before a
comparison can be made (e.g., findOverlaps). keepSeqlevels, dropSeqlevels and renameSeqglevels
are high-level convenience functions that wrap the low-level seqlevels setter.

* keepSeqlevels, dropSeqlevels: Subsetting operations that modify the size of x. keepSeqlevels
keeps only the seqlevels in value and removes all others. dropSeqlevels drops the levels in
value and retains all others. If value does not match any seqlevels in x an empty object is
returned.

When x is a GRangesList it is possible to have *mixed’ list elements that have ranges from
different chromosomes. keepSeqlevels will not keep 'mixed’ list elements

* renameSeqlevels: Rename the seqlevels in x to those in value. If value is a named char-
acter vector, the names are used to map the new seqlevels to the old. When value is un-
named, the replacement vector must be the same length and in the same order as the original
seqlevels(x).

e restoreSeqlevels: Perform seqlevels(txdb) <- seqlevels@(txdb), that is, restore the
seqlevels in x back to the original values. Applicable only when x is a TxDb object.

* standardChromosomes: Lists the ’standard’ chromosomes defined as sequences in the assem-
bly that are not scaffolds; also referred to as an "assembly molecule’ in NCBI. standardChromosomes
attempts to detect the seqlevel style and if more than one style is matched, e.g., "UCSC’ and
’Ensembl’, the first is chosen.

x must have a Seqinfo object. species can be specified as a character string; supported species
are listed with names (genomeStyles()).

When x contains seqlevels from multiple organisms all those considered standard will be kept.
For example, if seqlevels are "chrl" and "chr3R" from human and fly both will be kept. If
species="Homo sapiens” is specified then only "chrl" is kept.

* keepStandardChromosomes: Subsetting operation that returns only the ’standard’ chromo-
somes.

x must have a Seqinfo object. species can be specified as a character string; supported species
are listed with names (genomeStyles()).

When x contains seqlevels from multiple organisms all those considered standard will be kept.
For example, if seqlevels are "chrl" and "chr3R" from human and fly both will be kept. If
species="Homo sapiens” is specified then only "chrl" is kept.

Value

The x object with seqlevels removed or renamed. If x has no seqlevels (empty object) or no replace-
ment values match the current seqlevels in x the unchanged x is returned.

Author(s)

Valerie Obenchain, Sonali Arora

34 seqlevels-wrappers

See Also

* seqinfo ## Accessing sequence information

 Seqinfo ## The Seqinfo class

Examples

e
keepSeqlevels / dropSeqlevels
R s

##
GRanges / GAlignments:
#H#

library(GenomicRanges)

gr <- GRanges(c("chr1”, "chr1"”, "chr2", "chr3"), IRanges(1:4, width=3))
seqlevels(gr)

Keep only 'chri'

gr1 <- keepSeqlevels(gr, "chrl1”, pruning.mode="coarse")

Drop 'chr1'. Both 'chr2' and 'chr3' are kept.

gr2 <- dropSeqlevels(gr, "chrl”, pruning.mode="coarse")

library(Rsamtools) # for the ex1.bam file
library(GenomicAlignments) # for readGAlignments()

fl <- system.file("extdata”, "ex1.bam", package="Rsamtools")

gal <- readGAlignments(fl)

If 'value' is named, the names are ignored.

seq2 <- keepSeqlevels(gal, c(foo="seq2"), pruning.mode="coarse")
seqlevels(seq2)

##
List-like objects:
#H#

grld <- GRangesList(A=GRanges("chr2", IRanges(3:2, 5)),
B=GRanges(c("chr2", "chrMT"), IRanges(7:6, 15)),
C=GRanges(c("chrY", "chrMT"), IRanges(17:16, 25)),
D=GRanges())

See ?seqinfo for a description of the pruning modes.

keepSeqlevels(grle, "chr2", pruning.mode="coarse")

keepSeqlevels(grld, "chr2", pruning.mode="fine")

keepSeqlevels(grld, "chr2", pruning.mode="tidy")

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

Pruning mode "coarse” is particularly well suited on a GRangesList
object that contains exons grouped by transcript:

ex_by_tx <- exonsBy(txdb, by="tx")

seqlevels(ex_by_tx)

ex_by_tx2 <- keepSeqlevels(ex_by_tx, "chr2L", pruning.mode="coarse")
seqlevels(ex_by_tx2)

Pruning mode "tidy" is particularly well suited on a GRangesList
object that contains transcripts grouped by gene:

tx_by_gene <- transcriptsBy(txdb, by="gene")

seqlevels(tx_by_gene)

seqlevels-wrappers

tx_by_gene2 <- keepSeqlevels(tx_by_gene, "chr2L"”, pruning.mode="tidy")
seqlevels(tx_by_gene2)

B oo
renameSeqlevels
B = o m o mm

#H#
GAlignments:
#H#

seqlevels(gal)

Rename 'seqg2' to 'chr2' with a named vector.

gal2a <- renameSeqlevels(gal, c(seq2="chr2"))

Rename 'seq2' to 'chr2' with an unnamed vector that includes all
seqlevels as they appear in the object.

gal2b <- renameSeqlevels(gal, c("seql”, "chr2"))

Names that do not match existing seqlevels are ignored.

This attempt at renaming does nothing.

gal3 <- renameSeqlevels(gal, c(foo="chr2"))
stopifnot(identical(gal, gal3))

##
TxDb:
##

seqlevels(txdb)

When the seqlevels of a TxDb are renamed, all future
extractions reflect the modified seqlevels.
renameSeqlevels(txdb, sub(”chr”, "CH", seqglevels(txdb)))
renameSeqlevels(txdb, c(CHM="M"))

seqlevels(txdb)

transcripts <- transcripts(txdb)
identical (seqlevels(txdb), seqglevels(transcripts))

e
restoreSeqlevels
B m oo

Restore seglevels in a TxDb to original values.
Not run:

txdb <- restoreSeqlevels(txdb)

seqlevels(txdb)

End(Not run)

e
keepStandardChromosomes
s

##

GRanges:

#H#

gr <- GRanges(c(paste@("chr”,c(1:3)), "chr1_gleee191_random”,
"chr1_glee0192_random”), IRanges(1:5, width=3))

gr

35

36 seqlevelsStyle

keepStandardChromosomes(gr, pruning.mode="coarse")

#H#
List-like objects:
##

grl <- GRangesList(GRanges("chr1”, IRanges(1:2, 5)),
GRanges(c("chr1_GL383519v1_alt", "chr1"), IRanges(5:6, 5)))

Use pruning.mode="coarse"” to drop list elements with mixed seqlevels:

keepStandardChromosomes(grl, pruning.mode="coarse")

Use pruning.mode="tidy" to keep all list elements with ranges on

standard chromosomes:

keepStandardChromosomes(grl, pruning.mode="tidy")

#H#

The set of standard chromosomes should not be affected by the
particular seqlevel style currently in use:

#H#

NCBI
worm <- GRanges(c("I", "II", "foo", "X", "MT"), IRanges(1:5, width=5))
keepStandardChromosomes(worm, pruning.mode="coarse")

UCSC
seqlevelsStyle(worm) <- "UCSC"
keepStandardChromosomes(worm, pruning.mode="coarse")

Ensembl
seqlevelsStyle(worm) <- "Ensembl”
keepStandardChromosomes(worm, pruning.mode="coarse")

seglevelsStyle Conveniently rename the seqlevels of an object according to a given

style

Description

The seqlevelsStyle getter and setter can be used to get the current seqlevels style of an object
and to rename its seqlevels according to a given style.

Usage

seqlevelsStyle(x)
seqlevelsStyle(x) <- value

Related low-level utilities:

genomeStyles(species)

extractSeqglevels(species, style)
extractSeqlevelsByGroup(species, style, group)
mapSeqglevels(segnames, style, best.only=TRUE, drop=TRUE)
seqlevelsInGroup(segnames, group, species, style)

seqlevelsStyle 37

Arguments
X The object from/on which to get/set the seqlevels style. x must have a seqlevels
method or be a character vector.
value A single character string that sets the seqlevels style for x.
species The genus and species of the organism in question separated by a single space.
Don’t forget to capitalize the genus.
style a character vector with a single element to specify the style.
group Group can be ’auto’ for autosomes, ’sex’ for sex chromosomes/allosomes, ’cir-
cular’ for circular chromosomes. The default is *all” which returns all the chro-
mosomes.
best.only if TRUE (the default), then only the "best" sequence renaming maps (i.e. the rows
with less NAs) are returned.
drop if TRUE (the default), then a vector is returned instead of a matrix when the matrix
has only 1 row.
segnames a character vector containing the labels attached to the chromosomes in a given
genome for a given style. For example : For Homo sapiens, NCBI style - they
are " 1 VV,II2H,II3H’.'.’HXII’HYH,IIMTII
Details

seqlevelsStyle(x), seqlevelsStyle(x) <- value: Get the current seqlevels style of an object,
or rename its seqlevels according to the supplied style.

genomeStyles: Different organizations have different naming conventions for how they name the
biologically defined sequence elements (usually chromosomes) for each organism they support.
The Seqnames package contains a database that defines these different conventions.

genomeStyles() returns the list of all supported seqname mappings, one per supported organism.
Each mapping is represented as a data frame with 1 column per seqname style and 1 row per
chromosome name (not all chromosomes of a given organism necessarily belong to the mapping).

genomeStyles(species) returns a data.frame only for the given organism with all its supported seq-
name mappings.

extractSeqlevels: Returns a character vector of the seqnames for a single style and species.

extractSeqlevelsByGroup: Returns a character vector of the seqnames for a single style and
species by group. Group can be *auto’ for autosomes, ’sex’ for sex chromosomes/ allosomes, ’cir-
cular’ for circular chromosomes. The default is ’all” which returns all the chromosomes.

mapSeqglevels: Returns a matrix with 1 column per supplied sequence name and 1 row per se-
quence renaming map compatible with the specified style. If best.only is TRUE (the default), only
the "best" renaming maps (i.e. the rows with less NAs) are returned.

seqlevelsInGroup: It takes a character vector along with a group and optional style and species.If
group is not specified , it returns "all" or standard/top level seqnames. Returns a character vector of
seqnames after subsetting for the group specified by the user. See examples for more details.

Value

For seqlevelsStyle: A single string containing the style of the seqlevels in x, or a character vector
containing the styles of the seqlevels in x if the current style cannot be determined unambiguously.
Note that this information is not stored in x but inferred from its seqlevels using a heuristic helped
by a seqlevels style database stored in the GenomelInfoDb package. If the underlying genome is

38 seqlevelsStyle

known (i.e. if unique(genome(x)) is not NA), the name of the genome or assembly (e.g. cel1 or
WBcel235) is also used by the heuristic.

For extractSeqglevels, extractSeqlevelsByGroup and seqlevelsInGroup: A character vector
of seqlevels for given supported species and group.

For mapSeqglevels: A matrix with 1 column per supplied sequence name and 1 row per sequence
renaming map compatible with the specified style.

For genomeStyle: If species is specified returns a data.frame containg the seqlevels style and its
mapping for a given organism. If species is not specified, a list is returned with one list per species
containing the seqlevels style with the corresponding mappings.

Author(s)

Sonali Arora, Martin Morgan, Marc Carlson, H. Pages

Examples

B o
seqlevelsStyle() getter and setter
B m oo

On a character vector:

x <- paste@("chr"”, 1:5)
seqlevelsStyle(x)
seqlevelsStyle(x) <- "NCBI”
X

On a GRanges object:
library(GenomicRanges)
gr <- GRanges(rep(c(”"chr2”, "chr3", "chrM"), 2), IRanges(1:6, 10))

seqlevelsStyle(gr)
seqlevelsStyle(gr) <- "NCBI"
gr

seqlevelsStyle(gr)
seqlevelsStyle(gr) <- "dbSNP"
gr

seqlevelsStyle(gr)
seqlevelsStyle(gr) <- "UucCscC”
gr

In general the seqlevelsStyle() setter doesn't know how to rename
scaffolds. However, if the genome is specified, it's very likely
that seqlevelsStyle() will be able to take advantage of that:

gr <- GRanges(rep(c("2", "Y", "Hs6_111610_36"), 2), IRanges(1:6, 10))
genome(gr) <- "NCBI36"

seqlevelsStyle(gr) <- "UCsC”

gr

On a Seqginfo object:

si <- si@ <- Seqginfo(genome="apiMel2")
si

seqlevelsStyle(si) <- "NCBI"

si

seqlevelsStyle

seqglevelsStyle(si) <- "RefSeq”
si

seqlevelsStyle(si) <- "UCSC"
stopifnot(identical(si@, si))

si <- si@ <- Seqginfo(genome="WBcel235")

si

seqlevelsStyle(si) <- "ucCsc”
si

seqlevelsStyle(si) <- "RefSeq”
si

seqlevelsStyle(si) <- "NCBI"
stopifnot(identical(si@, si))

si <- Seginfo(genome="macFas5")
si

seqlevelsStyle(si) <- "NCBI"

si

B m oo
Related low-level utilities
B m o

Genome styles:

names (genomeStyles())
genomeStyles("Homo_sapiens™)

"UCSC" %in% names(genomeStyles("Homo_sapiens”))

Extract seglevels based on species, style and group:
The 'group' argument can be '

sex', 'auto', 'circular' or 'all'.
All:
extractSeqlevels(species="Drosophila_melanogaster”, style="Ensembl")

Sex chromosomes:
extractSeqlevelsByGroup(species="Homo_sapiens”, style="UCSC", group="sex")

Autosomes:
extractSeqlevelsByGroup(species="Homo_sapiens”, style="UCSC", group="auto")

Identify which segnames belong to a particular 'group':
newchr <- paste@("chr”,c(1:22,"X","Y","M","1_gl@0@192_random”,"4_ctg9"))
seqlevelsInGroup(newchr, group="sex")

newchr <- as.character(c(1:22,"X","Y","MT"))
seqlevelsInGroup(newchr, group="all", "Homo_sapiens"”,"”NCBI")

Identify which seqgnames belong to a species and style:
seqnames <- c("chr1”,"chr9”, "chr2", "chr3”, "chrio")
all(seqnames %in% extractSeqlevels("Homo_sapiens”, "UCSC"))

Find mapped seglevelsStyles for exsiting segnames:
mapSeqglevels(c("chrII”, "chrIII”, "chrM”), "NCBI")
mapSeqlevels(c("chrII”, "chrIII", "chrM"), "Ensembl")

Index

* classes
GenomeDescription-class, 2
Seqinfo-class, 26

* internal
GenomeInfoDb internals, 3

* manip
getChromInfoFromEnsembl, 4
getChromInfoFromNCBI, 9
getChromInfoFromUCSC, 12
loadTaxonomyDb, 16
NCBI-utils, 18
rankSeqglevels, 20

+ methods
GenomeDescription-class, 2
seqginfo, 21
Seqginfo-class, 26
seqlevels-wrappers, 32

x utilities
seglevels-wrappers, 32

[,Seqinfo-method (Seqinfo-class), 26

as.data.frame, Seqinfo-method
(Seginfo-class), 26

as.data.frame.Seqinfo (Seqinfo-class),
26

available.genomes, 3

BSgenome, 2, 3, 15, 23, 24

bsgenomeName (GenomeDescription-class),
2

bsgenomeName, GenomeDescription-method
(GenomeDescription-class), 2

checkCompatibleSeqinfo (Seqinfo-class),
26

class:GenomeDescription
(GenomeDescription-class), 2

class:Seqinfo (Seqinfo-class), 26

coerce,data.frame, Seqinfo-method
(Seqinfo-class), 26

coerce,DataFrame, Seqinfo-method
(Seginfo-class), 26

commonName (GenomeDescription-class), 2

40

commonName , GenomeDescription-method
(GenomeDescription-class), 2

DEFAULT_CIRC_SEQS (GenomeInfoDb
internals), 3
dropSeqglevels (seqlevels-wrappers), 32

exonsBy, 22

extractSeqlevels (seqlevelsStyle), 36

extractSeqglevelsByGroup
(seqlevelsStyle), 36

fetch_assembly_report (NCBI-utils), 18
find_NCBI_assembly_ftp_dir
(NCBI-utils), 18

GAlignmentPairs, 22-24
GAlignments, 22-24
GAlignmentslList, 22-24
genome (seqinfo), 21
genome, ANY-method (seqinfo), 21
genome, Seqinfo-method (Seginfo-class),
26
genome<- (seqinfo), 21
genome<-,ANY-method (seqinfo), 21
genome<-, Seqinfo-method
(Seqginfo-class), 26
genomeBuilds (mapGenomeBuilds), 17
GenomeDescription
(GenomeDescription-class), 2
GenomeDescription-class, 2
GenomeInfoDb internals, 3
genomeStyles (seqlevelsStyle), 36
get_and_fix_chrom_info_from_UCSC
(getChromInfoFromUCSC), 12
getBSgenome, 15
getChromInfoFromEnsembl, 4, 11, 15
getChromInfoFromNCBI, 4-6, 9, 13-15, 19, 29
getChromInfoFromuUCsc, 6, 11, 12,29
GRanges, 21-23, 27
GRangeslList, 22, 23

IntegerRangesList, 23
intersect,Seqinfo, Seqinfo-method
(Seqinfo-class), 26

INDEX

isCircular (seqinfo), 21
isCircular,ANY-method (seqinfo), 21
isCircular,Seqinfo-method
(Seginfo-class), 26
isCircular<- (seqinfo), 21
isCircular<-,ANY-method (seqinfo), 21
isCircular<-,Seqinfo-method
(Seqinfo-class), 26

keepSeqlevels (seqlevels-wrappers), 32
keepStandardChromosomes
(seqlevels-wrappers), 32

length, Seqinfo-method (Seqinfo-class),
26

List, 23

list_ftp_dir (GenomeInfoDb internals), 3

listOrganisms (mapGenomeBuilds), 17

loadTaxonomyDb, 16

mapGenomeBuilds, 17
mapSeqlevels (seqlevelsStyle), 36
merge,missing, Seqinfo-method
(Seginfo-class), 26
merge,NULL, Seqinfo-method
(Seginfo-class), 26
merge, Seqinfo,missing-method
(Seginfo-class), 26
merge, Seqinfo,NULL-method
(Seginfo-class), 26
merge, Seqinfo, Seqinfo-method
(Seginfo-class), 26
merge.Seqinfo (Seqinfo-class), 26

names, Seqginfo-method (Seginfo-class), 26

names<-,Seqinfo-method (Seqinfo-class),
26

NCBI-utils, 18

orderSeqlevels (rankSeglevels), 20

organism (GenomeDescription-class), 2

organism,GenomeDescription-method
(GenomeDescription-class), 2

provider (GenomeDescription-class), 2
provider,GenomeDescription-method
(GenomeDescription-class), 2
providerVersion
(GenomeDescription-class), 2
providerVersion,GenomeDescription-method
(GenomeDescription-class), 2

rankSeqlevels, 20, 24

41

registered_NCBI_assemblies
(getChromInfoFromNCBI), 9

registered_UCSC_genomes
(getChromInfoFromuUCsC), 12

releaseDate (GenomeDescription-class), 2

releaseDate, GenomeDescription-method
(GenomeDescription-class), 2

renameSeqlevels (seqlevels-wrappers), 32

restoreSeqlevels (seqlevels-wrappers),
32

saveAssembledMoleculesInfoFromUCSC
(getChromInfoFromUCsC), 12
Seqinfo, 3, 5, 6, 10, 11, 13, 15,21, 23, 32, 34
Seqinfo (Seqinfo-class), 26
seqinfo, 21, 29, 34
seqinfo,GenomeDescription-method
(GenomeDescription-class), 2
Seqinfo-class, 26
seqinfo<- (seqinfo), 21
seglengths (seqinfo), 21
seglengths, ANY-method (seqinfo), 21
seglengths, Seqinfo-method
(Seqinfo-class), 26
seqlengths<- (seqinfo), 21
seglengths<-,ANY-method (seqinfo), 21
seqlengths<-,Seqinfo-method
(Seginfo-class), 26
seqlevels (seqinfo), 21
seglevels,ANY-method (seqginfo), 21
seqlevels,Seqinfo-method
(Seqinfo-class), 26
seqglevels-wrappers, 24, 32
seqlevels@ (seqinfo), 21
seglevels<- (seqginfo), 21
seglevels<-,ANY-method (seqinfo), 21
seqlevels<-,Seginfo-method
(Seqinfo-class), 26
seqlevelsInGroup (seglevelsStyle), 36
seglevelsInUse (seqinfo), 21
seqglevelsInUse,CompressedList-method
(seqginfo), 21
seqlevelsInUse,Vector-method (seqinfo),
21
seqglevelsStyle, 23, 36
seqlevelsStyle,ANY-method
(seqlevelsStyle), 36
seqlevelsStyle,character-method
(seqlevelsStyle), 36
seqlevelsStyle, Seqinfo-method
(seqlevelsStyle), 36
seqlevelsStyle<- (seglevelsStyle), 36

42

seglevelsStyle<-,ANY-method
(seglevelsStyle), 36
seqlevelsStyle<-,character-method
(seglevelsStyle), 36
seglevelsStyle<-,Seqinfo-method
(seglevelsStyle), 36
segnames (seqinfo), 21
segnames,GenomeDescription-method
(GenomeDescription-class), 2
segnames, Seqinfo-method
(Seginfo-class), 26
segnames<- (seqinfo), 21
segnames<-, Seqinfo-method
(Seqinfo-class), 26
show, GenomeDescription-method
(GenomeDescription-class), 2
show, Seqinfo-method (Seginfo-class), 26
sortSeqlevels, 20
sortSeqlevels (seqginfo), 21
sortSeqlevels,ANY-method (seqginfo), 21
sortSeqlevels,character-method
(seqinfo), 21
species (GenomeDescription-class), 2
species,GenomeDescription-method
(GenomeDescription-class), 2
standardChromosomes
(seqlevels-wrappers), 32
SummarizedExperiment, 23, 24
summary, Seqinfo-method (Seqinfo-class),
26
summary.Seqinfo (Seginfo-class), 26

transcriptsBy, 22
TxDb, 23, 24, 27

update, Seqinfo-method (Seqinfo-class),
26
update.Seqinfo (Seqinfo-class), 26

INDEX

	GenomeDescription-class
	GenomeInfoDb internals
	getChromInfoFromEnsembl
	getChromInfoFromNCBI
	getChromInfoFromUCSC
	loadTaxonomyDb
	mapGenomeBuilds
	NCBI-utils
	rankSeqlevels
	seqinfo
	Seqinfo-class
	seqlevels-wrappers
	seqlevelsStyle
	Index

